blob: e06221a43d0b1c20d16197ae80aee3eb227fd10f [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
#include <chrono>
#include <cmath>
#include <deque>
#include <map>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <ftl/match.h>
#include <ftl/unit.h>
#include <gui/TraceUtils.h>
#include <scheduler/FrameRateMode.h>
#include <utils/Trace.h>
#include "RefreshRateSelector.h"
#include <com_android_graphics_surfaceflinger_flags.h>
#undef LOG_TAG
#define LOG_TAG "RefreshRateSelector"
namespace android::scheduler {
namespace {
using namespace com::android::graphics::surfaceflinger;
struct RefreshRateScore {
FrameRateMode frameRateMode;
float overallScore;
struct {
float modeBelowThreshold;
float modeAboveThreshold;
} fixedRateBelowThresholdLayersScore;
};
constexpr RefreshRateSelector::GlobalSignals kNoSignals;
std::string formatLayerInfo(const RefreshRateSelector::LayerRequirement& layer, float weight) {
return base::StringPrintf("%s (type=%s, weight=%.2f, seamlessness=%s) %s", layer.name.c_str(),
ftl::enum_string(layer.vote).c_str(), weight,
ftl::enum_string(layer.seamlessness).c_str(),
to_string(layer.desiredRefreshRate).c_str());
}
std::vector<Fps> constructKnownFrameRates(const DisplayModes& modes) {
std::vector<Fps> knownFrameRates = {24_Hz, 30_Hz, 45_Hz, 60_Hz, 72_Hz};
knownFrameRates.reserve(knownFrameRates.size() + modes.size());
// Add all supported refresh rates.
for (const auto& [id, mode] : modes) {
knownFrameRates.push_back(mode->getPeakFps());
}
// Sort and remove duplicates.
std::sort(knownFrameRates.begin(), knownFrameRates.end(), isStrictlyLess);
knownFrameRates.erase(std::unique(knownFrameRates.begin(), knownFrameRates.end(),
isApproxEqual),
knownFrameRates.end());
return knownFrameRates;
}
std::vector<DisplayModeIterator> sortByRefreshRate(const DisplayModes& modes) {
std::vector<DisplayModeIterator> sortedModes;
sortedModes.reserve(modes.size());
for (auto it = modes.begin(); it != modes.end(); ++it) {
sortedModes.push_back(it);
}
std::sort(sortedModes.begin(), sortedModes.end(), [](auto it1, auto it2) {
const auto& mode1 = it1->second;
const auto& mode2 = it2->second;
if (mode1->getVsyncRate().getPeriodNsecs() == mode2->getVsyncRate().getPeriodNsecs()) {
return mode1->getGroup() > mode2->getGroup();
}
return mode1->getVsyncRate().getPeriodNsecs() > mode2->getVsyncRate().getPeriodNsecs();
});
return sortedModes;
}
std::pair<unsigned, unsigned> divisorRange(Fps vsyncRate, Fps peakFps, FpsRange range,
RefreshRateSelector::Config::FrameRateOverride config) {
if (config != RefreshRateSelector::Config::FrameRateOverride::Enabled) {
return {1, 1};
}
using fps_approx_ops::operator/;
// use signed type as `fps / range.max` might be 0
auto start = std::max(1, static_cast<int>(peakFps / range.max) - 1);
if (FlagManager::getInstance().vrr_config()) {
start = std::max(1,
static_cast<int>(vsyncRate /
std::min(range.max, peakFps, fps_approx_ops::operator<)) -
1);
}
const auto end = vsyncRate /
std::max(range.min, RefreshRateSelector::kMinSupportedFrameRate,
fps_approx_ops::operator<);
return {start, end};
}
bool shouldEnableFrameRateOverride(const std::vector<DisplayModeIterator>& sortedModes) {
for (const auto it1 : sortedModes) {
const auto& mode1 = it1->second;
for (const auto it2 : sortedModes) {
const auto& mode2 = it2->second;
if (RefreshRateSelector::getFrameRateDivisor(mode1->getPeakFps(),
mode2->getPeakFps()) >= 2) {
return true;
}
}
}
return false;
}
std::string toString(const RefreshRateSelector::PolicyVariant& policy) {
using namespace std::string_literals;
return ftl::match(
policy,
[](const RefreshRateSelector::DisplayManagerPolicy& policy) {
return "DisplayManagerPolicy"s + policy.toString();
},
[](const RefreshRateSelector::OverridePolicy& policy) {
return "OverridePolicy"s + policy.toString();
},
[](RefreshRateSelector::NoOverridePolicy) { return "NoOverridePolicy"s; });
}
} // namespace
auto RefreshRateSelector::createFrameRateModes(
const Policy& policy, std::function<bool(const DisplayMode&)>&& filterModes,
const FpsRange& renderRange) const -> std::vector<FrameRateMode> {
struct Key {
Fps fps;
int32_t group;
};
struct KeyLess {
bool operator()(const Key& a, const Key& b) const {
using namespace fps_approx_ops;
if (a.fps != b.fps) {
return a.fps < b.fps;
}
// For the same fps the order doesn't really matter, but we still
// want the behaviour of a strictly less operator.
// We use the group id as the secondary ordering for that.
return a.group < b.group;
}
};
std::map<Key, DisplayModeIterator, KeyLess> ratesMap;
for (auto it = mDisplayModes.begin(); it != mDisplayModes.end(); ++it) {
const auto& [id, mode] = *it;
if (!filterModes(*mode)) {
continue;
}
const auto vsyncRate = mode->getVsyncRate();
const auto peakFps = mode->getPeakFps();
const auto [start, end] =
divisorRange(vsyncRate, peakFps, renderRange, mConfig.enableFrameRateOverride);
for (auto divisor = start; divisor <= end; divisor++) {
const auto fps = vsyncRate / divisor;
using fps_approx_ops::operator<;
if (divisor > 1 && fps < kMinSupportedFrameRate) {
break;
}
if (mConfig.enableFrameRateOverride == Config::FrameRateOverride::Enabled &&
!renderRange.includes(fps)) {
continue;
}
if (mConfig.enableFrameRateOverride ==
Config::FrameRateOverride::AppOverrideNativeRefreshRates &&
!isNativeRefreshRate(fps)) {
continue;
}
const auto [existingIter, emplaceHappened] =
ratesMap.try_emplace(Key{fps, mode->getGroup()}, it);
if (emplaceHappened) {
ALOGV("%s: including %s (%s(%s))", __func__, to_string(fps).c_str(),
to_string(peakFps).c_str(), to_string(vsyncRate).c_str());
} else {
// If the primary physical range is a single rate, prefer to stay in that rate
// even if there is a lower physical refresh rate available. This would cause more
// cases to stay within the primary physical range
const Fps existingModeFps = existingIter->second->second->getPeakFps();
const bool existingModeIsPrimaryRange = policy.primaryRangeIsSingleRate() &&
policy.primaryRanges.physical.includes(existingModeFps);
const bool newModeIsPrimaryRange = policy.primaryRangeIsSingleRate() &&
policy.primaryRanges.physical.includes(mode->getPeakFps());
if (newModeIsPrimaryRange == existingModeIsPrimaryRange) {
// We might need to update the map as we found a lower refresh rate
if (isStrictlyLess(mode->getPeakFps(), existingModeFps)) {
existingIter->second = it;
ALOGV("%s: changing %s (%s(%s)) as we found a lower physical rate",
__func__, to_string(fps).c_str(), to_string(peakFps).c_str(),
to_string(vsyncRate).c_str());
}
} else if (newModeIsPrimaryRange) {
existingIter->second = it;
ALOGV("%s: changing %s (%s(%s)) to stay in the primary range", __func__,
to_string(fps).c_str(), to_string(peakFps).c_str(),
to_string(vsyncRate).c_str());
}
}
}
}
std::vector<FrameRateMode> frameRateModes;
frameRateModes.reserve(ratesMap.size());
for (const auto& [key, mode] : ratesMap) {
frameRateModes.emplace_back(FrameRateMode{key.fps, ftl::as_non_null(mode->second)});
}
// We always want that the lowest frame rate will be corresponding to the
// lowest mode for power saving.
const auto lowestRefreshRateIt =
std::min_element(frameRateModes.begin(), frameRateModes.end(),
[](const FrameRateMode& lhs, const FrameRateMode& rhs) {
return isStrictlyLess(lhs.modePtr->getVsyncRate(),
rhs.modePtr->getVsyncRate());
});
frameRateModes.erase(frameRateModes.begin(), lowestRefreshRateIt);
return frameRateModes;
}
struct RefreshRateSelector::RefreshRateScoreComparator {
bool operator()(const RefreshRateScore& lhs, const RefreshRateScore& rhs) const {
const auto& [frameRateMode, overallScore, _] = lhs;
std::string name = to_string(frameRateMode);
ALOGV("%s sorting scores %.2f", name.c_str(), overallScore);
if (!ScoredFrameRate::scoresEqual(overallScore, rhs.overallScore)) {
return overallScore > rhs.overallScore;
}
if (refreshRateOrder == RefreshRateOrder::Descending) {
using fps_approx_ops::operator>;
return frameRateMode.fps > rhs.frameRateMode.fps;
} else {
using fps_approx_ops::operator<;
return frameRateMode.fps < rhs.frameRateMode.fps;
}
}
const RefreshRateOrder refreshRateOrder;
};
std::string RefreshRateSelector::Policy::toString() const {
return base::StringPrintf("{defaultModeId=%d, allowGroupSwitching=%s"
", primaryRanges=%s, appRequestRanges=%s}",
defaultMode.value(), allowGroupSwitching ? "true" : "false",
to_string(primaryRanges).c_str(),
to_string(appRequestRanges).c_str());
}
std::pair<nsecs_t, nsecs_t> RefreshRateSelector::getDisplayFrames(nsecs_t layerPeriod,
nsecs_t displayPeriod) const {
auto [quotient, remainder] = std::div(layerPeriod, displayPeriod);
if (remainder <= MARGIN_FOR_PERIOD_CALCULATION ||
std::abs(remainder - displayPeriod) <= MARGIN_FOR_PERIOD_CALCULATION) {
quotient++;
remainder = 0;
}
return {quotient, remainder};
}
float RefreshRateSelector::calculateNonExactMatchingDefaultLayerScoreLocked(
nsecs_t displayPeriod, nsecs_t layerPeriod) const {
// Find the actual rate the layer will render, assuming
// that layerPeriod is the minimal period to render a frame.
// For example if layerPeriod is 20ms and displayPeriod is 16ms,
// then the actualLayerPeriod will be 32ms, because it is the
// smallest multiple of the display period which is >= layerPeriod.
auto actualLayerPeriod = displayPeriod;
int multiplier = 1;
while (layerPeriod > actualLayerPeriod + MARGIN_FOR_PERIOD_CALCULATION) {
multiplier++;
actualLayerPeriod = displayPeriod * multiplier;
}
// Because of the threshold we used above it's possible that score is slightly
// above 1.
return std::min(1.0f, static_cast<float>(layerPeriod) / static_cast<float>(actualLayerPeriod));
}
float RefreshRateSelector::calculateNonExactMatchingLayerScoreLocked(const LayerRequirement& layer,
Fps refreshRate) const {
constexpr float kScoreForFractionalPairs = .8f;
const auto displayPeriod = refreshRate.getPeriodNsecs();
const auto layerPeriod = layer.desiredRefreshRate.getPeriodNsecs();
if (layer.vote == LayerVoteType::ExplicitDefault) {
return calculateNonExactMatchingDefaultLayerScoreLocked(displayPeriod, layerPeriod);
}
if (layer.vote == LayerVoteType::ExplicitGte) {
using fps_approx_ops::operator>=;
if (refreshRate >= layer.desiredRefreshRate) {
return 1.0f;
} else {
return calculateDistanceScoreLocked(layer.desiredRefreshRate, refreshRate);
}
}
if (layer.vote == LayerVoteType::ExplicitExactOrMultiple ||
layer.vote == LayerVoteType::Heuristic) {
using fps_approx_ops::operator<;
if (refreshRate < 60_Hz) {
const bool favorsAtLeast60 =
std::find_if(mFrameRatesThatFavorsAtLeast60.begin(),
mFrameRatesThatFavorsAtLeast60.end(), [&](Fps fps) {
using fps_approx_ops::operator==;
return fps == layer.desiredRefreshRate;
}) != mFrameRatesThatFavorsAtLeast60.end();
if (favorsAtLeast60) {
return 0;
}
}
const float multiplier = refreshRate.getValue() / layer.desiredRefreshRate.getValue();
// We only want to score this layer as a fractional pair if the content is not
// significantly faster than the display rate, at it would cause a significant frame drop.
// It is more appropriate to choose a higher display rate even if
// a pull-down will be required.
constexpr float kMinMultiplier = 0.75f;
if (multiplier >= kMinMultiplier &&
isFractionalPairOrMultiple(refreshRate, layer.desiredRefreshRate)) {
return kScoreForFractionalPairs;
}
// Calculate how many display vsyncs we need to present a single frame for this
// layer
const auto [displayFramesQuotient, displayFramesRemainder] =
getDisplayFrames(layerPeriod, displayPeriod);
static constexpr size_t MAX_FRAMES_TO_FIT = 10; // Stop calculating when score < 0.1
if (displayFramesRemainder == 0) {
// Layer desired refresh rate matches the display rate.
return 1.0f;
}
if (displayFramesQuotient == 0) {
// Layer desired refresh rate is higher than the display rate.
return (static_cast<float>(layerPeriod) / static_cast<float>(displayPeriod)) *
(1.0f / (MAX_FRAMES_TO_FIT + 1));
}
// Layer desired refresh rate is lower than the display rate. Check how well it fits
// the cadence.
auto diff = std::abs(displayFramesRemainder - (displayPeriod - displayFramesRemainder));
int iter = 2;
while (diff > MARGIN_FOR_PERIOD_CALCULATION && iter < MAX_FRAMES_TO_FIT) {
diff = diff - (displayPeriod - diff);
iter++;
}
return (1.0f / iter);
}
return 0;
}
float RefreshRateSelector::calculateDistanceScoreLocked(Fps referenceRate, Fps refreshRate) const {
using fps_approx_ops::operator>=;
const float ratio = referenceRate >= refreshRate
? refreshRate.getValue() / referenceRate.getValue()
: referenceRate.getValue() / refreshRate.getValue();
// Use ratio^2 to get a lower score the more we get further from the reference rate.
return ratio * ratio;
}
float RefreshRateSelector::calculateDistanceScoreFromMaxLocked(Fps refreshRate) const {
const auto& maxFps = mAppRequestFrameRates.back().fps;
return calculateDistanceScoreLocked(maxFps, refreshRate);
}
float RefreshRateSelector::calculateLayerScoreLocked(const LayerRequirement& layer, Fps refreshRate,
bool isSeamlessSwitch) const {
// Slightly prefer seamless switches.
constexpr float kSeamedSwitchPenalty = 0.95f;
const float seamlessness = isSeamlessSwitch ? 1.0f : kSeamedSwitchPenalty;
if (layer.vote == LayerVoteType::ExplicitCategory) {
if (getFrameRateCategoryRange(layer.frameRateCategory).includes(refreshRate)) {
return 1.f;
}
FpsRange categoryRange = getFrameRateCategoryRange(layer.frameRateCategory);
using fps_approx_ops::operator<;
if (refreshRate < categoryRange.min) {
return calculateNonExactMatchingDefaultLayerScoreLocked(refreshRate.getPeriodNsecs(),
categoryRange.min
.getPeriodNsecs());
}
return calculateNonExactMatchingDefaultLayerScoreLocked(refreshRate.getPeriodNsecs(),
categoryRange.max.getPeriodNsecs());
}
// If the layer wants Max, give higher score to the higher refresh rate
if (layer.vote == LayerVoteType::Max) {
return calculateDistanceScoreFromMaxLocked(refreshRate);
}
if (layer.vote == LayerVoteType::ExplicitExact) {
const int divisor = getFrameRateDivisor(refreshRate, layer.desiredRefreshRate);
if (supportsAppFrameRateOverrideByContent()) {
// Since we support frame rate override, allow refresh rates which are
// multiples of the layer's request, as those apps would be throttled
// down to run at the desired refresh rate.
return divisor > 0;
}
return divisor == 1;
}
// If the layer frame rate is a divisor of the refresh rate it should score
// the highest score.
if (layer.desiredRefreshRate.isValid() &&
getFrameRateDivisor(refreshRate, layer.desiredRefreshRate) > 0) {
return 1.0f * seamlessness;
}
// The layer frame rate is not a divisor of the refresh rate,
// there is a small penalty attached to the score to favor the frame rates
// the exactly matches the display refresh rate or a multiple.
constexpr float kNonExactMatchingPenalty = 0.95f;
return calculateNonExactMatchingLayerScoreLocked(layer, refreshRate) * seamlessness *
kNonExactMatchingPenalty;
}
auto RefreshRateSelector::getRankedFrameRates(const std::vector<LayerRequirement>& layers,
GlobalSignals signals) const -> RankedFrameRates {
std::lock_guard lock(mLock);
if (mGetRankedFrameRatesCache &&
mGetRankedFrameRatesCache->arguments == std::make_pair(layers, signals)) {
return mGetRankedFrameRatesCache->result;
}
const auto result = getRankedFrameRatesLocked(layers, signals);
mGetRankedFrameRatesCache = GetRankedFrameRatesCache{{layers, signals}, result};
return result;
}
auto RefreshRateSelector::getRankedFrameRatesLocked(const std::vector<LayerRequirement>& layers,
GlobalSignals signals) const
-> RankedFrameRates {
using namespace fps_approx_ops;
ATRACE_CALL();
ALOGV("%s: %zu layers", __func__, layers.size());
const auto& activeMode = *getActiveModeLocked().modePtr;
// Keep the display at max frame rate for the duration of powering on the display.
if (signals.powerOnImminent) {
ALOGV("Power On Imminent");
const auto ranking = rankFrameRates(activeMode.getGroup(), RefreshRateOrder::Descending);
ATRACE_FORMAT_INSTANT("%s (Power On Imminent)",
to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, GlobalSignals{.powerOnImminent = true}};
}
int noVoteLayers = 0;
int minVoteLayers = 0;
int maxVoteLayers = 0;
int explicitDefaultVoteLayers = 0;
int explicitExactOrMultipleVoteLayers = 0;
int explicitExact = 0;
int explicitGteLayers = 0;
int explicitCategoryVoteLayers = 0;
int seamedFocusedLayers = 0;
int categorySmoothSwitchOnlyLayers = 0;
for (const auto& layer : layers) {
switch (layer.vote) {
case LayerVoteType::NoVote:
noVoteLayers++;
break;
case LayerVoteType::Min:
minVoteLayers++;
break;
case LayerVoteType::Max:
maxVoteLayers++;
break;
case LayerVoteType::ExplicitDefault:
explicitDefaultVoteLayers++;
break;
case LayerVoteType::ExplicitExactOrMultiple:
explicitExactOrMultipleVoteLayers++;
break;
case LayerVoteType::ExplicitExact:
explicitExact++;
break;
case LayerVoteType::ExplicitGte:
explicitGteLayers++;
break;
case LayerVoteType::ExplicitCategory:
explicitCategoryVoteLayers++;
if (layer.frameRateCategory == FrameRateCategory::NoPreference) {
// Count this layer for Min vote as well. The explicit vote avoids
// touch boost and idle for choosing a category, while Min vote is for correct
// behavior when all layers are Min or no vote.
minVoteLayers++;
}
break;
case LayerVoteType::Heuristic:
break;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && layer.focused) {
seamedFocusedLayers++;
}
if (layer.frameRateCategorySmoothSwitchOnly) {
categorySmoothSwitchOnlyLayers++;
}
}
const bool hasExplicitVoteLayers = explicitDefaultVoteLayers > 0 ||
explicitExactOrMultipleVoteLayers > 0 || explicitExact > 0 || explicitGteLayers > 0 ||
explicitCategoryVoteLayers > 0;
const Policy* policy = getCurrentPolicyLocked();
const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get();
// If the default mode group is different from the group of current mode,
// this means a layer requesting a seamed mode switch just disappeared and
// we should switch back to the default group.
// However if a seamed layer is still present we anchor around the group
// of the current mode, in order to prevent unnecessary seamed mode switches
// (e.g. when pausing a video playback).
const auto anchorGroup =
seamedFocusedLayers > 0 ? activeMode.getGroup() : defaultMode->getGroup();
// Consider the touch event if there are no Explicit* layers. Otherwise wait until after we've
// selected a refresh rate to see if we should apply touch boost.
if (signals.touch && !hasExplicitVoteLayers) {
ALOGV("Touch Boost");
const auto ranking = rankFrameRates(anchorGroup, RefreshRateOrder::Descending);
ATRACE_FORMAT_INSTANT("%s (Touch Boost)",
to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, GlobalSignals{.touch = true}};
}
// If the primary range consists of a single refresh rate then we can only
// move out the of range if layers explicitly request a different refresh
// rate.
if (!signals.touch && signals.idle &&
!(policy->primaryRangeIsSingleRate() && hasExplicitVoteLayers)) {
ALOGV("Idle");
const auto ranking = rankFrameRates(activeMode.getGroup(), RefreshRateOrder::Ascending);
ATRACE_FORMAT_INSTANT("%s (Idle)", to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, GlobalSignals{.idle = true}};
}
if (layers.empty() || noVoteLayers == layers.size()) {
ALOGV("No layers with votes");
const auto ranking = rankFrameRates(anchorGroup, RefreshRateOrder::Descending);
ATRACE_FORMAT_INSTANT("%s (No layers with votes)",
to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, kNoSignals};
}
const bool smoothSwitchOnly = categorySmoothSwitchOnlyLayers > 0;
const DisplayModeId activeModeId = activeMode.getId();
// Only if all layers want Min we should return Min
if (noVoteLayers + minVoteLayers == layers.size()) {
ALOGV("All layers Min");
const auto ranking = rankFrameRates(activeMode.getGroup(), RefreshRateOrder::Ascending,
std::nullopt, [&](FrameRateMode mode) {
return !smoothSwitchOnly ||
mode.modePtr->getId() == activeModeId;
});
ATRACE_FORMAT_INSTANT("%s (All layers Min)",
to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, kNoSignals};
}
// Find the best refresh rate based on score
std::vector<RefreshRateScore> scores;
scores.reserve(mAppRequestFrameRates.size());
for (const FrameRateMode& it : mAppRequestFrameRates) {
scores.emplace_back(RefreshRateScore{it, 0.0f});
}
for (const auto& layer : layers) {
ALOGV("Calculating score for %s (%s, weight %.2f, desired %.2f, category %s) ",
layer.name.c_str(), ftl::enum_string(layer.vote).c_str(), layer.weight,
layer.desiredRefreshRate.getValue(),
ftl::enum_string(layer.frameRateCategory).c_str());
if (layer.isNoVote() || layer.frameRateCategory == FrameRateCategory::NoPreference ||
layer.vote == LayerVoteType::Min) {
continue;
}
const auto weight = layer.weight;
for (auto& [mode, overallScore, fixedRateBelowThresholdLayersScore] : scores) {
const auto& [fps, modePtr] = mode;
const bool isSeamlessSwitch = modePtr->getGroup() == activeMode.getGroup();
if (layer.seamlessness == Seamlessness::OnlySeamless && !isSeamlessSwitch) {
ALOGV("%s ignores %s to avoid non-seamless switch. Current mode = %s",
formatLayerInfo(layer, weight).c_str(), to_string(*modePtr).c_str(),
to_string(activeMode).c_str());
continue;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && !isSeamlessSwitch &&
!layer.focused) {
ALOGV("%s ignores %s because it's not focused and the switch is going to be seamed."
" Current mode = %s",
formatLayerInfo(layer, weight).c_str(), to_string(*modePtr).c_str(),
to_string(activeMode).c_str());
continue;
}
if (smoothSwitchOnly && modePtr->getId() != activeModeId) {
ALOGV("%s ignores %s because it's non-VRR and smooth switch only."
" Current mode = %s",
formatLayerInfo(layer, weight).c_str(), to_string(*modePtr).c_str(),
to_string(activeMode).c_str());
continue;
}
// Layers with default seamlessness vote for the current mode group if
// there are layers with seamlessness=SeamedAndSeamless and for the default
// mode group otherwise. In second case, if the current mode group is different
// from the default, this means a layer with seamlessness=SeamedAndSeamless has just
// disappeared.
const bool isInPolicyForDefault = modePtr->getGroup() == anchorGroup;
if (layer.seamlessness == Seamlessness::Default && !isInPolicyForDefault) {
ALOGV("%s ignores %s. Current mode = %s", formatLayerInfo(layer, weight).c_str(),
to_string(*modePtr).c_str(), to_string(activeMode).c_str());
continue;
}
const bool inPrimaryPhysicalRange =
policy->primaryRanges.physical.includes(modePtr->getPeakFps());
const bool inPrimaryRenderRange = policy->primaryRanges.render.includes(fps);
if (((policy->primaryRangeIsSingleRate() && !inPrimaryPhysicalRange) ||
!inPrimaryRenderRange) &&
!(layer.focused &&
(layer.vote == LayerVoteType::ExplicitDefault ||
layer.vote == LayerVoteType::ExplicitExact))) {
// Only focused layers with ExplicitDefault frame rate settings are allowed to score
// refresh rates outside the primary range.
continue;
}
const float layerScore = calculateLayerScoreLocked(layer, fps, isSeamlessSwitch);
const float weightedLayerScore = weight * layerScore;
// Layer with fixed source has a special consideration which depends on the
// mConfig.frameRateMultipleThreshold. We don't want these layers to score
// refresh rates above the threshold, but we also don't want to favor the lower
// ones by having a greater number of layers scoring them. Instead, we calculate
// the score independently for these layers and later decide which
// refresh rates to add it. For example, desired 24 fps with 120 Hz threshold should not
// score 120 Hz, but desired 60 fps should contribute to the score.
const bool fixedSourceLayer = [](LayerVoteType vote) {
switch (vote) {
case LayerVoteType::ExplicitExactOrMultiple:
case LayerVoteType::Heuristic:
return true;
case LayerVoteType::NoVote:
case LayerVoteType::Min:
case LayerVoteType::Max:
case LayerVoteType::ExplicitDefault:
case LayerVoteType::ExplicitExact:
case LayerVoteType::ExplicitGte:
case LayerVoteType::ExplicitCategory:
return false;
}
}(layer.vote);
const bool layerBelowThreshold = mConfig.frameRateMultipleThreshold != 0 &&
layer.desiredRefreshRate <
Fps::fromValue(mConfig.frameRateMultipleThreshold / 2);
if (fixedSourceLayer && layerBelowThreshold) {
const bool modeAboveThreshold =
modePtr->getPeakFps() >= Fps::fromValue(mConfig.frameRateMultipleThreshold);
if (modeAboveThreshold) {
ALOGV("%s gives %s (%s(%s)) fixed source (above threshold) score of %.4f",
formatLayerInfo(layer, weight).c_str(), to_string(fps).c_str(),
to_string(modePtr->getPeakFps()).c_str(),
to_string(modePtr->getVsyncRate()).c_str(), layerScore);
fixedRateBelowThresholdLayersScore.modeAboveThreshold += weightedLayerScore;
} else {
ALOGV("%s gives %s (%s(%s)) fixed source (below threshold) score of %.4f",
formatLayerInfo(layer, weight).c_str(), to_string(fps).c_str(),
to_string(modePtr->getPeakFps()).c_str(),
to_string(modePtr->getVsyncRate()).c_str(), layerScore);
fixedRateBelowThresholdLayersScore.modeBelowThreshold += weightedLayerScore;
}
} else {
ALOGV("%s gives %s (%s(%s)) score of %.4f", formatLayerInfo(layer, weight).c_str(),
to_string(fps).c_str(), to_string(modePtr->getPeakFps()).c_str(),
to_string(modePtr->getVsyncRate()).c_str(), layerScore);
overallScore += weightedLayerScore;
}
}
}
// We want to find the best refresh rate without the fixed source layers,
// so we could know whether we should add the modeAboveThreshold scores or not.
// If the best refresh rate is already above the threshold, it means that
// some non-fixed source layers already scored it, so we can just add the score
// for all fixed source layers, even the ones that are above the threshold.
const bool maxScoreAboveThreshold = [&] {
if (mConfig.frameRateMultipleThreshold == 0 || scores.empty()) {
return false;
}
const auto maxScoreIt =
std::max_element(scores.begin(), scores.end(),
[](RefreshRateScore max, RefreshRateScore current) {
return current.overallScore > max.overallScore;
});
ALOGV("%s (%s(%s)) is the best refresh rate without fixed source layers. It is %s the "
"threshold for "
"refresh rate multiples",
to_string(maxScoreIt->frameRateMode.fps).c_str(),
to_string(maxScoreIt->frameRateMode.modePtr->getPeakFps()).c_str(),
to_string(maxScoreIt->frameRateMode.modePtr->getVsyncRate()).c_str(),
maxScoreAboveThreshold ? "above" : "below");
return maxScoreIt->frameRateMode.modePtr->getPeakFps() >=
Fps::fromValue(mConfig.frameRateMultipleThreshold);
}();
// Now we can add the fixed rate layers score
for (auto& [frameRateMode, overallScore, fixedRateBelowThresholdLayersScore] : scores) {
overallScore += fixedRateBelowThresholdLayersScore.modeBelowThreshold;
if (maxScoreAboveThreshold) {
overallScore += fixedRateBelowThresholdLayersScore.modeAboveThreshold;
}
ALOGV("%s (%s(%s)) adjusted overallScore is %.4f", to_string(frameRateMode.fps).c_str(),
to_string(frameRateMode.modePtr->getPeakFps()).c_str(),
to_string(frameRateMode.modePtr->getVsyncRate()).c_str(), overallScore);
}
// Now that we scored all the refresh rates we need to pick the one that got the highest
// overallScore. Sort the scores based on their overallScore in descending order of priority.
const RefreshRateOrder refreshRateOrder =
maxVoteLayers > 0 ? RefreshRateOrder::Descending : RefreshRateOrder::Ascending;
std::sort(scores.begin(), scores.end(),
RefreshRateScoreComparator{.refreshRateOrder = refreshRateOrder});
FrameRateRanking ranking;
ranking.reserve(scores.size());
std::transform(scores.begin(), scores.end(), back_inserter(ranking),
[](const RefreshRateScore& score) {
return ScoredFrameRate{score.frameRateMode, score.overallScore};
});
const bool noLayerScore = std::all_of(scores.begin(), scores.end(), [](RefreshRateScore score) {
return score.overallScore == 0;
});
if (policy->primaryRangeIsSingleRate()) {
// If we never scored any layers, then choose the rate from the primary
// range instead of picking a random score from the app range.
if (noLayerScore) {
ALOGV("Layers not scored");
const auto descending = rankFrameRates(anchorGroup, RefreshRateOrder::Descending);
ATRACE_FORMAT_INSTANT("%s (Layers not scored)",
to_string(descending.front().frameRateMode.fps).c_str());
return {descending, kNoSignals};
} else {
ALOGV("primaryRangeIsSingleRate");
ATRACE_FORMAT_INSTANT("%s (primaryRangeIsSingleRate)",
to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, kNoSignals};
}
}
// Consider the touch event if there are no ExplicitDefault layers. ExplicitDefault are mostly
// interactive (as opposed to ExplicitExactOrMultiple) and therefore if those posted an explicit
// vote we should not change it if we get a touch event. Only apply touch boost if it will
// actually increase the refresh rate over the normal selection.
const bool touchBoostForExplicitExact = [&] {
if (supportsAppFrameRateOverrideByContent()) {
// Enable touch boost if there are other layers besides exact
return explicitExact + noVoteLayers != layers.size();
} else {
// Enable touch boost if there are no exact layers
return explicitExact == 0;
}
}();
const auto touchRefreshRates = rankFrameRates(anchorGroup, RefreshRateOrder::Descending);
using fps_approx_ops::operator<;
if (signals.touch && explicitDefaultVoteLayers == 0 && explicitCategoryVoteLayers == 0 &&
touchBoostForExplicitExact &&
scores.front().frameRateMode.fps < touchRefreshRates.front().frameRateMode.fps) {
ALOGV("Touch Boost");
ATRACE_FORMAT_INSTANT("%s (Touch Boost [late])",
to_string(touchRefreshRates.front().frameRateMode.fps).c_str());
return {touchRefreshRates, GlobalSignals{.touch = true}};
}
// If we never scored any layers, and we don't favor high refresh rates, prefer to stay with the
// current config
if (noLayerScore && refreshRateOrder == RefreshRateOrder::Ascending) {
ALOGV("preferredDisplayMode");
const auto ascendingWithPreferred =
rankFrameRates(anchorGroup, RefreshRateOrder::Ascending, activeMode.getId());
ATRACE_FORMAT_INSTANT("%s (preferredDisplayMode)",
to_string(ascendingWithPreferred.front().frameRateMode.fps).c_str());
return {ascendingWithPreferred, kNoSignals};
}
ALOGV("%s (scored))", to_string(ranking.front().frameRateMode.fps).c_str());
ATRACE_FORMAT_INSTANT("%s (scored))", to_string(ranking.front().frameRateMode.fps).c_str());
return {ranking, kNoSignals};
}
using LayerRequirementPtrs = std::vector<const RefreshRateSelector::LayerRequirement*>;
using PerUidLayerRequirements = std::unordered_map<uid_t, LayerRequirementPtrs>;
PerUidLayerRequirements groupLayersByUid(
const std::vector<RefreshRateSelector::LayerRequirement>& layers) {
PerUidLayerRequirements layersByUid;
for (const auto& layer : layers) {
const auto it = layersByUid.emplace(layer.ownerUid, LayerRequirementPtrs()).first;
auto& layersWithSameUid = it->second;
layersWithSameUid.push_back(&layer);
}
// Remove uids that can't have a frame rate override
for (auto it = layersByUid.begin(); it != layersByUid.end();) {
const auto& layersWithSameUid = it->second;
bool skipUid = false;
for (const auto& layer : layersWithSameUid) {
using LayerVoteType = RefreshRateSelector::LayerVoteType;
if (layer->vote == LayerVoteType::Max || layer->vote == LayerVoteType::Heuristic) {
skipUid = true;
break;
}
}
if (skipUid) {
it = layersByUid.erase(it);
} else {
++it;
}
}
return layersByUid;
}
auto RefreshRateSelector::getFrameRateOverrides(const std::vector<LayerRequirement>& layers,
Fps displayRefreshRate,
GlobalSignals globalSignals) const
-> UidToFrameRateOverride {
ATRACE_CALL();
if (mConfig.enableFrameRateOverride == Config::FrameRateOverride::Disabled) {
return {};
}
ALOGV("%s: %zu layers", __func__, layers.size());
std::lock_guard lock(mLock);
const auto* policyPtr = getCurrentPolicyLocked();
// We don't want to run lower than 30fps
// TODO(b/297600226): revise this for dVRR
const Fps minFrameRate = std::max(policyPtr->appRequestRanges.render.min, 30_Hz, isApproxLess);
using fps_approx_ops::operator/;
const unsigned numMultiples = displayRefreshRate / minFrameRate;
std::vector<std::pair<Fps, float>> scoredFrameRates;
scoredFrameRates.reserve(numMultiples);
for (unsigned n = numMultiples; n > 0; n--) {
const Fps divisor = displayRefreshRate / n;
if (mConfig.enableFrameRateOverride ==
Config::FrameRateOverride::AppOverrideNativeRefreshRates &&
!isNativeRefreshRate(divisor)) {
continue;
}
if (policyPtr->appRequestRanges.render.includes(divisor)) {
ALOGV("%s: adding %s as a potential frame rate", __func__, to_string(divisor).c_str());
scoredFrameRates.emplace_back(divisor, 0);
}
}
const auto layersByUid = groupLayersByUid(layers);
UidToFrameRateOverride frameRateOverrides;
for (const auto& [uid, layersWithSameUid] : layersByUid) {
// Layers with ExplicitExactOrMultiple expect touch boost
const bool hasExplicitExactOrMultiple =
std::any_of(layersWithSameUid.cbegin(), layersWithSameUid.cend(),
[](const auto& layer) {
return layer->vote == LayerVoteType::ExplicitExactOrMultiple;
});
if (globalSignals.touch && hasExplicitExactOrMultiple) {
continue;
}
for (auto& [_, score] : scoredFrameRates) {
score = 0;
}
for (const auto& layer : layersWithSameUid) {
if (layer->isNoVote() || layer->frameRateCategory == FrameRateCategory::NoPreference ||
layer->vote == LayerVoteType::Min) {
continue;
}
LOG_ALWAYS_FATAL_IF(layer->vote != LayerVoteType::ExplicitDefault &&
layer->vote != LayerVoteType::ExplicitExactOrMultiple &&
layer->vote != LayerVoteType::ExplicitExact &&
layer->vote != LayerVoteType::ExplicitCategory,
"Invalid layer vote type for frame rate overrides");
for (auto& [fps, score] : scoredFrameRates) {
constexpr bool isSeamlessSwitch = true;
const auto layerScore = calculateLayerScoreLocked(*layer, fps, isSeamlessSwitch);
score += layer->weight * layerScore;
}
}
// If we never scored any layers, we don't have a preferred frame rate
if (std::all_of(scoredFrameRates.begin(), scoredFrameRates.end(),
[](const auto& scoredFrameRate) {
const auto [_, score] = scoredFrameRate;
return score == 0;
})) {
continue;
}
// Now that we scored all the refresh rates we need to pick the lowest refresh rate
// that got the highest score.
const auto [overrideFps, _] =
*std::max_element(scoredFrameRates.begin(), scoredFrameRates.end(),
[](const auto& lhsPair, const auto& rhsPair) {
const float lhs = lhsPair.second;
const float rhs = rhsPair.second;
return lhs < rhs && !ScoredFrameRate::scoresEqual(lhs, rhs);
});
ALOGV("%s: overriding to %s for uid=%d", __func__, to_string(overrideFps).c_str(), uid);
ATRACE_FORMAT_INSTANT("%s: overriding to %s for uid=%d", __func__,
to_string(overrideFps).c_str(), uid);
frameRateOverrides.emplace(uid, overrideFps);
}
return frameRateOverrides;
}
ftl::Optional<FrameRateMode> RefreshRateSelector::onKernelTimerChanged(
ftl::Optional<DisplayModeId> desiredModeIdOpt, bool timerExpired) const {
std::lock_guard lock(mLock);
const auto current =
desiredModeIdOpt
.and_then([this](DisplayModeId modeId)
REQUIRES(mLock) { return mDisplayModes.get(modeId); })
.transform([](const DisplayModePtr& modePtr) {
return FrameRateMode{modePtr->getPeakFps(), ftl::as_non_null(modePtr)};
})
.or_else([this] {
ftl::FakeGuard guard(mLock);
return std::make_optional(getActiveModeLocked());
})
.value();
const DisplayModePtr& min = mMinRefreshRateModeIt->second;
if (current.modePtr->getId() == min->getId()) {
return {};
}
return timerExpired ? FrameRateMode{min->getPeakFps(), ftl::as_non_null(min)} : current;
}
const DisplayModePtr& RefreshRateSelector::getMinRefreshRateByPolicyLocked() const {
const auto& activeMode = *getActiveModeLocked().modePtr;
for (const FrameRateMode& mode : mPrimaryFrameRates) {
if (activeMode.getGroup() == mode.modePtr->getGroup()) {
return mode.modePtr.get();
}
}
ALOGE("Can't find min refresh rate by policy with the same mode group as the current mode %s",
to_string(activeMode).c_str());
// Default to the lowest refresh rate.
return mPrimaryFrameRates.front().modePtr.get();
}
const DisplayModePtr& RefreshRateSelector::getMaxRefreshRateByPolicyLocked(int anchorGroup) const {
const ftl::NonNull<DisplayModePtr>* maxByAnchor = &mPrimaryFrameRates.back().modePtr;
const ftl::NonNull<DisplayModePtr>* max = &mPrimaryFrameRates.back().modePtr;
bool maxByAnchorFound = false;
for (auto it = mPrimaryFrameRates.rbegin(); it != mPrimaryFrameRates.rend(); ++it) {
using namespace fps_approx_ops;
if (it->modePtr->getPeakFps() > (*max)->getPeakFps()) {
max = &it->modePtr;
}
if (anchorGroup == it->modePtr->getGroup() &&
it->modePtr->getPeakFps() >= (*maxByAnchor)->getPeakFps()) {
maxByAnchorFound = true;
maxByAnchor = &it->modePtr;
}
}
if (maxByAnchorFound) {
return maxByAnchor->get();
}
ALOGE("Can't find max refresh rate by policy with the same group %d", anchorGroup);
// Default to the highest refresh rate.
return max->get();
}
auto RefreshRateSelector::rankFrameRates(std::optional<int> anchorGroupOpt,
RefreshRateOrder refreshRateOrder,
std::optional<DisplayModeId> preferredDisplayModeOpt,
const RankFrameRatesPredicate& predicate) const
-> FrameRateRanking {
using fps_approx_ops::operator<;
const char* const whence = __func__;
// find the highest frame rate for each display mode
ftl::SmallMap<DisplayModeId, Fps, 8> maxRenderRateForMode;
const bool ascending = (refreshRateOrder == RefreshRateOrder::Ascending);
if (ascending) {
// TODO(b/266481656): Once this bug is fixed, we can remove this workaround and actually
// use a lower frame rate when we want Ascending frame rates.
for (const auto& frameRateMode : mPrimaryFrameRates) {
if (anchorGroupOpt && frameRateMode.modePtr->getGroup() != anchorGroupOpt) {
continue;
}
const auto [iter, _] = maxRenderRateForMode.try_emplace(frameRateMode.modePtr->getId(),
frameRateMode.fps);
if (iter->second < frameRateMode.fps) {
iter->second = frameRateMode.fps;
}
}
}
std::deque<ScoredFrameRate> ranking;
const auto rankFrameRate = [&](const FrameRateMode& frameRateMode) REQUIRES(mLock) {
const auto& modePtr = frameRateMode.modePtr;
if ((anchorGroupOpt && modePtr->getGroup() != anchorGroupOpt) ||
!predicate(frameRateMode)) {
return;
}
const bool ascending = (refreshRateOrder == RefreshRateOrder::Ascending);
const auto id = modePtr->getId();
if (ascending && frameRateMode.fps < *maxRenderRateForMode.get(id)) {
// TODO(b/266481656): Once this bug is fixed, we can remove this workaround and actually
// use a lower frame rate when we want Ascending frame rates.
return;
}
float score = calculateDistanceScoreFromMaxLocked(frameRateMode.fps);
if (ascending) {
score = 1.0f / score;
}
constexpr float kScore = std::numeric_limits<float>::max();
if (preferredDisplayModeOpt) {
if (*preferredDisplayModeOpt == modePtr->getId()) {
ranking.emplace_front(ScoredFrameRate{frameRateMode, kScore});
return;
}
constexpr float kNonPreferredModePenalty = 0.95f;
score *= kNonPreferredModePenalty;
} else if (ascending && id == getMinRefreshRateByPolicyLocked()->getId()) {
// TODO(b/266481656): Once this bug is fixed, we can remove this workaround
// and actually use a lower frame rate when we want Ascending frame rates.
ranking.emplace_front(ScoredFrameRate{frameRateMode, kScore});
return;
}
ALOGV("%s(%s) %s (%s(%s)) scored %.2f", whence, ftl::enum_string(refreshRateOrder).c_str(),
to_string(frameRateMode.fps).c_str(), to_string(modePtr->getPeakFps()).c_str(),
to_string(modePtr->getVsyncRate()).c_str(), score);
ranking.emplace_back(ScoredFrameRate{frameRateMode, score});
};
if (refreshRateOrder == RefreshRateOrder::Ascending) {
std::for_each(mPrimaryFrameRates.begin(), mPrimaryFrameRates.end(), rankFrameRate);
} else {
std::for_each(mPrimaryFrameRates.rbegin(), mPrimaryFrameRates.rend(), rankFrameRate);
}
if (!ranking.empty() || !anchorGroupOpt) {
return {ranking.begin(), ranking.end()};
}
ALOGW("Can't find %s refresh rate by policy with the same mode group"
" as the mode group %d",
refreshRateOrder == RefreshRateOrder::Ascending ? "min" : "max", anchorGroupOpt.value());
constexpr std::optional<int> kNoAnchorGroup = std::nullopt;
return rankFrameRates(kNoAnchorGroup, refreshRateOrder, preferredDisplayModeOpt);
}
FrameRateMode RefreshRateSelector::getActiveMode() const {
std::lock_guard lock(mLock);
return getActiveModeLocked();
}
const FrameRateMode& RefreshRateSelector::getActiveModeLocked() const {
return *mActiveModeOpt;
}
void RefreshRateSelector::setActiveMode(DisplayModeId modeId, Fps renderFrameRate) {
std::lock_guard lock(mLock);
// Invalidate the cached invocation to getRankedFrameRates. This forces
// the refresh rate to be recomputed on the next call to getRankedFrameRates.
mGetRankedFrameRatesCache.reset();
const auto activeModeOpt = mDisplayModes.get(modeId);
LOG_ALWAYS_FATAL_IF(!activeModeOpt);
mActiveModeOpt.emplace(FrameRateMode{renderFrameRate, ftl::as_non_null(activeModeOpt->get())});
}
RefreshRateSelector::RefreshRateSelector(DisplayModes modes, DisplayModeId activeModeId,
Config config)
: mKnownFrameRates(constructKnownFrameRates(modes)), mConfig(config) {
initializeIdleTimer();
FTL_FAKE_GUARD(kMainThreadContext, updateDisplayModes(std::move(modes), activeModeId));
}
void RefreshRateSelector::initializeIdleTimer() {
if (mConfig.idleTimerTimeout > 0ms) {
mIdleTimer.emplace(
"IdleTimer", mConfig.idleTimerTimeout,
[this] {
std::scoped_lock lock(mIdleTimerCallbacksMutex);
if (const auto callbacks = getIdleTimerCallbacks()) {
callbacks->onReset();
}
},
[this] {
std::scoped_lock lock(mIdleTimerCallbacksMutex);
if (const auto callbacks = getIdleTimerCallbacks()) {
callbacks->onExpired();
}
});
}
}
void RefreshRateSelector::updateDisplayModes(DisplayModes modes, DisplayModeId activeModeId) {
std::lock_guard lock(mLock);
// Invalidate the cached invocation to getRankedFrameRates. This forces
// the refresh rate to be recomputed on the next call to getRankedFrameRates.
mGetRankedFrameRatesCache.reset();
mDisplayModes = std::move(modes);
const auto activeModeOpt = mDisplayModes.get(activeModeId);
LOG_ALWAYS_FATAL_IF(!activeModeOpt);
mActiveModeOpt = FrameRateMode{activeModeOpt->get()->getPeakFps(),
ftl::as_non_null(activeModeOpt->get())};
const auto sortedModes = sortByRefreshRate(mDisplayModes);
mMinRefreshRateModeIt = sortedModes.front();
mMaxRefreshRateModeIt = sortedModes.back();
// Reset the policy because the old one may no longer be valid.
mDisplayManagerPolicy = {};
mDisplayManagerPolicy.defaultMode = activeModeId;
mFrameRateOverrideConfig = [&] {
switch (mConfig.enableFrameRateOverride) {
case Config::FrameRateOverride::Disabled:
case Config::FrameRateOverride::AppOverride:
case Config::FrameRateOverride::Enabled:
return mConfig.enableFrameRateOverride;
case Config::FrameRateOverride::AppOverrideNativeRefreshRates:
return shouldEnableFrameRateOverride(sortedModes)
? Config::FrameRateOverride::AppOverrideNativeRefreshRates
: Config::FrameRateOverride::Disabled;
}
}();
if (mConfig.enableFrameRateOverride ==
Config::FrameRateOverride::AppOverrideNativeRefreshRates) {
for (const auto& [_, mode] : mDisplayModes) {
mAppOverrideNativeRefreshRates.try_emplace(mode->getPeakFps(), ftl::unit);
}
}
constructAvailableRefreshRates();
}
bool RefreshRateSelector::isPolicyValidLocked(const Policy& policy) const {
// defaultMode must be a valid mode, and within the given refresh rate range.
if (const auto mode = mDisplayModes.get(policy.defaultMode)) {
if (!policy.primaryRanges.physical.includes(mode->get()->getPeakFps())) {
ALOGE("Default mode is not in the primary range.");
return false;
}
} else {
ALOGE("Default mode is not found.");
return false;
}
const auto& primaryRanges = policy.primaryRanges;
const auto& appRequestRanges = policy.appRequestRanges;
ALOGE_IF(!appRequestRanges.physical.includes(primaryRanges.physical),
"Physical range is invalid: primary: %s appRequest: %s",
to_string(primaryRanges.physical).c_str(),
to_string(appRequestRanges.physical).c_str());
ALOGE_IF(!appRequestRanges.render.includes(primaryRanges.render),
"Render range is invalid: primary: %s appRequest: %s",
to_string(primaryRanges.render).c_str(), to_string(appRequestRanges.render).c_str());
return primaryRanges.valid() && appRequestRanges.valid();
}
auto RefreshRateSelector::setPolicy(const PolicyVariant& policy) -> SetPolicyResult {
Policy oldPolicy;
PhysicalDisplayId displayId;
{
std::lock_guard lock(mLock);
oldPolicy = *getCurrentPolicyLocked();
const bool valid = ftl::match(
policy,
[this](const auto& policy) {
ftl::FakeGuard guard(mLock);
if (!isPolicyValidLocked(policy)) {
ALOGE("Invalid policy: %s", policy.toString().c_str());
return false;
}
using T = std::decay_t<decltype(policy)>;
if constexpr (std::is_same_v<T, DisplayManagerPolicy>) {
mDisplayManagerPolicy = policy;
} else {
static_assert(std::is_same_v<T, OverridePolicy>);
mOverridePolicy = policy;
}
return true;
},
[this](NoOverridePolicy) {
ftl::FakeGuard guard(mLock);
mOverridePolicy.reset();
return true;
});
if (!valid) {
return SetPolicyResult::Invalid;
}
mGetRankedFrameRatesCache.reset();
if (*getCurrentPolicyLocked() == oldPolicy) {
return SetPolicyResult::Unchanged;
}
constructAvailableRefreshRates();
displayId = getActiveModeLocked().modePtr->getPhysicalDisplayId();
}
const unsigned numModeChanges = std::exchange(mNumModeSwitchesInPolicy, 0u);
ALOGI("Display %s policy changed\n"
"Previous: %s\n"
"Current: %s\n"
"%u mode changes were performed under the previous policy",
to_string(displayId).c_str(), oldPolicy.toString().c_str(), toString(policy).c_str(),
numModeChanges);
return SetPolicyResult::Changed;
}
auto RefreshRateSelector::getCurrentPolicyLocked() const -> const Policy* {
return mOverridePolicy ? &mOverridePolicy.value() : &mDisplayManagerPolicy;
}
auto RefreshRateSelector::getCurrentPolicy() const -> Policy {
std::lock_guard lock(mLock);
return *getCurrentPolicyLocked();
}
auto RefreshRateSelector::getDisplayManagerPolicy() const -> Policy {
std::lock_guard lock(mLock);
return mDisplayManagerPolicy;
}
bool RefreshRateSelector::isModeAllowed(const FrameRateMode& mode) const {
std::lock_guard lock(mLock);
return std::find(mAppRequestFrameRates.begin(), mAppRequestFrameRates.end(), mode) !=
mAppRequestFrameRates.end();
}
void RefreshRateSelector::constructAvailableRefreshRates() {
// Filter modes based on current policy and sort on refresh rate.
const Policy* policy = getCurrentPolicyLocked();
ALOGV("%s: %s ", __func__, policy->toString().c_str());
const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get();
const auto filterRefreshRates = [&](const FpsRanges& ranges,
const char* rangeName) REQUIRES(mLock) {
const auto filterModes = [&](const DisplayMode& mode) {
return mode.getResolution() == defaultMode->getResolution() &&
mode.getDpi() == defaultMode->getDpi() &&
(policy->allowGroupSwitching || mode.getGroup() == defaultMode->getGroup()) &&
ranges.physical.includes(mode.getPeakFps()) &&
(supportsFrameRateOverride() || ranges.render.includes(mode.getPeakFps()));
};
auto frameRateModes = createFrameRateModes(*policy, filterModes, ranges.render);
if (frameRateModes.empty()) {
ALOGW("No matching frame rate modes for %s range. policy: %s", rangeName,
policy->toString().c_str());
// TODO(b/292105422): Ideally DisplayManager should not send render ranges smaller than
// the min supported. See b/292047939.
// For not we just ignore the render ranges.
frameRateModes = createFrameRateModes(*policy, filterModes, {});
}
LOG_ALWAYS_FATAL_IF(frameRateModes.empty(),
"No matching frame rate modes for %s range even after ignoring the "
"render range. policy: %s",
rangeName, policy->toString().c_str());
const auto stringifyModes = [&] {
std::string str;
for (const auto& frameRateMode : frameRateModes) {
str += to_string(frameRateMode) + " ";
}
return str;
};
ALOGV("%s render rates: %s", rangeName, stringifyModes().c_str());
return frameRateModes;
};
mPrimaryFrameRates = filterRefreshRates(policy->primaryRanges, "primary");
mAppRequestFrameRates = filterRefreshRates(policy->appRequestRanges, "app request");
}
Fps RefreshRateSelector::findClosestKnownFrameRate(Fps frameRate) const {
using namespace fps_approx_ops;
if (frameRate <= mKnownFrameRates.front()) {
return mKnownFrameRates.front();
}
if (frameRate >= mKnownFrameRates.back()) {
return mKnownFrameRates.back();
}
auto lowerBound = std::lower_bound(mKnownFrameRates.begin(), mKnownFrameRates.end(), frameRate,
isStrictlyLess);
const auto distance1 = std::abs(frameRate.getValue() - lowerBound->getValue());
const auto distance2 = std::abs(frameRate.getValue() - std::prev(lowerBound)->getValue());
return distance1 < distance2 ? *lowerBound : *std::prev(lowerBound);
}
auto RefreshRateSelector::getIdleTimerAction() const -> KernelIdleTimerAction {
std::lock_guard lock(mLock);
const Fps deviceMinFps = mMinRefreshRateModeIt->second->getPeakFps();
const DisplayModePtr& minByPolicy = getMinRefreshRateByPolicyLocked();
// Kernel idle timer will set the refresh rate to the device min. If DisplayManager says that
// the min allowed refresh rate is higher than the device min, we do not want to enable the
// timer.
if (isStrictlyLess(deviceMinFps, minByPolicy->getPeakFps())) {
return KernelIdleTimerAction::TurnOff;
}
const DisplayModePtr& maxByPolicy =
getMaxRefreshRateByPolicyLocked(getActiveModeLocked().modePtr->getGroup());
if (minByPolicy == maxByPolicy) {
// Turn on the timer when the min of the primary range is below the device min.
if (const Policy* currentPolicy = getCurrentPolicyLocked();
isApproxLess(currentPolicy->primaryRanges.physical.min, deviceMinFps)) {
return KernelIdleTimerAction::TurnOn;
}
return KernelIdleTimerAction::TurnOff;
}
// Turn on the timer in all other cases.
return KernelIdleTimerAction::TurnOn;
}
int RefreshRateSelector::getFrameRateDivisor(Fps displayRefreshRate, Fps layerFrameRate) {
// This calculation needs to be in sync with the java code
// in DisplayManagerService.getDisplayInfoForFrameRateOverride
// The threshold must be smaller than 0.001 in order to differentiate
// between the fractional pairs (e.g. 59.94 and 60).
constexpr float kThreshold = 0.0009f;
const auto numPeriods = displayRefreshRate.getValue() / layerFrameRate.getValue();
const auto numPeriodsRounded = std::round(numPeriods);
if (std::abs(numPeriods - numPeriodsRounded) > kThreshold) {
return 0;
}
return static_cast<int>(numPeriodsRounded);
}
bool RefreshRateSelector::isFractionalPairOrMultiple(Fps smaller, Fps bigger) {
if (isStrictlyLess(bigger, smaller)) {
return isFractionalPairOrMultiple(bigger, smaller);
}
const auto multiplier = std::round(bigger.getValue() / smaller.getValue());
constexpr float kCoef = 1000.f / 1001.f;
return isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier / kCoef)) ||
isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier * kCoef));
}
void RefreshRateSelector::dump(utils::Dumper& dumper) const {
using namespace std::string_view_literals;
std::lock_guard lock(mLock);
const auto activeMode = getActiveModeLocked();
dumper.dump("activeMode"sv, to_string(activeMode));
dumper.dump("displayModes"sv);
{
utils::Dumper::Indent indent(dumper);
for (const auto& [id, mode] : mDisplayModes) {
dumper.dump({}, to_string(*mode));
}
}
dumper.dump("displayManagerPolicy"sv, mDisplayManagerPolicy.toString());
if (const Policy& currentPolicy = *getCurrentPolicyLocked();
mOverridePolicy && currentPolicy != mDisplayManagerPolicy) {
dumper.dump("overridePolicy"sv, currentPolicy.toString());
}
dumper.dump("frameRateOverrideConfig"sv, *ftl::enum_name(mFrameRateOverrideConfig));
dumper.dump("idleTimer"sv);
{
utils::Dumper::Indent indent(dumper);
dumper.dump("interval"sv, mIdleTimer.transform(&OneShotTimer::interval));
dumper.dump("controller"sv,
mConfig.kernelIdleTimerController
.and_then(&ftl::enum_name<KernelIdleTimerController>)
.value_or("Platform"sv));
}
}
std::chrono::milliseconds RefreshRateSelector::getIdleTimerTimeout() {
return mConfig.idleTimerTimeout;
}
// TODO(b/293651105): Extract category FpsRange mapping to OEM-configurable config.
FpsRange RefreshRateSelector::getFrameRateCategoryRange(FrameRateCategory category) {
switch (category) {
case FrameRateCategory::High:
return FpsRange{90_Hz, 120_Hz};
case FrameRateCategory::Normal:
return FpsRange{60_Hz, 90_Hz};
case FrameRateCategory::Low:
return FpsRange{30_Hz, 30_Hz};
case FrameRateCategory::NoPreference:
case FrameRateCategory::Default:
LOG_ALWAYS_FATAL("Should not get fps range for frame rate category: %s",
ftl::enum_string(category).c_str());
return FpsRange{0_Hz, 0_Hz};
default:
LOG_ALWAYS_FATAL("Invalid frame rate category for range: %s",
ftl::enum_string(category).c_str());
return FpsRange{0_Hz, 0_Hz};
}
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"