blob: 091c2074644ee29c07e8b70b090e1537f1177479 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <DisplayHardware/Hal.h>
#include <android-base/stringprintf.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/Output.h>
#include <compositionengine/impl/HwcBufferCache.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cstdint>
#include "system/graphics-base-v1.0.h"
#include <ui/HdrRenderTypeUtils.h>
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#include "DisplayHardware/HWComposer.h"
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"
using aidl::android::hardware::graphics::composer3::Composition;
namespace android::compositionengine {
OutputLayer::~OutputLayer() = default;
namespace impl {
namespace {
FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
} // namespace
std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
const sp<compositionengine::LayerFE>& layerFE) {
return createOutputLayerTemplated<OutputLayer>(output, layerFE);
}
OutputLayer::~OutputLayer() = default;
void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
auto& state = editState();
if (hwcLayer) {
state.hwc.emplace(std::move(hwcLayer));
} else {
state.hwc.reset();
}
}
Rect OutputLayer::calculateInitialCrop() const {
const auto& layerState = *getLayerFE().getCompositionState();
// apply the projection's clipping to the window crop in
// layerstack space, and convert-back to layer space.
// if there are no window scaling involved, this operation will map to full
// pixels in the buffer.
FloatRect activeCropFloat =
reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
const Rect& viewport = getOutput().getState().layerStackSpace.getContent();
const ui::Transform& layerTransform = layerState.geomLayerTransform;
const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
// Transform to screen space.
activeCropFloat = layerTransform.transform(activeCropFloat);
activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
// Back to layer space to work with the content crop.
activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
Rect activeCrop{activeCropFloat};
if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
activeCrop.clear();
}
return activeCrop;
}
FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const {
const auto& layerState = *getLayerFE().getCompositionState();
if (!layerState.geomUsesSourceCrop) {
return {};
}
// the content crop is the area of the content that gets scaled to the
// layer's size. This is in buffer space.
FloatRect crop = layerState.geomContentCrop.toFloatRect();
// In addition there is a WM-specified crop we pull from our drawing state.
Rect activeCrop = calculateInitialCrop();
const Rect& bufferSize = layerState.geomBufferSize;
int winWidth = bufferSize.getWidth();
int winHeight = bufferSize.getHeight();
// The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
// if display frame hasn't been set and the parent is an unbounded layer.
if (winWidth < 0 && winHeight < 0) {
return crop;
}
// Transform the window crop to match the buffer coordinate system,
// which means using the inverse of the current transform set on the
// SurfaceFlingerConsumer.
uint32_t invTransform = layerState.geomBufferTransform;
if (layerState.geomBufferUsesDisplayInverseTransform) {
/*
* the code below applies the primary display's inverse transform to the
* buffer
*/
uint32_t invTransformOrient = internalDisplayRotationFlags;
// calculate the inverse transform
if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
}
// and apply to the current transform
invTransform =
(ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
}
if (invTransform & HAL_TRANSFORM_ROT_90) {
// If the activeCrop has been rotate the ends are rotated but not
// the space itself so when transforming ends back we can't rely on
// a modification of the axes of rotation. To account for this we
// need to reorient the inverse rotation in terms of the current
// axes of rotation.
bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
if (isHFlipped == isVFlipped) {
invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
}
std::swap(winWidth, winHeight);
}
const Rect winCrop =
activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
// below, crop is intersected with winCrop expressed in crop's coordinate space
const float xScale = crop.getWidth() / float(winWidth);
const float yScale = crop.getHeight() / float(winHeight);
const float insetLeft = winCrop.left * xScale;
const float insetTop = winCrop.top * yScale;
const float insetRight = (winWidth - winCrop.right) * xScale;
const float insetBottom = (winHeight - winCrop.bottom) * yScale;
crop.left += insetLeft;
crop.top += insetTop;
crop.right -= insetRight;
crop.bottom -= insetBottom;
return crop;
}
Rect OutputLayer::calculateOutputDisplayFrame() const {
const auto& layerState = *getLayerFE().getCompositionState();
const auto& outputState = getOutput().getState();
// apply the layer's transform, followed by the display's global transform
// here we're guaranteed that the layer's transform preserves rects
Region activeTransparentRegion = layerState.transparentRegionHint;
const ui::Transform& layerTransform = layerState.geomLayerTransform;
const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
const Rect& bufferSize = layerState.geomBufferSize;
Rect activeCrop = layerState.geomCrop;
if (!activeCrop.isEmpty() && bufferSize.isValid()) {
activeCrop = layerTransform.transform(activeCrop);
if (!activeCrop.intersect(outputState.layerStackSpace.getContent(), &activeCrop)) {
activeCrop.clear();
}
activeCrop = inverseLayerTransform.transform(activeCrop, true);
// This needs to be here as transform.transform(Rect) computes the
// transformed rect and then takes the bounding box of the result before
// returning. This means
// transform.inverse().transform(transform.transform(Rect)) != Rect
// in which case we need to make sure the final rect is clipped to the
// display bounds.
if (!activeCrop.intersect(bufferSize, &activeCrop)) {
activeCrop.clear();
}
// mark regions outside the crop as transparent
activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
activeTransparentRegion.orSelf(
Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
activeTransparentRegion.orSelf(
Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
}
// reduce uses a FloatRect to provide more accuracy during the
// transformation. We then round upon constructing 'frame'.
FloatRect geomLayerBounds = layerState.geomLayerBounds;
// Some HWCs may clip client composited input to its displayFrame. Make sure
// that this does not cut off the shadow.
if (layerState.forceClientComposition && layerState.shadowSettings.length > 0.0f) {
const auto outset = layerState.shadowSettings.length;
geomLayerBounds.left -= outset;
geomLayerBounds.top -= outset;
geomLayerBounds.right += outset;
geomLayerBounds.bottom += outset;
}
Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))};
if (!frame.intersect(outputState.layerStackSpace.getContent(), &frame)) {
frame.clear();
}
const ui::Transform displayTransform{outputState.transform};
return displayTransform.transform(frame);
}
uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
uint32_t internalDisplayRotationFlags) const {
const auto& layerState = *getLayerFE().getCompositionState();
const auto& outputState = getOutput().getState();
/*
* Transformations are applied in this order:
* 1) buffer orientation/flip/mirror
* 2) state transformation (window manager)
* 3) layer orientation (screen orientation)
* (NOTE: the matrices are multiplied in reverse order)
*/
const ui::Transform& layerTransform = layerState.geomLayerTransform;
const ui::Transform displayTransform{outputState.transform};
const ui::Transform bufferTransform{layerState.geomBufferTransform};
ui::Transform transform(displayTransform * layerTransform * bufferTransform);
if (layerState.geomBufferUsesDisplayInverseTransform) {
/*
* We must apply the internal display's inverse transform to the buffer
* transform, and not the one for the output this layer is on.
*/
uint32_t invTransform = internalDisplayRotationFlags;
// calculate the inverse transform
if (invTransform & HAL_TRANSFORM_ROT_90) {
invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
}
/*
* Here we cancel out the orientation component of the WM transform.
* The scaling and translate components are already included in our bounds
* computation so it's enough to just omit it in the composition.
* See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
*/
transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
}
// this gives us only the "orientation" component of the transform
return transform.getOrientation();
}
void OutputLayer::updateCompositionState(
bool includeGeometry, bool forceClientComposition,
ui::Transform::RotationFlags internalDisplayRotationFlags) {
const auto* layerFEState = getLayerFE().getCompositionState();
if (!layerFEState) {
return;
}
const auto& outputState = getOutput().getState();
const auto& profile = *getOutput().getDisplayColorProfile();
auto& state = editState();
if (includeGeometry) {
// Clear the forceClientComposition flag before it is set for any
// reason. Note that since it can be set by some checks below when
// updating the geometry state, we only clear it when updating the
// geometry since those conditions for forcing client composition won't
// go away otherwise.
state.forceClientComposition = false;
state.displayFrame = calculateOutputDisplayFrame();
state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags);
state.bufferTransform = static_cast<Hwc2::Transform>(
calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
if ((layerFEState->isSecure && !outputState.isSecure) ||
(state.bufferTransform & ui::Transform::ROT_INVALID)) {
state.forceClientComposition = true;
}
}
auto pixelFormat = layerFEState->buffer ? std::make_optional(static_cast<ui::PixelFormat>(
layerFEState->buffer->getPixelFormat()))
: std::nullopt;
auto hdrRenderType =
getHdrRenderType(outputState.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
// Determine the output dependent dataspace for this layer. If it is
// colorspace agnostic, it just uses the dataspace chosen for the output to
// avoid the need for color conversion.
// For now, also respect the colorspace agnostic flag if we're drawing to HDR, to avoid drastic
// luminance shift. TODO(b/292162273): we should check if that's true though.
state.dataspace = layerFEState->isColorspaceAgnostic && hdrRenderType == HdrRenderType::SDR
? outputState.dataspace
: layerFEState->dataspace;
// Override the dataspace transfer from 170M to sRGB if the device configuration requests this.
// We do this here instead of in buffer info so that dumpsys can still report layers that are
// using the 170M transfer. Also we only do this if the colorspace is not agnostic for the
// layer, in case the color profile uses a 170M transfer function.
if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic &&
(state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) {
state.dataspace = static_cast<ui::Dataspace>(
(state.dataspace & HAL_DATASPACE_STANDARD_MASK) |
(state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB);
}
// re-get HdrRenderType after the dataspace gets changed.
hdrRenderType =
getHdrRenderType(state.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
// For hdr content, treat the white point as the display brightness - HDR content should not be
// boosted or dimmed.
// If the layer explicitly requests to disable dimming, then don't dim either.
if (hdrRenderType == HdrRenderType::GENERIC_HDR ||
getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits ||
getOutput().getState().displayBrightnessNits == 0.f || !layerFEState->dimmingEnabled) {
state.dimmingRatio = 1.f;
state.whitePointNits = getOutput().getState().displayBrightnessNits;
} else {
float layerBrightnessNits = getOutput().getState().sdrWhitePointNits;
// RANGE_EXTENDED can "self-promote" to HDR, but is still rendered for a particular
// range that we may need to re-adjust to the current display conditions
if (hdrRenderType == HdrRenderType::DISPLAY_HDR) {
layerBrightnessNits *= layerFEState->currentHdrSdrRatio;
}
state.dimmingRatio =
std::clamp(layerBrightnessNits / getOutput().getState().displayBrightnessNits, 0.f,
1.f);
state.whitePointNits = layerBrightnessNits;
}
// These are evaluated every frame as they can potentially change at any
// time.
if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
forceClientComposition) {
state.forceClientComposition = true;
}
}
void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z,
bool zIsOverridden, bool isPeekingThrough) {
const auto& state = getState();
// Skip doing this if there is no HWC interface
if (!state.hwc) {
return;
}
auto& hwcLayer = (*state.hwc).hwcLayer;
if (!hwcLayer) {
ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
getLayerFE().getDebugName(), getOutput().getName().c_str());
return;
}
const auto* outputIndependentState = getLayerFE().getCompositionState();
if (!outputIndependentState) {
return;
}
auto requestedCompositionType = outputIndependentState->compositionType;
if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) {
requestedCompositionType = Composition::DEVICE;
}
// TODO(b/181172795): We now update geometry for all flattened layers. We should update it
// only when the geometry actually changes
const bool isOverridden =
state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden;
const bool prevOverridden = state.hwc->stateOverridden;
if (isOverridden || prevOverridden || skipLayer || includeGeometry) {
writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z);
writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState,
skipLayer);
}
writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState,
requestedCompositionType, skipLayer);
writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough,
skipLayer);
if (requestedCompositionType == Composition::SOLID_COLOR) {
writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
}
editState().hwc->stateOverridden = isOverridden;
editState().hwc->layerSkipped = skipLayer;
}
void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer,
Composition requestedCompositionType,
uint32_t z) {
const auto& outputDependentState = getState();
Rect displayFrame = outputDependentState.displayFrame;
FloatRect sourceCrop = outputDependentState.sourceCrop;
if (outputDependentState.overrideInfo.buffer != nullptr) {
displayFrame = outputDependentState.overrideInfo.displayFrame;
sourceCrop =
FloatRect(0.f, 0.f,
static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
->getWidth()),
static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
->getHeight()));
}
ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top,
displayFrame.right, displayFrame.bottom);
if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right,
displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
}
if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
"%s (%d)",
getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right,
sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
}
if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z,
to_string(error).c_str(), static_cast<int32_t>(error));
}
// Solid-color layers and overridden buffers should always use an identity transform.
const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR &&
getState().overrideInfo.buffer == nullptr)
? outputDependentState.bufferTransform
: static_cast<hal::Transform>(0);
if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
void OutputLayer::writeOutputIndependentGeometryStateToHWC(
HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
bool skipLayer) {
// If there is a peekThroughLayer, then this layer has a hole in it. We need to use
// PREMULTIPLIED so it will peek through.
const auto& overrideInfo = getState().overrideInfo;
const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer
? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED
: outputIndependentState.blendMode;
if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
}
const float alpha = skipLayer
? 0.0f
: (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha);
ALOGV("Writing alpha %f", alpha);
if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha,
to_string(error).c_str(), static_cast<int32_t>(error));
}
for (const auto& [name, entry] : outputIndependentState.metadata) {
if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
}
}
}
void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
const auto& outputDependentState = getState();
// TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
// state and should not change every frame.
Region visibleRegion = outputDependentState.overrideInfo.buffer
? Region(outputDependentState.overrideInfo.visibleRegion)
: outputDependentState.outputSpaceVisibleRegion;
if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
visibleRegion.dump(LOG_TAG);
}
if (auto error =
hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint);
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG);
}
const auto dataspace = outputDependentState.overrideInfo.buffer
? outputDependentState.overrideInfo.dataspace
: outputDependentState.dataspace;
if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace,
to_string(error).c_str(), static_cast<int32_t>(error));
}
// Cached layers are not dimmed, which means that composer should attempt to dim.
// Note that if the dimming ratio is large, then this may cause the cached layer
// to kick back into GPU composition :(
// Also note that this assumes that there are no HDR layers that are able to be cached.
// Otherwise, this could cause HDR layers to be dimmed twice.
const auto dimmingRatio = outputDependentState.overrideInfo.buffer
? (getOutput().getState().displayBrightnessNits != 0.f
? std::clamp(getOutput().getState().sdrWhitePointNits /
getOutput().getState().displayBrightnessNits,
0.f, 1.f)
: 1.f)
: outputDependentState.dimmingRatio;
if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(),
dimmingRatio, to_string(error).c_str(), static_cast<int32_t>(error));
}
}
void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
Composition compositionType, bool skipLayer) {
switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
case hal::Error::NONE:
break;
case hal::Error::UNSUPPORTED:
editState().forceClientComposition = true;
break;
default:
ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
const Region& surfaceDamage = getState().overrideInfo.buffer
? getState().overrideInfo.damageRegion
: (getState().hwc->stateOverridden ? Region::INVALID_REGION
: outputIndependentState.surfaceDamage);
if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
outputIndependentState.surfaceDamage.dump(LOG_TAG);
}
// Content-specific per-frame state
switch (compositionType) {
case Composition::SOLID_COLOR:
// For compatibility, should be written AFTER the composition type.
break;
case Composition::SIDEBAND:
writeSidebandStateToHWC(hwcLayer, outputIndependentState);
break;
case Composition::CURSOR:
case Composition::DEVICE:
case Composition::DISPLAY_DECORATION:
case Composition::REFRESH_RATE_INDICATOR:
writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer);
break;
case Composition::INVALID:
case Composition::CLIENT:
// Ignored
break;
}
}
void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
const LayerFECompositionState& outputIndependentState) {
aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r,
outputIndependentState.color.g,
outputIndependentState.color.b,
1.0f};
if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
}
void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
const LayerFECompositionState& outputIndependentState) {
if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
void OutputLayer::uncacheBuffers(const std::vector<uint64_t>& bufferIdsToUncache) {
auto& state = editState();
// Skip doing this if there is no HWC interface
if (!state.hwc) {
return;
}
// Uncache the active buffer last so that it's the first buffer to be purged from the cache
// next time a buffer is sent to this layer.
bool uncacheActiveBuffer = false;
std::vector<uint32_t> slotsToClear;
for (uint64_t bufferId : bufferIdsToUncache) {
if (bufferId == state.hwc->activeBufferId) {
uncacheActiveBuffer = true;
} else {
uint32_t slot = state.hwc->hwcBufferCache.uncache(bufferId);
if (slot != UINT32_MAX) {
slotsToClear.push_back(slot);
}
}
}
if (uncacheActiveBuffer) {
slotsToClear.push_back(state.hwc->hwcBufferCache.uncache(state.hwc->activeBufferId));
}
hal::Error error =
state.hwc->hwcLayer->setBufferSlotsToClear(slotsToClear, state.hwc->activeBufferSlot);
if (error != hal::Error::NONE) {
ALOGE("[%s] Failed to clear buffer slots: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
}
void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
const LayerFECompositionState& outputIndependentState,
bool skipLayer) {
if (skipLayer && outputIndependentState.buffer == nullptr) {
return;
}
auto supportedPerFrameMetadata =
getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
outputIndependentState.hdrMetadata);
error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
HwcSlotAndBuffer hwcSlotAndBuffer;
sp<Fence> hwcFence;
{
// Editing the state only because we update the HWC buffer cache and active buffer.
auto& state = editState();
// Override buffers use a special cache slot so that they don't evict client buffers.
if (state.overrideInfo.buffer != nullptr && !skipLayer) {
hwcSlotAndBuffer = state.hwc->hwcBufferCache.getOverrideHwcSlotAndBuffer(
state.overrideInfo.buffer->getBuffer());
hwcFence = state.overrideInfo.acquireFence;
// Keep track of the active buffer ID so when it's discarded we uncache it last so its
// slot will be used first, allowing the memory to be freed as soon as possible.
state.hwc->activeBufferId = state.overrideInfo.buffer->getBuffer()->getId();
} else {
hwcSlotAndBuffer =
state.hwc->hwcBufferCache.getHwcSlotAndBuffer(outputIndependentState.buffer);
hwcFence = outputIndependentState.acquireFence;
// Keep track of the active buffer ID so when it's discarded we uncache it last so its
// slot will be used first, allowing the memory to be freed as soon as possible.
state.hwc->activeBufferId = outputIndependentState.buffer->getId();
}
// Keep track of the active buffer slot, so we can restore it after clearing other buffer
// slots.
state.hwc->activeBufferSlot = hwcSlotAndBuffer.slot;
}
if (auto error = hwcLayer->setBuffer(hwcSlotAndBuffer.slot, hwcSlotAndBuffer.buffer, hwcFence);
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(),
hwcSlotAndBuffer.buffer->handle, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
Composition requestedCompositionType,
bool isPeekingThrough, bool skipLayer) {
auto& outputDependentState = editState();
if (isClientCompositionForced(isPeekingThrough)) {
// If we are forcing client composition, we need to tell the HWC
requestedCompositionType = Composition::CLIENT;
}
// Set the requested composition type with the HWC whenever it changes
// We also resend the composition type when this layer was previously skipped, to ensure that
// the composition type is up-to-date.
if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType ||
(outputDependentState.hwc->layerSkipped && !skipLayer)) {
outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
to_string(requestedCompositionType).c_str(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
}
void OutputLayer::writeCursorPositionToHWC() const {
// Skip doing this if there is no HWC interface
auto hwcLayer = getHwcLayer();
if (!hwcLayer) {
return;
}
const auto* layerFEState = getLayerFE().getCompositionState();
if (!layerFEState) {
return;
}
const auto& outputState = getOutput().getState();
Rect frame = layerFEState->cursorFrame;
frame.intersect(outputState.layerStackSpace.getContent(), &frame);
Rect position = outputState.transform.transform(frame);
if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
error != hal::Error::NONE) {
ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
HWC2::Layer* OutputLayer::getHwcLayer() const {
const auto& state = getState();
return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
}
bool OutputLayer::requiresClientComposition() const {
const auto& state = getState();
return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT;
}
bool OutputLayer::isHardwareCursor() const {
const auto& state = getState();
return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR;
}
void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const {
bool result = false;
switch (from) {
case Composition::INVALID:
case Composition::CLIENT:
result = false;
break;
case Composition::DEVICE:
case Composition::SOLID_COLOR:
result = (to == Composition::CLIENT);
break;
case Composition::CURSOR:
case Composition::SIDEBAND:
case Composition::DISPLAY_DECORATION:
case Composition::REFRESH_RATE_INDICATOR:
result = (to == Composition::CLIENT || to == Composition::DEVICE);
break;
}
if (!result) {
ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
getLayerFE().getDebugName(), to_string(from).c_str(), static_cast<int>(from),
to_string(to).c_str(), static_cast<int>(to));
}
}
bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const {
return getState().forceClientComposition ||
(!isPeekingThrough && getLayerFE().hasRoundedCorners());
}
void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) {
auto& state = editState();
LOG_FATAL_IF(!state.hwc);
auto& hwcState = *state.hwc;
// Only detected disallowed changes if this was not a skip layer, because the
// validated composition type may be arbitrary (usually DEVICE, to reflect that there were
// fewer GPU layers)
if (!hwcState.layerSkipped) {
detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
}
hwcState.hwcCompositionType = compositionType;
}
void OutputLayer::prepareForDeviceLayerRequests() {
auto& state = editState();
state.clearClientTarget = false;
}
void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
auto& state = editState();
switch (request) {
case hal::LayerRequest::CLEAR_CLIENT_TARGET:
state.clearClientTarget = true;
break;
default:
ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
toString(request).c_str(), static_cast<int>(request));
break;
}
}
bool OutputLayer::needsFiltering() const {
const auto& state = getState();
const auto& sourceCrop = state.sourceCrop;
auto displayFrameWidth = static_cast<float>(state.displayFrame.getWidth());
auto displayFrameHeight = static_cast<float>(state.displayFrame.getHeight());
if (state.bufferTransform & HAL_TRANSFORM_ROT_90) {
std::swap(displayFrameWidth, displayFrameHeight);
}
return sourceCrop.getHeight() != displayFrameHeight ||
sourceCrop.getWidth() != displayFrameWidth;
}
std::optional<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionSettings() const {
if (getState().overrideInfo.buffer == nullptr) {
return {};
}
// Compute the geometry boundaries in layer stack space: we need to transform from the
// framebuffer space of the override buffer to layer space.
const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace;
const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace);
const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame);
LayerFE::LayerSettings settings;
settings.geometry = renderengine::Geometry{
.boundaries = boundaries.toFloatRect(),
};
settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId();
settings.source = renderengine::PixelSource{
.buffer = renderengine::Buffer{
.buffer = getState().overrideInfo.buffer,
.fence = getState().overrideInfo.acquireFence,
// If the transform from layer space to display space contains a rotation, we
// need to undo the rotation in the texture transform
.textureTransform =
ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(),
}};
settings.sourceDataspace = getState().overrideInfo.dataspace;
settings.alpha = 1.0f;
settings.whitePointNits = getOutput().getState().sdrWhitePointNits;
return settings;
}
void OutputLayer::dump(std::string& out) const {
using android::base::StringAppendF;
StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
dumpState(out);
}
} // namespace impl
} // namespace android::compositionengine