blob: ce59a0480873866b894a014cf407b65d43ca188f [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <ftl/concat.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <ftl/small_map.h>
#include <gui/TraceUtils.h>
#include <gui/WindowInfo.h>
#include <system/window.h>
#include <ui/DisplayMap.h>
#include <utils/Timers.h>
#include <FrameTimeline/FrameTimeline.h>
#include <scheduler/interface/ICompositor.h>
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include <common/FlagManager.h>
#include "../Layer.h"
#include "EventThread.h"
#include "FrameRateOverrideMappings.h"
#include "FrontEnd/LayerHandle.h"
#include "OneShotTimer.h"
#include "SurfaceFlingerProperties.h"
#include "VSyncTracker.h"
#include "VsyncController.h"
#include "VsyncSchedule.h"
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
do { \
if (mConnections.count(handle) == 0) { \
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
return __VA_ARGS__; \
} \
} while (false)
namespace android::scheduler {
Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features,
sp<VsyncModulator> modulatorPtr, IVsyncTrackerCallback& vsyncTrackerCallback)
: impl::MessageQueue(compositor),
mFeatures(features),
mVsyncModulator(std::move(modulatorPtr)),
mSchedulerCallback(callback),
mVsyncTrackerCallback(vsyncTrackerCallback) {}
Scheduler::~Scheduler() {
// MessageQueue depends on VsyncSchedule, so first destroy it.
// Otherwise, MessageQueue will get destroyed after Scheduler's dtor,
// which will cause a use-after-free issue.
Impl::destroyVsync();
// Stop timers and wait for their threads to exit.
mDisplayPowerTimer.reset();
mTouchTimer.reset();
// Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler.
demotePacesetterDisplay();
}
void Scheduler::startTimers() {
using namespace sysprop;
using namespace std::string_literals;
const int32_t defaultTouchTimerValue =
FlagManager::getInstance().enable_fro_dependent_features() &&
sysprop::enable_frame_rate_override(true)
? 200
: 0;
if (const int32_t millis = set_touch_timer_ms(defaultTouchTimerValue); millis > 0) {
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
mTouchTimer.emplace(
"TouchTimer", std::chrono::milliseconds(millis),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
mDisplayPowerTimer.emplace(
"DisplayPowerTimer", std::chrono::milliseconds(millis),
[this] { displayPowerTimerCallback(TimerState::Reset); },
[this] { displayPowerTimerCallback(TimerState::Expired); });
mDisplayPowerTimer->start();
}
}
void Scheduler::setPacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
demotePacesetterDisplay();
promotePacesetterDisplay(pacesetterIdOpt);
}
void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) {
auto schedulePtr = std::make_shared<VsyncSchedule>(
selectorPtr->getActiveMode().modePtr, mFeatures,
[this](PhysicalDisplayId id, bool enable) { onHardwareVsyncRequest(id, enable); },
mVsyncTrackerCallback);
registerDisplayInternal(displayId, std::move(selectorPtr), std::move(schedulePtr));
}
void Scheduler::registerDisplayInternal(PhysicalDisplayId displayId,
RefreshRateSelectorPtr selectorPtr,
VsyncSchedulePtr schedulePtr) {
demotePacesetterDisplay();
auto [pacesetterVsyncSchedule, isNew] = [&]() FTL_FAKE_GUARD(kMainThreadContext) {
std::scoped_lock lock(mDisplayLock);
const bool isNew = mDisplays
.emplace_or_replace(displayId, displayId, std::move(selectorPtr),
std::move(schedulePtr), mFeatures)
.second;
return std::make_pair(promotePacesetterDisplayLocked(), isNew);
}();
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
// Disable hardware VSYNC if the registration is new, as opposed to a renewal.
if (isNew) {
onHardwareVsyncRequest(displayId, false);
}
}
void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) {
demotePacesetterDisplay();
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
mDisplays.erase(displayId);
// Do not allow removing the final display. Code in the scheduler expects
// there to be at least one display. (This may be relaxed in the future with
// headless virtual display.)
LOG_ALWAYS_FATAL_IF(mDisplays.empty(), "Cannot unregister all displays!");
pacesetterVsyncSchedule = promotePacesetterDisplayLocked();
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
void Scheduler::run() {
while (true) {
waitMessage();
}
}
void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId,
TimePoint expectedVsyncTime) {
const FrameTargeter::BeginFrameArgs beginFrameArgs =
{.frameBeginTime = SchedulerClock::now(),
.vsyncId = vsyncId,
// TODO(b/255601557): Calculate per display.
.expectedVsyncTime = expectedVsyncTime,
.sfWorkDuration = mVsyncModulator->getVsyncConfig().sfWorkDuration};
ftl::NonNull<const Display*> pacesetterPtr = pacesetterPtrLocked();
pacesetterPtr->targeterPtr->beginFrame(beginFrameArgs, *pacesetterPtr->schedulePtr);
{
FrameTargets targets;
targets.try_emplace(pacesetterPtr->displayId, &pacesetterPtr->targeterPtr->target());
for (const auto& [id, display] : mDisplays) {
if (id == pacesetterPtr->displayId) continue;
FrameTargeter& targeter = *display.targeterPtr;
targeter.beginFrame(beginFrameArgs, *display.schedulePtr);
targets.try_emplace(id, &targeter.target());
}
if (!compositor.commit(pacesetterPtr->displayId, targets)) return;
}
// The pacesetter may have changed or been registered anew during commit.
pacesetterPtr = pacesetterPtrLocked();
// TODO(b/256196556): Choose the frontrunner display.
FrameTargeters targeters;
targeters.try_emplace(pacesetterPtr->displayId, pacesetterPtr->targeterPtr.get());
for (auto& [id, display] : mDisplays) {
if (id == pacesetterPtr->displayId) continue;
FrameTargeter& targeter = *display.targeterPtr;
targeters.try_emplace(id, &targeter);
}
if (FlagManager::getInstance().vrr_config() &&
CC_UNLIKELY(mPacesetterFrameDurationFractionToSkip > 0.f)) {
const auto period = pacesetterPtr->targeterPtr->target().expectedFrameDuration();
const auto skipDuration = Duration::fromNs(
static_cast<nsecs_t>(period.ns() * mPacesetterFrameDurationFractionToSkip));
ATRACE_FORMAT("Injecting jank for %f%% of the frame (%" PRId64 " ns)",
mPacesetterFrameDurationFractionToSkip * 100, skipDuration.ns());
std::this_thread::sleep_for(skipDuration);
mPacesetterFrameDurationFractionToSkip = 0.f;
}
if (FlagManager::getInstance().vrr_config()) {
const auto minFramePeriod = pacesetterPtr->schedulePtr->minFramePeriod();
const auto presentFenceForPastVsync =
pacesetterPtr->targeterPtr->target().presentFenceForPastVsync(minFramePeriod);
const auto lastConfirmedPresentTime = presentFenceForPastVsync->getSignalTime();
if (lastConfirmedPresentTime != Fence::SIGNAL_TIME_PENDING &&
lastConfirmedPresentTime != Fence::SIGNAL_TIME_INVALID) {
pacesetterPtr->schedulePtr->getTracker()
.onFrameBegin(expectedVsyncTime, TimePoint::fromNs(lastConfirmedPresentTime));
}
}
const auto resultsPerDisplay = compositor.composite(pacesetterPtr->displayId, targeters);
compositor.sample();
for (const auto& [id, targeter] : targeters) {
const auto resultOpt = resultsPerDisplay.get(id);
LOG_ALWAYS_FATAL_IF(!resultOpt);
targeter->endFrame(*resultOpt);
}
}
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
return mFrameRateOverrideMappings
.getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent);
}
bool Scheduler::isVsyncValid(TimePoint expectedVsyncTime, uid_t uid) const {
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return true;
}
ATRACE_FORMAT("%s uid: %d frameRate: %s", __func__, uid, to_string(*frameRate).c_str());
return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), *frameRate);
}
bool Scheduler::isVsyncInPhase(TimePoint expectedVsyncTime, Fps frameRate) const {
return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), frameRate);
}
bool Scheduler::throttleVsync(android::TimePoint expectedPresentTime, uid_t uid) {
return !isVsyncValid(expectedPresentTime, uid);
}
Period Scheduler::getVsyncPeriod(uid_t uid) {
const auto [refreshRate, period] = [this] {
std::scoped_lock lock(mDisplayLock);
const auto pacesetterOpt = pacesetterDisplayLocked();
LOG_ALWAYS_FATAL_IF(!pacesetterOpt);
const Display& pacesetter = *pacesetterOpt;
return std::make_pair(pacesetter.selectorPtr->getActiveMode().fps,
pacesetter.schedulePtr->period());
}();
const Period currentPeriod = period != Period::zero() ? period : refreshRate.getPeriod();
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return currentPeriod;
}
const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate);
if (divisor <= 1) {
return currentPeriod;
}
// TODO(b/299378819): the casting is not needed, but we need a flag as it might change
// behaviour.
return Period::fromNs(currentPeriod.ns() * divisor);
}
ConnectionHandle Scheduler::createEventThread(Cycle cycle,
frametimeline::TokenManager* tokenManager,
std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
auto eventThread = std::make_unique<impl::EventThread>(cycle == Cycle::Render ? "app" : "appSf",
getVsyncSchedule(), tokenManager, *this,
workDuration, readyDuration);
auto& handle = cycle == Cycle::Render ? mAppConnectionHandle : mSfConnectionHandle;
handle = createConnection(std::move(eventThread));
return handle;
}
ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
auto connection = eventThread->createEventConnection();
std::lock_guard<std::mutex> lock(mConnectionsLock);
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
return handle;
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
ConnectionHandle handle, EventRegistrationFlags eventRegistration,
const sp<IBinder>& layerHandle) {
const auto connection = [&]() -> sp<EventThreadConnection> {
std::scoped_lock lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return mConnections[handle].thread->createEventConnection(eventRegistration);
}();
const auto layerId = static_cast<int32_t>(LayerHandle::getLayerId(layerHandle));
if (layerId != static_cast<int32_t>(UNASSIGNED_LAYER_ID)) {
// TODO(b/290409668): Moving the choreographer attachment to be a transaction that will be
// processed on the main thread.
mSchedulerCallback.onChoreographerAttached();
std::scoped_lock lock(mChoreographerLock);
const auto [iter, emplaced] =
mAttachedChoreographers.emplace(layerId,
AttachedChoreographers{Fps(), {connection}});
if (!emplaced) {
iter->second.connections.emplace(connection);
connection->frameRate = iter->second.frameRate;
}
}
return connection;
}
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return mConnections[handle].connection;
}
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
bool connected) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onHotplugReceived(displayId, connected);
}
void Scheduler::onHotplugConnectionError(ConnectionHandle handle, int32_t errorCode) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onHotplugConnectionError(errorCode);
}
void Scheduler::enableSyntheticVsync(bool enable) {
// TODO(b/241285945): Remove connection handles.
const ConnectionHandle handle = mAppConnectionHandle;
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->enableSyntheticVsync(enable);
}
void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
std::vector<FrameRateOverride> overrides =
mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent);
android::EventThread* thread;
{
std::lock_guard lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
}
void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) {
{
std::lock_guard<std::mutex> lock(mPolicyLock);
// Cache the last reported modes for primary display.
mPolicy.cachedModeChangedParams = {handle, mode};
// Invalidate content based refresh rate selection so it could be calculated
// again for the new refresh rate.
mPolicy.contentRequirements.clear();
}
onNonPrimaryDisplayModeChanged(handle, mode);
}
void Scheduler::dispatchCachedReportedMode() {
// Check optional fields first.
if (!mPolicy.modeOpt) {
ALOGW("No mode ID found, not dispatching cached mode.");
return;
}
if (!mPolicy.cachedModeChangedParams) {
ALOGW("No mode changed params found, not dispatching cached mode.");
return;
}
// If the mode is not the current mode, this means that a
// mode change is in progress. In that case we shouldn't dispatch an event
// as it will be dispatched when the current mode changes.
if (pacesetterSelectorPtr()->getActiveMode() != mPolicy.modeOpt) {
return;
}
// If there is no change from cached mode, there is no need to dispatch an event
if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) {
return;
}
mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt;
onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle,
mPolicy.cachedModeChangedParams->mode);
}
void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onModeChanged(mode);
}
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections.at(handle).thread.get();
}
thread->dump(result);
}
void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->setDuration(workDuration, readyDuration);
}
void Scheduler::setVsyncConfigSet(const VsyncConfigSet& configs, Period vsyncPeriod) {
setVsyncConfig(mVsyncModulator->setVsyncConfigSet(configs), vsyncPeriod);
}
void Scheduler::setVsyncConfig(const VsyncConfig& config, Period vsyncPeriod) {
setDuration(mAppConnectionHandle,
/* workDuration */ config.appWorkDuration,
/* readyDuration */ config.sfWorkDuration);
setDuration(mSfConnectionHandle,
/* workDuration */ vsyncPeriod,
/* readyDuration */ config.sfWorkDuration);
setDuration(config.sfWorkDuration);
}
void Scheduler::enableHardwareVsync(PhysicalDisplayId id) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->enableHardwareVsync();
}
void Scheduler::disableHardwareVsync(PhysicalDisplayId id, bool disallow) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->disableHardwareVsync(disallow);
}
void Scheduler::resyncAllToHardwareVsync(bool allowToEnable) {
ATRACE_CALL();
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [id, display] : mDisplays) {
if (display.powerMode != hal::PowerMode::OFF ||
!FlagManager::getInstance().multithreaded_present()) {
resyncToHardwareVsyncLocked(id, allowToEnable);
}
}
}
void Scheduler::resyncToHardwareVsyncLocked(PhysicalDisplayId id, bool allowToEnable,
DisplayModePtr modePtr) {
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
if (display.schedulePtr->isHardwareVsyncAllowed(allowToEnable)) {
if (!modePtr) {
modePtr = display.selectorPtr->getActiveMode().modePtr.get();
}
if (modePtr->getVsyncRate().isValid()) {
constexpr bool kForce = false;
display.schedulePtr->onDisplayModeChanged(ftl::as_non_null(modePtr), kForce);
}
}
}
void Scheduler::onHardwareVsyncRequest(PhysicalDisplayId id, bool enabled) {
static const auto& whence = __func__;
ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str());
// On main thread to serialize reads/writes of pending hardware VSYNC state.
static_cast<void>(
schedule([=]() FTL_FAKE_GUARD(mDisplayLock) FTL_FAKE_GUARD(kMainThreadContext) {
ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str());
if (const auto displayOpt = mDisplays.get(id)) {
auto& display = displayOpt->get();
display.schedulePtr->setPendingHardwareVsyncState(enabled);
if (display.powerMode != hal::PowerMode::OFF) {
mSchedulerCallback.requestHardwareVsync(id, enabled);
}
}
}));
}
void Scheduler::setRenderRate(PhysicalDisplayId id, Fps renderFrameRate) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
const auto mode = display.selectorPtr->getActiveMode();
using fps_approx_ops::operator!=;
LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps,
"Mismatch in render frame rates. Selector: %s, Scheduler: %s, Display: "
"%" PRIu64,
to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str(), id.value);
ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(),
to_string(mode.modePtr->getVsyncRate()).c_str());
display.schedulePtr->getTracker().setRenderRate(renderFrameRate);
}
Fps Scheduler::getNextFrameInterval(PhysicalDisplayId id,
TimePoint currentExpectedPresentTime) const {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return Fps{};
}
const Display& display = *displayOpt;
const nsecs_t threshold =
display.selectorPtr->getActiveMode().modePtr->getVsyncRate().getPeriodNsecs() / 2;
const nsecs_t nextVsyncTime = display.schedulePtr->getTracker().nextAnticipatedVSyncTimeFrom(
currentExpectedPresentTime.ns() + threshold);
return Fps::fromPeriodNsecs(nextVsyncTime - currentExpectedPresentTime.ns());
}
void Scheduler::resync() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
const nsecs_t now = systemTime();
const nsecs_t last = mLastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
resyncAllToHardwareVsync(false /* allowToEnable */);
}
}
bool Scheduler::addResyncSample(PhysicalDisplayId id, nsecs_t timestamp,
std::optional<nsecs_t> hwcVsyncPeriodIn) {
const auto hwcVsyncPeriod = ftl::Optional(hwcVsyncPeriodIn).transform([](nsecs_t nanos) {
return Period::fromNs(nanos);
});
auto schedule = getVsyncSchedule(id);
if (!schedule) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return false;
}
return schedule->addResyncSample(TimePoint::fromNs(timestamp), hwcVsyncPeriod);
}
void Scheduler::addPresentFence(PhysicalDisplayId id, std::shared_ptr<FenceTime> fence) {
ATRACE_NAME(ftl::Concat(__func__, ' ', id.value).c_str());
const auto scheduleOpt =
(ftl::FakeGuard(mDisplayLock), mDisplays.get(id)).and_then([](const Display& display) {
return display.powerMode == hal::PowerMode::OFF
? std::nullopt
: std::make_optional(display.schedulePtr);
});
if (!scheduleOpt) return;
const auto& schedule = scheduleOpt->get();
const bool needMoreSignals = schedule->getController().addPresentFence(std::move(fence));
if (needMoreSignals) {
schedule->enableHardwareVsync();
} else {
constexpr bool kDisallow = false;
schedule->disableHardwareVsync(kDisallow);
}
}
void Scheduler::registerLayer(Layer* layer) {
// If the content detection feature is off, we still keep the layer history,
// since we use it for other features (like Frame Rate API), so layers
// still need to be registered.
mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection));
}
void Scheduler::deregisterLayer(Layer* layer) {
mLayerHistory.deregisterLayer(layer);
}
void Scheduler::onLayerDestroyed(Layer* layer) {
std::scoped_lock lock(mChoreographerLock);
mAttachedChoreographers.erase(layer->getSequence());
}
void Scheduler::recordLayerHistory(int32_t id, const LayerProps& layerProps, nsecs_t presentTime,
nsecs_t now, LayerHistory::LayerUpdateType updateType) {
if (pacesetterSelectorPtr()->canSwitch()) {
mLayerHistory.record(id, layerProps, presentTime, now, updateType);
}
}
void Scheduler::setModeChangePending(bool pending) {
mLayerHistory.setModeChangePending(pending);
}
void Scheduler::setDefaultFrameRateCompatibility(
int32_t id, scheduler::FrameRateCompatibility frameRateCompatibility) {
mLayerHistory.setDefaultFrameRateCompatibility(id, frameRateCompatibility,
mFeatures.test(Feature::kContentDetection));
}
void Scheduler::setLayerProperties(int32_t id, const android::scheduler::LayerProps& properties) {
mLayerHistory.setLayerProperties(id, properties);
}
void Scheduler::chooseRefreshRateForContent(
const surfaceflinger::frontend::LayerHierarchy* hierarchy,
bool updateAttachedChoreographer) {
const auto selectorPtr = pacesetterSelectorPtr();
if (!selectorPtr->canSwitch()) return;
ATRACE_CALL();
LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime());
applyPolicy(&Policy::contentRequirements, std::move(summary));
if (updateAttachedChoreographer) {
LOG_ALWAYS_FATAL_IF(!hierarchy);
// update the attached choreographers after we selected the render rate.
const ftl::Optional<FrameRateMode> modeOpt = [&] {
std::scoped_lock lock(mPolicyLock);
return mPolicy.modeOpt;
}();
if (modeOpt) {
updateAttachedChoreographers(*hierarchy, modeOpt->fps);
}
}
}
void Scheduler::resetIdleTimer() {
pacesetterSelectorPtr()->resetIdleTimer();
}
void Scheduler::onTouchHint() {
if (mTouchTimer) {
mTouchTimer->reset();
pacesetterSelectorPtr()->resetKernelIdleTimer();
}
}
void Scheduler::setDisplayPowerMode(PhysicalDisplayId id, hal::PowerMode powerMode) {
const bool isPacesetter = [this, id]() REQUIRES(kMainThreadContext) {
ftl::FakeGuard guard(mDisplayLock);
return id == mPacesetterDisplayId;
}();
if (isPacesetter) {
// TODO (b/255657128): This needs to be handled per display.
std::lock_guard<std::mutex> lock(mPolicyLock);
mPolicy.displayPowerMode = powerMode;
}
{
std::scoped_lock lock(mDisplayLock);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
auto& display = displayOpt->get();
display.powerMode = powerMode;
display.schedulePtr->getController().setDisplayPowerMode(powerMode);
}
if (!isPacesetter) return;
if (mDisplayPowerTimer) {
mDisplayPowerTimer->reset();
}
// Display Power event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection
mLayerHistory.clear();
}
auto Scheduler::getVsyncSchedule(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
std::scoped_lock lock(mDisplayLock);
return getVsyncScheduleLocked(idOpt);
}
auto Scheduler::getVsyncScheduleLocked(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
ftl::FakeGuard guard(kMainThreadContext);
if (!idOpt) {
LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId, "Missing a pacesetter!");
idOpt = mPacesetterDisplayId;
}
const auto displayOpt = mDisplays.get(*idOpt);
if (!displayOpt) {
return nullptr;
}
return displayOpt->get().schedulePtr;
}
void Scheduler::kernelIdleTimerCallback(TimerState state) {
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
// magic number
const Fps refreshRate = pacesetterSelectorPtr()->getActiveMode().modePtr->getPeakFps();
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz;
using namespace fps_approx_ops;
if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// If we're not in performance mode then the kernel timer shouldn't do
// anything, as the refresh rate during DPU power collapse will be the
// same.
resyncAllToHardwareVsync(true /* allowToEnable */);
} else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
// need to update the VsyncController model anyway.
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [_, display] : mDisplays) {
constexpr bool kDisallow = false;
display.schedulePtr->disableHardwareVsync(kDisallow);
}
}
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}
void Scheduler::idleTimerCallback(TimerState state) {
applyPolicy(&Policy::idleTimer, state);
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}
void Scheduler::touchTimerCallback(TimerState state) {
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
// Touch event will boost the refresh rate to performance.
// Clear layer history to get fresh FPS detection.
// NOTE: Instead of checking all the layers, we should be checking the layer
// that is currently on top. b/142507166 will give us this capability.
if (applyPolicy(&Policy::touch, touch).touch) {
mLayerHistory.clear();
}
ATRACE_INT("TouchState", static_cast<int>(touch));
}
void Scheduler::displayPowerTimerCallback(TimerState state) {
applyPolicy(&Policy::displayPowerTimer, state);
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}
void Scheduler::dump(utils::Dumper& dumper) const {
using namespace std::string_view_literals;
{
utils::Dumper::Section section(dumper, "Features"sv);
for (Feature feature : ftl::enum_range<Feature>()) {
if (const auto flagOpt = ftl::flag_name(feature)) {
dumper.dump(flagOpt->substr(1), mFeatures.test(feature));
}
}
}
{
utils::Dumper::Section section(dumper, "Policy"sv);
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
dumper.dump("pacesetterDisplayId"sv, mPacesetterDisplayId);
}
dumper.dump("layerHistory"sv, mLayerHistory.dump());
dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval));
dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval));
}
mFrameRateOverrideMappings.dump(dumper);
dumper.eol();
{
utils::Dumper::Section section(dumper, "Frame Targeting"sv);
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [id, display] : mDisplays) {
utils::Dumper::Section
section(dumper,
id == mPacesetterDisplayId
? ftl::Concat("Pacesetter Display ", id.value).c_str()
: ftl::Concat("Follower Display ", id.value).c_str());
display.targeterPtr->dump(dumper);
dumper.eol();
}
}
}
void Scheduler::dumpVsync(std::string& out) const {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
if (mPacesetterDisplayId) {
base::StringAppendF(&out, "VsyncSchedule for pacesetter %s:\n",
to_string(*mPacesetterDisplayId).c_str());
getVsyncScheduleLocked()->dump(out);
}
for (auto& [id, display] : mDisplays) {
if (id == mPacesetterDisplayId) {
continue;
}
base::StringAppendF(&out, "VsyncSchedule for follower %s:\n", to_string(id).c_str());
display.schedulePtr->dump(out);
}
}
bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) {
std::scoped_lock lock(mPolicyLock);
return updateFrameRateOverridesLocked(consideredSignals, displayRefreshRate);
}
bool Scheduler::updateFrameRateOverridesLocked(GlobalSignals consideredSignals,
Fps displayRefreshRate) {
if (consideredSignals.idle) return false;
const auto frameRateOverrides =
pacesetterSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements,
displayRefreshRate, consideredSignals);
// Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying
// the FrameRateOverrideMappings rather than here.
return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides);
}
void Scheduler::promotePacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
pacesetterVsyncSchedule = promotePacesetterDisplayLocked(pacesetterIdOpt);
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
std::shared_ptr<VsyncSchedule> Scheduler::promotePacesetterDisplayLocked(
std::optional<PhysicalDisplayId> pacesetterIdOpt) {
// TODO(b/241286431): Choose the pacesetter display.
mPacesetterDisplayId = pacesetterIdOpt.value_or(mDisplays.begin()->first);
ALOGI("Display %s is the pacesetter", to_string(*mPacesetterDisplayId).c_str());
std::shared_ptr<VsyncSchedule> newVsyncSchedulePtr;
if (const auto pacesetterOpt = pacesetterDisplayLocked()) {
const Display& pacesetter = *pacesetterOpt;
pacesetter.selectorPtr->setIdleTimerCallbacks(
{.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); },
.onExpired = [this] { idleTimerCallback(TimerState::Expired); }},
.kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); },
.onExpired =
[this] { kernelIdleTimerCallback(TimerState::Expired); }}});
pacesetter.selectorPtr->startIdleTimer();
newVsyncSchedulePtr = pacesetter.schedulePtr;
constexpr bool kForce = true;
newVsyncSchedulePtr->onDisplayModeChanged(pacesetter.selectorPtr->getActiveMode().modePtr,
kForce);
}
return newVsyncSchedulePtr;
}
void Scheduler::applyNewVsyncSchedule(std::shared_ptr<VsyncSchedule> vsyncSchedule) {
onNewVsyncSchedule(vsyncSchedule->getDispatch());
std::vector<android::EventThread*> threads;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
threads.reserve(mConnections.size());
for (auto& [_, connection] : mConnections) {
threads.push_back(connection.thread.get());
}
}
for (auto* thread : threads) {
thread->onNewVsyncSchedule(vsyncSchedule);
}
}
void Scheduler::demotePacesetterDisplay() {
// No need to lock for reads on kMainThreadContext.
if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) {
pacesetterPtr->stopIdleTimer();
pacesetterPtr->clearIdleTimerCallbacks();
}
// Clear state that depends on the pacesetter's RefreshRateSelector.
std::scoped_lock lock(mPolicyLock);
mPolicy = {};
}
void Scheduler::updateAttachedChoreographersFrameRate(
const surfaceflinger::frontend::RequestedLayerState& layer, Fps fps) {
std::scoped_lock lock(mChoreographerLock);
const auto layerId = static_cast<int32_t>(layer.id);
const auto choreographers = mAttachedChoreographers.find(layerId);
if (choreographers == mAttachedChoreographers.end()) {
return;
}
auto& layerChoreographers = choreographers->second;
layerChoreographers.frameRate = fps;
ATRACE_FORMAT_INSTANT("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str());
ALOGV("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str());
auto it = layerChoreographers.connections.begin();
while (it != layerChoreographers.connections.end()) {
sp<EventThreadConnection> choreographerConnection = it->promote();
if (choreographerConnection) {
choreographerConnection->frameRate = fps;
it++;
} else {
it = choreographers->second.connections.erase(it);
}
}
if (layerChoreographers.connections.empty()) {
mAttachedChoreographers.erase(choreographers);
}
}
int Scheduler::updateAttachedChoreographersInternal(
const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate,
int parentDivisor) {
const char* name = layerHierarchy.getLayer() ? layerHierarchy.getLayer()->name.c_str() : "Root";
int divisor = 0;
if (layerHierarchy.getLayer()) {
const auto frameRateCompatibility = layerHierarchy.getLayer()->frameRateCompatibility;
const auto frameRate = Fps::fromValue(layerHierarchy.getLayer()->frameRate);
ALOGV("%s: %s frameRate %s parentDivisor=%d", __func__, name, to_string(frameRate).c_str(),
parentDivisor);
if (frameRate.isValid()) {
if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE ||
frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_EXACT) {
// Since this layer wants an exact match, we would only set a frame rate if the
// desired rate is a divisor of the display refresh rate.
divisor = RefreshRateSelector::getFrameRateDivisor(displayRefreshRate, frameRate);
} else if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT) {
// find the closest frame rate divisor for the desired frame rate.
divisor = static_cast<int>(
std::round(displayRefreshRate.getValue() / frameRate.getValue()));
}
}
}
// We start by traversing the children, updating their choreographers, and getting back the
// aggregated frame rate.
int childrenDivisor = 0;
for (const auto& [child, _] : layerHierarchy.mChildren) {
LOG_ALWAYS_FATAL_IF(child == nullptr || child->getLayer() == nullptr);
ALOGV("%s: %s traversing child %s", __func__, name, child->getLayer()->name.c_str());
const int childDivisor =
updateAttachedChoreographersInternal(*child, displayRefreshRate, divisor);
childrenDivisor = childrenDivisor > 0 ? childrenDivisor : childDivisor;
if (childDivisor > 0) {
childrenDivisor = std::gcd(childrenDivisor, childDivisor);
}
ALOGV("%s: %s childrenDivisor=%d", __func__, name, childrenDivisor);
}
ALOGV("%s: %s divisor=%d", __func__, name, divisor);
// If there is no explicit vote for this layer. Use the children's vote if exists
divisor = (divisor == 0) ? childrenDivisor : divisor;
ALOGV("%s: %s divisor=%d with children", __func__, name, divisor);
// If there is no explicit vote for this layer or its children, Use the parent vote if exists
divisor = (divisor == 0) ? parentDivisor : divisor;
ALOGV("%s: %s divisor=%d with parent", __func__, name, divisor);
if (layerHierarchy.getLayer()) {
Fps fps = divisor > 1 ? displayRefreshRate / (unsigned int)divisor : Fps();
updateAttachedChoreographersFrameRate(*layerHierarchy.getLayer(), fps);
}
return divisor;
}
void Scheduler::updateAttachedChoreographers(
const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate) {
ATRACE_CALL();
updateAttachedChoreographersInternal(layerHierarchy, displayRefreshRate, 0);
}
template <typename S, typename T>
auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals {
ATRACE_CALL();
std::vector<display::DisplayModeRequest> modeRequests;
GlobalSignals consideredSignals;
bool refreshRateChanged = false;
bool frameRateOverridesChanged;
{
std::scoped_lock lock(mPolicyLock);
auto& currentState = mPolicy.*statePtr;
if (currentState == newState) return {};
currentState = std::forward<T>(newState);
DisplayModeChoiceMap modeChoices;
ftl::Optional<FrameRateMode> modeOpt;
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
modeChoices = chooseDisplayModes();
// TODO(b/240743786): The pacesetter display's mode must change for any
// DisplayModeRequest to go through. Fix this by tracking per-display Scheduler::Policy
// and timers.
std::tie(modeOpt, consideredSignals) =
modeChoices.get(*mPacesetterDisplayId)
.transform([](const DisplayModeChoice& choice) {
return std::make_pair(choice.mode, choice.consideredSignals);
})
.value();
}
modeRequests.reserve(modeChoices.size());
for (auto& [id, choice] : modeChoices) {
modeRequests.emplace_back(
display::DisplayModeRequest{.mode = std::move(choice.mode),
.emitEvent = !choice.consideredSignals.idle});
}
frameRateOverridesChanged = updateFrameRateOverridesLocked(consideredSignals, modeOpt->fps);
if (mPolicy.modeOpt != modeOpt) {
mPolicy.modeOpt = modeOpt;
refreshRateChanged = true;
} else {
// We don't need to change the display mode, but we might need to send an event
// about a mode change, since it was suppressed if previously considered idle.
if (!consideredSignals.idle) {
dispatchCachedReportedMode();
}
}
}
if (refreshRateChanged) {
mSchedulerCallback.requestDisplayModes(std::move(modeRequests));
}
if (frameRateOverridesChanged) {
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
}
return consideredSignals;
}
auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap {
ATRACE_CALL();
using RankedRefreshRates = RefreshRateSelector::RankedFrameRates;
ui::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking;
const auto globalSignals = makeGlobalSignals();
Fps pacesetterFps;
for (const auto& [id, display] : mDisplays) {
auto rankedFrameRates =
display.selectorPtr->getRankedFrameRates(mPolicy.contentRequirements,
globalSignals);
if (id == *mPacesetterDisplayId) {
pacesetterFps = rankedFrameRates.ranking.front().frameRateMode.fps;
}
perDisplayRanking.push_back(std::move(rankedFrameRates));
}
DisplayModeChoiceMap modeChoices;
using fps_approx_ops::operator==;
for (auto& [rankings, signals] : perDisplayRanking) {
const auto chosenFrameRateMode =
ftl::find_if(rankings,
[&](const auto& ranking) {
return ranking.frameRateMode.fps == pacesetterFps;
})
.transform([](const auto& scoredFrameRate) {
return scoredFrameRate.get().frameRateMode;
})
.value_or(rankings.front().frameRateMode);
modeChoices.try_emplace(chosenFrameRateMode.modePtr->getPhysicalDisplayId(),
DisplayModeChoice{chosenFrameRateMode, signals});
}
return modeChoices;
}
GlobalSignals Scheduler::makeGlobalSignals() const {
const bool powerOnImminent = mDisplayPowerTimer &&
(mPolicy.displayPowerMode != hal::PowerMode::ON ||
mPolicy.displayPowerTimer == TimerState::Reset);
return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active,
.idle = mPolicy.idleTimer == TimerState::Expired,
.powerOnImminent = powerOnImminent};
}
FrameRateMode Scheduler::getPreferredDisplayMode() {
std::lock_guard<std::mutex> lock(mPolicyLock);
const auto frameRateMode =
pacesetterSelectorPtr()
->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals())
.ranking.front()
.frameRateMode;
// Make sure the stored mode is up to date.
mPolicy.modeOpt = frameRateMode;
return frameRateMode;
}
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
}
}
bool Scheduler::onCompositionPresented(nsecs_t presentTime) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) {
// We need to composite again as refreshTimeNanos is still in the future.
return true;
}
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
}
return false;
}
void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
mLayerHistory.setDisplayArea(displayArea);
}
void Scheduler::setGameModeFrameRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
if (FlagManager::getInstance().game_default_frame_rate()) {
// update the frame rate override mapping in LayerHistory
mLayerHistory.updateGameModeFrameRateOverride(frameRateOverride);
} else {
mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride);
}
}
void Scheduler::setGameDefaultFrameRateForUid(FrameRateOverride frameRateOverride) {
if (!FlagManager::getInstance().game_default_frame_rate() ||
(frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f)) {
return;
}
// update the frame rate override mapping in LayerHistory
mLayerHistory.updateGameDefaultFrameRateOverride(frameRateOverride);
}
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride);
}
void Scheduler::updateSmallAreaDetection(
std::vector<std::pair<int32_t, float>>& uidThresholdMappings) {
mSmallAreaDetectionAllowMappings.update(uidThresholdMappings);
}
void Scheduler::setSmallAreaDetectionThreshold(int32_t appId, float threshold) {
mSmallAreaDetectionAllowMappings.setThresholdForAppId(appId, threshold);
}
bool Scheduler::isSmallDirtyArea(int32_t appId, uint32_t dirtyArea) {
std::optional<float> oThreshold = mSmallAreaDetectionAllowMappings.getThresholdForAppId(appId);
if (oThreshold) {
return mLayerHistory.isSmallDirtyArea(dirtyArea, oThreshold.value());
}
return false;
}
} // namespace android::scheduler