| /* |
| * Copyright 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #undef LOG_TAG |
| #define LOG_TAG "Scheduler" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "Scheduler.h" |
| |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <configstore/Utils.h> |
| #include <ftl/concat.h> |
| #include <ftl/enum.h> |
| #include <ftl/fake_guard.h> |
| #include <ftl/small_map.h> |
| #include <gui/TraceUtils.h> |
| #include <gui/WindowInfo.h> |
| #include <system/window.h> |
| #include <ui/DisplayMap.h> |
| #include <utils/Timers.h> |
| |
| #include <FrameTimeline/FrameTimeline.h> |
| #include <scheduler/interface/ICompositor.h> |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <functional> |
| #include <memory> |
| #include <numeric> |
| |
| #include <common/FlagManager.h> |
| #include "../Layer.h" |
| #include "EventThread.h" |
| #include "FrameRateOverrideMappings.h" |
| #include "FrontEnd/LayerHandle.h" |
| #include "OneShotTimer.h" |
| #include "SurfaceFlingerProperties.h" |
| #include "VSyncTracker.h" |
| #include "VsyncController.h" |
| #include "VsyncSchedule.h" |
| |
| #define RETURN_IF_INVALID_HANDLE(handle, ...) \ |
| do { \ |
| if (mConnections.count(handle) == 0) { \ |
| ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ |
| return __VA_ARGS__; \ |
| } \ |
| } while (false) |
| |
| namespace android::scheduler { |
| |
| Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features, |
| sp<VsyncModulator> modulatorPtr, IVsyncTrackerCallback& vsyncTrackerCallback) |
| : impl::MessageQueue(compositor), |
| mFeatures(features), |
| mVsyncModulator(std::move(modulatorPtr)), |
| mSchedulerCallback(callback), |
| mVsyncTrackerCallback(vsyncTrackerCallback) {} |
| |
| Scheduler::~Scheduler() { |
| // MessageQueue depends on VsyncSchedule, so first destroy it. |
| // Otherwise, MessageQueue will get destroyed after Scheduler's dtor, |
| // which will cause a use-after-free issue. |
| Impl::destroyVsync(); |
| |
| // Stop timers and wait for their threads to exit. |
| mDisplayPowerTimer.reset(); |
| mTouchTimer.reset(); |
| |
| // Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler. |
| demotePacesetterDisplay(); |
| } |
| |
| void Scheduler::startTimers() { |
| using namespace sysprop; |
| using namespace std::string_literals; |
| |
| const int32_t defaultTouchTimerValue = |
| FlagManager::getInstance().enable_fro_dependent_features() && |
| sysprop::enable_frame_rate_override(true) |
| ? 200 |
| : 0; |
| if (const int32_t millis = set_touch_timer_ms(defaultTouchTimerValue); millis > 0) { |
| // Touch events are coming to SF every 100ms, so the timer needs to be higher than that |
| mTouchTimer.emplace( |
| "TouchTimer", std::chrono::milliseconds(millis), |
| [this] { touchTimerCallback(TimerState::Reset); }, |
| [this] { touchTimerCallback(TimerState::Expired); }); |
| mTouchTimer->start(); |
| } |
| |
| if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { |
| mDisplayPowerTimer.emplace( |
| "DisplayPowerTimer", std::chrono::milliseconds(millis), |
| [this] { displayPowerTimerCallback(TimerState::Reset); }, |
| [this] { displayPowerTimerCallback(TimerState::Expired); }); |
| mDisplayPowerTimer->start(); |
| } |
| } |
| |
| void Scheduler::setPacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) { |
| demotePacesetterDisplay(); |
| |
| promotePacesetterDisplay(pacesetterIdOpt); |
| } |
| |
| void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) { |
| auto schedulePtr = std::make_shared<VsyncSchedule>( |
| selectorPtr->getActiveMode().modePtr, mFeatures, |
| [this](PhysicalDisplayId id, bool enable) { onHardwareVsyncRequest(id, enable); }, |
| mVsyncTrackerCallback); |
| |
| registerDisplayInternal(displayId, std::move(selectorPtr), std::move(schedulePtr)); |
| } |
| |
| void Scheduler::registerDisplayInternal(PhysicalDisplayId displayId, |
| RefreshRateSelectorPtr selectorPtr, |
| VsyncSchedulePtr schedulePtr) { |
| demotePacesetterDisplay(); |
| |
| auto [pacesetterVsyncSchedule, isNew] = [&]() FTL_FAKE_GUARD(kMainThreadContext) { |
| std::scoped_lock lock(mDisplayLock); |
| const bool isNew = mDisplays |
| .emplace_or_replace(displayId, displayId, std::move(selectorPtr), |
| std::move(schedulePtr), mFeatures) |
| .second; |
| |
| return std::make_pair(promotePacesetterDisplayLocked(), isNew); |
| }(); |
| |
| applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); |
| |
| // Disable hardware VSYNC if the registration is new, as opposed to a renewal. |
| if (isNew) { |
| onHardwareVsyncRequest(displayId, false); |
| } |
| } |
| |
| void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) { |
| demotePacesetterDisplay(); |
| |
| std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule; |
| { |
| std::scoped_lock lock(mDisplayLock); |
| mDisplays.erase(displayId); |
| |
| // Do not allow removing the final display. Code in the scheduler expects |
| // there to be at least one display. (This may be relaxed in the future with |
| // headless virtual display.) |
| LOG_ALWAYS_FATAL_IF(mDisplays.empty(), "Cannot unregister all displays!"); |
| |
| pacesetterVsyncSchedule = promotePacesetterDisplayLocked(); |
| } |
| applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); |
| } |
| |
| void Scheduler::run() { |
| while (true) { |
| waitMessage(); |
| } |
| } |
| |
| void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId, |
| TimePoint expectedVsyncTime) { |
| const FrameTargeter::BeginFrameArgs beginFrameArgs = |
| {.frameBeginTime = SchedulerClock::now(), |
| .vsyncId = vsyncId, |
| // TODO(b/255601557): Calculate per display. |
| .expectedVsyncTime = expectedVsyncTime, |
| .sfWorkDuration = mVsyncModulator->getVsyncConfig().sfWorkDuration}; |
| |
| ftl::NonNull<const Display*> pacesetterPtr = pacesetterPtrLocked(); |
| pacesetterPtr->targeterPtr->beginFrame(beginFrameArgs, *pacesetterPtr->schedulePtr); |
| |
| { |
| FrameTargets targets; |
| targets.try_emplace(pacesetterPtr->displayId, &pacesetterPtr->targeterPtr->target()); |
| |
| for (const auto& [id, display] : mDisplays) { |
| if (id == pacesetterPtr->displayId) continue; |
| |
| FrameTargeter& targeter = *display.targeterPtr; |
| targeter.beginFrame(beginFrameArgs, *display.schedulePtr); |
| targets.try_emplace(id, &targeter.target()); |
| } |
| |
| if (!compositor.commit(pacesetterPtr->displayId, targets)) return; |
| } |
| |
| // The pacesetter may have changed or been registered anew during commit. |
| pacesetterPtr = pacesetterPtrLocked(); |
| |
| // TODO(b/256196556): Choose the frontrunner display. |
| FrameTargeters targeters; |
| targeters.try_emplace(pacesetterPtr->displayId, pacesetterPtr->targeterPtr.get()); |
| |
| for (auto& [id, display] : mDisplays) { |
| if (id == pacesetterPtr->displayId) continue; |
| |
| FrameTargeter& targeter = *display.targeterPtr; |
| targeters.try_emplace(id, &targeter); |
| } |
| |
| if (FlagManager::getInstance().vrr_config() && |
| CC_UNLIKELY(mPacesetterFrameDurationFractionToSkip > 0.f)) { |
| const auto period = pacesetterPtr->targeterPtr->target().expectedFrameDuration(); |
| const auto skipDuration = Duration::fromNs( |
| static_cast<nsecs_t>(period.ns() * mPacesetterFrameDurationFractionToSkip)); |
| ATRACE_FORMAT("Injecting jank for %f%% of the frame (%" PRId64 " ns)", |
| mPacesetterFrameDurationFractionToSkip * 100, skipDuration.ns()); |
| std::this_thread::sleep_for(skipDuration); |
| mPacesetterFrameDurationFractionToSkip = 0.f; |
| } |
| |
| if (FlagManager::getInstance().vrr_config()) { |
| const auto minFramePeriod = pacesetterPtr->schedulePtr->minFramePeriod(); |
| const auto presentFenceForPastVsync = |
| pacesetterPtr->targeterPtr->target().presentFenceForPastVsync(minFramePeriod); |
| const auto lastConfirmedPresentTime = presentFenceForPastVsync->getSignalTime(); |
| if (lastConfirmedPresentTime != Fence::SIGNAL_TIME_PENDING && |
| lastConfirmedPresentTime != Fence::SIGNAL_TIME_INVALID) { |
| pacesetterPtr->schedulePtr->getTracker() |
| .onFrameBegin(expectedVsyncTime, TimePoint::fromNs(lastConfirmedPresentTime)); |
| } |
| } |
| |
| const auto resultsPerDisplay = compositor.composite(pacesetterPtr->displayId, targeters); |
| compositor.sample(); |
| |
| for (const auto& [id, targeter] : targeters) { |
| const auto resultOpt = resultsPerDisplay.get(id); |
| LOG_ALWAYS_FATAL_IF(!resultOpt); |
| targeter->endFrame(*resultOpt); |
| } |
| } |
| |
| std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { |
| const bool supportsFrameRateOverrideByContent = |
| pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent(); |
| return mFrameRateOverrideMappings |
| .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); |
| } |
| |
| bool Scheduler::isVsyncValid(TimePoint expectedVsyncTime, uid_t uid) const { |
| const auto frameRate = getFrameRateOverride(uid); |
| if (!frameRate.has_value()) { |
| return true; |
| } |
| |
| ATRACE_FORMAT("%s uid: %d frameRate: %s", __func__, uid, to_string(*frameRate).c_str()); |
| return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), *frameRate); |
| } |
| |
| bool Scheduler::isVsyncInPhase(TimePoint expectedVsyncTime, Fps frameRate) const { |
| return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), frameRate); |
| } |
| |
| bool Scheduler::throttleVsync(android::TimePoint expectedPresentTime, uid_t uid) { |
| return !isVsyncValid(expectedPresentTime, uid); |
| } |
| |
| Period Scheduler::getVsyncPeriod(uid_t uid) { |
| const auto [refreshRate, period] = [this] { |
| std::scoped_lock lock(mDisplayLock); |
| const auto pacesetterOpt = pacesetterDisplayLocked(); |
| LOG_ALWAYS_FATAL_IF(!pacesetterOpt); |
| const Display& pacesetter = *pacesetterOpt; |
| return std::make_pair(pacesetter.selectorPtr->getActiveMode().fps, |
| pacesetter.schedulePtr->period()); |
| }(); |
| |
| const Period currentPeriod = period != Period::zero() ? period : refreshRate.getPeriod(); |
| |
| const auto frameRate = getFrameRateOverride(uid); |
| if (!frameRate.has_value()) { |
| return currentPeriod; |
| } |
| |
| const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate); |
| if (divisor <= 1) { |
| return currentPeriod; |
| } |
| |
| // TODO(b/299378819): the casting is not needed, but we need a flag as it might change |
| // behaviour. |
| return Period::fromNs(currentPeriod.ns() * divisor); |
| } |
| |
| ConnectionHandle Scheduler::createEventThread(Cycle cycle, |
| frametimeline::TokenManager* tokenManager, |
| std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration) { |
| auto eventThread = std::make_unique<impl::EventThread>(cycle == Cycle::Render ? "app" : "appSf", |
| getVsyncSchedule(), tokenManager, *this, |
| workDuration, readyDuration); |
| |
| auto& handle = cycle == Cycle::Render ? mAppConnectionHandle : mSfConnectionHandle; |
| handle = createConnection(std::move(eventThread)); |
| return handle; |
| } |
| |
| ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { |
| const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; |
| ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); |
| |
| auto connection = eventThread->createEventConnection(); |
| |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); |
| return handle; |
| } |
| |
| sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( |
| ConnectionHandle handle, EventRegistrationFlags eventRegistration, |
| const sp<IBinder>& layerHandle) { |
| const auto connection = [&]() -> sp<EventThreadConnection> { |
| std::scoped_lock lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| |
| return mConnections[handle].thread->createEventConnection(eventRegistration); |
| }(); |
| const auto layerId = static_cast<int32_t>(LayerHandle::getLayerId(layerHandle)); |
| |
| if (layerId != static_cast<int32_t>(UNASSIGNED_LAYER_ID)) { |
| // TODO(b/290409668): Moving the choreographer attachment to be a transaction that will be |
| // processed on the main thread. |
| mSchedulerCallback.onChoreographerAttached(); |
| |
| std::scoped_lock lock(mChoreographerLock); |
| const auto [iter, emplaced] = |
| mAttachedChoreographers.emplace(layerId, |
| AttachedChoreographers{Fps(), {connection}}); |
| if (!emplaced) { |
| iter->second.connections.emplace(connection); |
| connection->frameRate = iter->second.frameRate; |
| } |
| } |
| return connection; |
| } |
| |
| sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| return mConnections[handle].connection; |
| } |
| |
| void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, |
| bool connected) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| |
| thread->onHotplugReceived(displayId, connected); |
| } |
| |
| void Scheduler::onHotplugConnectionError(ConnectionHandle handle, int32_t errorCode) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| |
| thread->onHotplugConnectionError(errorCode); |
| } |
| |
| void Scheduler::enableSyntheticVsync(bool enable) { |
| // TODO(b/241285945): Remove connection handles. |
| const ConnectionHandle handle = mAppConnectionHandle; |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->enableSyntheticVsync(enable); |
| } |
| |
| void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { |
| const bool supportsFrameRateOverrideByContent = |
| pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent(); |
| |
| std::vector<FrameRateOverride> overrides = |
| mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); |
| |
| android::EventThread* thread; |
| { |
| std::lock_guard lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); |
| } |
| |
| void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { |
| { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| // Cache the last reported modes for primary display. |
| mPolicy.cachedModeChangedParams = {handle, mode}; |
| |
| // Invalidate content based refresh rate selection so it could be calculated |
| // again for the new refresh rate. |
| mPolicy.contentRequirements.clear(); |
| } |
| onNonPrimaryDisplayModeChanged(handle, mode); |
| } |
| |
| void Scheduler::dispatchCachedReportedMode() { |
| // Check optional fields first. |
| if (!mPolicy.modeOpt) { |
| ALOGW("No mode ID found, not dispatching cached mode."); |
| return; |
| } |
| if (!mPolicy.cachedModeChangedParams) { |
| ALOGW("No mode changed params found, not dispatching cached mode."); |
| return; |
| } |
| |
| // If the mode is not the current mode, this means that a |
| // mode change is in progress. In that case we shouldn't dispatch an event |
| // as it will be dispatched when the current mode changes. |
| if (pacesetterSelectorPtr()->getActiveMode() != mPolicy.modeOpt) { |
| return; |
| } |
| |
| // If there is no change from cached mode, there is no need to dispatch an event |
| if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) { |
| return; |
| } |
| |
| mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt; |
| onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, |
| mPolicy.cachedModeChangedParams->mode); |
| } |
| |
| void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onModeChanged(mode); |
| } |
| |
| void Scheduler::dump(ConnectionHandle handle, std::string& result) const { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections.at(handle).thread.get(); |
| } |
| thread->dump(result); |
| } |
| |
| void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->setDuration(workDuration, readyDuration); |
| } |
| |
| void Scheduler::setVsyncConfigSet(const VsyncConfigSet& configs, Period vsyncPeriod) { |
| setVsyncConfig(mVsyncModulator->setVsyncConfigSet(configs), vsyncPeriod); |
| } |
| |
| void Scheduler::setVsyncConfig(const VsyncConfig& config, Period vsyncPeriod) { |
| setDuration(mAppConnectionHandle, |
| /* workDuration */ config.appWorkDuration, |
| /* readyDuration */ config.sfWorkDuration); |
| setDuration(mSfConnectionHandle, |
| /* workDuration */ vsyncPeriod, |
| /* readyDuration */ config.sfWorkDuration); |
| setDuration(config.sfWorkDuration); |
| } |
| |
| void Scheduler::enableHardwareVsync(PhysicalDisplayId id) { |
| auto schedule = getVsyncSchedule(id); |
| LOG_ALWAYS_FATAL_IF(!schedule); |
| schedule->enableHardwareVsync(); |
| } |
| |
| void Scheduler::disableHardwareVsync(PhysicalDisplayId id, bool disallow) { |
| auto schedule = getVsyncSchedule(id); |
| LOG_ALWAYS_FATAL_IF(!schedule); |
| schedule->disableHardwareVsync(disallow); |
| } |
| |
| void Scheduler::resyncAllToHardwareVsync(bool allowToEnable) { |
| ATRACE_CALL(); |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| for (const auto& [id, display] : mDisplays) { |
| if (display.powerMode != hal::PowerMode::OFF || |
| !FlagManager::getInstance().multithreaded_present()) { |
| resyncToHardwareVsyncLocked(id, allowToEnable); |
| } |
| } |
| } |
| |
| void Scheduler::resyncToHardwareVsyncLocked(PhysicalDisplayId id, bool allowToEnable, |
| DisplayModePtr modePtr) { |
| const auto displayOpt = mDisplays.get(id); |
| if (!displayOpt) { |
| ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); |
| return; |
| } |
| const Display& display = *displayOpt; |
| |
| if (display.schedulePtr->isHardwareVsyncAllowed(allowToEnable)) { |
| if (!modePtr) { |
| modePtr = display.selectorPtr->getActiveMode().modePtr.get(); |
| } |
| if (modePtr->getVsyncRate().isValid()) { |
| constexpr bool kForce = false; |
| display.schedulePtr->onDisplayModeChanged(ftl::as_non_null(modePtr), kForce); |
| } |
| } |
| } |
| |
| void Scheduler::onHardwareVsyncRequest(PhysicalDisplayId id, bool enabled) { |
| static const auto& whence = __func__; |
| ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str()); |
| |
| // On main thread to serialize reads/writes of pending hardware VSYNC state. |
| static_cast<void>( |
| schedule([=]() FTL_FAKE_GUARD(mDisplayLock) FTL_FAKE_GUARD(kMainThreadContext) { |
| ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str()); |
| |
| if (const auto displayOpt = mDisplays.get(id)) { |
| auto& display = displayOpt->get(); |
| display.schedulePtr->setPendingHardwareVsyncState(enabled); |
| |
| if (display.powerMode != hal::PowerMode::OFF) { |
| mSchedulerCallback.requestHardwareVsync(id, enabled); |
| } |
| } |
| })); |
| } |
| |
| void Scheduler::setRenderRate(PhysicalDisplayId id, Fps renderFrameRate) { |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| const auto displayOpt = mDisplays.get(id); |
| if (!displayOpt) { |
| ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); |
| return; |
| } |
| const Display& display = *displayOpt; |
| const auto mode = display.selectorPtr->getActiveMode(); |
| |
| using fps_approx_ops::operator!=; |
| LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps, |
| "Mismatch in render frame rates. Selector: %s, Scheduler: %s, Display: " |
| "%" PRIu64, |
| to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str(), id.value); |
| |
| ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(), |
| to_string(mode.modePtr->getVsyncRate()).c_str()); |
| |
| display.schedulePtr->getTracker().setRenderRate(renderFrameRate); |
| } |
| |
| Fps Scheduler::getNextFrameInterval(PhysicalDisplayId id, |
| TimePoint currentExpectedPresentTime) const { |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| const auto displayOpt = mDisplays.get(id); |
| if (!displayOpt) { |
| ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); |
| return Fps{}; |
| } |
| const Display& display = *displayOpt; |
| const nsecs_t threshold = |
| display.selectorPtr->getActiveMode().modePtr->getVsyncRate().getPeriodNsecs() / 2; |
| const nsecs_t nextVsyncTime = display.schedulePtr->getTracker().nextAnticipatedVSyncTimeFrom( |
| currentExpectedPresentTime.ns() + threshold); |
| return Fps::fromPeriodNsecs(nextVsyncTime - currentExpectedPresentTime.ns()); |
| } |
| |
| void Scheduler::resync() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(750); |
| |
| const nsecs_t now = systemTime(); |
| const nsecs_t last = mLastResyncTime.exchange(now); |
| |
| if (now - last > kIgnoreDelay) { |
| resyncAllToHardwareVsync(false /* allowToEnable */); |
| } |
| } |
| |
| bool Scheduler::addResyncSample(PhysicalDisplayId id, nsecs_t timestamp, |
| std::optional<nsecs_t> hwcVsyncPeriodIn) { |
| const auto hwcVsyncPeriod = ftl::Optional(hwcVsyncPeriodIn).transform([](nsecs_t nanos) { |
| return Period::fromNs(nanos); |
| }); |
| auto schedule = getVsyncSchedule(id); |
| if (!schedule) { |
| ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str()); |
| return false; |
| } |
| return schedule->addResyncSample(TimePoint::fromNs(timestamp), hwcVsyncPeriod); |
| } |
| |
| void Scheduler::addPresentFence(PhysicalDisplayId id, std::shared_ptr<FenceTime> fence) { |
| ATRACE_NAME(ftl::Concat(__func__, ' ', id.value).c_str()); |
| const auto scheduleOpt = |
| (ftl::FakeGuard(mDisplayLock), mDisplays.get(id)).and_then([](const Display& display) { |
| return display.powerMode == hal::PowerMode::OFF |
| ? std::nullopt |
| : std::make_optional(display.schedulePtr); |
| }); |
| |
| if (!scheduleOpt) return; |
| const auto& schedule = scheduleOpt->get(); |
| |
| const bool needMoreSignals = schedule->getController().addPresentFence(std::move(fence)); |
| if (needMoreSignals) { |
| schedule->enableHardwareVsync(); |
| } else { |
| constexpr bool kDisallow = false; |
| schedule->disableHardwareVsync(kDisallow); |
| } |
| } |
| |
| void Scheduler::registerLayer(Layer* layer) { |
| // If the content detection feature is off, we still keep the layer history, |
| // since we use it for other features (like Frame Rate API), so layers |
| // still need to be registered. |
| mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection)); |
| } |
| |
| void Scheduler::deregisterLayer(Layer* layer) { |
| mLayerHistory.deregisterLayer(layer); |
| } |
| |
| void Scheduler::onLayerDestroyed(Layer* layer) { |
| std::scoped_lock lock(mChoreographerLock); |
| mAttachedChoreographers.erase(layer->getSequence()); |
| } |
| |
| void Scheduler::recordLayerHistory(int32_t id, const LayerProps& layerProps, nsecs_t presentTime, |
| nsecs_t now, LayerHistory::LayerUpdateType updateType) { |
| if (pacesetterSelectorPtr()->canSwitch()) { |
| mLayerHistory.record(id, layerProps, presentTime, now, updateType); |
| } |
| } |
| |
| void Scheduler::setModeChangePending(bool pending) { |
| mLayerHistory.setModeChangePending(pending); |
| } |
| |
| void Scheduler::setDefaultFrameRateCompatibility( |
| int32_t id, scheduler::FrameRateCompatibility frameRateCompatibility) { |
| mLayerHistory.setDefaultFrameRateCompatibility(id, frameRateCompatibility, |
| mFeatures.test(Feature::kContentDetection)); |
| } |
| |
| void Scheduler::setLayerProperties(int32_t id, const android::scheduler::LayerProps& properties) { |
| mLayerHistory.setLayerProperties(id, properties); |
| } |
| |
| void Scheduler::chooseRefreshRateForContent( |
| const surfaceflinger::frontend::LayerHierarchy* hierarchy, |
| bool updateAttachedChoreographer) { |
| const auto selectorPtr = pacesetterSelectorPtr(); |
| if (!selectorPtr->canSwitch()) return; |
| |
| ATRACE_CALL(); |
| |
| LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime()); |
| applyPolicy(&Policy::contentRequirements, std::move(summary)); |
| |
| if (updateAttachedChoreographer) { |
| LOG_ALWAYS_FATAL_IF(!hierarchy); |
| |
| // update the attached choreographers after we selected the render rate. |
| const ftl::Optional<FrameRateMode> modeOpt = [&] { |
| std::scoped_lock lock(mPolicyLock); |
| return mPolicy.modeOpt; |
| }(); |
| |
| if (modeOpt) { |
| updateAttachedChoreographers(*hierarchy, modeOpt->fps); |
| } |
| } |
| } |
| |
| void Scheduler::resetIdleTimer() { |
| pacesetterSelectorPtr()->resetIdleTimer(); |
| } |
| |
| void Scheduler::onTouchHint() { |
| if (mTouchTimer) { |
| mTouchTimer->reset(); |
| pacesetterSelectorPtr()->resetKernelIdleTimer(); |
| } |
| } |
| |
| void Scheduler::setDisplayPowerMode(PhysicalDisplayId id, hal::PowerMode powerMode) { |
| const bool isPacesetter = [this, id]() REQUIRES(kMainThreadContext) { |
| ftl::FakeGuard guard(mDisplayLock); |
| return id == mPacesetterDisplayId; |
| }(); |
| if (isPacesetter) { |
| // TODO (b/255657128): This needs to be handled per display. |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| mPolicy.displayPowerMode = powerMode; |
| } |
| { |
| std::scoped_lock lock(mDisplayLock); |
| |
| const auto displayOpt = mDisplays.get(id); |
| LOG_ALWAYS_FATAL_IF(!displayOpt); |
| auto& display = displayOpt->get(); |
| |
| display.powerMode = powerMode; |
| display.schedulePtr->getController().setDisplayPowerMode(powerMode); |
| } |
| if (!isPacesetter) return; |
| |
| if (mDisplayPowerTimer) { |
| mDisplayPowerTimer->reset(); |
| } |
| |
| // Display Power event will boost the refresh rate to performance. |
| // Clear Layer History to get fresh FPS detection |
| mLayerHistory.clear(); |
| } |
| |
| auto Scheduler::getVsyncSchedule(std::optional<PhysicalDisplayId> idOpt) const |
| -> ConstVsyncSchedulePtr { |
| std::scoped_lock lock(mDisplayLock); |
| return getVsyncScheduleLocked(idOpt); |
| } |
| |
| auto Scheduler::getVsyncScheduleLocked(std::optional<PhysicalDisplayId> idOpt) const |
| -> ConstVsyncSchedulePtr { |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| if (!idOpt) { |
| LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId, "Missing a pacesetter!"); |
| idOpt = mPacesetterDisplayId; |
| } |
| |
| const auto displayOpt = mDisplays.get(*idOpt); |
| if (!displayOpt) { |
| return nullptr; |
| } |
| return displayOpt->get().schedulePtr; |
| } |
| |
| void Scheduler::kernelIdleTimerCallback(TimerState state) { |
| ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); |
| |
| // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate |
| // magic number |
| const Fps refreshRate = pacesetterSelectorPtr()->getActiveMode().modePtr->getPeakFps(); |
| |
| constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; |
| using namespace fps_approx_ops; |
| |
| if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // If we're not in performance mode then the kernel timer shouldn't do |
| // anything, as the refresh rate during DPU power collapse will be the |
| // same. |
| resyncAllToHardwareVsync(true /* allowToEnable */); |
| } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // Disable HW VSYNC if the timer expired, as we don't need it enabled if |
| // we're not pushing frames, and if we're in PERFORMANCE mode then we'll |
| // need to update the VsyncController model anyway. |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| for (const auto& [_, display] : mDisplays) { |
| constexpr bool kDisallow = false; |
| display.schedulePtr->disableHardwareVsync(kDisallow); |
| } |
| } |
| |
| mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); |
| } |
| |
| void Scheduler::idleTimerCallback(TimerState state) { |
| applyPolicy(&Policy::idleTimer, state); |
| ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::touchTimerCallback(TimerState state) { |
| const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; |
| // Touch event will boost the refresh rate to performance. |
| // Clear layer history to get fresh FPS detection. |
| // NOTE: Instead of checking all the layers, we should be checking the layer |
| // that is currently on top. b/142507166 will give us this capability. |
| if (applyPolicy(&Policy::touch, touch).touch) { |
| mLayerHistory.clear(); |
| } |
| ATRACE_INT("TouchState", static_cast<int>(touch)); |
| } |
| |
| void Scheduler::displayPowerTimerCallback(TimerState state) { |
| applyPolicy(&Policy::displayPowerTimer, state); |
| ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::dump(utils::Dumper& dumper) const { |
| using namespace std::string_view_literals; |
| |
| { |
| utils::Dumper::Section section(dumper, "Features"sv); |
| |
| for (Feature feature : ftl::enum_range<Feature>()) { |
| if (const auto flagOpt = ftl::flag_name(feature)) { |
| dumper.dump(flagOpt->substr(1), mFeatures.test(feature)); |
| } |
| } |
| } |
| { |
| utils::Dumper::Section section(dumper, "Policy"sv); |
| { |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| dumper.dump("pacesetterDisplayId"sv, mPacesetterDisplayId); |
| } |
| dumper.dump("layerHistory"sv, mLayerHistory.dump()); |
| dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval)); |
| dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval)); |
| } |
| |
| mFrameRateOverrideMappings.dump(dumper); |
| dumper.eol(); |
| |
| { |
| utils::Dumper::Section section(dumper, "Frame Targeting"sv); |
| |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| for (const auto& [id, display] : mDisplays) { |
| utils::Dumper::Section |
| section(dumper, |
| id == mPacesetterDisplayId |
| ? ftl::Concat("Pacesetter Display ", id.value).c_str() |
| : ftl::Concat("Follower Display ", id.value).c_str()); |
| |
| display.targeterPtr->dump(dumper); |
| dumper.eol(); |
| } |
| } |
| } |
| |
| void Scheduler::dumpVsync(std::string& out) const { |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| if (mPacesetterDisplayId) { |
| base::StringAppendF(&out, "VsyncSchedule for pacesetter %s:\n", |
| to_string(*mPacesetterDisplayId).c_str()); |
| getVsyncScheduleLocked()->dump(out); |
| } |
| for (auto& [id, display] : mDisplays) { |
| if (id == mPacesetterDisplayId) { |
| continue; |
| } |
| base::StringAppendF(&out, "VsyncSchedule for follower %s:\n", to_string(id).c_str()); |
| display.schedulePtr->dump(out); |
| } |
| } |
| |
| bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { |
| std::scoped_lock lock(mPolicyLock); |
| return updateFrameRateOverridesLocked(consideredSignals, displayRefreshRate); |
| } |
| |
| bool Scheduler::updateFrameRateOverridesLocked(GlobalSignals consideredSignals, |
| Fps displayRefreshRate) { |
| if (consideredSignals.idle) return false; |
| |
| const auto frameRateOverrides = |
| pacesetterSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements, |
| displayRefreshRate, consideredSignals); |
| |
| // Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying |
| // the FrameRateOverrideMappings rather than here. |
| return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); |
| } |
| |
| void Scheduler::promotePacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) { |
| std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule; |
| |
| { |
| std::scoped_lock lock(mDisplayLock); |
| pacesetterVsyncSchedule = promotePacesetterDisplayLocked(pacesetterIdOpt); |
| } |
| |
| applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule)); |
| } |
| |
| std::shared_ptr<VsyncSchedule> Scheduler::promotePacesetterDisplayLocked( |
| std::optional<PhysicalDisplayId> pacesetterIdOpt) { |
| // TODO(b/241286431): Choose the pacesetter display. |
| mPacesetterDisplayId = pacesetterIdOpt.value_or(mDisplays.begin()->first); |
| ALOGI("Display %s is the pacesetter", to_string(*mPacesetterDisplayId).c_str()); |
| |
| std::shared_ptr<VsyncSchedule> newVsyncSchedulePtr; |
| if (const auto pacesetterOpt = pacesetterDisplayLocked()) { |
| const Display& pacesetter = *pacesetterOpt; |
| |
| pacesetter.selectorPtr->setIdleTimerCallbacks( |
| {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, |
| .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, |
| .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, |
| .onExpired = |
| [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); |
| |
| pacesetter.selectorPtr->startIdleTimer(); |
| |
| newVsyncSchedulePtr = pacesetter.schedulePtr; |
| |
| constexpr bool kForce = true; |
| newVsyncSchedulePtr->onDisplayModeChanged(pacesetter.selectorPtr->getActiveMode().modePtr, |
| kForce); |
| } |
| return newVsyncSchedulePtr; |
| } |
| |
| void Scheduler::applyNewVsyncSchedule(std::shared_ptr<VsyncSchedule> vsyncSchedule) { |
| onNewVsyncSchedule(vsyncSchedule->getDispatch()); |
| std::vector<android::EventThread*> threads; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| threads.reserve(mConnections.size()); |
| for (auto& [_, connection] : mConnections) { |
| threads.push_back(connection.thread.get()); |
| } |
| } |
| for (auto* thread : threads) { |
| thread->onNewVsyncSchedule(vsyncSchedule); |
| } |
| } |
| |
| void Scheduler::demotePacesetterDisplay() { |
| // No need to lock for reads on kMainThreadContext. |
| if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) { |
| pacesetterPtr->stopIdleTimer(); |
| pacesetterPtr->clearIdleTimerCallbacks(); |
| } |
| |
| // Clear state that depends on the pacesetter's RefreshRateSelector. |
| std::scoped_lock lock(mPolicyLock); |
| mPolicy = {}; |
| } |
| |
| void Scheduler::updateAttachedChoreographersFrameRate( |
| const surfaceflinger::frontend::RequestedLayerState& layer, Fps fps) { |
| std::scoped_lock lock(mChoreographerLock); |
| |
| const auto layerId = static_cast<int32_t>(layer.id); |
| const auto choreographers = mAttachedChoreographers.find(layerId); |
| if (choreographers == mAttachedChoreographers.end()) { |
| return; |
| } |
| |
| auto& layerChoreographers = choreographers->second; |
| |
| layerChoreographers.frameRate = fps; |
| ATRACE_FORMAT_INSTANT("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str()); |
| ALOGV("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str()); |
| |
| auto it = layerChoreographers.connections.begin(); |
| while (it != layerChoreographers.connections.end()) { |
| sp<EventThreadConnection> choreographerConnection = it->promote(); |
| if (choreographerConnection) { |
| choreographerConnection->frameRate = fps; |
| it++; |
| } else { |
| it = choreographers->second.connections.erase(it); |
| } |
| } |
| |
| if (layerChoreographers.connections.empty()) { |
| mAttachedChoreographers.erase(choreographers); |
| } |
| } |
| |
| int Scheduler::updateAttachedChoreographersInternal( |
| const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate, |
| int parentDivisor) { |
| const char* name = layerHierarchy.getLayer() ? layerHierarchy.getLayer()->name.c_str() : "Root"; |
| |
| int divisor = 0; |
| if (layerHierarchy.getLayer()) { |
| const auto frameRateCompatibility = layerHierarchy.getLayer()->frameRateCompatibility; |
| const auto frameRate = Fps::fromValue(layerHierarchy.getLayer()->frameRate); |
| ALOGV("%s: %s frameRate %s parentDivisor=%d", __func__, name, to_string(frameRate).c_str(), |
| parentDivisor); |
| |
| if (frameRate.isValid()) { |
| if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE || |
| frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_EXACT) { |
| // Since this layer wants an exact match, we would only set a frame rate if the |
| // desired rate is a divisor of the display refresh rate. |
| divisor = RefreshRateSelector::getFrameRateDivisor(displayRefreshRate, frameRate); |
| } else if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT) { |
| // find the closest frame rate divisor for the desired frame rate. |
| divisor = static_cast<int>( |
| std::round(displayRefreshRate.getValue() / frameRate.getValue())); |
| } |
| } |
| } |
| |
| // We start by traversing the children, updating their choreographers, and getting back the |
| // aggregated frame rate. |
| int childrenDivisor = 0; |
| for (const auto& [child, _] : layerHierarchy.mChildren) { |
| LOG_ALWAYS_FATAL_IF(child == nullptr || child->getLayer() == nullptr); |
| |
| ALOGV("%s: %s traversing child %s", __func__, name, child->getLayer()->name.c_str()); |
| |
| const int childDivisor = |
| updateAttachedChoreographersInternal(*child, displayRefreshRate, divisor); |
| childrenDivisor = childrenDivisor > 0 ? childrenDivisor : childDivisor; |
| if (childDivisor > 0) { |
| childrenDivisor = std::gcd(childrenDivisor, childDivisor); |
| } |
| ALOGV("%s: %s childrenDivisor=%d", __func__, name, childrenDivisor); |
| } |
| |
| ALOGV("%s: %s divisor=%d", __func__, name, divisor); |
| |
| // If there is no explicit vote for this layer. Use the children's vote if exists |
| divisor = (divisor == 0) ? childrenDivisor : divisor; |
| ALOGV("%s: %s divisor=%d with children", __func__, name, divisor); |
| |
| // If there is no explicit vote for this layer or its children, Use the parent vote if exists |
| divisor = (divisor == 0) ? parentDivisor : divisor; |
| ALOGV("%s: %s divisor=%d with parent", __func__, name, divisor); |
| |
| if (layerHierarchy.getLayer()) { |
| Fps fps = divisor > 1 ? displayRefreshRate / (unsigned int)divisor : Fps(); |
| updateAttachedChoreographersFrameRate(*layerHierarchy.getLayer(), fps); |
| } |
| |
| return divisor; |
| } |
| |
| void Scheduler::updateAttachedChoreographers( |
| const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate) { |
| ATRACE_CALL(); |
| updateAttachedChoreographersInternal(layerHierarchy, displayRefreshRate, 0); |
| } |
| |
| template <typename S, typename T> |
| auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { |
| ATRACE_CALL(); |
| std::vector<display::DisplayModeRequest> modeRequests; |
| GlobalSignals consideredSignals; |
| |
| bool refreshRateChanged = false; |
| bool frameRateOverridesChanged; |
| |
| { |
| std::scoped_lock lock(mPolicyLock); |
| |
| auto& currentState = mPolicy.*statePtr; |
| if (currentState == newState) return {}; |
| currentState = std::forward<T>(newState); |
| |
| DisplayModeChoiceMap modeChoices; |
| ftl::Optional<FrameRateMode> modeOpt; |
| { |
| std::scoped_lock lock(mDisplayLock); |
| ftl::FakeGuard guard(kMainThreadContext); |
| |
| modeChoices = chooseDisplayModes(); |
| |
| // TODO(b/240743786): The pacesetter display's mode must change for any |
| // DisplayModeRequest to go through. Fix this by tracking per-display Scheduler::Policy |
| // and timers. |
| std::tie(modeOpt, consideredSignals) = |
| modeChoices.get(*mPacesetterDisplayId) |
| .transform([](const DisplayModeChoice& choice) { |
| return std::make_pair(choice.mode, choice.consideredSignals); |
| }) |
| .value(); |
| } |
| |
| modeRequests.reserve(modeChoices.size()); |
| for (auto& [id, choice] : modeChoices) { |
| modeRequests.emplace_back( |
| display::DisplayModeRequest{.mode = std::move(choice.mode), |
| .emitEvent = !choice.consideredSignals.idle}); |
| } |
| |
| frameRateOverridesChanged = updateFrameRateOverridesLocked(consideredSignals, modeOpt->fps); |
| |
| if (mPolicy.modeOpt != modeOpt) { |
| mPolicy.modeOpt = modeOpt; |
| refreshRateChanged = true; |
| } else { |
| // We don't need to change the display mode, but we might need to send an event |
| // about a mode change, since it was suppressed if previously considered idle. |
| if (!consideredSignals.idle) { |
| dispatchCachedReportedMode(); |
| } |
| } |
| } |
| if (refreshRateChanged) { |
| mSchedulerCallback.requestDisplayModes(std::move(modeRequests)); |
| } |
| if (frameRateOverridesChanged) { |
| mSchedulerCallback.triggerOnFrameRateOverridesChanged(); |
| } |
| return consideredSignals; |
| } |
| |
| auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap { |
| ATRACE_CALL(); |
| |
| using RankedRefreshRates = RefreshRateSelector::RankedFrameRates; |
| ui::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking; |
| const auto globalSignals = makeGlobalSignals(); |
| Fps pacesetterFps; |
| |
| for (const auto& [id, display] : mDisplays) { |
| auto rankedFrameRates = |
| display.selectorPtr->getRankedFrameRates(mPolicy.contentRequirements, |
| globalSignals); |
| if (id == *mPacesetterDisplayId) { |
| pacesetterFps = rankedFrameRates.ranking.front().frameRateMode.fps; |
| } |
| perDisplayRanking.push_back(std::move(rankedFrameRates)); |
| } |
| |
| DisplayModeChoiceMap modeChoices; |
| using fps_approx_ops::operator==; |
| |
| for (auto& [rankings, signals] : perDisplayRanking) { |
| const auto chosenFrameRateMode = |
| ftl::find_if(rankings, |
| [&](const auto& ranking) { |
| return ranking.frameRateMode.fps == pacesetterFps; |
| }) |
| .transform([](const auto& scoredFrameRate) { |
| return scoredFrameRate.get().frameRateMode; |
| }) |
| .value_or(rankings.front().frameRateMode); |
| |
| modeChoices.try_emplace(chosenFrameRateMode.modePtr->getPhysicalDisplayId(), |
| DisplayModeChoice{chosenFrameRateMode, signals}); |
| } |
| return modeChoices; |
| } |
| |
| GlobalSignals Scheduler::makeGlobalSignals() const { |
| const bool powerOnImminent = mDisplayPowerTimer && |
| (mPolicy.displayPowerMode != hal::PowerMode::ON || |
| mPolicy.displayPowerTimer == TimerState::Reset); |
| |
| return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active, |
| .idle = mPolicy.idleTimer == TimerState::Expired, |
| .powerOnImminent = powerOnImminent}; |
| } |
| |
| FrameRateMode Scheduler::getPreferredDisplayMode() { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| const auto frameRateMode = |
| pacesetterSelectorPtr() |
| ->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals()) |
| .ranking.front() |
| .frameRateMode; |
| |
| // Make sure the stored mode is up to date. |
| mPolicy.modeOpt = frameRateMode; |
| |
| return frameRateMode; |
| } |
| |
| void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); |
| |
| const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); |
| if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { |
| mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; |
| } |
| } |
| |
| bool Scheduler::onCompositionPresented(nsecs_t presentTime) { |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { |
| if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { |
| // We need to composite again as refreshTimeNanos is still in the future. |
| return true; |
| } |
| |
| mLastVsyncPeriodChangeTimeline->refreshRequired = false; |
| } |
| return false; |
| } |
| |
| void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { |
| mLayerHistory.setDisplayArea(displayArea); |
| } |
| |
| void Scheduler::setGameModeFrameRateForUid(FrameRateOverride frameRateOverride) { |
| if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { |
| return; |
| } |
| |
| if (FlagManager::getInstance().game_default_frame_rate()) { |
| // update the frame rate override mapping in LayerHistory |
| mLayerHistory.updateGameModeFrameRateOverride(frameRateOverride); |
| } else { |
| mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); |
| } |
| } |
| |
| void Scheduler::setGameDefaultFrameRateForUid(FrameRateOverride frameRateOverride) { |
| if (!FlagManager::getInstance().game_default_frame_rate() || |
| (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f)) { |
| return; |
| } |
| |
| // update the frame rate override mapping in LayerHistory |
| mLayerHistory.updateGameDefaultFrameRateOverride(frameRateOverride); |
| } |
| |
| void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { |
| if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { |
| return; |
| } |
| |
| mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); |
| } |
| |
| void Scheduler::updateSmallAreaDetection( |
| std::vector<std::pair<int32_t, float>>& uidThresholdMappings) { |
| mSmallAreaDetectionAllowMappings.update(uidThresholdMappings); |
| } |
| |
| void Scheduler::setSmallAreaDetectionThreshold(int32_t appId, float threshold) { |
| mSmallAreaDetectionAllowMappings.setThresholdForAppId(appId, threshold); |
| } |
| |
| bool Scheduler::isSmallDirtyArea(int32_t appId, uint32_t dirtyArea) { |
| std::optional<float> oThreshold = mSmallAreaDetectionAllowMappings.getThresholdForAppId(appId); |
| if (oThreshold) { |
| return mLayerHistory.isSmallDirtyArea(dirtyArea, oThreshold.value()); |
| } |
| return false; |
| } |
| |
| } // namespace android::scheduler |