| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wextra" |
| |
| #undef LOG_TAG |
| #define LOG_TAG "VSyncPredictor" |
| |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <sstream> |
| |
| #include <android-base/logging.h> |
| #include <android-base/stringprintf.h> |
| #include <common/FlagManager.h> |
| #include <cutils/compiler.h> |
| #include <cutils/properties.h> |
| #include <ftl/concat.h> |
| #include <gui/TraceUtils.h> |
| #include <utils/Log.h> |
| |
| #include "RefreshRateSelector.h" |
| #include "VSyncPredictor.h" |
| |
| namespace android::scheduler { |
| |
| using base::StringAppendF; |
| |
| static auto constexpr kMaxPercent = 100u; |
| |
| VSyncPredictor::~VSyncPredictor() = default; |
| |
| VSyncPredictor::VSyncPredictor(ftl::NonNull<DisplayModePtr> modePtr, size_t historySize, |
| size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent, |
| IVsyncTrackerCallback& callback) |
| : mId(modePtr->getPhysicalDisplayId()), |
| mTraceOn(property_get_bool("debug.sf.vsp_trace", false)), |
| kHistorySize(historySize), |
| kMinimumSamplesForPrediction(minimumSamplesForPrediction), |
| kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), |
| mVsyncTrackerCallback(callback), |
| mDisplayModePtr(modePtr) { |
| resetModel(); |
| } |
| |
| inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { |
| if (CC_UNLIKELY(mTraceOn)) { |
| traceInt64(name, value); |
| } |
| } |
| |
| inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const { |
| ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value); |
| } |
| |
| inline size_t VSyncPredictor::next(size_t i) const { |
| return (i + 1) % mTimestamps.size(); |
| } |
| |
| nsecs_t VSyncPredictor::idealPeriod() const { |
| return mDisplayModePtr->getVsyncRate().getPeriodNsecs(); |
| } |
| |
| bool VSyncPredictor::validate(nsecs_t timestamp) const { |
| if (mLastTimestampIndex < 0 || mTimestamps.empty()) { |
| return true; |
| } |
| |
| const auto aValidTimestamp = mTimestamps[mLastTimestampIndex]; |
| const auto percent = |
| (timestamp - aValidTimestamp) % idealPeriod() * kMaxPercent / idealPeriod(); |
| if (percent >= kOutlierTolerancePercent && |
| percent <= (kMaxPercent - kOutlierTolerancePercent)) { |
| ATRACE_FORMAT_INSTANT("timestamp is not aligned with model"); |
| return false; |
| } |
| |
| const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), |
| [timestamp](nsecs_t a, nsecs_t b) { |
| return std::abs(timestamp - a) < std::abs(timestamp - b); |
| }); |
| const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / idealPeriod(); |
| if (distancePercent < kOutlierTolerancePercent) { |
| // duplicate timestamp |
| ATRACE_FORMAT_INSTANT("duplicate timestamp"); |
| return false; |
| } |
| return true; |
| } |
| |
| nsecs_t VSyncPredictor::currentPeriod() const { |
| std::lock_guard lock(mMutex); |
| return mRateMap.find(idealPeriod())->second.slope; |
| } |
| |
| Period VSyncPredictor::minFramePeriod() const { |
| if (!FlagManager::getInstance().vrr_config()) { |
| return Period::fromNs(currentPeriod()); |
| } |
| |
| std::lock_guard lock(mMutex); |
| return minFramePeriodLocked(); |
| } |
| |
| Period VSyncPredictor::minFramePeriodLocked() const { |
| const auto idealPeakRefreshPeriod = mDisplayModePtr->getPeakFps().getPeriodNsecs(); |
| const auto numPeriods = static_cast<int>(std::round(static_cast<float>(idealPeakRefreshPeriod) / |
| static_cast<float>(idealPeriod()))); |
| const auto slope = mRateMap.find(idealPeriod())->second.slope; |
| return Period::fromNs(slope * numPeriods); |
| } |
| |
| bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { |
| ATRACE_CALL(); |
| |
| std::lock_guard lock(mMutex); |
| |
| if (!validate(timestamp)) { |
| // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, |
| // don't insert this ts into mTimestamps ringbuffer. If we are still |
| // in the learning phase we should just clear all timestamps and start |
| // over. |
| if (mTimestamps.size() < kMinimumSamplesForPrediction) { |
| // Add the timestamp to mTimestamps before clearing it so we could |
| // update mKnownTimestamp based on the new timestamp. |
| mTimestamps.push_back(timestamp); |
| clearTimestamps(); |
| } else if (!mTimestamps.empty()) { |
| mKnownTimestamp = |
| std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); |
| } else { |
| mKnownTimestamp = timestamp; |
| } |
| ATRACE_FORMAT_INSTANT("timestamp rejected. mKnownTimestamp was %.2fms ago", |
| (systemTime() - *mKnownTimestamp) / 1e6f); |
| return false; |
| } |
| |
| if (mTimestamps.size() != kHistorySize) { |
| mTimestamps.push_back(timestamp); |
| mLastTimestampIndex = next(mLastTimestampIndex); |
| } else { |
| mLastTimestampIndex = next(mLastTimestampIndex); |
| mTimestamps[mLastTimestampIndex] = timestamp; |
| } |
| |
| traceInt64If("VSP-ts", timestamp); |
| |
| const size_t numSamples = mTimestamps.size(); |
| if (numSamples < kMinimumSamplesForPrediction) { |
| mRateMap[idealPeriod()] = {idealPeriod(), 0}; |
| return true; |
| } |
| |
| // This is a 'simple linear regression' calculation of Y over X, with Y being the |
| // vsync timestamps, and X being the ordinal of vsync count. |
| // The calculated slope is the vsync period. |
| // Formula for reference: |
| // Sigma_i: means sum over all timestamps. |
| // mean(variable): statistical mean of variable. |
| // X: snapped ordinal of the timestamp |
| // Y: vsync timestamp |
| // |
| // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) |
| // slope = ------------------------------------------- |
| // Sigma_i ( X_i - mean(X) ) ^ 2 |
| // |
| // intercept = mean(Y) - slope * mean(X) |
| // |
| std::vector<nsecs_t> vsyncTS(numSamples); |
| std::vector<nsecs_t> ordinals(numSamples); |
| |
| // Normalizing to the oldest timestamp cuts down on error in calculating the intercept. |
| const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end()); |
| auto it = mRateMap.find(idealPeriod()); |
| auto const currentPeriod = it->second.slope; |
| |
| // The mean of the ordinals must be precise for the intercept calculation, so scale them up for |
| // fixed-point arithmetic. |
| constexpr int64_t kScalingFactor = 1000; |
| |
| nsecs_t meanTS = 0; |
| nsecs_t meanOrdinal = 0; |
| |
| for (size_t i = 0; i < numSamples; i++) { |
| const auto timestamp = mTimestamps[i] - oldestTS; |
| vsyncTS[i] = timestamp; |
| meanTS += timestamp; |
| |
| const auto ordinal = currentPeriod == 0 |
| ? 0 |
| : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor; |
| ordinals[i] = ordinal; |
| meanOrdinal += ordinal; |
| } |
| |
| meanTS /= numSamples; |
| meanOrdinal /= numSamples; |
| |
| for (size_t i = 0; i < numSamples; i++) { |
| vsyncTS[i] -= meanTS; |
| ordinals[i] -= meanOrdinal; |
| } |
| |
| nsecs_t top = 0; |
| nsecs_t bottom = 0; |
| for (size_t i = 0; i < numSamples; i++) { |
| top += vsyncTS[i] * ordinals[i]; |
| bottom += ordinals[i] * ordinals[i]; |
| } |
| |
| if (CC_UNLIKELY(bottom == 0)) { |
| it->second = {idealPeriod(), 0}; |
| clearTimestamps(); |
| return false; |
| } |
| |
| nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; |
| nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); |
| |
| auto const percent = std::abs(anticipatedPeriod - idealPeriod()) * kMaxPercent / idealPeriod(); |
| if (percent >= kOutlierTolerancePercent) { |
| it->second = {idealPeriod(), 0}; |
| clearTimestamps(); |
| return false; |
| } |
| |
| traceInt64If("VSP-period", anticipatedPeriod); |
| traceInt64If("VSP-intercept", intercept); |
| |
| it->second = {anticipatedPeriod, intercept}; |
| |
| ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, |
| mId.value, timestamp, anticipatedPeriod, intercept); |
| return true; |
| } |
| |
| auto VSyncPredictor::getVsyncSequenceLocked(nsecs_t timestamp) const -> VsyncSequence { |
| const auto vsync = nextAnticipatedVSyncTimeFromLocked(timestamp); |
| if (!mLastVsyncSequence) return {vsync, 0}; |
| |
| const auto [slope, _] = getVSyncPredictionModelLocked(); |
| const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence; |
| const auto vsyncSequence = lastVsyncSequence + |
| static_cast<int64_t>(std::round((vsync - lastVsyncTime) / static_cast<float>(slope))); |
| return {vsync, vsyncSequence}; |
| } |
| |
| nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFromLocked(nsecs_t timePoint) const { |
| auto const [slope, intercept] = getVSyncPredictionModelLocked(); |
| |
| if (mTimestamps.empty()) { |
| traceInt64("VSP-mode", 1); |
| auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; |
| auto const numPeriodsOut = ((timePoint - knownTimestamp) / idealPeriod()) + 1; |
| return knownTimestamp + numPeriodsOut * idealPeriod(); |
| } |
| |
| auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); |
| |
| // See b/145667109, the ordinal calculation must take into account the intercept. |
| auto const zeroPoint = oldest + intercept; |
| auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; |
| auto const prediction = (ordinalRequest * slope) + intercept + oldest; |
| |
| traceInt64("VSP-mode", 0); |
| traceInt64If("VSP-timePoint", timePoint); |
| traceInt64If("VSP-prediction", prediction); |
| |
| auto const printer = [&, slope = slope, intercept = intercept] { |
| std::stringstream str; |
| str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" |
| << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept |
| << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; |
| return str.str(); |
| }; |
| |
| ALOGV("%s", printer().c_str()); |
| LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", |
| printer().c_str()); |
| |
| return prediction; |
| } |
| |
| nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const { |
| std::lock_guard lock(mMutex); |
| |
| // update the mLastVsyncSequence for reference point |
| mLastVsyncSequence = getVsyncSequenceLocked(timePoint); |
| |
| const auto renderRatePhase = [&]() REQUIRES(mMutex) -> int { |
| if (!mRenderRateOpt) return 0; |
| const auto divisor = |
| RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(idealPeriod()), |
| *mRenderRateOpt); |
| if (divisor <= 1) return 0; |
| |
| int mod = mLastVsyncSequence->seq % divisor; |
| if (mod == 0) return 0; |
| |
| // This is actually a bug fix, but guarded with vrr_config since we found it with this |
| // config |
| if (FlagManager::getInstance().vrr_config()) { |
| if (mod < 0) mod += divisor; |
| } |
| |
| return divisor - mod; |
| }(); |
| |
| if (renderRatePhase == 0) { |
| const auto vsyncTime = mLastVsyncSequence->vsyncTime; |
| if (FlagManager::getInstance().vrr_config()) { |
| const auto vsyncTimePoint = TimePoint::fromNs(vsyncTime); |
| ATRACE_FORMAT("%s InPhase vsyncIn %.2fms", __func__, |
| ticks<std::milli, float>(vsyncTimePoint - TimePoint::now())); |
| const Fps renderRate = mRenderRateOpt ? *mRenderRateOpt : mDisplayModePtr->getPeakFps(); |
| mVsyncTrackerCallback.onVsyncGenerated(vsyncTimePoint, mDisplayModePtr, renderRate); |
| } |
| return vsyncTime; |
| } |
| |
| auto const [slope, intercept] = getVSyncPredictionModelLocked(); |
| const auto approximateNextVsync = mLastVsyncSequence->vsyncTime + slope * renderRatePhase; |
| const auto nextAnticipatedVsyncTime = |
| nextAnticipatedVSyncTimeFromLocked(approximateNextVsync - slope / 2); |
| if (FlagManager::getInstance().vrr_config()) { |
| const auto nextAnticipatedVsyncTimePoint = TimePoint::fromNs(nextAnticipatedVsyncTime); |
| ATRACE_FORMAT("%s outOfPhase vsyncIn %.2fms", __func__, |
| ticks<std::milli, float>(nextAnticipatedVsyncTimePoint - TimePoint::now())); |
| const Fps renderRate = mRenderRateOpt ? *mRenderRateOpt : mDisplayModePtr->getPeakFps(); |
| mVsyncTrackerCallback.onVsyncGenerated(nextAnticipatedVsyncTimePoint, mDisplayModePtr, |
| renderRate); |
| } |
| return nextAnticipatedVsyncTime; |
| } |
| |
| /* |
| * Returns whether a given vsync timestamp is in phase with a frame rate. |
| * If the frame rate is not a divisor of the refresh rate, it is always considered in phase. |
| * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): |
| * isVSyncInPhase(16.6, 30) = true |
| * isVSyncInPhase(33.3, 30) = false |
| * isVSyncInPhase(50.0, 30) = true |
| */ |
| bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) const { |
| std::lock_guard lock(mMutex); |
| const auto divisor = |
| RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(idealPeriod()), |
| frameRate); |
| return isVSyncInPhaseLocked(timePoint, static_cast<unsigned>(divisor)); |
| } |
| |
| bool VSyncPredictor::isVSyncInPhaseLocked(nsecs_t timePoint, unsigned divisor) const { |
| const TimePoint now = TimePoint::now(); |
| const auto getTimePointIn = [](TimePoint now, nsecs_t timePoint) -> float { |
| return ticks<std::milli, float>(TimePoint::fromNs(timePoint) - now); |
| }; |
| ATRACE_FORMAT("%s timePoint in: %.2f divisor: %zu", __func__, getTimePointIn(now, timePoint), |
| divisor); |
| |
| if (divisor <= 1 || timePoint == 0) { |
| return true; |
| } |
| |
| const nsecs_t period = mRateMap[idealPeriod()].slope; |
| const nsecs_t justBeforeTimePoint = timePoint - period / 2; |
| const auto vsyncSequence = getVsyncSequenceLocked(justBeforeTimePoint); |
| ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64, |
| getTimePointIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq); |
| return vsyncSequence.seq % divisor == 0; |
| } |
| |
| void VSyncPredictor::setRenderRate(Fps renderRate) { |
| ATRACE_FORMAT("%s %s", __func__, to_string(renderRate).c_str()); |
| ALOGV("%s %s: RenderRate %s ", __func__, to_string(mId).c_str(), to_string(renderRate).c_str()); |
| std::lock_guard lock(mMutex); |
| mRenderRateOpt = renderRate; |
| } |
| |
| void VSyncPredictor::setDisplayModePtr(ftl::NonNull<DisplayModePtr> modePtr) { |
| LOG_ALWAYS_FATAL_IF(mId != modePtr->getPhysicalDisplayId(), |
| "mode does not belong to the display"); |
| ATRACE_FORMAT("%s %s", __func__, to_string(*modePtr).c_str()); |
| const auto timeout = modePtr->getVrrConfig() |
| ? modePtr->getVrrConfig()->notifyExpectedPresentConfig |
| : std::nullopt; |
| ALOGV("%s %s: DisplayMode %s notifyExpectedPresentTimeout %s", __func__, to_string(mId).c_str(), |
| to_string(*modePtr).c_str(), |
| timeout ? std::to_string(timeout->notifyExpectedPresentTimeoutNs).c_str() : "N/A"); |
| std::lock_guard lock(mMutex); |
| |
| mDisplayModePtr = modePtr; |
| traceInt64("VSP-setPeriod", modePtr->getVsyncRate().getPeriodNsecs()); |
| |
| static constexpr size_t kSizeLimit = 30; |
| if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { |
| mRateMap.erase(mRateMap.begin()); |
| } |
| |
| if (mRateMap.find(idealPeriod()) == mRateMap.end()) { |
| mRateMap[idealPeriod()] = {idealPeriod(), 0}; |
| } |
| |
| clearTimestamps(); |
| } |
| |
| void VSyncPredictor::ensureMinFrameDurationIsKept(TimePoint expectedPresentTime, |
| TimePoint lastConfirmedPresentTime) { |
| const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; |
| const auto threshold = currentPeriod / 2; |
| const auto minFramePeriod = minFramePeriodLocked().ns(); |
| |
| auto prev = lastConfirmedPresentTime.ns(); |
| for (auto& current : mPastExpectedPresentTimes) { |
| if (CC_UNLIKELY(mTraceOn)) { |
| ATRACE_FORMAT_INSTANT("current %.2f past last signaled fence", |
| static_cast<float>(current.ns() - lastConfirmedPresentTime.ns()) / |
| 1e6f); |
| } |
| |
| const auto minPeriodViolation = current.ns() - prev + threshold < minFramePeriod; |
| if (minPeriodViolation) { |
| ATRACE_NAME("minPeriodViolation"); |
| current = TimePoint::fromNs(prev + minFramePeriod); |
| prev = current.ns(); |
| } else { |
| break; |
| } |
| } |
| |
| if (!mPastExpectedPresentTimes.empty()) { |
| const auto phase = Duration(mPastExpectedPresentTimes.back() - expectedPresentTime); |
| if (phase > 0ns) { |
| if (mLastVsyncSequence) { |
| mLastVsyncSequence->vsyncTime += phase.ns(); |
| } |
| } |
| } |
| } |
| |
| void VSyncPredictor::onFrameBegin(TimePoint expectedPresentTime, |
| TimePoint lastConfirmedPresentTime) { |
| ATRACE_CALL(); |
| std::lock_guard lock(mMutex); |
| |
| if (!mDisplayModePtr->getVrrConfig()) return; |
| |
| if (CC_UNLIKELY(mTraceOn)) { |
| ATRACE_FORMAT_INSTANT("vsync is %.2f past last signaled fence", |
| static_cast<float>(expectedPresentTime.ns() - |
| lastConfirmedPresentTime.ns()) / |
| 1e6f); |
| } |
| mPastExpectedPresentTimes.push_back(expectedPresentTime); |
| |
| const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; |
| const auto threshold = currentPeriod / 2; |
| |
| const auto minFramePeriod = minFramePeriodLocked().ns(); |
| while (!mPastExpectedPresentTimes.empty()) { |
| const auto front = mPastExpectedPresentTimes.front().ns(); |
| const bool frontIsLastConfirmed = |
| std::abs(front - lastConfirmedPresentTime.ns()) < threshold; |
| const bool frontIsBeforeConfirmed = |
| front < lastConfirmedPresentTime.ns() - minFramePeriod + threshold; |
| if (frontIsLastConfirmed || frontIsBeforeConfirmed) { |
| if (CC_UNLIKELY(mTraceOn)) { |
| ATRACE_FORMAT_INSTANT("Discarding old vsync - %.2f before last signaled fence", |
| static_cast<float>(lastConfirmedPresentTime.ns() - |
| mPastExpectedPresentTimes.front().ns()) / |
| 1e6f); |
| } |
| mPastExpectedPresentTimes.pop_front(); |
| } else { |
| break; |
| } |
| } |
| |
| ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime); |
| } |
| |
| void VSyncPredictor::onFrameMissed(TimePoint expectedPresentTime) { |
| ATRACE_CALL(); |
| |
| std::lock_guard lock(mMutex); |
| if (!mDisplayModePtr->getVrrConfig()) return; |
| |
| // We don't know when the frame is going to be presented, so we assume it missed one vsync |
| const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; |
| const auto lastConfirmedPresentTime = |
| TimePoint::fromNs(expectedPresentTime.ns() + currentPeriod); |
| |
| ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime); |
| } |
| |
| VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { |
| std::lock_guard lock(mMutex); |
| const auto model = VSyncPredictor::getVSyncPredictionModelLocked(); |
| return {model.slope, model.intercept}; |
| } |
| |
| VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { |
| return mRateMap.find(idealPeriod())->second; |
| } |
| |
| void VSyncPredictor::clearTimestamps() { |
| ATRACE_CALL(); |
| |
| if (!mTimestamps.empty()) { |
| auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); |
| if (mKnownTimestamp) { |
| mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); |
| } else { |
| mKnownTimestamp = maxRb; |
| } |
| |
| mTimestamps.clear(); |
| mLastTimestampIndex = 0; |
| } |
| } |
| |
| bool VSyncPredictor::needsMoreSamples() const { |
| std::lock_guard lock(mMutex); |
| return mTimestamps.size() < kMinimumSamplesForPrediction; |
| } |
| |
| void VSyncPredictor::resetModel() { |
| std::lock_guard lock(mMutex); |
| mRateMap[idealPeriod()] = {idealPeriod(), 0}; |
| clearTimestamps(); |
| } |
| |
| void VSyncPredictor::dump(std::string& result) const { |
| std::lock_guard lock(mMutex); |
| StringAppendF(&result, "\tmDisplayModePtr=%s\n", to_string(*mDisplayModePtr).c_str()); |
| StringAppendF(&result, "\tRefresh Rate Map:\n"); |
| for (const auto& [period, periodInterceptTuple] : mRateMap) { |
| StringAppendF(&result, |
| "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", |
| period / 1e6f, periodInterceptTuple.slope / 1e6f, |
| periodInterceptTuple.intercept); |
| } |
| } |
| |
| } // namespace android::scheduler |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic pop // ignored "-Wextra" |