blob: 0e45d2d8c4f2cd8a180ba8e9b62c3213617bda26 [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "driver.h"
#include <dlfcn.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>
#include <SurfaceFlingerProperties.h>
#include <android-base/properties.h>
#include <android/dlext.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <graphicsenv/GraphicsEnv.h>
#include <log/log.h>
#include <sys/prctl.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <vndksupport/linker.h>
#include <algorithm>
#include <array>
#include <climits>
#include <new>
#include <vector>
#include "stubhal.h"
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
extern "C" android_namespace_t* android_get_exported_namespace(const char*);
// #define ENABLE_ALLOC_CALLSTACKS 1
#if ENABLE_ALLOC_CALLSTACKS
#include <utils/CallStack.h>
#define ALOGD_CALLSTACK(...) \
do { \
ALOGD(__VA_ARGS__); \
android::CallStack callstack; \
callstack.update(); \
callstack.log(LOG_TAG, ANDROID_LOG_DEBUG, " "); \
} while (false)
#else
#define ALOGD_CALLSTACK(...) \
do { \
} while (false)
#endif
namespace vulkan {
namespace driver {
namespace {
class Hal {
public:
static bool Open();
static const Hal& Get() { return hal_; }
static const hwvulkan_device_t& Device() { return *Get().dev_; }
int GetDebugReportIndex() const { return debug_report_index_; }
private:
Hal() : dev_(nullptr), debug_report_index_(-1) {}
Hal(const Hal&) = delete;
Hal& operator=(const Hal&) = delete;
bool ShouldUnloadBuiltinDriver();
void UnloadBuiltinDriver();
bool InitDebugReportIndex();
static Hal hal_;
const hwvulkan_device_t* dev_;
int debug_report_index_;
};
class CreateInfoWrapper {
public:
CreateInfoWrapper(const VkInstanceCreateInfo& create_info,
uint32_t icd_api_version,
const VkAllocationCallbacks& allocator);
CreateInfoWrapper(VkPhysicalDevice physical_dev,
const VkDeviceCreateInfo& create_info,
uint32_t icd_api_version,
const VkAllocationCallbacks& allocator);
~CreateInfoWrapper();
VkResult Validate();
const std::bitset<ProcHook::EXTENSION_COUNT>& GetHookExtensions() const;
const std::bitset<ProcHook::EXTENSION_COUNT>& GetHalExtensions() const;
explicit operator const VkInstanceCreateInfo*() const;
explicit operator const VkDeviceCreateInfo*() const;
private:
struct ExtensionFilter {
VkExtensionProperties* exts;
uint32_t ext_count;
const char** names;
uint32_t name_count;
ExtensionFilter()
: exts(nullptr), ext_count(0), names(nullptr), name_count(0) {}
};
VkResult SanitizeApiVersion();
VkResult SanitizePNext();
VkResult SanitizeLayers();
VkResult SanitizeExtensions();
VkResult QueryExtensionCount(uint32_t& count) const;
VkResult EnumerateExtensions(uint32_t& count,
VkExtensionProperties* props) const;
VkResult InitExtensionFilter();
void FilterExtension(const char* name);
const bool is_instance_;
const VkAllocationCallbacks& allocator_;
const uint32_t loader_api_version_;
const uint32_t icd_api_version_;
VkPhysicalDevice physical_dev_;
union {
VkInstanceCreateInfo instance_info_;
VkDeviceCreateInfo dev_info_;
};
VkApplicationInfo application_info_;
ExtensionFilter extension_filter_;
std::bitset<ProcHook::EXTENSION_COUNT> hook_extensions_;
std::bitset<ProcHook::EXTENSION_COUNT> hal_extensions_;
};
Hal Hal::hal_;
const std::array<const char*, 2> HAL_SUBNAME_KEY_PROPERTIES = {{
"ro.hardware.vulkan",
"ro.board.platform",
}};
constexpr int LIB_DL_FLAGS = RTLD_LOCAL | RTLD_NOW;
constexpr char RO_VULKAN_APEX_PROPERTY[] = "ro.vulkan.apex";
// LoadDriver returns:
// * 0 when succeed, or
// * -ENOENT when fail to open binary libraries, or
// * -EINVAL when fail to find HAL_MODULE_INFO_SYM_AS_STR or
// HWVULKAN_HARDWARE_MODULE_ID in the library.
int LoadDriver(android_namespace_t* library_namespace,
const char* ns_name,
const hwvulkan_module_t** module) {
ATRACE_CALL();
void* so = nullptr;
for (auto key : HAL_SUBNAME_KEY_PROPERTIES) {
std::string lib_name = android::base::GetProperty(key, "");
if (lib_name.empty())
continue;
lib_name = "vulkan." + lib_name + ".so";
if (library_namespace) {
// load updated driver
const android_dlextinfo dlextinfo = {
.flags = ANDROID_DLEXT_USE_NAMESPACE,
.library_namespace = library_namespace,
};
so = android_dlopen_ext(lib_name.c_str(), LIB_DL_FLAGS, &dlextinfo);
if (!so) {
ALOGE("Could not load %s from %s namespace: %s.",
lib_name.c_str(), ns_name, dlerror());
}
} else {
// load built-in driver
so = android_load_sphal_library(lib_name.c_str(), LIB_DL_FLAGS);
}
if (so)
break;
}
if (!so)
return -ENOENT;
auto hmi = static_cast<hw_module_t*>(dlsym(so, HAL_MODULE_INFO_SYM_AS_STR));
if (!hmi) {
ALOGE("couldn't find symbol '%s' in HAL library: %s", HAL_MODULE_INFO_SYM_AS_STR, dlerror());
dlclose(so);
return -EINVAL;
}
if (strcmp(hmi->id, HWVULKAN_HARDWARE_MODULE_ID) != 0) {
ALOGE("HAL id '%s' != '%s'", hmi->id, HWVULKAN_HARDWARE_MODULE_ID);
dlclose(so);
return -EINVAL;
}
hmi->dso = so;
*module = reinterpret_cast<const hwvulkan_module_t*>(hmi);
return 0;
}
int LoadDriverFromApex(const hwvulkan_module_t** module) {
ATRACE_CALL();
auto apex_name = android::base::GetProperty(RO_VULKAN_APEX_PROPERTY, "");
if (apex_name == "") {
return -ENOENT;
}
// Get linker namespace for Vulkan APEX
std::replace(apex_name.begin(), apex_name.end(), '.', '_');
auto ns = android_get_exported_namespace(apex_name.c_str());
if (!ns) {
return -ENOENT;
}
android::GraphicsEnv::getInstance().setDriverToLoad(
android::GpuStatsInfo::Driver::VULKAN);
return LoadDriver(ns, apex_name.c_str(), module);
}
int LoadBuiltinDriver(const hwvulkan_module_t** module) {
ATRACE_CALL();
android::GraphicsEnv::getInstance().setDriverToLoad(
android::GpuStatsInfo::Driver::VULKAN);
return LoadDriver(nullptr, nullptr, module);
}
int LoadUpdatedDriver(const hwvulkan_module_t** module) {
ATRACE_CALL();
auto ns = android::GraphicsEnv::getInstance().getDriverNamespace();
if (!ns)
return -ENOENT;
android::GraphicsEnv::getInstance().setDriverToLoad(
android::GpuStatsInfo::Driver::VULKAN_UPDATED);
int result = LoadDriver(ns, "updatable gfx driver", module);
if (result != 0) {
LOG_ALWAYS_FATAL(
"couldn't find an updated Vulkan implementation from %s",
android::GraphicsEnv::getInstance().getDriverPath().c_str());
}
return result;
}
bool Hal::Open() {
ATRACE_CALL();
const nsecs_t openTime = systemTime();
if (hal_.ShouldUnloadBuiltinDriver()) {
hal_.UnloadBuiltinDriver();
}
if (hal_.dev_)
return true;
// Use a stub device unless we successfully open a real HAL device.
hal_.dev_ = &stubhal::kDevice;
int result;
const hwvulkan_module_t* module = nullptr;
result = LoadUpdatedDriver(&module);
if (result == -ENOENT) {
result = LoadDriverFromApex(&module);
}
if (result == -ENOENT) {
result = LoadBuiltinDriver(&module);
}
if (result != 0) {
android::GraphicsEnv::getInstance().setDriverLoaded(
android::GpuStatsInfo::Api::API_VK, false, systemTime() - openTime);
ALOGV("unable to load Vulkan HAL, using stub HAL (result=%d)", result);
return true;
}
hwvulkan_device_t* device;
ATRACE_BEGIN("hwvulkan module open");
result =
module->common.methods->open(&module->common, HWVULKAN_DEVICE_0,
reinterpret_cast<hw_device_t**>(&device));
ATRACE_END();
if (result != 0) {
android::GraphicsEnv::getInstance().setDriverLoaded(
android::GpuStatsInfo::Api::API_VK, false, systemTime() - openTime);
// Any device with a Vulkan HAL should be able to open the device.
ALOGE("failed to open Vulkan HAL device: %s (%d)", strerror(-result),
result);
return false;
}
hal_.dev_ = device;
hal_.InitDebugReportIndex();
android::GraphicsEnv::getInstance().setDriverLoaded(
android::GpuStatsInfo::Api::API_VK, true, systemTime() - openTime);
return true;
}
bool Hal::ShouldUnloadBuiltinDriver() {
// Should not unload since the driver was not loaded
if (!hal_.dev_)
return false;
// Should not unload if stubhal is used on the device
if (hal_.dev_ == &stubhal::kDevice)
return false;
// Unload the driver if updated driver is chosen
if (android::GraphicsEnv::getInstance().getDriverNamespace())
return true;
return false;
}
void Hal::UnloadBuiltinDriver() {
ATRACE_CALL();
ALOGD("Unload builtin Vulkan driver.");
// Close the opened device
ALOG_ASSERT(!hal_.dev_->common.close(hal_.dev_->common),
"hw_device_t::close() failed.");
// Close the opened shared library in the hw_module_t
android_unload_sphal_library(hal_.dev_->common.module->dso);
hal_.dev_ = nullptr;
hal_.debug_report_index_ = -1;
}
bool Hal::InitDebugReportIndex() {
ATRACE_CALL();
uint32_t count;
if (dev_->EnumerateInstanceExtensionProperties(nullptr, &count, nullptr) !=
VK_SUCCESS) {
ALOGE("failed to get HAL instance extension count");
return false;
}
VkExtensionProperties* exts = reinterpret_cast<VkExtensionProperties*>(
malloc(sizeof(VkExtensionProperties) * count));
if (!exts) {
ALOGE("failed to allocate HAL instance extension array");
return false;
}
if (dev_->EnumerateInstanceExtensionProperties(nullptr, &count, exts) !=
VK_SUCCESS) {
ALOGE("failed to enumerate HAL instance extensions");
free(exts);
return false;
}
for (uint32_t i = 0; i < count; i++) {
if (strcmp(exts[i].extensionName, VK_EXT_DEBUG_REPORT_EXTENSION_NAME) ==
0) {
debug_report_index_ = static_cast<int>(i);
break;
}
}
free(exts);
return true;
}
CreateInfoWrapper::CreateInfoWrapper(const VkInstanceCreateInfo& create_info,
uint32_t icd_api_version,
const VkAllocationCallbacks& allocator)
: is_instance_(true),
allocator_(allocator),
loader_api_version_(VK_API_VERSION_1_3),
icd_api_version_(icd_api_version),
physical_dev_(VK_NULL_HANDLE),
instance_info_(create_info),
extension_filter_() {}
CreateInfoWrapper::CreateInfoWrapper(VkPhysicalDevice physical_dev,
const VkDeviceCreateInfo& create_info,
uint32_t icd_api_version,
const VkAllocationCallbacks& allocator)
: is_instance_(false),
allocator_(allocator),
loader_api_version_(VK_API_VERSION_1_3),
icd_api_version_(icd_api_version),
physical_dev_(physical_dev),
dev_info_(create_info),
extension_filter_() {}
CreateInfoWrapper::~CreateInfoWrapper() {
allocator_.pfnFree(allocator_.pUserData, extension_filter_.exts);
allocator_.pfnFree(allocator_.pUserData, extension_filter_.names);
}
VkResult CreateInfoWrapper::Validate() {
VkResult result = SanitizeApiVersion();
if (result == VK_SUCCESS)
result = SanitizePNext();
if (result == VK_SUCCESS)
result = SanitizeLayers();
if (result == VK_SUCCESS)
result = SanitizeExtensions();
return result;
}
const std::bitset<ProcHook::EXTENSION_COUNT>&
CreateInfoWrapper::GetHookExtensions() const {
return hook_extensions_;
}
const std::bitset<ProcHook::EXTENSION_COUNT>&
CreateInfoWrapper::GetHalExtensions() const {
return hal_extensions_;
}
CreateInfoWrapper::operator const VkInstanceCreateInfo*() const {
return &instance_info_;
}
CreateInfoWrapper::operator const VkDeviceCreateInfo*() const {
return &dev_info_;
}
VkResult CreateInfoWrapper::SanitizeApiVersion() {
if (!is_instance_ || !instance_info_.pApplicationInfo)
return VK_SUCCESS;
if (icd_api_version_ > VK_API_VERSION_1_0 ||
instance_info_.pApplicationInfo->apiVersion < VK_API_VERSION_1_1)
return VK_SUCCESS;
// override apiVersion to avoid error return from 1.0 icd
application_info_ = *instance_info_.pApplicationInfo;
application_info_.apiVersion = VK_API_VERSION_1_0;
instance_info_.pApplicationInfo = &application_info_;
return VK_SUCCESS;
}
VkResult CreateInfoWrapper::SanitizePNext() {
const struct StructHeader {
VkStructureType type;
const void* next;
} * header;
if (is_instance_) {
header = reinterpret_cast<const StructHeader*>(instance_info_.pNext);
// skip leading VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFOs
while (header &&
header->type == VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO)
header = reinterpret_cast<const StructHeader*>(header->next);
instance_info_.pNext = header;
} else {
header = reinterpret_cast<const StructHeader*>(dev_info_.pNext);
// skip leading VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFOs
while (header &&
header->type == VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO)
header = reinterpret_cast<const StructHeader*>(header->next);
dev_info_.pNext = header;
}
return VK_SUCCESS;
}
VkResult CreateInfoWrapper::SanitizeLayers() {
auto& layer_names = (is_instance_) ? instance_info_.ppEnabledLayerNames
: dev_info_.ppEnabledLayerNames;
auto& layer_count = (is_instance_) ? instance_info_.enabledLayerCount
: dev_info_.enabledLayerCount;
// remove all layers
layer_names = nullptr;
layer_count = 0;
return VK_SUCCESS;
}
VkResult CreateInfoWrapper::SanitizeExtensions() {
auto& ext_names = (is_instance_) ? instance_info_.ppEnabledExtensionNames
: dev_info_.ppEnabledExtensionNames;
auto& ext_count = (is_instance_) ? instance_info_.enabledExtensionCount
: dev_info_.enabledExtensionCount;
VkResult result = InitExtensionFilter();
if (result != VK_SUCCESS)
return result;
if (is_instance_ && icd_api_version_ < loader_api_version_) {
for (uint32_t i = 0; i < ext_count; i++) {
// Upon api downgrade, skip the promoted instance extensions in the
// first pass to avoid duplicate extensions.
const std::optional<uint32_t> version =
GetInstanceExtensionPromotedVersion(ext_names[i]);
if (version && *version > icd_api_version_ &&
*version <= loader_api_version_)
continue;
FilterExtension(ext_names[i]);
}
// Enable the required extensions to support core functionalities.
const auto promoted_extensions = GetPromotedInstanceExtensions(
icd_api_version_, loader_api_version_);
for (const auto& promoted_extension : promoted_extensions)
FilterExtension(promoted_extension);
} else {
for (uint32_t i = 0; i < ext_count; i++)
FilterExtension(ext_names[i]);
}
// Enable device extensions that contain physical-device commands, so that
// vkGetInstanceProcAddr will return those physical-device commands.
if (is_instance_) {
hook_extensions_.set(ProcHook::KHR_swapchain);
}
const uint32_t api_version =
is_instance_ ? loader_api_version_
: std::min(icd_api_version_, loader_api_version_);
switch (api_version) {
case VK_API_VERSION_1_3:
hook_extensions_.set(ProcHook::EXTENSION_CORE_1_3);
hal_extensions_.set(ProcHook::EXTENSION_CORE_1_3);
[[clang::fallthrough]];
case VK_API_VERSION_1_2:
hook_extensions_.set(ProcHook::EXTENSION_CORE_1_2);
hal_extensions_.set(ProcHook::EXTENSION_CORE_1_2);
[[clang::fallthrough]];
case VK_API_VERSION_1_1:
hook_extensions_.set(ProcHook::EXTENSION_CORE_1_1);
hal_extensions_.set(ProcHook::EXTENSION_CORE_1_1);
[[clang::fallthrough]];
case VK_API_VERSION_1_0:
hook_extensions_.set(ProcHook::EXTENSION_CORE_1_0);
hal_extensions_.set(ProcHook::EXTENSION_CORE_1_0);
break;
default:
ALOGE("Unknown API version[%u]", api_version);
break;
}
ext_names = extension_filter_.names;
ext_count = extension_filter_.name_count;
return VK_SUCCESS;
}
VkResult CreateInfoWrapper::QueryExtensionCount(uint32_t& count) const {
if (is_instance_) {
return Hal::Device().EnumerateInstanceExtensionProperties(
nullptr, &count, nullptr);
} else {
const auto& driver = GetData(physical_dev_).driver;
return driver.EnumerateDeviceExtensionProperties(physical_dev_, nullptr,
&count, nullptr);
}
}
VkResult CreateInfoWrapper::EnumerateExtensions(
uint32_t& count,
VkExtensionProperties* props) const {
if (is_instance_) {
return Hal::Device().EnumerateInstanceExtensionProperties(
nullptr, &count, props);
} else {
const auto& driver = GetData(physical_dev_).driver;
return driver.EnumerateDeviceExtensionProperties(physical_dev_, nullptr,
&count, props);
}
}
VkResult CreateInfoWrapper::InitExtensionFilter() {
// query extension count
uint32_t count;
VkResult result = QueryExtensionCount(count);
if (result != VK_SUCCESS || count == 0)
return result;
auto& filter = extension_filter_;
filter.exts =
reinterpret_cast<VkExtensionProperties*>(allocator_.pfnAllocation(
allocator_.pUserData, sizeof(VkExtensionProperties) * count,
alignof(VkExtensionProperties),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND));
if (!filter.exts)
return VK_ERROR_OUT_OF_HOST_MEMORY;
// enumerate extensions
result = EnumerateExtensions(count, filter.exts);
if (result != VK_SUCCESS && result != VK_INCOMPLETE)
return result;
if (!count)
return VK_SUCCESS;
filter.ext_count = count;
// allocate name array
if (is_instance_) {
uint32_t enabled_ext_count = instance_info_.enabledExtensionCount;
// It requires enabling additional promoted extensions to downgrade api,
// so we reserve enough space here.
if (icd_api_version_ < loader_api_version_) {
enabled_ext_count += CountPromotedInstanceExtensions(
icd_api_version_, loader_api_version_);
}
count = std::min(filter.ext_count, enabled_ext_count);
} else {
count = std::min(filter.ext_count, dev_info_.enabledExtensionCount);
}
if (!count)
return VK_SUCCESS;
filter.names = reinterpret_cast<const char**>(allocator_.pfnAllocation(
allocator_.pUserData, sizeof(const char*) * count, alignof(const char*),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND));
if (!filter.names)
return VK_ERROR_OUT_OF_HOST_MEMORY;
return VK_SUCCESS;
}
void CreateInfoWrapper::FilterExtension(const char* name) {
auto& filter = extension_filter_;
ProcHook::Extension ext_bit = GetProcHookExtension(name);
if (is_instance_) {
switch (ext_bit) {
case ProcHook::KHR_android_surface:
case ProcHook::KHR_surface:
case ProcHook::KHR_surface_protected_capabilities:
case ProcHook::EXT_swapchain_colorspace:
case ProcHook::KHR_get_surface_capabilities2:
case ProcHook::GOOGLE_surfaceless_query:
case ProcHook::EXT_surface_maintenance1:
hook_extensions_.set(ext_bit);
// return now as these extensions do not require HAL support
return;
case ProcHook::EXT_debug_report:
// both we and HAL can take part in
hook_extensions_.set(ext_bit);
break;
case ProcHook::KHR_get_physical_device_properties2:
case ProcHook::KHR_device_group_creation:
case ProcHook::KHR_external_memory_capabilities:
case ProcHook::KHR_external_semaphore_capabilities:
case ProcHook::KHR_external_fence_capabilities:
case ProcHook::EXTENSION_UNKNOWN:
// Extensions we don't need to do anything about at this level
break;
case ProcHook::KHR_bind_memory2:
case ProcHook::KHR_incremental_present:
case ProcHook::KHR_shared_presentable_image:
case ProcHook::KHR_swapchain:
case ProcHook::EXT_hdr_metadata:
case ProcHook::EXT_swapchain_maintenance1:
case ProcHook::ANDROID_external_memory_android_hardware_buffer:
case ProcHook::ANDROID_native_buffer:
case ProcHook::GOOGLE_display_timing:
case ProcHook::KHR_external_fence_fd:
case ProcHook::EXTENSION_CORE_1_0:
case ProcHook::EXTENSION_CORE_1_1:
case ProcHook::EXTENSION_CORE_1_2:
case ProcHook::EXTENSION_CORE_1_3:
case ProcHook::EXTENSION_COUNT:
// Device and meta extensions. If we ever get here it's a bug in
// our code. But enumerating them lets us avoid having a default
// case, and default hides other bugs.
ALOGE(
"CreateInfoWrapper::FilterExtension: invalid instance "
"extension '%s'. FIX ME",
name);
return;
// Don't use a default case. Without it, -Wswitch will tell us
// at compile time if someone adds a new ProcHook extension but
// doesn't handle it above. That's a real bug that has
// not-immediately-obvious effects.
//
// default:
// break;
}
} else {
switch (ext_bit) {
case ProcHook::KHR_swapchain:
// map VK_KHR_swapchain to VK_ANDROID_native_buffer
name = VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME;
ext_bit = ProcHook::ANDROID_native_buffer;
break;
case ProcHook::KHR_incremental_present:
case ProcHook::KHR_shared_presentable_image:
case ProcHook::GOOGLE_display_timing:
hook_extensions_.set(ext_bit);
// return now as these extensions do not require HAL support
return;
case ProcHook::EXT_swapchain_maintenance1:
// map VK_KHR_swapchain_maintenance1 to KHR_external_fence_fd
name = VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME;
ext_bit = ProcHook::KHR_external_fence_fd;
break;
case ProcHook::EXT_hdr_metadata:
case ProcHook::KHR_bind_memory2:
hook_extensions_.set(ext_bit);
break;
case ProcHook::ANDROID_external_memory_android_hardware_buffer:
case ProcHook::KHR_external_fence_fd:
case ProcHook::EXTENSION_UNKNOWN:
// Extensions we don't need to do anything about at this level
break;
case ProcHook::KHR_android_surface:
case ProcHook::KHR_get_physical_device_properties2:
case ProcHook::KHR_device_group_creation:
case ProcHook::KHR_external_memory_capabilities:
case ProcHook::KHR_external_semaphore_capabilities:
case ProcHook::KHR_external_fence_capabilities:
case ProcHook::KHR_get_surface_capabilities2:
case ProcHook::KHR_surface:
case ProcHook::KHR_surface_protected_capabilities:
case ProcHook::EXT_debug_report:
case ProcHook::EXT_swapchain_colorspace:
case ProcHook::EXT_surface_maintenance1:
case ProcHook::GOOGLE_surfaceless_query:
case ProcHook::ANDROID_native_buffer:
case ProcHook::EXTENSION_CORE_1_0:
case ProcHook::EXTENSION_CORE_1_1:
case ProcHook::EXTENSION_CORE_1_2:
case ProcHook::EXTENSION_CORE_1_3:
case ProcHook::EXTENSION_COUNT:
// Instance and meta extensions. If we ever get here it's a bug
// in our code. But enumerating them lets us avoid having a
// default case, and default hides other bugs.
ALOGE(
"CreateInfoWrapper::FilterExtension: invalid device "
"extension '%s'. FIX ME",
name);
return;
// Don't use a default case. Without it, -Wswitch will tell us
// at compile time if someone adds a new ProcHook extension but
// doesn't handle it above. That's a real bug that has
// not-immediately-obvious effects.
//
// default:
// break;
}
}
for (uint32_t i = 0; i < filter.ext_count; i++) {
const VkExtensionProperties& props = filter.exts[i];
// ignore unknown extensions
if (strcmp(name, props.extensionName) != 0)
continue;
if (ext_bit != ProcHook::EXTENSION_UNKNOWN &&
hal_extensions_.test(ext_bit)) {
ALOGI("CreateInfoWrapper::FilterExtension: already have '%s'.", name);
continue;
}
// Ignore duplicate extensions (see: b/288929054)
bool duplicate_entry = false;
for (uint32_t j = 0; j < filter.name_count; j++) {
if (strcmp(name, filter.names[j]) == 0) {
duplicate_entry = true;
break;
}
}
if (duplicate_entry == true)
continue;
filter.names[filter.name_count++] = name;
if (ext_bit != ProcHook::EXTENSION_UNKNOWN) {
if (ext_bit == ProcHook::ANDROID_native_buffer)
hook_extensions_.set(ProcHook::KHR_swapchain);
if (ext_bit == ProcHook::KHR_external_fence_fd)
hook_extensions_.set(ProcHook::EXT_swapchain_maintenance1);
hal_extensions_.set(ext_bit);
}
break;
}
}
VKAPI_ATTR void* DefaultAllocate(void*,
size_t size,
size_t alignment,
VkSystemAllocationScope) {
void* ptr = nullptr;
// Vulkan requires 'alignment' to be a power of two, but posix_memalign
// additionally requires that it be at least sizeof(void*).
int ret = posix_memalign(&ptr, std::max(alignment, sizeof(void*)), size);
ALOGD_CALLSTACK("Allocate: size=%zu align=%zu => (%d) %p", size, alignment,
ret, ptr);
return ret == 0 ? ptr : nullptr;
}
VKAPI_ATTR void* DefaultReallocate(void*,
void* ptr,
size_t size,
size_t alignment,
VkSystemAllocationScope) {
if (size == 0) {
free(ptr);
return nullptr;
}
// TODO(b/143295633): Right now we never shrink allocations; if the new
// request is smaller than the existing chunk, we just continue using it.
// Right now the loader never reallocs, so this doesn't matter. If that
// changes, or if this code is copied into some other project, this should
// probably have a heuristic to allocate-copy-free when doing so will save
// "enough" space.
size_t old_size = ptr ? malloc_usable_size(ptr) : 0;
if (size <= old_size)
return ptr;
void* new_ptr = nullptr;
if (posix_memalign(&new_ptr, std::max(alignment, sizeof(void*)), size) != 0)
return nullptr;
if (ptr) {
memcpy(new_ptr, ptr, std::min(old_size, size));
free(ptr);
}
return new_ptr;
}
VKAPI_ATTR void DefaultFree(void*, void* ptr) {
ALOGD_CALLSTACK("Free: %p", ptr);
free(ptr);
}
InstanceData* AllocateInstanceData(const VkAllocationCallbacks& allocator) {
void* data_mem = allocator.pfnAllocation(
allocator.pUserData, sizeof(InstanceData), alignof(InstanceData),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!data_mem)
return nullptr;
return new (data_mem) InstanceData(allocator);
}
void FreeInstanceData(InstanceData* data,
const VkAllocationCallbacks& allocator) {
data->~InstanceData();
allocator.pfnFree(allocator.pUserData, data);
}
DeviceData* AllocateDeviceData(
const VkAllocationCallbacks& allocator,
const DebugReportCallbackList& debug_report_callbacks) {
void* data_mem = allocator.pfnAllocation(
allocator.pUserData, sizeof(DeviceData), alignof(DeviceData),
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!data_mem)
return nullptr;
return new (data_mem) DeviceData(allocator, debug_report_callbacks);
}
void FreeDeviceData(DeviceData* data, const VkAllocationCallbacks& allocator) {
data->~DeviceData();
allocator.pfnFree(allocator.pUserData, data);
}
} // anonymous namespace
bool OpenHAL() {
return Hal::Open();
}
const VkAllocationCallbacks& GetDefaultAllocator() {
static const VkAllocationCallbacks kDefaultAllocCallbacks = {
.pUserData = nullptr,
.pfnAllocation = DefaultAllocate,
.pfnReallocation = DefaultReallocate,
.pfnFree = DefaultFree,
};
return kDefaultAllocCallbacks;
}
PFN_vkVoidFunction GetInstanceProcAddr(VkInstance instance, const char* pName) {
const ProcHook* hook = GetProcHook(pName);
if (!hook)
return Hal::Device().GetInstanceProcAddr(instance, pName);
if (!instance) {
if (hook->type == ProcHook::GLOBAL)
return hook->proc;
// v0 layers expect
//
// vkGetInstanceProcAddr(VK_NULL_HANDLE, "vkCreateDevice");
//
// to work.
if (strcmp(pName, "vkCreateDevice") == 0)
return hook->proc;
ALOGE(
"internal vkGetInstanceProcAddr called for %s without an instance",
pName);
return nullptr;
}
PFN_vkVoidFunction proc;
switch (hook->type) {
case ProcHook::INSTANCE:
proc = (GetData(instance).hook_extensions[hook->extension])
? hook->proc
: nullptr;
break;
case ProcHook::DEVICE:
proc = (hook->extension == ProcHook::EXTENSION_CORE_1_0)
? hook->proc
: hook->checked_proc;
break;
default:
ALOGE(
"internal vkGetInstanceProcAddr called for %s with an instance",
pName);
proc = nullptr;
break;
}
return proc;
}
PFN_vkVoidFunction GetDeviceProcAddr(VkDevice device, const char* pName) {
const ProcHook* hook = GetProcHook(pName);
if (!hook)
return GetData(device).driver.GetDeviceProcAddr(device, pName);
if (hook->type != ProcHook::DEVICE) {
ALOGE("internal vkGetDeviceProcAddr called for %s", pName);
return nullptr;
}
return (GetData(device).hook_extensions[hook->extension]) ? hook->proc
: nullptr;
}
VkResult EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
std::vector<VkExtensionProperties> loader_extensions;
loader_extensions.push_back(
{VK_KHR_SURFACE_EXTENSION_NAME, VK_KHR_SURFACE_SPEC_VERSION});
loader_extensions.push_back(
{VK_KHR_SURFACE_PROTECTED_CAPABILITIES_EXTENSION_NAME,
VK_KHR_SURFACE_PROTECTED_CAPABILITIES_SPEC_VERSION});
loader_extensions.push_back({
VK_KHR_ANDROID_SURFACE_EXTENSION_NAME,
VK_KHR_ANDROID_SURFACE_SPEC_VERSION});
loader_extensions.push_back({
VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME,
VK_EXT_SWAPCHAIN_COLOR_SPACE_SPEC_VERSION});
loader_extensions.push_back(
{VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME,
VK_KHR_GET_SURFACE_CAPABILITIES_2_SPEC_VERSION});
loader_extensions.push_back({VK_GOOGLE_SURFACELESS_QUERY_EXTENSION_NAME,
VK_GOOGLE_SURFACELESS_QUERY_SPEC_VERSION});
loader_extensions.push_back({
VK_EXT_SURFACE_MAINTENANCE_1_EXTENSION_NAME,
VK_EXT_SURFACE_MAINTENANCE_1_SPEC_VERSION});
static const VkExtensionProperties loader_debug_report_extension = {
VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_EXT_DEBUG_REPORT_SPEC_VERSION,
};
// enumerate our extensions first
if (!pLayerName && pProperties) {
uint32_t count = std::min(
*pPropertyCount, static_cast<uint32_t>(loader_extensions.size()));
std::copy_n(loader_extensions.data(), count, pProperties);
if (count < loader_extensions.size()) {
*pPropertyCount = count;
return VK_INCOMPLETE;
}
pProperties += count;
*pPropertyCount -= count;
if (Hal::Get().GetDebugReportIndex() < 0) {
if (!*pPropertyCount) {
*pPropertyCount = count;
return VK_INCOMPLETE;
}
pProperties[0] = loader_debug_report_extension;
pProperties += 1;
*pPropertyCount -= 1;
}
}
ATRACE_BEGIN("driver.EnumerateInstanceExtensionProperties");
VkResult result = Hal::Device().EnumerateInstanceExtensionProperties(
pLayerName, pPropertyCount, pProperties);
ATRACE_END();
if (!pLayerName && (result == VK_SUCCESS || result == VK_INCOMPLETE)) {
int idx = Hal::Get().GetDebugReportIndex();
if (idx < 0) {
*pPropertyCount += 1;
} else if (pProperties &&
static_cast<uint32_t>(idx) < *pPropertyCount) {
pProperties[idx].specVersion =
std::min(pProperties[idx].specVersion,
loader_debug_report_extension.specVersion);
}
*pPropertyCount += loader_extensions.size();
}
return result;
}
void QueryPresentationProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDevicePresentationPropertiesANDROID* presentation_properties) {
ATRACE_CALL();
// Request the android-specific presentation properties via GPDP2
VkPhysicalDeviceProperties2 properties = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2,
presentation_properties,
{},
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
presentation_properties->sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID;
#pragma clang diagnostic pop
presentation_properties->pNext = nullptr;
presentation_properties->sharedImage = VK_FALSE;
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceProperties2) {
// >= 1.1 driver, supports core GPDP2 entrypoint.
driver.GetPhysicalDeviceProperties2(physicalDevice, &properties);
} else if (driver.GetPhysicalDeviceProperties2KHR) {
// Old driver, but may support presentation properties
// if we have the GPDP2 extension. Otherwise, no presentation
// properties supported.
driver.GetPhysicalDeviceProperties2KHR(physicalDevice, &properties);
}
}
VkResult GetAndroidNativeBufferSpecVersion9Support(
VkPhysicalDevice physicalDevice,
bool& support) {
support = false;
const InstanceData& data = GetData(physicalDevice);
// Call to get propertyCount
uint32_t propertyCount = 0;
ATRACE_BEGIN("driver.EnumerateDeviceExtensionProperties");
VkResult result = data.driver.EnumerateDeviceExtensionProperties(
physicalDevice, nullptr, &propertyCount, nullptr);
ATRACE_END();
if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
return result;
}
// Call to enumerate properties
std::vector<VkExtensionProperties> properties(propertyCount);
ATRACE_BEGIN("driver.EnumerateDeviceExtensionProperties");
result = data.driver.EnumerateDeviceExtensionProperties(
physicalDevice, nullptr, &propertyCount, properties.data());
ATRACE_END();
if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
return result;
}
for (uint32_t i = 0; i < propertyCount; i++) {
auto& prop = properties[i];
if (strcmp(prop.extensionName,
VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME) != 0)
continue;
if (prop.specVersion >= 9) {
support = true;
return result;
}
}
return result;
}
bool CanSupportSwapchainMaintenance1Extension(VkPhysicalDevice physicalDevice) {
const auto& driver = GetData(physicalDevice).driver;
if (!driver.GetPhysicalDeviceExternalFenceProperties)
return false;
// Requires support for external fences imported from sync fds.
// This is _almost_ universal on Android, but may be missing on
// some extremely old drivers, or on strange implementations like
// cuttlefish.
VkPhysicalDeviceExternalFenceInfo fenceInfo = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO,
nullptr,
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT
};
VkExternalFenceProperties fenceProperties = {
VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES,
nullptr,
0, 0, 0
};
GetPhysicalDeviceExternalFenceProperties(physicalDevice, &fenceInfo, &fenceProperties);
if (fenceProperties.externalFenceFeatures & VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT)
return true;
return false;
}
VkResult EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties) {
const InstanceData& data = GetData(physicalDevice);
// extensions that are unconditionally exposed by the loader
std::vector<VkExtensionProperties> loader_extensions;
loader_extensions.push_back({
VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME,
VK_KHR_INCREMENTAL_PRESENT_SPEC_VERSION});
bool hdrBoardConfig = android::sysprop::has_HDR_display(false);
if (hdrBoardConfig) {
loader_extensions.push_back({VK_EXT_HDR_METADATA_EXTENSION_NAME,
VK_EXT_HDR_METADATA_SPEC_VERSION});
}
VkPhysicalDevicePresentationPropertiesANDROID presentation_properties;
QueryPresentationProperties(physicalDevice, &presentation_properties);
if (presentation_properties.sharedImage) {
loader_extensions.push_back({
VK_KHR_SHARED_PRESENTABLE_IMAGE_EXTENSION_NAME,
VK_KHR_SHARED_PRESENTABLE_IMAGE_SPEC_VERSION});
}
// conditionally add VK_GOOGLE_display_timing if present timestamps are
// supported by the driver:
if (android::base::GetBoolProperty("service.sf.present_timestamp", false)) {
loader_extensions.push_back({
VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME,
VK_GOOGLE_DISPLAY_TIMING_SPEC_VERSION});
}
// Conditionally add VK_EXT_IMAGE_COMPRESSION_CONTROL* if feature and ANB
// support is provided by the driver
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT
swapchainCompFeats = {};
swapchainCompFeats.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT;
swapchainCompFeats.pNext = nullptr;
swapchainCompFeats.imageCompressionControlSwapchain = false;
VkPhysicalDeviceImageCompressionControlFeaturesEXT imageCompFeats = {};
imageCompFeats.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT;
imageCompFeats.pNext = &swapchainCompFeats;
imageCompFeats.imageCompressionControl = false;
VkPhysicalDeviceFeatures2 feats2 = {};
feats2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
feats2.pNext = &imageCompFeats;
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceFeatures2 ||
driver.GetPhysicalDeviceFeatures2KHR) {
GetPhysicalDeviceFeatures2(physicalDevice, &feats2);
}
bool anb9 = false;
VkResult result =
GetAndroidNativeBufferSpecVersion9Support(physicalDevice, anb9);
if (result != VK_SUCCESS && result != VK_INCOMPLETE) {
return result;
}
if (anb9 && imageCompFeats.imageCompressionControl) {
loader_extensions.push_back(
{VK_EXT_IMAGE_COMPRESSION_CONTROL_EXTENSION_NAME,
VK_EXT_IMAGE_COMPRESSION_CONTROL_SPEC_VERSION});
}
if (anb9 && swapchainCompFeats.imageCompressionControlSwapchain) {
loader_extensions.push_back(
{VK_EXT_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_EXTENSION_NAME,
VK_EXT_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_SPEC_VERSION});
}
if (CanSupportSwapchainMaintenance1Extension(physicalDevice)) {
loader_extensions.push_back({
VK_EXT_SWAPCHAIN_MAINTENANCE_1_EXTENSION_NAME,
VK_EXT_SWAPCHAIN_MAINTENANCE_1_SPEC_VERSION});
}
// enumerate our extensions first
if (!pLayerName && pProperties) {
uint32_t count = std::min(
*pPropertyCount, static_cast<uint32_t>(loader_extensions.size()));
std::copy_n(loader_extensions.data(), count, pProperties);
if (count < loader_extensions.size()) {
*pPropertyCount = count;
return VK_INCOMPLETE;
}
pProperties += count;
*pPropertyCount -= count;
}
ATRACE_BEGIN("driver.EnumerateDeviceExtensionProperties");
result = data.driver.EnumerateDeviceExtensionProperties(
physicalDevice, pLayerName, pPropertyCount, pProperties);
ATRACE_END();
if (pProperties) {
// map VK_ANDROID_native_buffer to VK_KHR_swapchain
for (uint32_t i = 0; i < *pPropertyCount; i++) {
auto& prop = pProperties[i];
if (strcmp(prop.extensionName,
VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME) != 0)
continue;
memcpy(prop.extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME,
sizeof(VK_KHR_SWAPCHAIN_EXTENSION_NAME));
if (prop.specVersion >= 8) {
prop.specVersion = VK_KHR_SWAPCHAIN_SPEC_VERSION;
} else {
prop.specVersion = 68;
}
}
}
// restore loader extension count
if (!pLayerName && (result == VK_SUCCESS || result == VK_INCOMPLETE)) {
*pPropertyCount += loader_extensions.size();
}
return result;
}
VkResult CreateInstance(const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) {
const VkAllocationCallbacks& data_allocator =
(pAllocator) ? *pAllocator : GetDefaultAllocator();
VkResult result = VK_SUCCESS;
uint32_t icd_api_version = VK_API_VERSION_1_0;
PFN_vkEnumerateInstanceVersion pfn_enumerate_instance_version =
reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
Hal::Device().GetInstanceProcAddr(nullptr,
"vkEnumerateInstanceVersion"));
if (pfn_enumerate_instance_version) {
ATRACE_BEGIN("pfn_enumerate_instance_version");
result = (*pfn_enumerate_instance_version)(&icd_api_version);
ATRACE_END();
if (result != VK_SUCCESS)
return result;
icd_api_version ^= VK_API_VERSION_PATCH(icd_api_version);
}
CreateInfoWrapper wrapper(*pCreateInfo, icd_api_version, data_allocator);
result = wrapper.Validate();
if (result != VK_SUCCESS)
return result;
InstanceData* data = AllocateInstanceData(data_allocator);
if (!data)
return VK_ERROR_OUT_OF_HOST_MEMORY;
data->hook_extensions |= wrapper.GetHookExtensions();
// call into the driver
VkInstance instance;
ATRACE_BEGIN("driver.CreateInstance");
result = Hal::Device().CreateInstance(
static_cast<const VkInstanceCreateInfo*>(wrapper), pAllocator,
&instance);
ATRACE_END();
if (result != VK_SUCCESS) {
FreeInstanceData(data, data_allocator);
return result;
}
// initialize InstanceDriverTable
if (!SetData(instance, *data) ||
!InitDriverTable(instance, Hal::Device().GetInstanceProcAddr,
wrapper.GetHalExtensions())) {
data->driver.DestroyInstance = reinterpret_cast<PFN_vkDestroyInstance>(
Hal::Device().GetInstanceProcAddr(instance, "vkDestroyInstance"));
if (data->driver.DestroyInstance)
data->driver.DestroyInstance(instance, pAllocator);
FreeInstanceData(data, data_allocator);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
data->get_device_proc_addr = reinterpret_cast<PFN_vkGetDeviceProcAddr>(
Hal::Device().GetInstanceProcAddr(instance, "vkGetDeviceProcAddr"));
if (!data->get_device_proc_addr) {
data->driver.DestroyInstance(instance, pAllocator);
FreeInstanceData(data, data_allocator);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
// TODO(b/259516419) avoid getting stats from hwui
// const bool reportStats = (pCreateInfo->pApplicationInfo == nullptr )
// || (strcmp("android framework",
// pCreateInfo->pApplicationInfo->pEngineName) != 0);
const bool reportStats = true;
if (reportStats) {
// Set stats for Vulkan api version requested with application info
if (pCreateInfo->pApplicationInfo) {
const uint32_t vulkanApiVersion =
pCreateInfo->pApplicationInfo->apiVersion;
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::CREATED_VULKAN_API_VERSION,
vulkanApiVersion);
}
// Update stats for the extensions requested
android::GraphicsEnv::getInstance().setVulkanInstanceExtensions(
pCreateInfo->enabledExtensionCount,
pCreateInfo->ppEnabledExtensionNames);
}
*pInstance = instance;
return VK_SUCCESS;
}
void DestroyInstance(VkInstance instance,
const VkAllocationCallbacks* pAllocator) {
InstanceData& data = GetData(instance);
data.driver.DestroyInstance(instance, pAllocator);
VkAllocationCallbacks local_allocator;
if (!pAllocator) {
local_allocator = data.allocator;
pAllocator = &local_allocator;
}
FreeInstanceData(&data, *pAllocator);
}
VkResult CreateDevice(VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice) {
const InstanceData& instance_data = GetData(physicalDevice);
const VkAllocationCallbacks& data_allocator =
(pAllocator) ? *pAllocator : instance_data.allocator;
VkPhysicalDeviceProperties properties;
ATRACE_BEGIN("driver.GetPhysicalDeviceProperties");
instance_data.driver.GetPhysicalDeviceProperties(physicalDevice,
&properties);
ATRACE_END();
CreateInfoWrapper wrapper(
physicalDevice, *pCreateInfo,
properties.apiVersion ^ VK_API_VERSION_PATCH(properties.apiVersion),
data_allocator);
VkResult result = wrapper.Validate();
if (result != VK_SUCCESS)
return result;
ATRACE_BEGIN("AllocateDeviceData");
DeviceData* data = AllocateDeviceData(data_allocator,
instance_data.debug_report_callbacks);
ATRACE_END();
if (!data)
return VK_ERROR_OUT_OF_HOST_MEMORY;
data->hook_extensions |= wrapper.GetHookExtensions();
// call into the driver
VkDevice dev;
ATRACE_BEGIN("driver.CreateDevice");
result = instance_data.driver.CreateDevice(
physicalDevice, static_cast<const VkDeviceCreateInfo*>(wrapper),
pAllocator, &dev);
ATRACE_END();
if (result != VK_SUCCESS) {
FreeDeviceData(data, data_allocator);
return result;
}
// initialize DeviceDriverTable
if (!SetData(dev, *data) ||
!InitDriverTable(dev, instance_data.get_device_proc_addr,
wrapper.GetHalExtensions())) {
data->driver.DestroyDevice = reinterpret_cast<PFN_vkDestroyDevice>(
instance_data.get_device_proc_addr(dev, "vkDestroyDevice"));
if (data->driver.DestroyDevice)
data->driver.DestroyDevice(dev, pAllocator);
FreeDeviceData(data, data_allocator);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
// Confirming ANDROID_native_buffer implementation, whose set of
// entrypoints varies according to the spec version.
if ((wrapper.GetHalExtensions()[ProcHook::ANDROID_native_buffer]) &&
!data->driver.GetSwapchainGrallocUsageANDROID &&
!data->driver.GetSwapchainGrallocUsage2ANDROID &&
!data->driver.GetSwapchainGrallocUsage3ANDROID &&
!data->driver.GetSwapchainGrallocUsage4ANDROID) {
ALOGE(
"Driver's implementation of ANDROID_native_buffer is broken;"
" must expose at least one of "
"vkGetSwapchainGrallocUsageANDROID or "
"vkGetSwapchainGrallocUsage2ANDROID or "
"vkGetSwapchainGrallocUsage3ANDROID or "
"vkGetSwapchainGrallocUsage4ANDROID");
data->driver.DestroyDevice(dev, pAllocator);
FreeDeviceData(data, data_allocator);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
if (properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_CPU) {
// Log that the app is hitting software Vulkan implementation
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::CPU_VULKAN_IN_USE);
}
data->driver_device = dev;
data->driver_physical_device = physicalDevice;
*pDevice = dev;
// TODO(b/259516419) avoid getting stats from hwui
const bool reportStats = true;
if (reportStats) {
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::CREATED_VULKAN_DEVICE);
// Set stats for creating a Vulkan device and report features in use
const VkPhysicalDeviceFeatures* pEnabledFeatures =
pCreateInfo->pEnabledFeatures;
if (!pEnabledFeatures) {
// Use features from the chained VkPhysicalDeviceFeatures2
// structure, if given
const VkPhysicalDeviceFeatures2* features2 =
reinterpret_cast<const VkPhysicalDeviceFeatures2*>(
pCreateInfo->pNext);
while (features2 &&
features2->sType !=
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2) {
features2 = reinterpret_cast<const VkPhysicalDeviceFeatures2*>(
features2->pNext);
}
if (features2) {
pEnabledFeatures = &features2->features;
}
}
const VkBool32* pFeatures =
reinterpret_cast<const VkBool32*>(pEnabledFeatures);
if (pFeatures) {
// VkPhysicalDeviceFeatures consists of VkBool32 values, go over all
// of them using pointer arithmetic here and save the features in a
// 64-bit bitfield
static_assert(
(sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32)) <= 64,
"VkPhysicalDeviceFeatures has too many elements for bitfield "
"packing");
static_assert(
(sizeof(VkPhysicalDeviceFeatures) % sizeof(VkBool32)) == 0,
"VkPhysicalDeviceFeatures has invalid size for bitfield "
"packing");
const int numFeatures =
sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
uint64_t enableFeatureBits = 0;
for (int i = 0; i < numFeatures; i++) {
if (pFeatures[i] != VK_FALSE) {
enableFeatureBits |= (uint64_t(1) << i);
}
}
android::GraphicsEnv::getInstance().setTargetStats(
android::GpuStatsInfo::Stats::VULKAN_DEVICE_FEATURES_ENABLED,
enableFeatureBits);
}
// Update stats for the extensions requested
android::GraphicsEnv::getInstance().setVulkanDeviceExtensions(
pCreateInfo->enabledExtensionCount,
pCreateInfo->ppEnabledExtensionNames);
}
return VK_SUCCESS;
}
void DestroyDevice(VkDevice device, const VkAllocationCallbacks* pAllocator) {
DeviceData& data = GetData(device);
data.driver.DestroyDevice(device, pAllocator);
VkAllocationCallbacks local_allocator;
if (!pAllocator) {
local_allocator = data.allocator;
pAllocator = &local_allocator;
}
FreeDeviceData(&data, *pAllocator);
}
VkResult EnumeratePhysicalDevices(VkInstance instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices) {
ATRACE_CALL();
const auto& data = GetData(instance);
VkResult result = data.driver.EnumeratePhysicalDevices(
instance, pPhysicalDeviceCount, pPhysicalDevices);
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pPhysicalDevices) {
for (uint32_t i = 0; i < *pPhysicalDeviceCount; i++)
SetData(pPhysicalDevices[i], data);
}
return result;
}
VkResult EnumeratePhysicalDeviceGroups(
VkInstance instance,
uint32_t* pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) {
ATRACE_CALL();
VkResult result = VK_SUCCESS;
const auto& data = GetData(instance);
if (!data.driver.EnumeratePhysicalDeviceGroups &&
!data.driver.EnumeratePhysicalDeviceGroupsKHR) {
uint32_t device_count = 0;
result = EnumeratePhysicalDevices(instance, &device_count, nullptr);
if (result < 0)
return result;
if (!pPhysicalDeviceGroupProperties) {
*pPhysicalDeviceGroupCount = device_count;
return result;
}
if (!device_count) {
*pPhysicalDeviceGroupCount = 0;
return result;
}
device_count = std::min(device_count, *pPhysicalDeviceGroupCount);
if (!device_count)
return VK_INCOMPLETE;
std::vector<VkPhysicalDevice> devices(device_count);
*pPhysicalDeviceGroupCount = device_count;
result =
EnumeratePhysicalDevices(instance, &device_count, devices.data());
if (result < 0)
return result;
for (uint32_t i = 0; i < device_count; ++i) {
pPhysicalDeviceGroupProperties[i].physicalDeviceCount = 1;
pPhysicalDeviceGroupProperties[i].physicalDevices[0] = devices[i];
pPhysicalDeviceGroupProperties[i].subsetAllocation = 0;
}
} else {
if (data.driver.EnumeratePhysicalDeviceGroups) {
result = data.driver.EnumeratePhysicalDeviceGroups(
instance, pPhysicalDeviceGroupCount,
pPhysicalDeviceGroupProperties);
} else {
result = data.driver.EnumeratePhysicalDeviceGroupsKHR(
instance, pPhysicalDeviceGroupCount,
pPhysicalDeviceGroupProperties);
}
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) &&
*pPhysicalDeviceGroupCount && pPhysicalDeviceGroupProperties) {
for (uint32_t i = 0; i < *pPhysicalDeviceGroupCount; i++) {
for (uint32_t j = 0;
j < pPhysicalDeviceGroupProperties[i].physicalDeviceCount;
j++) {
SetData(
pPhysicalDeviceGroupProperties[i].physicalDevices[j],
data);
}
}
}
}
return result;
}
void GetDeviceQueue(VkDevice device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,
VkQueue* pQueue) {
ATRACE_CALL();
const auto& data = GetData(device);
data.driver.GetDeviceQueue(device, queueFamilyIndex, queueIndex, pQueue);
SetData(*pQueue, data);
}
void GetDeviceQueue2(VkDevice device,
const VkDeviceQueueInfo2* pQueueInfo,
VkQueue* pQueue) {
ATRACE_CALL();
const auto& data = GetData(device);
data.driver.GetDeviceQueue2(device, pQueueInfo, pQueue);
if (*pQueue != VK_NULL_HANDLE) SetData(*pQueue, data);
}
VkResult AllocateCommandBuffers(
VkDevice device,
const VkCommandBufferAllocateInfo* pAllocateInfo,
VkCommandBuffer* pCommandBuffers) {
ATRACE_CALL();
const auto& data = GetData(device);
VkResult result = data.driver.AllocateCommandBuffers(device, pAllocateInfo,
pCommandBuffers);
if (result == VK_SUCCESS) {
for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++)
SetData(pCommandBuffers[i], data);
}
return result;
}
VkResult QueueSubmit(VkQueue queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence fence) {
ATRACE_CALL();
const auto& data = GetData(queue);
return data.driver.QueueSubmit(queue, submitCount, pSubmits, fence);
}
void GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceFeatures2) {
driver.GetPhysicalDeviceFeatures2(physicalDevice, pFeatures);
} else {
driver.GetPhysicalDeviceFeatures2KHR(physicalDevice, pFeatures);
}
// Conditionally add imageCompressionControlSwapchain if
// imageCompressionControl is supported Check for imageCompressionControl in
// the pChain
bool imageCompressionControl = false;
bool imageCompressionControlInChain = false;
bool imageCompressionControlSwapchainInChain = false;
VkPhysicalDeviceFeatures2* pFeats = pFeatures;
while (pFeats) {
switch (pFeats->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT: {
const VkPhysicalDeviceImageCompressionControlFeaturesEXT*
compressionFeat = reinterpret_cast<
const VkPhysicalDeviceImageCompressionControlFeaturesEXT*>(
pFeats);
imageCompressionControl =
compressionFeat->imageCompressionControl;
imageCompressionControlInChain = true;
} break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT: {
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT*
compressionFeat = reinterpret_cast<
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT*>(
pFeats);
compressionFeat->imageCompressionControlSwapchain = false;
imageCompressionControlSwapchainInChain = true;
} break;
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SWAPCHAIN_MAINTENANCE_1_FEATURES_EXT: {
auto smf = reinterpret_cast<VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT *>(
pFeats);
smf->swapchainMaintenance1 = true;
} break;
default:
break;
}
pFeats = reinterpret_cast<VkPhysicalDeviceFeatures2*>(pFeats->pNext);
}
if (!imageCompressionControlSwapchainInChain) {
return;
}
// If not in pchain, explicitly query for imageCompressionControl
if (!imageCompressionControlInChain) {
VkPhysicalDeviceImageCompressionControlFeaturesEXT imageCompFeats = {};
imageCompFeats.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_FEATURES_EXT;
imageCompFeats.pNext = nullptr;
imageCompFeats.imageCompressionControl = false;
VkPhysicalDeviceFeatures2 feats2 = {};
feats2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
feats2.pNext = &imageCompFeats;
if (driver.GetPhysicalDeviceFeatures2) {
driver.GetPhysicalDeviceFeatures2(physicalDevice, &feats2);
} else {
driver.GetPhysicalDeviceFeatures2KHR(physicalDevice, &feats2);
}
imageCompressionControl = imageCompFeats.imageCompressionControl;
}
// Only enumerate imageCompressionControlSwapchin if imageCompressionControl
if (imageCompressionControl) {
pFeats = pFeatures;
while (pFeats) {
switch (pFeats->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_COMPRESSION_CONTROL_SWAPCHAIN_FEATURES_EXT: {
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT*
compressionFeat = reinterpret_cast<
VkPhysicalDeviceImageCompressionControlSwapchainFeaturesEXT*>(
pFeats);
compressionFeat->imageCompressionControlSwapchain = true;
} break;
default:
break;
}
pFeats =
reinterpret_cast<VkPhysicalDeviceFeatures2*>(pFeats->pNext);
}
}
}
void GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2* pProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceProperties2) {
driver.GetPhysicalDeviceProperties2(physicalDevice, pProperties);
return;
}
driver.GetPhysicalDeviceProperties2KHR(physicalDevice, pProperties);
}
void GetPhysicalDeviceFormatProperties2(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkFormatProperties2* pFormatProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceFormatProperties2) {
driver.GetPhysicalDeviceFormatProperties2(physicalDevice, format,
pFormatProperties);
return;
}
driver.GetPhysicalDeviceFormatProperties2KHR(physicalDevice, format,
pFormatProperties);
}
VkResult GetPhysicalDeviceImageFormatProperties2(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo,
VkImageFormatProperties2* pImageFormatProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceImageFormatProperties2) {
return driver.GetPhysicalDeviceImageFormatProperties2(
physicalDevice, pImageFormatInfo, pImageFormatProperties);
}
return driver.GetPhysicalDeviceImageFormatProperties2KHR(
physicalDevice, pImageFormatInfo, pImageFormatProperties);
}
void GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceQueueFamilyProperties2) {
driver.GetPhysicalDeviceQueueFamilyProperties2(
physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties);
return;
}
driver.GetPhysicalDeviceQueueFamilyProperties2KHR(
physicalDevice, pQueueFamilyPropertyCount, pQueueFamilyProperties);
}
void GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceMemoryProperties2) {
driver.GetPhysicalDeviceMemoryProperties2(physicalDevice,
pMemoryProperties);
return;
}
driver.GetPhysicalDeviceMemoryProperties2KHR(physicalDevice,
pMemoryProperties);
}
void GetPhysicalDeviceSparseImageFormatProperties2(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo,
uint32_t* pPropertyCount,
VkSparseImageFormatProperties2* pProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceSparseImageFormatProperties2) {
driver.GetPhysicalDeviceSparseImageFormatProperties2(
physicalDevice, pFormatInfo, pPropertyCount, pProperties);
return;
}
driver.GetPhysicalDeviceSparseImageFormatProperties2KHR(
physicalDevice, pFormatInfo, pPropertyCount, pProperties);
}
void GetPhysicalDeviceExternalBufferProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo,
VkExternalBufferProperties* pExternalBufferProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceExternalBufferProperties) {
driver.GetPhysicalDeviceExternalBufferProperties(
physicalDevice, pExternalBufferInfo, pExternalBufferProperties);
return;
}
if (driver.GetPhysicalDeviceExternalBufferPropertiesKHR) {
driver.GetPhysicalDeviceExternalBufferPropertiesKHR(
physicalDevice, pExternalBufferInfo, pExternalBufferProperties);
return;
}
memset(&pExternalBufferProperties->externalMemoryProperties, 0,
sizeof(VkExternalMemoryProperties));
}
void GetPhysicalDeviceExternalSemaphoreProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo,
VkExternalSemaphoreProperties* pExternalSemaphoreProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceExternalSemaphoreProperties) {
driver.GetPhysicalDeviceExternalSemaphoreProperties(
physicalDevice, pExternalSemaphoreInfo,
pExternalSemaphoreProperties);
return;
}
if (driver.GetPhysicalDeviceExternalSemaphorePropertiesKHR) {
driver.GetPhysicalDeviceExternalSemaphorePropertiesKHR(
physicalDevice, pExternalSemaphoreInfo,
pExternalSemaphoreProperties);
return;
}
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
void GetPhysicalDeviceExternalFenceProperties(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo,
VkExternalFenceProperties* pExternalFenceProperties) {
ATRACE_CALL();
const auto& driver = GetData(physicalDevice).driver;
if (driver.GetPhysicalDeviceExternalFenceProperties) {
driver.GetPhysicalDeviceExternalFenceProperties(
physicalDevice, pExternalFenceInfo, pExternalFenceProperties);
return;
}
if (driver.GetPhysicalDeviceExternalFencePropertiesKHR) {
driver.GetPhysicalDeviceExternalFencePropertiesKHR(
physicalDevice, pExternalFenceInfo, pExternalFenceProperties);
return;
}
pExternalFenceProperties->exportFromImportedHandleTypes = 0;
pExternalFenceProperties->compatibleHandleTypes = 0;
pExternalFenceProperties->externalFenceFeatures = 0;
}
} // namespace driver
} // namespace vulkan