blob: c8b1059b944f080970861c872967ef2e7e6a6817 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Layer.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <binder/IPCThreadState.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/Display.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <gui/BufferItem.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <gui/TraceUtils.h>
#include <math.h>
#include <private/android_filesystem_config.h>
#include <renderengine/RenderEngine.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <system/graphics-base-v1.0.h>
#include <ui/DebugUtils.h>
#include <ui/FloatRect.h>
#include <ui/GraphicBuffer.h>
#include <ui/HdrRenderTypeUtils.h>
#include <ui/PixelFormat.h>
#include <ui/Rect.h>
#include <ui/Transform.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <algorithm>
#include <mutex>
#include <optional>
#include <sstream>
#include "DisplayDevice.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTimeline.h"
#include "FrameTracer/FrameTracer.h"
#include "FrontEnd/LayerCreationArgs.h"
#include "FrontEnd/LayerHandle.h"
#include "LayerProtoHelper.h"
#include "MutexUtils.h"
#include "SurfaceFlinger.h"
#include "TimeStats/TimeStats.h"
#include "TunnelModeEnabledReporter.h"
#define DEBUG_RESIZE 0
#define EARLY_RELEASE_ENABLED false
namespace android {
namespace {
constexpr int kDumpTableRowLength = 159;
const ui::Transform kIdentityTransform;
bool assignTransform(ui::Transform* dst, ui::Transform& from) {
if (*dst == from) {
return false;
}
*dst = from;
return true;
}
TimeStats::SetFrameRateVote frameRateToSetFrameRateVotePayload(Layer::FrameRate frameRate) {
using FrameRateCompatibility = TimeStats::SetFrameRateVote::FrameRateCompatibility;
using Seamlessness = TimeStats::SetFrameRateVote::Seamlessness;
const auto frameRateCompatibility = [frameRate] {
switch (frameRate.vote.type) {
case Layer::FrameRateCompatibility::Default:
return FrameRateCompatibility::Default;
case Layer::FrameRateCompatibility::ExactOrMultiple:
return FrameRateCompatibility::ExactOrMultiple;
default:
return FrameRateCompatibility::Undefined;
}
}();
const auto seamlessness = [frameRate] {
switch (frameRate.vote.seamlessness) {
case scheduler::Seamlessness::OnlySeamless:
return Seamlessness::ShouldBeSeamless;
case scheduler::Seamlessness::SeamedAndSeamless:
return Seamlessness::NotRequired;
default:
return Seamlessness::Undefined;
}
}();
return TimeStats::SetFrameRateVote{.frameRate = frameRate.vote.rate.getValue(),
.frameRateCompatibility = frameRateCompatibility,
.seamlessness = seamlessness};
}
} // namespace
using namespace ftl::flag_operators;
using base::StringAppendF;
using frontend::LayerSnapshot;
using frontend::RoundedCornerState;
using gui::GameMode;
using gui::LayerMetadata;
using gui::WindowInfo;
using ui::Size;
using PresentState = frametimeline::SurfaceFrame::PresentState;
Layer::Layer(const surfaceflinger::LayerCreationArgs& args)
: sequence(args.sequence),
mFlinger(sp<SurfaceFlinger>::fromExisting(args.flinger)),
mName(base::StringPrintf("%s#%d", args.name.c_str(), sequence)),
mClientRef(args.client),
mWindowType(static_cast<WindowInfo::Type>(
args.metadata.getInt32(gui::METADATA_WINDOW_TYPE, 0))),
mLayerCreationFlags(args.flags),
mBorderEnabled(false),
mLegacyLayerFE(args.flinger->getFactory().createLayerFE(mName)) {
ALOGV("Creating Layer %s", getDebugName());
uint32_t layerFlags = 0;
if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
if (args.flags & ISurfaceComposerClient::eSkipScreenshot)
layerFlags |= layer_state_t::eLayerSkipScreenshot;
mDrawingState.flags = layerFlags;
mDrawingState.crop.makeInvalid();
mDrawingState.z = 0;
mDrawingState.color.a = 1.0f;
mDrawingState.layerStack = ui::DEFAULT_LAYER_STACK;
mDrawingState.sequence = 0;
mDrawingState.transform.set(0, 0);
mDrawingState.frameNumber = 0;
mDrawingState.previousFrameNumber = 0;
mDrawingState.barrierFrameNumber = 0;
mDrawingState.producerId = 0;
mDrawingState.barrierProducerId = 0;
mDrawingState.bufferTransform = 0;
mDrawingState.transformToDisplayInverse = false;
mDrawingState.acquireFence = sp<Fence>::make(-1);
mDrawingState.acquireFenceTime = std::make_shared<FenceTime>(mDrawingState.acquireFence);
mDrawingState.dataspace = ui::Dataspace::V0_SRGB;
mDrawingState.hdrMetadata.validTypes = 0;
mDrawingState.surfaceDamageRegion = Region::INVALID_REGION;
mDrawingState.cornerRadius = 0.0f;
mDrawingState.backgroundBlurRadius = 0;
mDrawingState.api = -1;
mDrawingState.hasColorTransform = false;
mDrawingState.colorSpaceAgnostic = false;
mDrawingState.frameRateSelectionPriority = PRIORITY_UNSET;
mDrawingState.metadata = args.metadata;
mDrawingState.shadowRadius = 0.f;
mDrawingState.fixedTransformHint = ui::Transform::ROT_INVALID;
mDrawingState.frameTimelineInfo = {};
mDrawingState.postTime = -1;
mDrawingState.destinationFrame.makeInvalid();
mDrawingState.isTrustedOverlay = false;
mDrawingState.dropInputMode = gui::DropInputMode::NONE;
mDrawingState.dimmingEnabled = true;
mDrawingState.defaultFrameRateCompatibility = FrameRateCompatibility::Default;
mDrawingState.frameRateSelectionStrategy = FrameRateSelectionStrategy::Propagate;
if (args.flags & ISurfaceComposerClient::eNoColorFill) {
// Set an invalid color so there is no color fill.
mDrawingState.color.r = -1.0_hf;
mDrawingState.color.g = -1.0_hf;
mDrawingState.color.b = -1.0_hf;
}
mFrameTracker.setDisplayRefreshPeriod(
args.flinger->mScheduler->getPacesetterVsyncPeriod().ns());
mOwnerUid = args.ownerUid;
mOwnerPid = args.ownerPid;
mOwnerAppId = mOwnerUid % PER_USER_RANGE;
mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
mSnapshot->sequence = sequence;
mSnapshot->name = getDebugName();
mSnapshot->premultipliedAlpha = mPremultipliedAlpha;
mSnapshot->parentTransform = {};
}
void Layer::onFirstRef() {
mFlinger->onLayerFirstRef(this);
}
Layer::~Layer() {
LOG_ALWAYS_FATAL_IF(std::this_thread::get_id() != mFlinger->mMainThreadId,
"Layer destructor called off the main thread.");
// The original layer and the clone layer share the same texture and buffer. Therefore, only
// one of the layers, in this case the original layer, needs to handle the deletion. The
// original layer and the clone should be removed at the same time so there shouldn't be any
// issue with the clone layer trying to use the texture.
if (mBufferInfo.mBuffer != nullptr) {
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mBufferInfo.mBuffer->getBuffer(), mBufferInfo.mFrameNumber,
mBufferInfo.mFence);
}
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
mFrameTracker.logAndResetStats(mName);
mFlinger->onLayerDestroyed(this);
if (mDrawingState.sidebandStream != nullptr) {
mFlinger->mTunnelModeEnabledReporter->decrementTunnelModeCount();
}
if (mHadClonedChild) {
auto& roots = mFlinger->mLayerMirrorRoots;
roots.erase(std::remove(roots.begin(), roots.end(), this), roots.end());
}
if (hasTrustedPresentationListener()) {
mFlinger->mNumTrustedPresentationListeners--;
updateTrustedPresentationState(nullptr, nullptr, -1 /* time_in_ms */, true /* leaveState*/);
}
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
if (mDrawingState.zOrderRelativeOf == nullptr) {
return;
}
sp<Layer> strongRelative = mDrawingState.zOrderRelativeOf.promote();
if (strongRelative == nullptr) {
setZOrderRelativeOf(nullptr);
return;
}
if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
strongRelative->removeZOrderRelative(wp<Layer>::fromExisting(this));
mFlinger->setTransactionFlags(eTraversalNeeded);
setZOrderRelativeOf(nullptr);
}
}
void Layer::removeFromCurrentState() {
if (!mRemovedFromDrawingState) {
mRemovedFromDrawingState = true;
mFlinger->mScheduler->deregisterLayer(this);
}
updateTrustedPresentationState(nullptr, nullptr, -1 /* time_in_ms */, true /* leaveState*/);
mFlinger->markLayerPendingRemovalLocked(sp<Layer>::fromExisting(this));
}
sp<Layer> Layer::getRootLayer() {
sp<Layer> parent = getParent();
if (parent == nullptr) {
return sp<Layer>::fromExisting(this);
}
return parent->getRootLayer();
}
void Layer::onRemovedFromCurrentState() {
// Use the root layer since we want to maintain the hierarchy for the entire subtree.
auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current);
std::sort(layersInTree.begin(), layersInTree.end());
REQUIRE_MUTEX(mFlinger->mStateLock);
traverse(LayerVector::StateSet::Current,
[&](Layer* layer) REQUIRES(layer->mFlinger->mStateLock) {
layer->removeFromCurrentState();
layer->removeRelativeZ(layersInTree);
});
}
void Layer::addToCurrentState() {
if (mRemovedFromDrawingState) {
mRemovedFromDrawingState = false;
mFlinger->mScheduler->registerLayer(this);
mFlinger->removeFromOffscreenLayers(this);
}
for (const auto& child : mCurrentChildren) {
child->addToCurrentState();
}
}
// ---------------------------------------------------------------------------
// set-up
// ---------------------------------------------------------------------------
bool Layer::getPremultipledAlpha() const {
return mPremultipliedAlpha;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
if (mGetHandleCalled) {
ALOGE("Get handle called twice" );
return nullptr;
}
mGetHandleCalled = true;
mHandleAlive = true;
return sp<LayerHandle>::make(mFlinger, sp<Layer>::fromExisting(this));
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
static Rect reduce(const Rect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
if (exclude.isRect()) {
return win.reduce(exclude.getBounds());
}
return Region(win).subtract(exclude).getBounds();
}
static FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
if (!reduceTransparentRegion) {
return Rect{mScreenBounds};
}
FloatRect bounds = getBounds();
ui::Transform t = getTransform();
// Transform to screen space.
bounds = t.transform(bounds);
return Rect{bounds};
}
FloatRect Layer::getBounds() const {
const State& s(getDrawingState());
return getBounds(getActiveTransparentRegion(s));
}
FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
// Subtract the transparent region and snap to the bounds.
return reduce(mBounds, activeTransparentRegion);
}
// No early returns.
void Layer::updateTrustedPresentationState(const DisplayDevice* display,
const frontend::LayerSnapshot* snapshot,
int64_t time_in_ms, bool leaveState) {
if (!hasTrustedPresentationListener()) {
return;
}
const bool lastState = mLastComputedTrustedPresentationState;
mLastComputedTrustedPresentationState = false;
if (!leaveState) {
const auto outputLayer = findOutputLayerForDisplay(display, snapshot->path);
if (outputLayer != nullptr) {
if (outputLayer->getState().coveredRegionExcludingDisplayOverlays) {
Region coveredRegion =
*outputLayer->getState().coveredRegionExcludingDisplayOverlays;
mLastComputedTrustedPresentationState =
computeTrustedPresentationState(snapshot->geomLayerBounds,
snapshot->sourceBounds(), coveredRegion,
snapshot->transformedBounds,
snapshot->alpha,
snapshot->geomLayerTransform,
mTrustedPresentationThresholds);
} else {
ALOGE("CoveredRegionExcludingDisplayOverlays was not set for %s. Don't compute "
"TrustedPresentationState",
getDebugName());
}
}
}
const bool newState = mLastComputedTrustedPresentationState;
if (lastState && !newState) {
// We were in the trusted presentation state, but now we left it,
// emit the callback if needed
if (mLastReportedTrustedPresentationState) {
mLastReportedTrustedPresentationState = false;
mTrustedPresentationListener.invoke(false);
}
// Reset the timer
mEnteredTrustedPresentationStateTime = -1;
} else if (!lastState && newState) {
// We were not in the trusted presentation state, but we entered it, begin the timer
// and make sure this gets called at least once more!
mEnteredTrustedPresentationStateTime = time_in_ms;
mFlinger->forceFutureUpdate(mTrustedPresentationThresholds.stabilityRequirementMs * 1.5);
}
// Has the timer elapsed, but we are still in the state? Emit a callback if needed
if (!mLastReportedTrustedPresentationState && newState &&
(time_in_ms - mEnteredTrustedPresentationStateTime >
mTrustedPresentationThresholds.stabilityRequirementMs)) {
mLastReportedTrustedPresentationState = true;
mTrustedPresentationListener.invoke(true);
}
}
/**
* See SurfaceComposerClient.h: setTrustedPresentationCallback for discussion
* of how the parameters and thresholds are interpreted. The general spirit is
* to produce an upper bound on the amount of the buffer which was presented.
*/
bool Layer::computeTrustedPresentationState(const FloatRect& bounds, const FloatRect& sourceBounds,
const Region& coveredRegion,
const FloatRect& screenBounds, float alpha,
const ui::Transform& effectiveTransform,
const TrustedPresentationThresholds& thresholds) {
if (alpha < thresholds.minAlpha) {
return false;
}
if (sourceBounds.getWidth() == 0 || sourceBounds.getHeight() == 0) {
return false;
}
if (screenBounds.getWidth() == 0 || screenBounds.getHeight() == 0) {
return false;
}
const float sx = effectiveTransform.dsdx();
const float sy = effectiveTransform.dsdy();
float fractionRendered = std::min(sx * sy, 1.0f);
float boundsOverSourceW = bounds.getWidth() / (float)sourceBounds.getWidth();
float boundsOverSourceH = bounds.getHeight() / (float)sourceBounds.getHeight();
fractionRendered *= boundsOverSourceW * boundsOverSourceH;
Region tJunctionFreeRegion = Region::createTJunctionFreeRegion(coveredRegion);
// Compute the size of all the rects since they may be disconnected.
float coveredSize = 0;
for (auto rect = tJunctionFreeRegion.begin(); rect < tJunctionFreeRegion.end(); rect++) {
float size = rect->width() * rect->height();
coveredSize += size;
}
fractionRendered *= (1 - (coveredSize / (screenBounds.getWidth() * screenBounds.getHeight())));
if (fractionRendered < thresholds.minFractionRendered) {
return false;
}
return true;
}
void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform,
float parentShadowRadius) {
const State& s(getDrawingState());
// Calculate effective layer transform
mEffectiveTransform = parentTransform * getActiveTransform(s);
if (CC_UNLIKELY(!isTransformValid())) {
ALOGW("Stop computing bounds for %s because it has invalid transformation.",
getDebugName());
return;
}
// Transform parent bounds to layer space
parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
// Calculate source bounds
mSourceBounds = computeSourceBounds(parentBounds);
// Calculate bounds by croping diplay frame with layer crop and parent bounds
FloatRect bounds = mSourceBounds;
const Rect layerCrop = getCrop(s);
if (!layerCrop.isEmpty()) {
bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
}
bounds = bounds.intersect(parentBounds);
mBounds = bounds;
mScreenBounds = mEffectiveTransform.transform(mBounds);
// Use the layer's own shadow radius if set. Otherwise get the radius from
// parent.
if (s.shadowRadius > 0.f) {
mEffectiveShadowRadius = s.shadowRadius;
} else {
mEffectiveShadowRadius = parentShadowRadius;
}
// Shadow radius is passed down to only one layer so if the layer can draw shadows,
// don't pass it to its children.
const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius;
for (const sp<Layer>& child : mDrawingChildren) {
child->computeBounds(mBounds, mEffectiveTransform, childShadowRadius);
}
if (mPotentialCursor) {
prepareCursorCompositionState();
}
}
Rect Layer::getCroppedBufferSize(const State& s) const {
Rect size = getBufferSize(s);
Rect crop = getCrop(s);
if (!crop.isEmpty() && size.isValid()) {
size.intersect(crop, &size);
} else if (!crop.isEmpty()) {
size = crop;
}
return size;
}
void Layer::setupRoundedCornersCropCoordinates(Rect win,
const FloatRect& roundedCornersCrop) const {
// Translate win by the rounded corners rect coordinates, to have all values in
// layer coordinate space.
win.left -= roundedCornersCrop.left;
win.right -= roundedCornersCrop.left;
win.top -= roundedCornersCrop.top;
win.bottom -= roundedCornersCrop.top;
}
void Layer::prepareBasicGeometryCompositionState() {
const auto& drawingState{getDrawingState()};
const auto alpha = static_cast<float>(getAlpha());
const bool opaque = isOpaque(drawingState);
const bool usesRoundedCorners = hasRoundedCorners();
auto blendMode = Hwc2::IComposerClient::BlendMode::NONE;
if (!opaque || alpha != 1.0f) {
blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED
: Hwc2::IComposerClient::BlendMode::COVERAGE;
}
// Please keep in sync with LayerSnapshotBuilder
auto* snapshot = editLayerSnapshot();
snapshot->outputFilter = getOutputFilter();
snapshot->isVisible = isVisible();
snapshot->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f;
snapshot->shadowSettings.length = mEffectiveShadowRadius;
snapshot->contentDirty = contentDirty;
contentDirty = false;
snapshot->geomLayerBounds = mBounds;
snapshot->geomLayerTransform = getTransform();
snapshot->geomInverseLayerTransform = snapshot->geomLayerTransform.inverse();
snapshot->transparentRegionHint = getActiveTransparentRegion(drawingState);
snapshot->localTransform = getActiveTransform(drawingState);
snapshot->localTransformInverse = snapshot->localTransform.inverse();
snapshot->blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
snapshot->alpha = alpha;
snapshot->backgroundBlurRadius = getBackgroundBlurRadius();
snapshot->blurRegions = getBlurRegions();
snapshot->stretchEffect = getStretchEffect();
}
void Layer::prepareGeometryCompositionState() {
const auto& drawingState{getDrawingState()};
auto* snapshot = editLayerSnapshot();
// Please keep in sync with LayerSnapshotBuilder
snapshot->geomBufferSize = getBufferSize(drawingState);
snapshot->geomContentCrop = getBufferCrop();
snapshot->geomCrop = getCrop(drawingState);
snapshot->geomBufferTransform = getBufferTransform();
snapshot->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
snapshot->geomUsesSourceCrop = usesSourceCrop();
snapshot->isSecure = isSecure();
snapshot->metadata.clear();
const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata();
for (const auto& [key, mandatory] : supportedMetadata) {
const auto& genericLayerMetadataCompatibilityMap =
mFlinger->getGenericLayerMetadataKeyMap();
auto compatIter = genericLayerMetadataCompatibilityMap.find(key);
if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) {
continue;
}
const uint32_t id = compatIter->second;
auto it = drawingState.metadata.mMap.find(id);
if (it == std::end(drawingState.metadata.mMap)) {
continue;
}
snapshot->metadata.emplace(key,
compositionengine::GenericLayerMetadataEntry{mandatory,
it->second});
}
}
void Layer::preparePerFrameCompositionState() {
const auto& drawingState{getDrawingState()};
// Please keep in sync with LayerSnapshotBuilder
auto* snapshot = editLayerSnapshot();
snapshot->forceClientComposition = false;
snapshot->isColorspaceAgnostic = isColorSpaceAgnostic();
snapshot->dataspace = getDataSpace();
snapshot->colorTransform = getColorTransform();
snapshot->colorTransformIsIdentity = !hasColorTransform();
snapshot->surfaceDamage = surfaceDamageRegion;
snapshot->hasProtectedContent = isProtected();
snapshot->dimmingEnabled = isDimmingEnabled();
snapshot->currentHdrSdrRatio = getCurrentHdrSdrRatio();
snapshot->desiredHdrSdrRatio = getDesiredHdrSdrRatio();
snapshot->cachingHint = getCachingHint();
const bool usesRoundedCorners = hasRoundedCorners();
snapshot->isOpaque = isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf;
// Force client composition for special cases known only to the front-end.
// Rounded corners no longer force client composition, since we may use a
// hole punch so that the layer will appear to have rounded corners.
if (drawShadows() || snapshot->stretchEffect.hasEffect()) {
snapshot->forceClientComposition = true;
}
// If there are no visible region changes, we still need to update blur parameters.
snapshot->blurRegions = getBlurRegions();
snapshot->backgroundBlurRadius = getBackgroundBlurRadius();
// Layer framerate is used in caching decisions.
// Retrieve it from the scheduler which maintains an instance of LayerHistory, and store it in
// LayerFECompositionState where it would be visible to Flattener.
snapshot->fps = mFlinger->getLayerFramerate(systemTime(), getSequence());
if (hasBufferOrSidebandStream()) {
preparePerFrameBufferCompositionState();
} else {
preparePerFrameEffectsCompositionState();
}
}
void Layer::preparePerFrameBufferCompositionState() {
// Please keep in sync with LayerSnapshotBuilder
auto* snapshot = editLayerSnapshot();
// Sideband layers
if (snapshot->sidebandStream.get() && !snapshot->sidebandStreamHasFrame) {
snapshot->compositionType =
aidl::android::hardware::graphics::composer3::Composition::SIDEBAND;
return;
} else if ((mDrawingState.flags & layer_state_t::eLayerIsDisplayDecoration) != 0) {
snapshot->compositionType =
aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
} else if ((mDrawingState.flags & layer_state_t::eLayerIsRefreshRateIndicator) != 0) {
snapshot->compositionType =
aidl::android::hardware::graphics::composer3::Composition::REFRESH_RATE_INDICATOR;
} else {
// Normal buffer layers
snapshot->hdrMetadata = mBufferInfo.mHdrMetadata;
snapshot->compositionType = mPotentialCursor
? aidl::android::hardware::graphics::composer3::Composition::CURSOR
: aidl::android::hardware::graphics::composer3::Composition::DEVICE;
}
snapshot->buffer = getBuffer();
snapshot->acquireFence = mBufferInfo.mFence;
snapshot->frameNumber = mBufferInfo.mFrameNumber;
snapshot->sidebandStreamHasFrame = false;
}
void Layer::preparePerFrameEffectsCompositionState() {
// Please keep in sync with LayerSnapshotBuilder
auto* snapshot = editLayerSnapshot();
snapshot->color = getColor();
snapshot->compositionType =
aidl::android::hardware::graphics::composer3::Composition::SOLID_COLOR;
}
void Layer::prepareCursorCompositionState() {
const State& drawingState{getDrawingState()};
// Please keep in sync with LayerSnapshotBuilder
auto* snapshot = editLayerSnapshot();
// Apply the layer's transform, followed by the display's global transform
// Here we're guaranteed that the layer's transform preserves rects
Rect win = getCroppedBufferSize(drawingState);
// Subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, getActiveTransparentRegion(drawingState));
Rect frame(getTransform().transform(bounds));
snapshot->cursorFrame = frame;
}
const char* Layer::getDebugName() const {
return mName.c_str();
}
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
aidl::android::hardware::graphics::composer3::Composition Layer::getCompositionType(
const DisplayDevice& display) const {
const auto outputLayer = findOutputLayerForDisplay(&display);
return getCompositionType(outputLayer);
}
aidl::android::hardware::graphics::composer3::Composition Layer::getCompositionType(
const compositionengine::OutputLayer* outputLayer) const {
if (outputLayer == nullptr) {
return aidl::android::hardware::graphics::composer3::Composition::INVALID;
}
if (outputLayer->getState().hwc) {
return (*outputLayer->getState().hwc).hwcCompositionType;
} else {
return aidl::android::hardware::graphics::composer3::Composition::CLIENT;
}
}
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
bool Layer::isSecure() const {
const State& s(mDrawingState);
if (s.flags & layer_state_t::eLayerSecure) {
return true;
}
const auto p = mDrawingParent.promote();
return (p != nullptr) ? p->isSecure() : false;
}
void Layer::transferAvailableJankData(const std::deque<sp<CallbackHandle>>& handles,
std::vector<JankData>& jankData) {
if (mPendingJankClassifications.empty() ||
!mPendingJankClassifications.front()->getJankType()) {
return;
}
bool includeJankData = false;
for (const auto& handle : handles) {
for (const auto& cb : handle->callbackIds) {
if (cb.includeJankData) {
includeJankData = true;
break;
}
}
if (includeJankData) {
jankData.reserve(mPendingJankClassifications.size());
break;
}
}
while (!mPendingJankClassifications.empty() &&
mPendingJankClassifications.front()->getJankType()) {
if (includeJankData) {
std::shared_ptr<frametimeline::SurfaceFrame> surfaceFrame =
mPendingJankClassifications.front();
jankData.emplace_back(JankData(surfaceFrame->getToken(),
surfaceFrame->getJankType().value(),
surfaceFrame->getRenderRate().getPeriodNsecs()));
}
mPendingJankClassifications.pop_front();
}
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
// TODO: This is unfortunate.
mDrawingStateModified = mDrawingState.modified;
mDrawingState.modified = false;
const State& s(getDrawingState());
if (updateGeometry()) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (s.sequence != mLastCommittedTxSequence) {
// invalidate and recompute the visible regions if needed
mLastCommittedTxSequence = s.sequence;
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
mNeedsFiltering = getActiveTransform(s).needsBilinearFiltering();
}
if (!mPotentialCursor && (flags & Layer::eVisibleRegion)) {
mFlinger->mUpdateInputInfo = true;
}
commitTransaction();
return flags;
}
void Layer::commitTransaction() {
// Set the present state for all bufferlessSurfaceFramesTX to Presented. The
// bufferSurfaceFrameTX will be presented in latchBuffer.
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
if (surfaceFrame->getPresentState() != PresentState::Presented) {
// With applyPendingStates, we could end up having presented surfaceframes from previous
// states
surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
}
}
mDrawingState.bufferlessSurfaceFramesTX.clear();
}
uint32_t Layer::clearTransactionFlags(uint32_t mask) {
const auto flags = mTransactionFlags & mask;
mTransactionFlags &= ~mask;
return flags;
}
void Layer::setTransactionFlags(uint32_t mask) {
mTransactionFlags |= mask;
}
bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setLayer(int32_t z) {
if (mDrawingState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
mDrawingState.sequence++;
mDrawingState.z = z;
mDrawingState.modified = true;
mFlinger->mSomeChildrenChanged = true;
// Discard all relative layering.
if (mDrawingState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mDrawingState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(wp<Layer>::fromExisting(this));
}
setZOrderRelativeOf(nullptr);
}
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::removeZOrderRelative(const wp<Layer>& relative) {
mDrawingState.zOrderRelatives.remove(relative);
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::addZOrderRelative(const wp<Layer>& relative) {
mDrawingState.zOrderRelatives.add(relative);
mDrawingState.modified = true;
mDrawingState.sequence++;
setTransactionFlags(eTransactionNeeded);
}
void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
mDrawingState.zOrderRelativeOf = relativeOf;
mDrawingState.sequence++;
mDrawingState.modified = true;
mDrawingState.isRelativeOf = relativeOf != nullptr;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
sp<Layer> relative = LayerHandle::getLayer(relativeToHandle);
if (relative == nullptr) {
return false;
}
if (mDrawingState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
mDrawingState.zOrderRelativeOf == relative) {
return false;
}
if (CC_UNLIKELY(relative->usingRelativeZ(LayerVector::StateSet::Drawing)) &&
(relative->mDrawingState.zOrderRelativeOf == this)) {
ALOGE("Detected relative layer loop between %s and %s",
mName.c_str(), relative->mName.c_str());
ALOGE("Ignoring new call to set relative layer");
return false;
}
mFlinger->mSomeChildrenChanged = true;
mDrawingState.sequence++;
mDrawingState.modified = true;
mDrawingState.z = relativeZ;
auto oldZOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
if (oldZOrderRelativeOf != nullptr) {
oldZOrderRelativeOf->removeZOrderRelative(wp<Layer>::fromExisting(this));
}
setZOrderRelativeOf(relative);
relative->addZOrderRelative(wp<Layer>::fromExisting(this));
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTrustedOverlay(bool isTrustedOverlay) {
if (mDrawingState.isTrustedOverlay == isTrustedOverlay) return false;
mDrawingState.isTrustedOverlay = isTrustedOverlay;
mDrawingState.modified = true;
mFlinger->mUpdateInputInfo = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::isTrustedOverlay() const {
if (getDrawingState().isTrustedOverlay) {
return true;
}
const auto& p = mDrawingParent.promote();
return (p != nullptr) && p->isTrustedOverlay();
}
bool Layer::setAlpha(float alpha) {
if (mDrawingState.color.a == alpha) return false;
mDrawingState.sequence++;
mDrawingState.color.a = alpha;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
if (!mDrawingState.bgColorLayer && alpha == 0) {
return false;
}
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (!mDrawingState.bgColorLayer && alpha != 0) {
// create background color layer if one does not yet exist
uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect;
std::string name = mName + "BackgroundColorLayer";
mDrawingState.bgColorLayer = mFlinger->getFactory().createEffectLayer(
surfaceflinger::LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), flags,
LayerMetadata()));
// add to child list
addChild(mDrawingState.bgColorLayer);
mFlinger->mLayersAdded = true;
// set up SF to handle added color layer
if (isRemovedFromCurrentState()) {
MUTEX_ALIAS(mFlinger->mStateLock, mDrawingState.bgColorLayer->mFlinger->mStateLock);
mDrawingState.bgColorLayer->onRemovedFromCurrentState();
}
mFlinger->setTransactionFlags(eTransactionNeeded);
} else if (mDrawingState.bgColorLayer && alpha == 0) {
MUTEX_ALIAS(mFlinger->mStateLock, mDrawingState.bgColorLayer->mFlinger->mStateLock);
mDrawingState.bgColorLayer->reparent(nullptr);
mDrawingState.bgColorLayer = nullptr;
return true;
}
mDrawingState.bgColorLayer->setColor(color);
mDrawingState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
mDrawingState.bgColorLayer->setAlpha(alpha);
mDrawingState.bgColorLayer->setDataspace(dataspace);
return true;
}
bool Layer::setCornerRadius(float cornerRadius) {
if (mDrawingState.cornerRadius == cornerRadius) return false;
mDrawingState.sequence++;
mDrawingState.cornerRadius = cornerRadius;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) {
if (mDrawingState.backgroundBlurRadius == backgroundBlurRadius) return false;
// If we start or stop drawing blur then the layer's visibility state may change so increment
// the magic sequence number.
if (mDrawingState.backgroundBlurRadius == 0 || backgroundBlurRadius == 0) {
mDrawingState.sequence++;
}
mDrawingState.backgroundBlurRadius = backgroundBlurRadius;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransparentRegionHint(const Region& transparent) {
mDrawingState.sequence++;
mDrawingState.transparentRegionHint = transparent;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBlurRegions(const std::vector<BlurRegion>& blurRegions) {
// If we start or stop drawing blur then the layer's visibility state may change so increment
// the magic sequence number.
if (mDrawingState.blurRegions.size() == 0 || blurRegions.size() == 0) {
mDrawingState.sequence++;
}
mDrawingState.blurRegions = blurRegions;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFlags(uint32_t flags, uint32_t mask) {
const uint32_t newFlags = (mDrawingState.flags & ~mask) | (flags & mask);
if (mDrawingState.flags == newFlags) return false;
mDrawingState.sequence++;
mDrawingState.flags = newFlags;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop(const Rect& crop) {
if (mDrawingState.crop == crop) return false;
mDrawingState.sequence++;
mDrawingState.crop = crop;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMetadata(const LayerMetadata& data) {
if (!mDrawingState.metadata.merge(data, true /* eraseEmpty */)) return false;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setLayerStack(ui::LayerStack layerStack) {
if (mDrawingState.layerStack == layerStack) return false;
mDrawingState.sequence++;
mDrawingState.layerStack = layerStack;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setColorSpaceAgnostic(const bool agnostic) {
if (mDrawingState.colorSpaceAgnostic == agnostic) {
return false;
}
mDrawingState.sequence++;
mDrawingState.colorSpaceAgnostic = agnostic;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setDimmingEnabled(const bool dimmingEnabled) {
if (mDrawingState.dimmingEnabled == dimmingEnabled) return false;
mDrawingState.sequence++;
mDrawingState.dimmingEnabled = dimmingEnabled;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFrameRateSelectionPriority(int32_t priority) {
if (mDrawingState.frameRateSelectionPriority == priority) return false;
mDrawingState.frameRateSelectionPriority = priority;
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
int32_t Layer::getFrameRateSelectionPriority() const {
// Check if layer has priority set.
if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) {
return mDrawingState.frameRateSelectionPriority;
}
// If not, search whether its parents have it set.
sp<Layer> parent = getParent();
if (parent != nullptr) {
return parent->getFrameRateSelectionPriority();
}
return Layer::PRIORITY_UNSET;
}
bool Layer::setDefaultFrameRateCompatibility(FrameRateCompatibility compatibility) {
if (mDrawingState.defaultFrameRateCompatibility == compatibility) return false;
mDrawingState.defaultFrameRateCompatibility = compatibility;
mDrawingState.modified = true;
mFlinger->mScheduler->setDefaultFrameRateCompatibility(sequence, compatibility);
setTransactionFlags(eTransactionNeeded);
return true;
}
scheduler::FrameRateCompatibility Layer::getDefaultFrameRateCompatibility() const {
return mDrawingState.defaultFrameRateCompatibility;
}
bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) {
return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE;
};
ui::LayerStack Layer::getLayerStack(LayerVector::StateSet state) const {
bool useDrawing = state == LayerVector::StateSet::Drawing;
const auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
if (parent) {
return parent->getLayerStack();
}
return getDrawingState().layerStack;
}
bool Layer::setShadowRadius(float shadowRadius) {
if (mDrawingState.shadowRadius == shadowRadius) {
return false;
}
mDrawingState.sequence++;
mDrawingState.shadowRadius = shadowRadius;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) {
if (mDrawingState.fixedTransformHint == fixedTransformHint) {
return false;
}
mDrawingState.sequence++;
mDrawingState.fixedTransformHint = fixedTransformHint;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setStretchEffect(const StretchEffect& effect) {
StretchEffect temp = effect;
temp.sanitize();
if (mDrawingState.stretchEffect == temp) {
return false;
}
mDrawingState.sequence++;
mDrawingState.stretchEffect = temp;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
StretchEffect Layer::getStretchEffect() const {
if (mDrawingState.stretchEffect.hasEffect()) {
return mDrawingState.stretchEffect;
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
auto effect = parent->getStretchEffect();
if (effect.hasEffect()) {
// TODO(b/179047472): Map it? Or do we make the effect be in global space?
return effect;
}
}
return StretchEffect{};
}
bool Layer::enableBorder(bool shouldEnable, float width, const half4& color) {
if (mBorderEnabled == shouldEnable && mBorderWidth == width && mBorderColor == color) {
return false;
}
mBorderEnabled = shouldEnable;
mBorderWidth = width;
mBorderColor = color;
return true;
}
bool Layer::isBorderEnabled() {
return mBorderEnabled;
}
float Layer::getBorderWidth() {
return mBorderWidth;
}
const half4& Layer::getBorderColor() {
return mBorderColor;
}
bool Layer::propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool overrideChildren,
bool* transactionNeeded) {
// Gets the frame rate to propagate to children.
const auto frameRate = [&] {
if (overrideChildren && parentFrameRate.isValid()) {
return parentFrameRate;
}
if (mDrawingState.frameRate.isValid()) {
return mDrawingState.frameRate;
}
return parentFrameRate;
}();
auto now = systemTime();
*transactionNeeded |= setFrameRateForLayerTreeLegacy(frameRate, now);
// The frame rate is propagated to the children by default, but some properties may override it.
bool childrenHaveFrameRate = false;
const bool overrideChildrenFrameRate = overrideChildren || shouldOverrideChildrenFrameRate();
const bool canPropagateFrameRate = shouldPropagateFrameRate() || overrideChildrenFrameRate;
for (const sp<Layer>& child : mCurrentChildren) {
childrenHaveFrameRate |=
child->propagateFrameRateForLayerTree(canPropagateFrameRate ? frameRate
: FrameRate(),
overrideChildrenFrameRate, transactionNeeded);
}
// If we don't have a valid frame rate specification, but the children do, we set this
// layer as NoVote to allow the children to control the refresh rate
if (!frameRate.isValid() && childrenHaveFrameRate) {
*transactionNeeded |=
setFrameRateForLayerTreeLegacy(FrameRate(Fps(), FrameRateCompatibility::NoVote),
now);
}
// We return whether this layer or its children has a vote. We ignore ExactOrMultiple votes for
// the same reason we are allowing touch boost for those layers. See
// RefreshRateSelector::rankFrameRates for details.
const auto layerVotedWithDefaultCompatibility =
frameRate.vote.rate.isValid() && frameRate.vote.type == FrameRateCompatibility::Default;
const auto layerVotedWithNoVote = frameRate.vote.type == FrameRateCompatibility::NoVote;
const auto layerVotedWithCategory = frameRate.category != FrameRateCategory::Default;
const auto layerVotedWithExactCompatibility =
frameRate.vote.rate.isValid() && frameRate.vote.type == FrameRateCompatibility::Exact;
return layerVotedWithDefaultCompatibility || layerVotedWithNoVote || layerVotedWithCategory ||
layerVotedWithExactCompatibility || childrenHaveFrameRate;
}
void Layer::updateTreeHasFrameRateVote() {
const auto root = [&]() -> sp<Layer> {
sp<Layer> layer = sp<Layer>::fromExisting(this);
while (auto parent = layer->getParent()) {
layer = parent;
}
return layer;
}();
bool transactionNeeded = false;
root->propagateFrameRateForLayerTree({}, false, &transactionNeeded);
// TODO(b/195668952): we probably don't need eTraversalNeeded here
if (transactionNeeded) {
mFlinger->setTransactionFlags(eTraversalNeeded);
}
}
bool Layer::setFrameRate(FrameRate::FrameRateVote frameRateVote) {
if (mDrawingState.frameRate.vote == frameRateVote) {
return false;
}
mDrawingState.sequence++;
mDrawingState.frameRate.vote = frameRateVote;
mDrawingState.modified = true;
updateTreeHasFrameRateVote();
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFrameRateCategory(FrameRateCategory category, bool smoothSwitchOnly) {
if (mDrawingState.frameRate.category == category &&
mDrawingState.frameRate.categorySmoothSwitchOnly == smoothSwitchOnly) {
return false;
}
mDrawingState.sequence++;
mDrawingState.frameRate.category = category;
mDrawingState.frameRate.categorySmoothSwitchOnly = smoothSwitchOnly;
mDrawingState.modified = true;
updateTreeHasFrameRateVote();
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFrameRateSelectionStrategy(FrameRateSelectionStrategy strategy) {
if (mDrawingState.frameRateSelectionStrategy == strategy) return false;
mDrawingState.frameRateSelectionStrategy = strategy;
mDrawingState.sequence++;
mDrawingState.modified = true;
updateTreeHasFrameRateVote();
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info,
nsecs_t postTime) {
mDrawingState.postTime = postTime;
// Check if one of the bufferlessSurfaceFramesTX contains the same vsyncId. This can happen if
// there are two transactions with the same token, the first one without a buffer and the
// second one with a buffer. We promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
// in that case.
auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId);
if (it != mDrawingState.bufferlessSurfaceFramesTX.end()) {
// Promote the bufferlessSurfaceFrame to a bufferSurfaceFrameTX
mDrawingState.bufferSurfaceFrameTX = it->second;
mDrawingState.bufferlessSurfaceFramesTX.erase(it);
mDrawingState.bufferSurfaceFrameTX->promoteToBuffer();
mDrawingState.bufferSurfaceFrameTX->setActualQueueTime(postTime);
} else {
mDrawingState.bufferSurfaceFrameTX =
createSurfaceFrameForBuffer(info, postTime, mTransactionName);
}
setFrameTimelineVsyncForSkippedFrames(info, postTime, mTransactionName);
}
void Layer::setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info,
nsecs_t postTime) {
mDrawingState.frameTimelineInfo = info;
mDrawingState.postTime = postTime;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (const auto& bufferSurfaceFrameTX = mDrawingState.bufferSurfaceFrameTX;
bufferSurfaceFrameTX != nullptr) {
if (bufferSurfaceFrameTX->getToken() == info.vsyncId) {
// BufferSurfaceFrame takes precedence over BufferlessSurfaceFrame. If the same token is
// being used for BufferSurfaceFrame, don't create a new one.
return;
}
}
// For Transactions without a buffer, we create only one SurfaceFrame per vsyncId. If multiple
// transactions use the same vsyncId, we just treat them as one SurfaceFrame (unless they are
// targeting different vsyncs).
auto it = mDrawingState.bufferlessSurfaceFramesTX.find(info.vsyncId);
if (it == mDrawingState.bufferlessSurfaceFramesTX.end()) {
auto surfaceFrame = createSurfaceFrameForTransaction(info, postTime);
mDrawingState.bufferlessSurfaceFramesTX[info.vsyncId] = surfaceFrame;
} else {
if (it->second->getPresentState() == PresentState::Presented) {
// If the SurfaceFrame was already presented, its safe to overwrite it since it must
// have been from previous vsync.
it->second = createSurfaceFrameForTransaction(info, postTime);
}
}
setFrameTimelineVsyncForSkippedFrames(info, postTime, mTransactionName);
}
void Layer::addSurfaceFrameDroppedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t dropTime) {
surfaceFrame->setDropTime(dropTime);
surfaceFrame->setPresentState(PresentState::Dropped);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
}
void Layer::addSurfaceFramePresentedForBuffer(
std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame, nsecs_t acquireFenceTime,
nsecs_t currentLatchTime) {
surfaceFrame->setAcquireFenceTime(acquireFenceTime);
surfaceFrame->setPresentState(PresentState::Presented, mLastLatchTime);
mFlinger->mFrameTimeline->addSurfaceFrame(surfaceFrame);
updateLastLatchTime(currentLatchTime);
}
std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForTransaction(
const FrameTimelineInfo& info, nsecs_t postTime) {
auto surfaceFrame =
mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
getSequence(), mName,
mTransactionName,
/*isBuffer*/ false, getGameMode());
surfaceFrame->setActualStartTime(info.startTimeNanos);
// For Transactions, the post time is considered to be both queue and acquire fence time.
surfaceFrame->setActualQueueTime(postTime);
surfaceFrame->setAcquireFenceTime(postTime);
const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (fps) {
surfaceFrame->setRenderRate(*fps);
}
onSurfaceFrameCreated(surfaceFrame);
return surfaceFrame;
}
std::shared_ptr<frametimeline::SurfaceFrame> Layer::createSurfaceFrameForBuffer(
const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName) {
auto surfaceFrame =
mFlinger->mFrameTimeline->createSurfaceFrameForToken(info, mOwnerPid, mOwnerUid,
getSequence(), mName, debugName,
/*isBuffer*/ true, getGameMode());
surfaceFrame->setActualStartTime(info.startTimeNanos);
// For buffers, acquire fence time will set during latch.
surfaceFrame->setActualQueueTime(queueTime);
const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (fps) {
surfaceFrame->setRenderRate(*fps);
}
onSurfaceFrameCreated(surfaceFrame);
return surfaceFrame;
}
void Layer::setFrameTimelineVsyncForSkippedFrames(const FrameTimelineInfo& info, nsecs_t postTime,
std::string debugName) {
if (info.skippedFrameVsyncId == FrameTimelineInfo::INVALID_VSYNC_ID) {
return;
}
FrameTimelineInfo skippedFrameTimelineInfo = info;
skippedFrameTimelineInfo.vsyncId = info.skippedFrameVsyncId;
auto surfaceFrame =
mFlinger->mFrameTimeline->createSurfaceFrameForToken(skippedFrameTimelineInfo,
mOwnerPid, mOwnerUid,
getSequence(), mName, debugName,
/*isBuffer*/ false, getGameMode());
surfaceFrame->setActualStartTime(skippedFrameTimelineInfo.skippedFrameStartTimeNanos);
// For Transactions, the post time is considered to be both queue and acquire fence time.
surfaceFrame->setActualQueueTime(postTime);
surfaceFrame->setAcquireFenceTime(postTime);
const auto fps = mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
if (fps) {
surfaceFrame->setRenderRate(*fps);
}
onSurfaceFrameCreated(surfaceFrame);
addSurfaceFrameDroppedForBuffer(surfaceFrame, postTime);
}
bool Layer::setFrameRateForLayerTreeLegacy(FrameRate frameRate, nsecs_t now) {
if (mDrawingState.frameRateForLayerTree == frameRate) {
return false;
}
mDrawingState.frameRateForLayerTree = frameRate;
// TODO(b/195668952): we probably don't need to dirty visible regions here
// or even store frameRateForLayerTree in mDrawingState
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
mFlinger->mScheduler
->recordLayerHistory(sequence, getLayerProps(), now, now,
scheduler::LayerHistory::LayerUpdateType::SetFrameRate);
return true;
}
bool Layer::setFrameRateForLayerTree(FrameRate frameRate, const scheduler::LayerProps& layerProps,
nsecs_t now) {
if (mDrawingState.frameRateForLayerTree == frameRate) {
return false;
}
mDrawingState.frameRateForLayerTree = frameRate;
mFlinger->mScheduler
->recordLayerHistory(sequence, layerProps, now, now,
scheduler::LayerHistory::LayerUpdateType::SetFrameRate);
return true;
}
Layer::FrameRate Layer::getFrameRateForLayerTree() const {
return getDrawingState().frameRateForLayerTree;
}
bool Layer::isHiddenByPolicy() const {
const State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
if (parent != nullptr && parent->isHiddenByPolicy()) {
return true;
}
if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
if (zOrderRelativeOf->isHiddenByPolicy()) {
return true;
}
}
}
if (CC_UNLIKELY(!isTransformValid())) {
ALOGW("Hide layer %s because it has invalid transformation.", getDebugName());
return true;
}
return s.flags & layer_state_t::eLayerHidden;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
if (mPotentialCursor) {
usage |= GraphicBuffer::USAGE_CURSOR;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::skipReportingTransformHint() {
mSkipReportingTransformHint = true;
}
void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) {
if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) {
transformHint = ui::Transform::ROT_0;
}
setTransformHintLegacy(transformHint);
}
// ----------------------------------------------------------------------------
// debugging
// ----------------------------------------------------------------------------
// TODO(marissaw): add new layer state info to layer debugging
gui::LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const {
using namespace std::string_literals;
gui::LayerDebugInfo info;
const State& ds = getDrawingState();
info.mName = getName();
sp<Layer> parent = mDrawingParent.promote();
info.mParentName = parent ? parent->getName() : "none"s;
info.mType = getType();
info.mVisibleRegion = getVisibleRegion(display);
info.mSurfaceDamageRegion = surfaceDamageRegion;
info.mLayerStack = getLayerStack().id;
info.mX = ds.transform.tx();
info.mY = ds.transform.ty();
info.mZ = ds.z;
info.mCrop = ds.crop;
info.mColor = ds.color;
info.mFlags = ds.flags;
info.mPixelFormat = getPixelFormat();
info.mDataSpace = static_cast<android_dataspace>(getDataSpace());
info.mMatrix[0][0] = ds.transform[0][0];
info.mMatrix[0][1] = ds.transform[0][1];
info.mMatrix[1][0] = ds.transform[1][0];
info.mMatrix[1][1] = ds.transform[1][1];
{
sp<const GraphicBuffer> buffer = getBuffer();
if (buffer != 0) {
info.mActiveBufferWidth = buffer->getWidth();
info.mActiveBufferHeight = buffer->getHeight();
info.mActiveBufferStride = buffer->getStride();
info.mActiveBufferFormat = buffer->format;
} else {
info.mActiveBufferWidth = 0;
info.mActiveBufferHeight = 0;
info.mActiveBufferStride = 0;
info.mActiveBufferFormat = 0;
}
}
info.mNumQueuedFrames = getQueuedFrameCount();
info.mIsOpaque = isOpaque(ds);
info.mContentDirty = contentDirty;
info.mStretchEffect = getStretchEffect();
return info;
}
void Layer::miniDumpHeader(std::string& result) {
result.append(kDumpTableRowLength, '-');
result.append("\n");
result.append(" Layer name\n");
result.append(" Z | ");
result.append(" Window Type | ");
result.append(" Comp Type | ");
result.append(" Transform | ");
result.append(" Disp Frame (LTRB) | ");
result.append(" Source Crop (LTRB) | ");
result.append(" Frame Rate (Explicit) (Seamlessness) [Focused]\n");
result.append(kDumpTableRowLength, '-');
result.append("\n");
}
void Layer::miniDumpLegacy(std::string& result, const DisplayDevice& display) const {
const auto outputLayer = findOutputLayerForDisplay(&display);
if (!outputLayer) {
return;
}
std::string name;
if (mName.length() > 77) {
std::string shortened;
shortened.append(mName, 0, 36);
shortened.append("[...]");
shortened.append(mName, mName.length() - 36);
name = std::move(shortened);
} else {
name = mName;
}
StringAppendF(&result, " %s\n", name.c_str());
const State& layerState(getDrawingState());
const auto& outputLayerState = outputLayer->getState();
if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
StringAppendF(&result, " rel %6d | ", layerState.z);
} else {
StringAppendF(&result, " %10d | ", layerState.z);
}
StringAppendF(&result, " %10d | ", mWindowType);
StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str());
StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str());
const Rect& frame = outputLayerState.displayFrame;
StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = outputLayerState.sourceCrop;
StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right,
crop.bottom);
const auto frameRate = getFrameRateForLayerTree();
if (frameRate.vote.rate.isValid() || frameRate.vote.type != FrameRateCompatibility::Default) {
StringAppendF(&result, "%s %15s %17s", to_string(frameRate.vote.rate).c_str(),
ftl::enum_string(frameRate.vote.type).c_str(),
ftl::enum_string(frameRate.vote.seamlessness).c_str());
} else {
result.append(41, ' ');
}
const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority());
StringAppendF(&result, " [%s]\n", focused ? "*" : " ");
result.append(kDumpTableRowLength, '-');
result.append("\n");
}
void Layer::miniDump(std::string& result, const frontend::LayerSnapshot& snapshot,
const DisplayDevice& display) const {
const auto outputLayer = findOutputLayerForDisplay(&display, snapshot.path);
if (!outputLayer) {
return;
}
StringAppendF(&result, " %s\n", snapshot.debugName.c_str());
StringAppendF(&result, " %10zu | ", snapshot.globalZ);
StringAppendF(&result, " %10d | ",
snapshot.layerMetadata.getInt32(gui::METADATA_WINDOW_TYPE, 0));
StringAppendF(&result, "%10s | ", toString(getCompositionType(outputLayer)).c_str());
const auto& outputLayerState = outputLayer->getState();
StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str());
const Rect& frame = outputLayerState.displayFrame;
StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = outputLayerState.sourceCrop;
StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right,
crop.bottom);
const auto frameRate = snapshot.frameRate;
std::string frameRateStr;
if (frameRate.vote.rate.isValid()) {
StringAppendF(&frameRateStr, "%.2f", frameRate.vote.rate.getValue());
}
if (frameRate.vote.rate.isValid() || frameRate.vote.type != FrameRateCompatibility::Default) {
StringAppendF(&result, "%6s %15s %17s", frameRateStr.c_str(),
ftl::enum_string(frameRate.vote.type).c_str(),
ftl::enum_string(frameRate.vote.seamlessness).c_str());
} else if (frameRate.category != FrameRateCategory::Default) {
StringAppendF(&result, "%6s %15s %17s", frameRateStr.c_str(),
(std::string("Cat::") + ftl::enum_string(frameRate.category)).c_str(),
ftl::enum_string(frameRate.vote.seamlessness).c_str());
} else {
result.append(41, ' ');
}
const auto focused = isLayerFocusedBasedOnPriority(snapshot.frameRateSelectionPriority);
StringAppendF(&result, " [%s]\n", focused ? "*" : " ");
result.append(kDumpTableRowLength, '-');
result.append("\n");
}
void Layer::dumpFrameStats(std::string& result) const {
mFrameTracker.dumpStats(result);
}
void Layer::clearFrameStats() {
mFrameTracker.clearStats();
}
void Layer::logFrameStats() {
mFrameTracker.logAndResetStats(mName);
}
void Layer::getFrameStats(FrameStats* outStats) const {
mFrameTracker.getStats(outStats);
}
void Layer::dumpOffscreenDebugInfo(std::string& result) const {
std::string hasBuffer = hasBufferOrSidebandStream() ? " (contains buffer)" : "";
StringAppendF(&result, "Layer %s%s pid:%d uid:%d%s\n", getName().c_str(), hasBuffer.c_str(),
mOwnerPid, mOwnerUid, isHandleAlive() ? " handleAlive" : "");
}
void Layer::onDisconnect() {
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
size_t Layer::getDescendantCount() const {
size_t count = 0;
for (const sp<Layer>& child : mDrawingChildren) {
count += 1 + child->getChildrenCount();
}
return count;
}
void Layer::setGameModeForTree(GameMode gameMode) {
const auto& currentState = getDrawingState();
if (currentState.metadata.has(gui::METADATA_GAME_MODE)) {
gameMode =
static_cast<GameMode>(currentState.metadata.getInt32(gui::METADATA_GAME_MODE, 0));
}
setGameMode(gameMode);
for (const sp<Layer>& child : mCurrentChildren) {
child->setGameModeForTree(gameMode);
}
}
void Layer::addChild(const sp<Layer>& layer) {
mFlinger->mSomeChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
mCurrentChildren.add(layer);
layer->setParent(sp<Layer>::fromExisting(this));
layer->setGameModeForTree(mGameMode);
updateTreeHasFrameRateVote();
}
ssize_t Layer::removeChild(const sp<Layer>& layer) {
mFlinger->mSomeChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
layer->setParent(nullptr);
const auto removeResult = mCurrentChildren.remove(layer);
updateTreeHasFrameRateVote();
layer->setGameModeForTree(GameMode::Unsupported);
layer->updateTreeHasFrameRateVote();
return removeResult;
}
void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
for (const sp<Layer>& child : mDrawingChildren) {
child->mDrawingParent = newParent;
const float parentShadowRadius =
newParent->canDrawShadows() ? 0.f : newParent->mEffectiveShadowRadius;
child->computeBounds(newParent->mBounds, newParent->mEffectiveTransform,
parentShadowRadius);
}
}
bool Layer::reparent(const sp<IBinder>& newParentHandle) {
sp<Layer> newParent;
if (newParentHandle != nullptr) {
newParent = LayerHandle::getLayer(newParentHandle);
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
if (newParent == this) {
ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
return false;
}
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
parent->removeChild(sp<Layer>::fromExisting(this));
}
if (newParentHandle != nullptr) {
newParent->addChild(sp<Layer>::fromExisting(this));
if (!newParent->isRemovedFromCurrentState()) {
addToCurrentState();
} else {
onRemovedFromCurrentState();
}
} else {
onRemovedFromCurrentState();
}
return true;
}
bool Layer::setColorTransform(const mat4& matrix) {
static const mat4 identityMatrix = mat4();
if (mDrawingState.colorTransform == matrix) {
return false;
}
++mDrawingState.sequence;
mDrawingState.colorTransform = matrix;
mDrawingState.hasColorTransform = matrix != identityMatrix;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
mat4 Layer::getColorTransform() const {
mat4 colorTransform = mat4(getDrawingState().colorTransform);
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
colorTransform = parent->getColorTransform() * colorTransform;
}
return colorTransform;
}
bool Layer::hasColorTransform() const {
bool hasColorTransform = getDrawingState().hasColorTransform;
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
hasColorTransform = hasColorTransform || parent->hasColorTransform();
}
return hasColorTransform;
}
bool Layer::isLegacyDataSpace() const {
// return true when no higher bits are set
return !(getDataSpace() &
(ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK |
ui::Dataspace::RANGE_MASK));
}
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
int32_t Layer::getZ(LayerVector::StateSet) const {
return mDrawingState.z;
}
bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mDrawingState;
return state.isRelativeOf;
}
__attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mDrawingState;
if (state.zOrderRelatives.size() == 0) {
*outSkipRelativeZUsers = true;
return children;
}
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
if (child->usingRelativeZ(stateSet)) {
continue;
}
traverse.add(child);
}
return traverse;
}
/**
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
// In the case we have other layers who are using a relative Z to us, makeTraversalList will
// produce a new list for traversing, including our relatives, and not including our children
// who are relatives of another surface. In the case that there are no relative Z,
// makeTraversalList returns our children directly to avoid significant overhead.
// However in this case we need to take the responsibility for filtering children which
// are relatives of another surface here.
bool skipRelativeZUsers = false;
const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInZOrder(stateSet, visitor);
}
}
/**
* Positively signed relatives are before 'this' in reverse Z-order.
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
// See traverseInZOrder for documentation.
bool skipRelativeZUsers = false;
LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
int32_t i = 0;
for (i = int32_t(list.size()) - 1; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
for (; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) {
visitor(this);
const LayerVector& children =
state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren;
for (const sp<Layer>& child : children) {
child->traverse(state, visitor);
}
}
void Layer::traverseChildren(const LayerVector::Visitor& visitor) {
for (const sp<Layer>& child : mDrawingChildren) {
visitor(child.get());
}
}
LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mDrawingState;
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
// Only add relative layers that are also descendents of the top most parent of the tree.
// If a relative layer is not a descendent, then it should be ignored.
if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
const State& childState = useDrawing ? child->mDrawingState : child->mDrawingState;
// If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
// descendent of the top most parent of the tree. If it's not a descendent, then just add
// the child here since it won't be added later as a relative.
if (std::binary_search(layersInTree.begin(), layersInTree.end(),
childState.zOrderRelativeOf.promote().get())) {
continue;
}
traverse.add(child);
}
return traverse;
}
void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
}
std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
std::vector<Layer*> layersInTree = {this};
for (size_t i = 0; i < children.size(); i++) {
const auto& child = children[i];
std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
}
return layersInTree;
}
void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
std::sort(layersInTree.begin(), layersInTree.end());
traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
ui::Transform Layer::getTransform() const {
return mEffectiveTransform;
}
bool Layer::isTransformValid() const {
float transformDet = getTransform().det();
return transformDet != 0 && !isinf(transformDet) && !isnan(transformDet);
}
half Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().color.a;
}
ui::Transform::RotationFlags Layer::getFixedTransformHint() const {
ui::Transform::RotationFlags fixedTransformHint = mDrawingState.fixedTransformHint;
if (fixedTransformHint != ui::Transform::ROT_INVALID) {
return fixedTransformHint;
}
const auto& p = mCurrentParent.promote();
if (!p) return fixedTransformHint;
return p->getFixedTransformHint();
}
half4 Layer::getColor() const {
const half4 color(getDrawingState().color);
return half4(color.r, color.g, color.b, getAlpha());
}
int32_t Layer::getBackgroundBlurRadius() const {
if (getDrawingState().backgroundBlurRadius == 0) {
return 0;
}
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().backgroundBlurRadius;
}
const std::vector<BlurRegion> Layer::getBlurRegions() const {
auto regionsCopy(getDrawingState().blurRegions);
float layerAlpha = getAlpha();
for (auto& region : regionsCopy) {
region.alpha = region.alpha * layerAlpha;
}
return regionsCopy;
}
RoundedCornerState Layer::getRoundedCornerState() const {
// Today's DPUs cannot do rounded corners. If RenderEngine cannot render
// protected content, remove rounded corners from protected content so it
// can be rendered by the DPU.
if (isProtected() && !mFlinger->getRenderEngine().supportsProtectedContent()) {
return {};
}
// Get parent settings
RoundedCornerState parentSettings;
const auto& parent = mDrawingParent.promote();
if (parent != nullptr) {
parentSettings = parent->getRoundedCornerState();
if (parentSettings.hasRoundedCorners()) {
ui::Transform t = getActiveTransform(getDrawingState());
t = t.inverse();
parentSettings.cropRect = t.transform(parentSettings.cropRect);
parentSettings.radius.x *= t.getScaleX();
parentSettings.radius.y *= t.getScaleY();
}
}
// Get layer settings
Rect layerCropRect = getCroppedBufferSize(getDrawingState());
const vec2 radius(getDrawingState().cornerRadius, getDrawingState().cornerRadius);
RoundedCornerState layerSettings(layerCropRect.toFloatRect(), radius);
const bool layerSettingsValid = layerSettings.hasRoundedCorners() && layerCropRect.isValid();
if (layerSettingsValid && parentSettings.hasRoundedCorners()) {
// If the parent and the layer have rounded corner settings, use the parent settings if the
// parent crop is entirely inside the layer crop.
// This has limitations and cause rendering artifacts. See b/200300845 for correct fix.
if (parentSettings.cropRect.left > layerCropRect.left &&
parentSettings.cropRect.top > layerCropRect.top &&
parentSettings.cropRect.right < layerCropRect.right &&
parentSettings.cropRect.bottom < layerCropRect.bottom) {
return parentSettings;
} else {
return layerSettings;
}
} else if (layerSettingsValid) {
return layerSettings;
} else if (parentSettings.hasRoundedCorners()) {
return parentSettings;
}
return {};
}
bool Layer::findInHierarchy(const sp<Layer>& l) {
if (l == this) {
return true;
}
for (auto& child : mDrawingChildren) {
if (child->findInHierarchy(l)) {
return true;
}
}
return false;
}
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
const auto& child = mCurrentChildren[i];
child->commitChildList();
}
mDrawingChildren = mCurrentChildren;
mDrawingParent = mCurrentParent;
if (CC_UNLIKELY(usingRelativeZ(LayerVector::StateSet::Drawing))) {
auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
if (zOrderRelativeOf == nullptr) return;
if (findInHierarchy(zOrderRelativeOf)) {
ALOGE("Detected Z ordering loop between %s and %s", mName.c_str(),
zOrderRelativeOf->mName.c_str());
ALOGE("Severing rel Z loop, potentially dangerous");
mDrawingState.isRelativeOf = false;
zOrderRelativeOf->removeZOrderRelative(wp<Layer>::fromExisting(this));
}
}
}
void Layer::setInputInfo(const WindowInfo& info) {
mDrawingState.inputInfo = info;
mDrawingState.touchableRegionCrop =
LayerHandle::getLayer(info.touchableRegionCropHandle.promote());
mDrawingState.modified = true;
mFlinger->mUpdateInputInfo = true;
setTransactionFlags(eTransactionNeeded);
}
perfetto::protos::LayerProto* Layer::writeToProto(perfetto::protos::LayersProto& layersProto,
uint32_t traceFlags) {
perfetto::protos::LayerProto* layerProto = layersProto.add_layers();
writeToProtoDrawingState(layerProto);
writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags);
if (traceFlags & LayerTracing::TRACE_COMPOSITION) {
ui::LayerStack layerStack =
(mSnapshot) ? mSnapshot->outputFilter.layerStack : ui::INVALID_LAYER_STACK;
writeCompositionStateToProto(layerProto, layerStack);
}
for (const sp<Layer>& layer : mDrawingChildren) {
layer->writeToProto(layersProto, traceFlags);
}
return layerProto;
}
void Layer::writeCompositionStateToProto(perfetto::protos::LayerProto* layerProto,
ui::LayerStack layerStack) {
ftl::FakeGuard guard(mFlinger->mStateLock); // Called from the main thread.
ftl::FakeGuard mainThreadGuard(kMainThreadContext);
// Only populate for the primary display.
if (const auto display = mFlinger->getDisplayFromLayerStack(layerStack)) {
const auto compositionType = getCompositionType(*display);
layerProto->set_hwc_composition_type(
static_cast<perfetto::protos::HwcCompositionType>(compositionType));
LayerProtoHelper::writeToProto(getVisibleRegion(display),
[&]() { return layerProto->mutable_visible_region(); });
}
}
void Layer::writeToProtoDrawingState(perfetto::protos::LayerProto* layerInfo) {
const ui::Transform transform = getTransform();
auto buffer = getExternalTexture();
if (buffer != nullptr) {
LayerProtoHelper::writeToProto(*buffer,
[&]() { return layerInfo->mutable_active_buffer(); });
LayerProtoHelper::writeToProtoDeprecated(ui::Transform(getBufferTransform()),
layerInfo->mutable_buffer_transform());
}
layerInfo->set_invalidate(contentDirty);
layerInfo->set_is_protected(isProtected());
layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace())));
layerInfo->set_queued_frames(getQueuedFrameCount());
layerInfo->set_curr_frame(mCurrentFrameNumber);
layerInfo->set_requested_corner_radius(getDrawingState().cornerRadius);
layerInfo->set_corner_radius(
(getRoundedCornerState().radius.x + getRoundedCornerState().radius.y) / 2.0);
layerInfo->set_background_blur_radius(getBackgroundBlurRadius());
layerInfo->set_is_trusted_overlay(isTrustedOverlay());
LayerProtoHelper::writeToProtoDeprecated(transform, layerInfo->mutable_transform());
LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
[&]() { return layerInfo->mutable_position(); });
LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
LayerProtoHelper::writeToProto(surfaceDamageRegion,
[&]() { return layerInfo->mutable_damage_region(); });
if (hasColorTransform()) {
LayerProtoHelper::writeToProto(getColorTransform(), layerInfo->mutable_color_transform());
}
LayerProtoHelper::writeToProto(mSourceBounds,
[&]() { return layerInfo->mutable_source_bounds(); });
LayerProtoHelper::writeToProto(mScreenBounds,
[&]() { return layerInfo->mutable_screen_bounds(); });
LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect,
[&]() { return layerInfo->mutable_corner_radius_crop(); });
layerInfo->set_shadow_radius(mEffectiveShadowRadius);
}
void Layer::writeToProtoCommonState(perfetto::protos::LayerProto* layerInfo,
LayerVector::StateSet stateSet, uint32_t traceFlags) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mDrawingState;
ui::Transform requestedTransform = state.transform;
layerInfo->set_id(sequence);
layerInfo->set_name(getName().c_str());
layerInfo->set_type(getType());
for (const auto& child : children) {
layerInfo->add_children(child->sequence);
}
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
layerInfo->add_relatives(strongRelative->sequence);
}
}
LayerProtoHelper::writeToProto(state.transparentRegionHint,
[&]() { return layerInfo->mutable_transparent_region(); });
layerInfo->set_layer_stack(getLayerStack().id);
layerInfo->set_z(state.z);
LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(), [&]() {
return layerInfo->mutable_requested_position();
});
LayerProtoHelper::writeToProto(state.crop, [&]() { return layerInfo->mutable_crop(); });
layerInfo->set_is_opaque(isOpaque(state));
layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
LayerProtoHelper::writeToProto(state.color,
[&]() { return layerInfo->mutable_requested_color(); });
layerInfo->set_flags(state.flags);
LayerProtoHelper::writeToProtoDeprecated(requestedTransform,
layerInfo->mutable_requested_transform());
auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
if (parent != nullptr) {
layerInfo->set_parent(parent->sequence);
}
auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
}
layerInfo->set_is_relative_of(state.isRelativeOf);
layerInfo->set_owner_uid(mOwnerUid);
if ((traceFlags & LayerTracing::TRACE_INPUT) && needsInputInfo()) {
WindowInfo info;
if (useDrawing) {
info = fillInputInfo(
InputDisplayArgs{.transform = &kIdentityTransform, .isSecure = true});
} else {
info = state.inputInfo;
}
LayerProtoHelper::writeToProto(info, state.touchableRegionCrop,
[&]() { return layerInfo->mutable_input_window_info(); });
}
if (traceFlags & LayerTracing::TRACE_EXTRA) {
auto protoMap = layerInfo->mutable_metadata();
for (const auto& entry : state.metadata.mMap) {
(*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
}
}
LayerProtoHelper::writeToProto(state.destinationFrame,
[&]() { return layerInfo->mutable_destination_frame(); });
}
bool Layer::isRemovedFromCurrentState() const {
return mRemovedFromDrawingState;
}
// Applies the given transform to the region, while protecting against overflows caused by any
// offsets. If applying the offset in the transform to any of the Rects in the region would result
// in an overflow, they are not added to the output Region.
static Region transformTouchableRegionSafely(const ui::Transform& t, const Region& r,
const std::string& debugWindowName) {
// Round the translation using the same rounding strategy used by ui::Transform.
const auto tx = static_cast<int32_t>(t.tx() + 0.5);
const auto ty = static_cast<int32_t>(t.ty() + 0.5);
ui::Transform transformWithoutOffset = t;
transformWithoutOffset.set(0.f, 0.f);
const Region transformed = transformWithoutOffset.transform(r);
// Apply the translation to each of the Rects in the region while discarding any that overflow.
Region ret;
for (const auto& rect : transformed) {
Rect newRect;
if (__builtin_add_overflow(rect.left, tx, &newRect.left) ||
__builtin_add_overflow(rect.top, ty, &newRect.top) ||
__builtin_add_overflow(rect.right, tx, &newRect.right) ||
__builtin_add_overflow(rect.bottom, ty, &newRect.bottom)) {
ALOGE("Applying transform to touchable region of window '%s' resulted in an overflow.",
debugWindowName.c_str());
continue;
}
ret.orSelf(newRect);
}
return ret;
}
void Layer::fillInputFrameInfo(WindowInfo& info, const ui::Transform& screenToDisplay) {
auto [inputBounds, inputBoundsValid] = getInputBounds(/*fillParentBounds=*/false);
if (!inputBoundsValid) {
info.touchableRegion.clear();
}
info.frame = getInputBoundsInDisplaySpace(inputBounds, screenToDisplay);
ui::Transform inputToLayer;
inputToLayer.set(inputBounds.left, inputBounds.top);
const ui::Transform layerToScreen = getInputTransform();
const ui::Transform inputToDisplay = screenToDisplay * layerToScreen * inputToLayer;
// InputDispatcher expects a display-to-input transform.
info.transform = inputToDisplay.inverse();
// The touchable region is specified in the input coordinate space. Change it to display space.
info.touchableRegion =
transformTouchableRegionSafely(inputToDisplay, info.touchableRegion, mName);
}
void Layer::fillTouchOcclusionMode(WindowInfo& info) {
sp<Layer> p = sp<Layer>::fromExisting(this);
while (p != nullptr && !p->hasInputInfo()) {
p = p->mDrawingParent.promote();
}
if (p != nullptr) {
info.touchOcclusionMode = p->mDrawingState.inputInfo.touchOcclusionMode;
}
}
gui::DropInputMode Layer::getDropInputMode() const {
gui::DropInputMode mode = mDrawingState.dropInputMode;
if (mode == gui::DropInputMode::ALL) {
return mode;
}
sp<Layer> parent = mDrawingParent.promote();
if (parent) {
gui::DropInputMode parentMode = parent->getDropInputMode();
if (parentMode != gui::DropInputMode::NONE) {
return parentMode;
}
}
return mode;
}
void Layer::handleDropInputMode(gui::WindowInfo& info) const {
if (mDrawingState.inputInfo.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL)) {
return;
}
// Check if we need to drop input unconditionally
gui::DropInputMode dropInputMode = getDropInputMode();
if (dropInputMode == gui::DropInputMode::ALL) {
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT;
ALOGV("Dropping input for %s as requested by policy.", getDebugName());
return;
}
// Check if we need to check if the window is obscured by parent
if (dropInputMode != gui::DropInputMode::OBSCURED) {
return;
}
// Check if the parent has set an alpha on the layer
sp<Layer> parent = mDrawingParent.promote();
if (parent && parent->getAlpha() != 1.0_hf) {
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT;
ALOGV("Dropping input for %s as requested by policy because alpha=%f", getDebugName(),
static_cast<float>(getAlpha()));
}
// Check if the parent has cropped the buffer
Rect bufferSize = getCroppedBufferSize(getDrawingState());
if (!bufferSize.isValid()) {
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED;
return;
}
// Screenbounds are the layer bounds cropped by parents, transformed to screenspace.
// To check if the layer has been cropped, we take the buffer bounds, apply the local
// layer crop and apply the same set of transforms to move to screenspace. If the bounds
// match then the layer has not been cropped by its parents.
Rect bufferInScreenSpace(getTransform().transform(bufferSize));
bool croppedByParent = bufferInScreenSpace != Rect{mScreenBounds};
if (croppedByParent) {
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT;
ALOGV("Dropping input for %s as requested by policy because buffer is cropped by parent",
getDebugName());
} else {
// If the layer is not obscured by its parents (by setting an alpha or crop), then only drop
// input if the window is obscured. This check should be done in surfaceflinger but the
// logic currently resides in inputflinger. So pass the if_obscured check to input to only
// drop input events if the window is obscured.
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED;
}
}
WindowInfo Layer::fillInputInfo(const InputDisplayArgs& displayArgs) {
if (!hasInputInfo()) {
mDrawingState.inputInfo.name = getName();
mDrawingState.inputInfo.ownerUid = gui::Uid{mOwnerUid};
mDrawingState.inputInfo.ownerPid = gui::Pid{mOwnerPid};
mDrawingState.inputInfo.inputConfig |= WindowInfo::InputConfig::NO_INPUT_CHANNEL;
mDrawingState.inputInfo.displayId = getLayerStack().id;
}
const ui::Transform& displayTransform =
displayArgs.transform != nullptr ? *displayArgs.transform : kIdentityTransform;
WindowInfo info = mDrawingState.inputInfo;
info.id = sequence;
info.displayId = getLayerStack().id;
fillInputFrameInfo(info, displayTransform);
if (displayArgs.transform == nullptr) {
// Do not let the window receive touches if it is not associated with a valid display
// transform. We still allow the window to receive keys and prevent ANRs.
info.inputConfig |= WindowInfo::InputConfig::NOT_TOUCHABLE;
}
info.setInputConfig(WindowInfo::InputConfig::NOT_VISIBLE, !isVisibleForInput());
info.alpha = getAlpha();
fillTouchOcclusionMode(info);
handleDropInputMode(info);
// If the window will be blacked out on a display because the display does not have the secure
// flag and the layer has the secure flag set, then drop input.
if (!displayArgs.isSecure && isSecure()) {
info.inputConfig |= WindowInfo::InputConfig::DROP_INPUT;
}
sp<Layer> cropLayer = mDrawingState.touchableRegionCrop.promote();
if (info.replaceTouchableRegionWithCrop) {
Rect inputBoundsInDisplaySpace;
if (!cropLayer) {
FloatRect inputBounds = getInputBounds(/*fillParentBounds=*/true).first;
inputBoundsInDisplaySpace = getInputBoundsInDisplaySpace(inputBounds, displayTransform);
} else {
FloatRect inputBounds = cropLayer->getInputBounds(/*fillParentBounds=*/true).first;
inputBoundsInDisplaySpace =
cropLayer->getInputBoundsInDisplaySpace(inputBounds, displayTransform);
}
info.touchableRegion = Region(inputBoundsInDisplaySpace);
} else if (cropLayer != nullptr) {
FloatRect inputBounds = cropLayer->getInputBounds(/*fillParentBounds=*/true).first;
Rect inputBoundsInDisplaySpace =
cropLayer->getInputBoundsInDisplaySpace(inputBounds, displayTransform);
info.touchableRegion = info.touchableRegion.intersect(inputBoundsInDisplaySpace);
}
// Inherit the trusted state from the parent hierarchy, but don't clobber the trusted state
// if it was set by WM for a known system overlay
if (isTrustedOverlay()) {
info.inputConfig |= WindowInfo::InputConfig::TRUSTED_OVERLAY;
}
// If the layer is a clone, we need to crop the input region to cloned root to prevent
// touches from going outside the cloned area.
if (isClone()) {
info.inputConfig |= WindowInfo::InputConfig::CLONE;
if (const sp<Layer> clonedRoot = getClonedRoot()) {
const Rect rect = displayTransform.transform(Rect{clonedRoot->mScreenBounds});
info.touchableRegion = info.touchableRegion.intersect(rect);
}
}
Rect bufferSize = getBufferSize(getDrawingState());
info.contentSize = Size(bufferSize.width(), bufferSize.height());
return info;
}
Rect Layer::getInputBoundsInDisplaySpace(const FloatRect& inputBounds,
const ui::Transform& screenToDisplay) {
// InputDispatcher works in the display device's coordinate space. Here, we calculate the
// frame and transform used for the layer, which determines the bounds and the coordinate space
// within which the layer will receive input.
// Coordinate space definitions:
// - display: The display device's coordinate space. Correlates to pixels on the display.
// - screen: The post-rotation coordinate space for the display, a.k.a. logical display space.
// - layer: The coordinate space of this layer.
// - input: The coordinate space in which this layer will receive input events. This could be
// different than layer space if a surfaceInset is used, which changes the origin
// of the input space.
// Crop the input bounds to ensure it is within the parent's bounds.
const FloatRect croppedInputBounds = mBounds.intersect(inputBounds);
const ui::Transform layerToScreen = getInputTransform();
const ui::Transform layerToDisplay = screenToDisplay * layerToScreen;
return Rect{layerToDisplay.transform(croppedInputBounds)};
}
sp<Layer> Layer::getClonedRoot() {
if (mClonedChild != nullptr) {
return sp<Layer>::fromExisting(this);
}
if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) {
return nullptr;
}
return mDrawingParent.promote()->getClonedRoot();
}
bool Layer::hasInputInfo() const {
return mDrawingState.inputInfo.token != nullptr ||
mDrawingState.inputInfo.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
}
compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
const DisplayDevice* display) const {
if (!display) return nullptr;
if (!mFlinger->mLayerLifecycleManagerEnabled) {
return display->getCompositionDisplay()->getOutputLayerForLayer(
getCompositionEngineLayerFE());
}
sp<LayerFE> layerFE;
frontend::LayerHierarchy::TraversalPath path{.id = static_cast<uint32_t>(sequence)};
for (auto& [p, layer] : mLayerFEs) {
if (p == path) {
layerFE = layer;
}
}
if (!layerFE) return nullptr;
return display->getCompositionDisplay()->getOutputLayerForLayer(layerFE);
}
compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
const DisplayDevice* display, const frontend::LayerHierarchy::TraversalPath& path) const {
if (!display) return nullptr;
if (!mFlinger->mLayerLifecycleManagerEnabled) {
return display->getCompositionDisplay()->getOutputLayerForLayer(
getCompositionEngineLayerFE());
}
sp<LayerFE> layerFE;
for (auto& [p, layer] : mLayerFEs) {
if (p == path) {
layerFE = layer;
}
}
if (!layerFE) return nullptr;
return display->getCompositionDisplay()->getOutputLayerForLayer(layerFE);
}
Region Layer::getVisibleRegion(const DisplayDevice* display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
return outputLayer ? outputLayer->getState().visibleRegion : Region();
}
void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom, uint32_t mirrorRootId) {
if (mFlinger->mLayerLifecycleManagerEnabled) return;
mSnapshot->path.id = clonedFrom->getSequence();
mSnapshot->path.mirrorRootIds.emplace_back(mirrorRootId);
cloneDrawingState(clonedFrom.get());
mClonedFrom = clonedFrom;
mPremultipliedAlpha = clonedFrom->mPremultipliedAlpha;
mPotentialCursor = clonedFrom->mPotentialCursor;
mProtectedByApp = clonedFrom->mProtectedByApp;
updateCloneBufferInfo();
}
void Layer::updateCloneBufferInfo() {
if (!isClone() || !isClonedFromAlive()) {
return;
}
sp<Layer> clonedFrom = getClonedFrom();
mBufferInfo = clonedFrom->mBufferInfo;
mSidebandStream = clonedFrom->mSidebandStream;
surfaceDamageRegion = clonedFrom->surfaceDamageRegion;
mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load();
mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber;
// After buffer info is updated, the drawingState from the real layer needs to be copied into
// the cloned. This is because some properties of drawingState can change when latchBuffer is
// called. However, copying the drawingState would also overwrite the cloned layer's relatives
// and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in
// the cloned drawingState again.
wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf;
SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives;
wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop;
WindowInfo tmpInputInfo = mDrawingState.inputInfo;
cloneDrawingState(clonedFrom.get());
mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop;
mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf;
mDrawingState.zOrderRelatives = tmpZOrderRelatives;
mDrawingState.inputInfo = tmpInputInfo;
}
bool Layer::updateMirrorInfo(const std::deque<Layer*>& cloneRootsPendingUpdates) {
if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) {
// If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false,
// it means that there is a clone, but the layer it was cloned from has been destroyed. In
// that case, we want to delete the reference to the clone since we want it to get
// destroyed. The root, this layer, will still be around since the client can continue
// to hold a reference, but no cloned layers will be displayed.
mClonedChild = nullptr;
return true;
}
std::map<sp<Layer>, sp<Layer>> clonedLayersMap;
// If the real layer exists and is in current state, add the clone as a child of the root.
// There's no need to remove from drawingState when the layer is offscreen since currentState is
// copied to drawingState for the root layer. So the clonedChild is always removed from
// drawingState and then needs to be added back each traversal.
if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) {
addChildToDrawing(mClonedChild);
}
mClonedChild->updateClonedDrawingState(clonedLayersMap);
mClonedChild->updateClonedChildren(sp<Layer>::fromExisting(this), clonedLayersMap);
mClonedChild->updateClonedRelatives(clonedLayersMap);
for (Layer* root : cloneRootsPendingUpdates) {
if (clonedLayersMap.find(sp<Layer>::fromExisting(root)) != clonedLayersMap.end()) {
return false;
}
}
return true;
}
void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
// If the layer the clone was cloned from is alive, copy the content of the drawingState
// to the clone. If the real layer is no longer alive, continue traversing the children
// since we may be able to pull out other children that are still alive.
if (isClonedFromAlive()) {
sp<Layer> clonedFrom = getClonedFrom();
cloneDrawingState(clonedFrom.get());
clonedLayersMap.emplace(clonedFrom, sp<Layer>::fromExisting(this));
}
// The clone layer may have children in drawingState since they may have been created and
// added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones
// that already exist, since we can just re-use them.
// The drawingChildren will not get overwritten by the currentChildren since the clones are
// not updated in the regular traversal. They are skipped since the root will lose the
// reference to them when it copies its currentChildren to drawing.
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedDrawingState(clonedLayersMap);
}
}
void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot,
std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
mDrawingChildren.clear();
if (!isClonedFromAlive()) {
return;
}
sp<Layer> clonedFrom = getClonedFrom();
for (sp<Layer>& child : clonedFrom->mDrawingChildren) {
if (child == mirrorRoot) {
// This is to avoid cyclical mirroring.
continue;
}
sp<Layer> clonedChild = clonedLayersMap[child];
if (clonedChild == nullptr) {
clonedChild = child->createClone(mirrorRoot->getSequence());
clonedLayersMap[child] = clonedChild;
}
addChildToDrawing(clonedChild);
clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap);
}
}
void Layer::updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
auto cropLayer = mDrawingState.touchableRegionCrop.promote();
if (cropLayer != nullptr) {
if (clonedLayersMap.count(cropLayer) == 0) {
// Real layer had a crop layer but it's not in the cloned hierarchy. Just set to
// self as crop layer to avoid going outside bounds.
mDrawingState.touchableRegionCrop = wp<Layer>::fromExisting(this);
} else {
const sp<Layer>& clonedCropLayer = clonedLayersMap.at(cropLayer);
mDrawingState.touchableRegionCrop = clonedCropLayer;
}
}
// Cloned layers shouldn't handle watch outside since their z order is not determined by
// WM or the client.
mDrawingState.inputInfo.setInputConfig(WindowInfo::InputConfig::WATCH_OUTSIDE_TOUCH, false);
}
void Layer::updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
mDrawingState.zOrderRelativeOf = wp<Layer>();
mDrawingState.zOrderRelatives.clear();
if (!isClonedFromAlive()) {
return;
}
const sp<Layer>& clonedFrom = getClonedFrom();
for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) {
const sp<Layer>& relative = relativeWeak.promote();
if (clonedLayersMap.count(relative) > 0) {
auto& clonedRelative = clonedLayersMap.at(relative);
mDrawingState.zOrderRelatives.add(clonedRelative);
}
}
// Check if the relativeLayer for the real layer is part of the cloned hierarchy.
// It's possible that the layer it's relative to is outside the requested cloned hierarchy.
// In that case, we treat the layer as if the relativeOf has been removed. This way, it will
// still traverse the children, but the layer with the missing relativeOf will not be shown
// on screen.
const sp<Layer>& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote();
if (clonedLayersMap.count(relativeOf) > 0) {
const sp<Layer>& clonedRelativeOf = clonedLayersMap.at(relativeOf);
mDrawingState.zOrderRelativeOf = clonedRelativeOf;
}
updateClonedInputInfo(clonedLayersMap);
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedRelatives(clonedLayersMap);
}
}
void Layer::addChildToDrawing(const sp<Layer>& layer) {
mDrawingChildren.add(layer);
layer->mDrawingParent = sp<Layer>::fromExisting(this);
}
bool Layer::isInternalDisplayOverlay() const {
const State& s(mDrawingState);
if (s.flags & layer_state_t::eLayerSkipScreenshot) {
return true;
}
sp<Layer> parent = mDrawingParent.promote();
return parent && parent->isInternalDisplayOverlay();
}
void Layer::setClonedChild(const sp<Layer>& clonedChild) {
mClonedChild = clonedChild;
mHadClonedChild = true;
mFlinger->mLayerMirrorRoots.push_back(this);
}
bool Layer::setDropInputMode(gui::DropInputMode mode) {
if (mDrawingState.dropInputMode == mode) {
return false;
}
mDrawingState.dropInputMode = mode;
return true;
}
void Layer::cloneDrawingState(const Layer* from) {
mDrawingState = from->mDrawingState;
// Skip callback info since they are not applicable for cloned layers.
mDrawingState.releaseBufferListener = nullptr;
// TODO (b/238781169) currently broken for mirror layers because we do not
// track release fences for mirror layers composed on other displays
mDrawingState.callbackHandles = {};
}
void Layer::callReleaseBufferCallback(const sp<ITransactionCompletedListener>& listener,
const sp<GraphicBuffer>& buffer, uint64_t framenumber,
const sp<Fence>& releaseFence) {
if (!listener) {
return;
}
ATRACE_FORMAT_INSTANT("callReleaseBufferCallback %s - %" PRIu64, getDebugName(), framenumber);
uint32_t currentMaxAcquiredBufferCount =
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(mOwnerUid);
listener->onReleaseBuffer({buffer->getId(), framenumber},
releaseFence ? releaseFence : Fence::NO_FENCE,
currentMaxAcquiredBufferCount);
}
void Layer::onLayerDisplayed(ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack layerStack) {
// If we are displayed on multiple displays in a single composition cycle then we would
// need to do careful tracking to enable the use of the mLastClientCompositionFence.
// For example we can only use it if all the displays are client comp, and we need
// to merge all the client comp fences. We could do this, but for now we just
// disable the optimization when a layer is composed on multiple displays.
if (mClearClientCompositionFenceOnLayerDisplayed) {
mLastClientCompositionFence = nullptr;
} else {
mClearClientCompositionFenceOnLayerDisplayed = true;
}
// The previous release fence notifies the client that SurfaceFlinger is done with the previous
// buffer that was presented on this layer. The first transaction that came in this frame that
// replaced the previous buffer on this layer needs this release fence, because the fence will
// let the client know when that previous buffer is removed from the screen.
//
// Every other transaction on this layer does not need a release fence because no other
// Transactions that were set on this layer this frame are going to have their preceding buffer
// removed from the display this frame.
//
// For example, if we have 3 transactions this frame. The first transaction doesn't contain a
// buffer so it doesn't need a previous release fence because the layer still needs the previous
// buffer. The second transaction contains a buffer so it needs a previous release fence because
// the previous buffer will be released this frame. The third transaction also contains a
// buffer. It replaces the buffer in the second transaction. The buffer in the second
// transaction will now no longer be presented so it is released immediately and the third
// transaction doesn't need a previous release fence.
sp<CallbackHandle> ch;
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer && mPreviousReleaseBufferEndpoint == handle->listener) {
ch = handle;
break;
}
}
if (ch != nullptr) {
ch->previousReleaseCallbackId = mPreviousReleaseCallbackId;
ch->previousReleaseFences.emplace_back(std::move(futureFenceResult));
ch->name = mName;
}
if (mBufferInfo.mBuffer) {
mPreviouslyPresentedLayerStacks.push_back(layerStack);
}
if (mDrawingState.frameNumber > 0) {
mDrawingState.previousFrameNumber = mDrawingState.frameNumber;
}
}
void Layer::onSurfaceFrameCreated(
const std::shared_ptr<frametimeline::SurfaceFrame>& surfaceFrame) {
while (mPendingJankClassifications.size() >= kPendingClassificationMaxSurfaceFrames) {
// Too many SurfaceFrames pending classification. The front of the deque is probably not
// tracked by FrameTimeline and will never be presented. This will only result in a memory
// leak.
if (hasBufferOrSidebandStreamInDrawing()) {
// Only log for layers with a buffer, since we expect the jank data to be drained for
// these, while there may be no jank listeners for bufferless layers.
ALOGW("Removing the front of pending jank deque from layer - %s to prevent memory leak",
mName.c_str());
std::string miniDump = mPendingJankClassifications.front()->miniDump();
ALOGD("Head SurfaceFrame mini dump\n%s", miniDump.c_str());
}
mPendingJankClassifications.pop_front();
}
mPendingJankClassifications.emplace_back(surfaceFrame);
}
void Layer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
for (const auto& handle : mDrawingState.callbackHandles) {
if (mFlinger->mLayerLifecycleManagerEnabled) {
handle->transformHint = mTransformHint;
} else {
handle->transformHint = mSkipReportingTransformHint
? std::nullopt
: std::make_optional<uint32_t>(mTransformHintLegacy);
}
handle->dequeueReadyTime = dequeueReadyTime;
handle->currentMaxAcquiredBufferCount =
mFlinger->getMaxAcquiredBufferCountForCurrentRefreshRate(mOwnerUid);
ATRACE_FORMAT_INSTANT("releasePendingBuffer %s - %" PRIu64, getDebugName(),
handle->previousReleaseCallbackId.framenumber);
}
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->releasePreviousBuffer && mPreviousReleaseBufferEndpoint == handle->listener) {
handle->previousReleaseCallbackId = mPreviousReleaseCallbackId;
break;
}
}
std::vector<JankData> jankData;
transferAvailableJankData(mDrawingState.callbackHandles, jankData);
mFlinger->getTransactionCallbackInvoker().addCallbackHandles(mDrawingState.callbackHandles,
jankData);
mDrawingState.callbackHandles = {};
}
bool Layer::willPresentCurrentTransaction() const {
// Returns true if the most recent Transaction applied to CurrentState will be presented.
return (getSidebandStreamChanged() || getAutoRefresh() ||
(mDrawingState.modified &&
(mDrawingState.buffer != nullptr || mDrawingState.bgColorLayer != nullptr)));
}
bool Layer::setTransform(uint32_t transform) {
if (mDrawingState.bufferTransform == transform) return false;
mDrawingState.bufferTransform = transform;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransformToDisplayInverse(bool transformToDisplayInverse) {
if (mDrawingState.transformToDisplayInverse == transformToDisplayInverse) return false;
mDrawingState.sequence++;
mDrawingState.transformToDisplayInverse = transformToDisplayInverse;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBufferCrop(const Rect& bufferCrop) {
if (mDrawingState.bufferCrop == bufferCrop) return false;
mDrawingState.sequence++;
mDrawingState.bufferCrop = bufferCrop;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setDestinationFrame(const Rect& destinationFrame) {
if (mDrawingState.destinationFrame == destinationFrame) return false;
mDrawingState.sequence++;
mDrawingState.destinationFrame = destinationFrame;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
// Translate destination frame into scale and position. If a destination frame is not set, use the
// provided scale and position
bool Layer::updateGeometry() {
if ((mDrawingState.flags & layer_state_t::eIgnoreDestinationFrame) ||
mDrawingState.destinationFrame.isEmpty()) {
// If destination frame is not set, use the requested transform set via
// Layer::setPosition and Layer::setMatrix.
return assignTransform(&mDrawingState.transform, mRequestedTransform);
}
Rect destRect = mDrawingState.destinationFrame;
int32_t destW = destRect.width();
int32_t destH = destRect.height();
if (destRect.left < 0) {
destRect.left = 0;
destRect.right = destW;
}
if (destRect.top < 0) {
destRect.top = 0;
destRect.bottom = destH;
}
if (!mDrawingState.buffer) {
ui::Transform t;
t.set(destRect.left, destRect.top);
return assignTransform(&mDrawingState.transform, t);
}
uint32_t bufferWidth = mDrawingState.buffer->getWidth();
uint32_t bufferHeight = mDrawingState.buffer->getHeight();
// Undo any transformations on the buffer.
if (mDrawingState.bufferTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
uint32_t invTransform = SurfaceFlinger::getActiveDisplayRotationFlags();
if (mDrawingState.transformToDisplayInverse) {
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
}
float sx = destW / static_cast<float>(bufferWidth);
float sy = destH / static_cast<float>(bufferHeight);
ui::Transform t;
t.set(sx, 0, 0, sy);
t.set(destRect.left, destRect.top);
return assignTransform(&mDrawingState.transform, t);
}
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
if (mRequestedTransform.dsdx() == matrix.dsdx && mRequestedTransform.dtdy() == matrix.dtdy &&
mRequestedTransform.dtdx() == matrix.dtdx && mRequestedTransform.dsdy() == matrix.dsdy) {
return false;
}
mRequestedTransform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setPosition(float x, float y) {
if (mRequestedTransform.tx() == x && mRequestedTransform.ty() == y) {
return false;
}
mRequestedTransform.set(x, y);
mDrawingState.sequence++;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::releasePreviousBuffer() {
mReleasePreviousBuffer = true;
if (!mBufferInfo.mBuffer ||
(!mDrawingState.buffer->hasSameBuffer(*mBufferInfo.mBuffer) ||
mDrawingState.frameNumber != mBufferInfo.mFrameNumber)) {
// If mDrawingState has a buffer, and we are about to update again
// before swapping to drawing state, then the first buffer will be
// dropped and we should decrement the pending buffer count and
// call any release buffer callbacks if set.
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mDrawingState.buffer->getBuffer(), mDrawingState.frameNumber,
mDrawingState.acquireFence);
decrementPendingBufferCount();
if (mDrawingState.bufferSurfaceFrameTX != nullptr &&
mDrawingState.bufferSurfaceFrameTX->getPresentState() != PresentState::Presented) {
addSurfaceFrameDroppedForBuffer(mDrawingState.bufferSurfaceFrameTX, systemTime());
mDrawingState.bufferSurfaceFrameTX.reset();
}
} else if (EARLY_RELEASE_ENABLED && mLastClientCompositionFence != nullptr) {
callReleaseBufferCallback(mDrawingState.releaseBufferListener,
mDrawingState.buffer->getBuffer(), mDrawingState.frameNumber,
mLastClientCompositionFence);
mLastClientCompositionFence = nullptr;
}
}
void Layer::resetDrawingStateBufferInfo() {
mDrawingState.producerId = 0;
mDrawingState.frameNumber = 0;
mDrawingState.previousFrameNumber = 0;
mDrawingState.releaseBufferListener = nullptr;
mDrawingState.buffer = nullptr;
mDrawingState.acquireFence = sp<Fence>::make(-1);
mDrawingState.acquireFenceTime = std::make_unique<FenceTime>(mDrawingState.acquireFence);
mCallbackHandleAcquireTimeOrFence = mDrawingState.acquireFenceTime->getSignalTime();
mDrawingState.releaseBufferEndpoint = nullptr;
}
bool Layer::setBuffer(std::shared_ptr<renderengine::ExternalTexture>& buffer,
const BufferData& bufferData, nsecs_t postTime, nsecs_t desiredPresentTime,
bool isAutoTimestamp, std::optional<nsecs_t> dequeueTime,
const FrameTimelineInfo& info) {
ATRACE_FORMAT("setBuffer %s - hasBuffer=%s", getDebugName(), (buffer ? "true" : "false"));
const bool frameNumberChanged =
bufferData.flags.test(BufferData::BufferDataChange::frameNumberChanged);
const uint64_t frameNumber =
frameNumberChanged ? bufferData.frameNumber : mDrawingState.frameNumber + 1;
ATRACE_FORMAT_INSTANT("setBuffer %s - %" PRIu64, getDebugName(), frameNumber);
if (mDrawingState.buffer) {
releasePreviousBuffer();
} else if (buffer) {
// if we are latching a buffer for the first time then clear the mLastLatchTime since
// we don't want to incorrectly classify a frame if we miss the desired present time.
updateLastLatchTime(0);
}
mDrawingState.desiredPresentTime = desiredPresentTime;
mDrawingState.isAutoTimestamp = isAutoTimestamp;
mDrawingState.latchedVsyncId = info.vsyncId;
mDrawingState.useVsyncIdForRefreshRateSelection = info.useForRefreshRateSelection;
mDrawingState.modified = true;
if (!buffer) {
resetDrawingStateBufferInfo();
setTransactionFlags(eTransactionNeeded);
mDrawingState.bufferSurfaceFrameTX = nullptr;
setFrameTimelineVsyncForBufferlessTransaction(info, postTime);
return true;
} else {
// release sideband stream if it exists and a non null buffer is being set
if (mDrawingState.sidebandStream != nullptr) {
setSidebandStream(nullptr, info, postTime);
}
}
if ((mDrawingState.producerId > bufferData.producerId) ||
((mDrawingState.producerId == bufferData.producerId) &&
(mDrawingState.frameNumber > frameNumber))) {
ALOGE("Out of order buffers detected for %s producedId=%d frameNumber=%" PRIu64
" -> producedId=%d frameNumber=%" PRIu64,
getDebugName(), mDrawingState.producerId, mDrawingState.frameNumber,
bufferData.producerId, frameNumber);
TransactionTraceWriter::getInstance().invoke("out_of_order_buffers_", /*overwrite=*/false);
}
mDrawingState.producerId = bufferData.producerId;
mDrawingState.barrierProducerId =
std::max(mDrawingState.producerId, mDrawingState.barrierProducerId);
mDrawingState.frameNumber = frameNumber;
mDrawingState.barrierFrameNumber =
std::max(mDrawingState.frameNumber, mDrawingState.barrierFrameNumber);
mDrawingState.releaseBufferListener = bufferData.releaseBufferListener;
mDrawingState.buffer = std::move(buffer);
mDrawingState.acquireFence = bufferData.flags.test(BufferData::BufferDataChange::fenceChanged)
? bufferData.acquireFence
: Fence::NO_FENCE;
mDrawingState.acquireFenceTime = std::make_unique<FenceTime>(mDrawingState.acquireFence);
if (mDrawingState.acquireFenceTime->getSignalTime() == Fence::SIGNAL_TIME_PENDING) {
// We latched this buffer unsiganled, so we need to pass the acquire fence
// on the callback instead of just the acquire time, since it's unknown at
// this point.
mCallbackHandleAcquireTimeOrFence = mDrawingState.acquireFence;
} else {
mCallbackHandleAcquireTimeOrFence = mDrawingState.acquireFenceTime->getSignalTime();
}
setTransactionFlags(eTransactionNeeded);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setPostTime(layerId, mDrawingState.frameNumber, getName().c_str(),
mOwnerUid, postTime, getGameMode());
if (mFlinger->mLegacyFrontEndEnabled) {
recordLayerHistoryBufferUpdate(getLayerProps(), systemTime());
}
setFrameTimelineVsyncForBufferTransaction(info, postTime);
if (dequeueTime && *dequeueTime != 0) {
const uint64_t bufferId = mDrawingState.buffer->getId();
mFlinger->mFrameTracer->traceNewLayer(layerId, getName().c_str());
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, *dequeueTime,
FrameTracer::FrameEvent::DEQUEUE);
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, postTime,
FrameTracer::FrameEvent::QUEUE);
}
mDrawingState.releaseBufferEndpoint = bufferData.releaseBufferEndpoint;
// If the layer had been updated a TextureView, this would make sure the present time could be
// same to TextureView update when it's a small dirty, and get the correct heuristic rate.
if (mFlinger->mScheduler->supportSmallDirtyDetection(mOwnerAppId)) {
if (mDrawingState.useVsyncIdForRefreshRateSelection) {
mUsedVsyncIdForRefreshRateSelection = true;
}
}
return true;
}
void Layer::setDesiredPresentTime(nsecs_t desiredPresentTime, bool isAutoTimestamp) {
mDrawingState.desiredPresentTime = desiredPresentTime;
mDrawingState.isAutoTimestamp = isAutoTimestamp;
}
void Layer::recordLayerHistoryBufferUpdate(const scheduler::LayerProps& layerProps, nsecs_t now) {
ATRACE_CALL();
const nsecs_t presentTime = [&] {
if (!mDrawingState.isAutoTimestamp) {
ATRACE_FORMAT_INSTANT("desiredPresentTime");
return mDrawingState.desiredPresentTime;
}
if (mDrawingState.useVsyncIdForRefreshRateSelection) {
const auto prediction =
mFlinger->mFrameTimeline->getTokenManager()->getPredictionsForToken(
mDrawingState.latchedVsyncId);
if (prediction.has_value()) {
ATRACE_FORMAT_INSTANT("predictedPresentTime");
mMaxTimeForUseVsyncId = prediction->presentTime +
scheduler::LayerHistory::kMaxPeriodForHistory.count();
return prediction->presentTime;
}
}
if (!mFlinger->mScheduler->supportSmallDirtyDetection(mOwnerAppId)) {
return static_cast<nsecs_t>(0);
}
// If the layer is not an application and didn't set an explicit rate or desiredPresentTime,
// return "0" to tell the layer history that it will use the max refresh rate without
// calculating the adaptive rate.
if (mWindowType != WindowInfo::Type::APPLICATION &&
mWindowType != WindowInfo::Type::BASE_APPLICATION) {
return static_cast<nsecs_t>(0);
}
// Return the valid present time only when the layer potentially updated a TextureView so
// LayerHistory could heuristically calculate the rate if the UI is continually updating.
if (mUsedVsyncIdForRefreshRateSelection) {
const auto prediction =
mFlinger->mFrameTimeline->getTokenManager()->getPredictionsForToken(
mDrawingState.latchedVsyncId);
if (prediction.has_value()) {
if (mMaxTimeForUseVsyncId >= prediction->presentTime) {
return prediction->presentTime;
}
mUsedVsyncIdForRefreshRateSelection = false;
}
}
return static_cast<nsecs_t>(0);
}();
if (ATRACE_ENABLED() && presentTime > 0) {
const auto presentIn = TimePoint::fromNs(presentTime) - TimePoint::now();
ATRACE_FORMAT_INSTANT("presentIn %s", to_string(presentIn).c_str());
}
mFlinger->mScheduler->recordLayerHistory(sequence, layerProps, presentTime, now,
scheduler::LayerHistory::LayerUpdateType::Buffer);
}
void Layer::recordLayerHistoryAnimationTx(const scheduler::LayerProps& layerProps, nsecs_t now) {
const nsecs_t presentTime =
mDrawingState.isAutoTimestamp ? 0 : mDrawingState.desiredPresentTime;
mFlinger->mScheduler->recordLayerHistory(sequence, layerProps, presentTime, now,
scheduler::LayerHistory::LayerUpdateType::AnimationTX);
}
bool Layer::setDataspace(ui::Dataspace dataspace) {
if (mDrawingState.dataspace == dataspace) return false;
mDrawingState.dataspace = dataspace;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setExtendedRangeBrightness(float currentBufferRatio, float desiredRatio) {
if (mDrawingState.currentHdrSdrRatio == currentBufferRatio &&
mDrawingState.desiredHdrSdrRatio == desiredRatio)
return false;
mDrawingState.currentHdrSdrRatio = currentBufferRatio;
mDrawingState.desiredHdrSdrRatio = desiredRatio;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCachingHint(gui::CachingHint cachingHint) {
if (mDrawingState.cachingHint == cachingHint) return false;
mDrawingState.cachingHint = cachingHint;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setHdrMetadata(const HdrMetadata& hdrMetadata) {
if (mDrawingState.hdrMetadata == hdrMetadata) return false;
mDrawingState.hdrMetadata = hdrMetadata;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSurfaceDamageRegion(const Region& surfaceDamage) {
if (mDrawingState.surfaceDamageRegion.hasSameRects(surfaceDamage)) return false;
mDrawingState.surfaceDamageRegion = surfaceDamage;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
setIsSmallDirty(surfaceDamage, getTransform());
return true;
}
bool Layer::setApi(int32_t api) {
if (mDrawingState.api == api) return false;
mDrawingState.api = api;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSidebandStream(const sp<NativeHandle>& sidebandStream, const FrameTimelineInfo& info,
nsecs_t postTime) {
if (mDrawingState.sidebandStream == sidebandStream) return false;
if (mDrawingState.sidebandStream != nullptr && sidebandStream == nullptr) {
mFlinger->mTunnelModeEnabledReporter->decrementTunnelModeCount();
} else if (sidebandStream != nullptr) {
mFlinger->mTunnelModeEnabledReporter->incrementTunnelModeCount();
}
mDrawingState.sidebandStream = sidebandStream;
mDrawingState.modified = true;
if (sidebandStream != nullptr && mDrawingState.buffer != nullptr) {
releasePreviousBuffer();
resetDrawingStateBufferInfo();
mDrawingState.bufferSurfaceFrameTX = nullptr;
setFrameTimelineVsyncForBufferlessTransaction(info, postTime);
}
setTransactionFlags(eTransactionNeeded);
if (!mSidebandStreamChanged.exchange(true)) {
// mSidebandStreamChanged was false
mFlinger->onLayerUpdate();
}
return true;
}
bool Layer::setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>>& handles,
bool willPresent) {
// If there is no handle, we will not send a callback so reset mReleasePreviousBuffer and return
if (handles.empty()) {
mReleasePreviousBuffer = false;
return false;
}
std::deque<sp<CallbackHandle>> remainingHandles;
for (const auto& handle : handles) {
// If this transaction set a buffer on this layer, release its previous buffer
handle->releasePreviousBuffer = mReleasePreviousBuffer;
// If this layer will be presented in this frame
if (willPresent) {
// If this transaction set an acquire fence on this layer, set its acquire time
handle->acquireTimeOrFence = mCallbackHandleAcquireTimeOrFence;
handle->frameNumber = mDrawingState.frameNumber;
handle->previousFrameNumber = mDrawingState.previousFrameNumber;
// Store so latched time and release fence can be set
mDrawingState.callbackHandles.push_back(handle);
} else { // If this layer will NOT need to be relatched and presented this frame
// Queue this handle to be notified below.
remainingHandles.push_back(handle);
}
}
if (!remainingHandles.empty()) {
// Notify the transaction completed threads these handles are done. These are only the
// handles that were not added to the mDrawingState, which will be notified later.
std::vector<JankData> jankData;
transferAvailableJankData(remainingHandles, jankData);
mFlinger->getTransactionCallbackInvoker().addCallbackHandles(remainingHandles, jankData);
}
mReleasePreviousBuffer = false;
mCallbackHandleAcquireTimeOrFence = -1;
return willPresent;
}
Rect Layer::getBufferSize(const State& /*s*/) const {
// for buffer state layers we use the display frame size as the buffer size.
if (mBufferInfo.mBuffer == nullptr) {
return Rect::INVALID_RECT;
}
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
// Undo any transformations on the buffer and return the result.
if (mBufferInfo.mTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
if (getTransformToDisplayInverse()) {
uint32_t invTransform = SurfaceFlinger::getActiveDisplayRotationFlags();
if (invTransform & ui::Transform::ROT_90) {
std::swap(bufWidth, bufHeight);
}
}
return Rect(0, 0, static_cast<int32_t>(bufWidth), static_cast<int32_t>(bufHeight));
}
FloatRect Layer::computeSourceBounds(const FloatRect& parentBounds) const {
if (mBufferInfo.mBuffer == nullptr) {
return parentBounds;
}
return getBufferSize(getDrawingState()).toFloatRect();
}
bool Layer::fenceHasSignaled() const {
if (SurfaceFlinger::enableLatchUnsignaledConfig != LatchUnsignaledConfig::Disabled) {
return true;
}
const bool fenceSignaled =
getDrawingState().acquireFence->getStatus() == Fence::Status::Signaled;
if (!fenceSignaled) {
mFlinger->mTimeStats->incrementLatchSkipped(getSequence(),
TimeStats::LatchSkipReason::LateAcquire);
}
return fenceSignaled;
}
void Layer::onPreComposition(nsecs_t refreshStartTime) {
for (const auto& handle : mDrawingState.callbackHandles) {
handle->refreshStartTime = refreshStartTime;
}
}
void Layer::setAutoRefresh(bool autoRefresh) {
mDrawingState.autoRefresh = autoRefresh;
}
bool Layer::latchSidebandStream(bool& recomputeVisibleRegions) {
// We need to update the sideband stream if the layer has both a buffer and a sideband stream.
auto* snapshot = editLayerSnapshot();
snapshot->sidebandStreamHasFrame = hasFrameUpdate() && mSidebandStream.get();
if (mSidebandStreamChanged.exchange(false)) {
const State& s(getDrawingState());
// mSidebandStreamChanged was true
mSidebandStream = s.sidebandStream;
snapshot->sidebandStream = mSidebandStream;
if (mSidebandStream != nullptr) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
return true;
}
return false;
}
bool Layer::hasFrameUpdate() const {
const State& c(getDrawingState());
return (mDrawingStateModified || mDrawingState.modified) &&
(c.buffer != nullptr || c.bgColorLayer != nullptr);
}
void Layer::updateTexImage(nsecs_t latchTime, bool bgColorOnly) {
const State& s(getDrawingState());
if (!s.buffer) {
if (bgColorOnly || mBufferInfo.mBuffer) {
for (auto& handle : mDrawingState.callbackHandles) {
handle->latchTime = latchTime;
}
}
return;
}
for (auto& handle : mDrawingState.callbackHandles) {
if (handle->frameNumber == mDrawingState.frameNumber) {
handle->latchTime = latchTime;
}
}
const int32_t layerId = getSequence();
const uint64_t bufferId = mDrawingState.buffer->getId();
const uint64_t frameNumber = mDrawingState.frameNumber;
const auto acquireFence = std::make_shared<FenceTime>(mDrawingState.acquireFence);
mFlinger->mTimeStats->setAcquireFence(layerId, frameNumber, acquireFence);
mFlinger->mTimeStats->setLatchTime(layerId, frameNumber, latchTime);
mFlinger->mFrameTracer->traceFence(layerId, bufferId, frameNumber, acquireFence,
FrameTracer::FrameEvent::ACQUIRE_FENCE);
mFlinger->mFrameTracer->traceTimestamp(layerId, bufferId, frameNumber, latchTime,
FrameTracer::FrameEvent::LATCH);
auto& bufferSurfaceFrame = mDrawingState.bufferSurfaceFrameTX;
if (bufferSurfaceFrame != nullptr &&
bufferSurfaceFrame->getPresentState() != PresentState::Presented) {
// Update only if the bufferSurfaceFrame wasn't already presented. A Presented
// bufferSurfaceFrame could be seen here if a pending state was applied successfully and we
// are processing the next state.
addSurfaceFramePresentedForBuffer(bufferSurfaceFrame,
mDrawingState.acquireFenceTime->getSignalTime(),
latchTime);
mDrawingState.bufferSurfaceFrameTX.reset();
}
std::deque<sp<CallbackHandle>> remainingHandles;
mFlinger->getTransactionCallbackInvoker()
.addOnCommitCallbackHandles(mDrawingState.callbackHandles, remainingHandles);
mDrawingState.callbackHandles = remainingHandles;
mDrawingStateModified = false;
}
void Layer::gatherBufferInfo() {
mPreviousReleaseCallbackId = {getCurrentBufferId(), mBufferInfo.mFrameNumber};
mPreviousReleaseBufferEndpoint = mBufferInfo.mReleaseBufferEndpoint;
if (!mDrawingState.buffer) {
mBufferInfo = {};
return;
}
if ((!mBufferInfo.mBuffer || !mDrawingState.buffer->hasSameBuffer(*mBufferInfo.mBuffer))) {
decrementPendingBufferCount();
}
mBufferInfo.mBuffer = mDrawingState.buffer;
mBufferInfo.mReleaseBufferEndpoint = mDrawingState.releaseBufferEndpoint;
mBufferInfo.mFence = mDrawingState.acquireFence;
mBufferInfo.mFrameNumber = mDrawingState.frameNumber;
mBufferInfo.mPixelFormat =
!mBufferInfo.mBuffer ? PIXEL_FORMAT_NONE : mBufferInfo.mBuffer->getPixelFormat();
mBufferInfo.mFrameLatencyNeeded = true;
mBufferInfo.mDesiredPresentTime = mDrawingState.desiredPresentTime;
mBufferInfo.mFenceTime = std::make_shared<FenceTime>(mDrawingState.acquireFence);
mBufferInfo.mFence = mDrawingState.acquireFence;
mBufferInfo.mTransform = mDrawingState.bufferTransform;
auto lastDataspace = mBufferInfo.mDataspace;
mBufferInfo.mDataspace = translateDataspace(mDrawingState.dataspace);
if (mBufferInfo.mBuffer != nullptr) {
auto& mapper = GraphicBufferMapper::get();
// TODO: We should measure if it's faster to do a blind write if we're on newer api levels
// and don't need to possibly remaps buffers.
ui::Dataspace dataspace = ui::Dataspace::UNKNOWN;
status_t err = OK;
{
ATRACE_NAME("getDataspace");
err = mapper.getDataspace(mBufferInfo.mBuffer->getBuffer()->handle, &dataspace);
}
if (err != OK || dataspace != mBufferInfo.mDataspace) {
{
ATRACE_NAME("setDataspace");
err = mapper.setDataspace(mBufferInfo.mBuffer->getBuffer()->handle,
static_cast<ui::Dataspace>(mBufferInfo.mDataspace));
}
// Some GPU drivers may cache gralloc metadata which means before we composite we need
// to upsert RenderEngine's caches. Put in a special workaround to be backwards
// compatible with old vendors, with a ticking clock.
static const int32_t kVendorVersion =
base::GetIntProperty("ro.board.api_level", __ANDROID_API_FUTURE__);
if (const auto format =
static_cast<aidl::android::hardware::graphics::common::PixelFormat>(
mBufferInfo.mBuffer->getPixelFormat());
err == OK && kVendorVersion < __ANDROID_API_U__ &&
(format ==
aidl::android::hardware::graphics::common::PixelFormat::
IMPLEMENTATION_DEFINED ||
format == aidl::android::hardware::graphics::common::PixelFormat::YCBCR_420_888 ||
format == aidl::android::hardware::graphics::common::PixelFormat::YV12 ||
format == aidl::android::hardware::graphics::common::PixelFormat::YCBCR_P010)) {
mBufferInfo.mBuffer->remapBuffer();
}
}
}
if (lastDataspace != mBufferInfo.mDataspace) {
mFlinger->mHdrLayerInfoChanged = true;
}
if (mBufferInfo.mDesiredHdrSdrRatio != mDrawingState.desiredHdrSdrRatio) {
mBufferInfo.mDesiredHdrSdrRatio = mDrawingState.desiredHdrSdrRatio;
mFlinger->mHdrLayerInfoChanged = true;
}
mBufferInfo.mCrop = computeBufferCrop(mDrawingState);
mBufferInfo.mScaleMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
mBufferInfo.mSurfaceDamage = mDrawingState.surfaceDamageRegion;
mBufferInfo.mHdrMetadata = mDrawingState.hdrMetadata;
mBufferInfo.mApi = mDrawingState.api;
mBufferInfo.mTransformToDisplayInverse = mDrawingState.transformToDisplayInverse;
}
Rect Layer::computeBufferCrop(const State& s) {
if (s.buffer && !s.bufferCrop.isEmpty()) {
Rect bufferCrop;
s.buffer->getBounds().intersect(s.bufferCrop, &bufferCrop);
return bufferCrop;
} else if (s.buffer) {
return s.buffer->getBounds();
} else {
return s.bufferCrop;
}
}
sp<Layer> Layer::createClone(uint32_t mirrorRootId) {
surfaceflinger::LayerCreationArgs args(mFlinger.get(), nullptr, mName + " (Mirror)", 0,
LayerMetadata());
sp<Layer> layer = mFlinger->getFactory().createBufferStateLayer(args);
layer->setInitialValuesForClone(sp<Layer>::fromExisting(this), mirrorRootId);
return layer;
}
void Layer::decrementPendingBufferCount() {
int32_t pendingBuffers = --mPendingBufferTransactions;
tracePendingBufferCount(pendingBuffers);
}
void Layer::tracePendingBufferCount(int32_t pendingBuffers) {
ATRACE_INT(mBlastTransactionName.c_str(), pendingBuffers);
}
/*
* We don't want to send the layer's transform to input, but rather the
* parent's transform. This is because Layer's transform is
* information about how the buffer is placed on screen. The parent's
* transform makes more sense to send since it's information about how the
* layer is placed on screen. This transform is used by input to determine
* how to go from screen space back to window space.
*/
ui::Transform Layer::getInputTransform() const {
if (!hasBufferOrSidebandStream()) {
return getTransform();
}
sp<Layer> parent = mDrawingParent.promote();
if (parent == nullptr) {
return ui::Transform();
}
return parent->getTransform();
}
/**
* Returns the bounds used to fill the input frame and the touchable region.
*
* Similar to getInputTransform, we need to update the bounds to include the transform.
* This is because bounds don't include the buffer transform, where the input assumes
* that's already included.
*/
std::pair<FloatRect, bool> Layer::getInputBounds(bool fillParentBounds) const {
Rect croppedBufferSize = getCroppedBufferSize(getDrawingState());
FloatRect inputBounds = croppedBufferSize.toFloatRect();
if (hasBufferOrSidebandStream() && croppedBufferSize.isValid() &&
mDrawingState.transform.getType() != ui::Transform::IDENTITY) {
inputBounds = mDrawingState.transform.transform(inputBounds);
}
bool inputBoundsValid = croppedBufferSize.isValid();
if (!inputBoundsValid) {
/**
* Input bounds are based on the layer crop or buffer size. But if we are using
* the layer bounds as the input bounds (replaceTouchableRegionWithCrop flag) then
* we can use the parent bounds as the input bounds if the layer does not have buffer
* or a crop. We want to unify this logic but because of compat reasons we cannot always
* use the parent bounds. A layer without a buffer can get input. So when a window is
* initially added, its touchable region can fill its parent layer bounds and that can
* have negative consequences.
*/
inputBounds = fillParentBounds ? mBounds : FloatRect{};
}
// Clamp surface inset to the input bounds.
const float inset = static_cast<float>(mDrawingState.inputInfo.surfaceInset);
const float xSurfaceInset = std::clamp(inset, 0.f, inputBounds.getWidth() / 2.f);
const float ySurfaceInset = std::clamp(inset, 0.f, inputBounds.getHeight() / 2.f);
// Apply the insets to the input bounds.
inputBounds.left += xSurfaceInset;
inputBounds.top += ySurfaceInset;
inputBounds.right -= xSurfaceInset;
inputBounds.bottom -= ySurfaceInset;
return {inputBounds, inputBoundsValid};
}
bool Layer::isSimpleBufferUpdate(const layer_state_t& s) const {
const uint64_t requiredFlags = layer_state_t::eBufferChanged;
const uint64_t deniedFlags = layer_state_t::eProducerDisconnect | layer_state_t::eLayerChanged |
layer_state_t::eRelativeLayerChanged | layer_state_t::eTransparentRegionChanged |
layer_state_t::eFlagsChanged | layer_state_t::eBlurRegionsChanged |
layer_state_t::eLayerStackChanged | layer_state_t::eAutoRefreshChanged |
layer_state_t::eReparent;
if ((s.what & requiredFlags) != requiredFlags) {
ATRACE_FORMAT_INSTANT("%s: false [missing required flags 0x%" PRIx64 "]", __func__,
(s.what | requiredFlags) & ~s.what);
return false;
}
if (s.what & deniedFlags) {
ATRACE_FORMAT_INSTANT("%s: false [has denied flags 0x%" PRIx64 "]", __func__,
s.what & deniedFlags);
return false;
}
if (s.what & layer_state_t::ePositionChanged) {
if (mRequestedTransform.tx() != s.x || mRequestedTransform.ty() != s.y) {
ATRACE_FORMAT_INSTANT("%s: false [ePositionChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eAlphaChanged) {
if (mDrawingState.color.a != s.color.a) {
ATRACE_FORMAT_INSTANT("%s: false [eAlphaChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eColorTransformChanged) {
if (mDrawingState.colorTransform != s.colorTransform) {
ATRACE_FORMAT_INSTANT("%s: false [eColorTransformChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBackgroundColorChanged) {
if (mDrawingState.bgColorLayer || s.bgColor.a != 0) {
ATRACE_FORMAT_INSTANT("%s: false [eBackgroundColorChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eMatrixChanged) {
if (mRequestedTransform.dsdx() != s.matrix.dsdx ||
mRequestedTransform.dtdy() != s.matrix.dtdy ||
mRequestedTransform.dtdx() != s.matrix.dtdx ||
mRequestedTransform.dsdy() != s.matrix.dsdy) {
ATRACE_FORMAT_INSTANT("%s: false [eMatrixChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eCornerRadiusChanged) {
if (mDrawingState.cornerRadius != s.cornerRadius) {
ATRACE_FORMAT_INSTANT("%s: false [eCornerRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBackgroundBlurRadiusChanged) {
if (mDrawingState.backgroundBlurRadius != static_cast<int>(s.backgroundBlurRadius)) {
ATRACE_FORMAT_INSTANT("%s: false [eBackgroundBlurRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBufferTransformChanged) {
if (mDrawingState.bufferTransform != s.bufferTransform) {
ATRACE_FORMAT_INSTANT("%s: false [eBufferTransformChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eTransformToDisplayInverseChanged) {
if (mDrawingState.transformToDisplayInverse != s.transformToDisplayInverse) {
ATRACE_FORMAT_INSTANT("%s: false [eTransformToDisplayInverseChanged changed]",
__func__);
return false;
}
}
if (s.what & layer_state_t::eCropChanged) {
if (mDrawingState.crop != s.crop) {
ATRACE_FORMAT_INSTANT("%s: false [eCropChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDataspaceChanged) {
if (mDrawingState.dataspace != s.dataspace) {
ATRACE_FORMAT_INSTANT("%s: false [eDataspaceChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eHdrMetadataChanged) {
if (mDrawingState.hdrMetadata != s.hdrMetadata) {
ATRACE_FORMAT_INSTANT("%s: false [eHdrMetadataChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eSidebandStreamChanged) {
if (mDrawingState.sidebandStream != s.sidebandStream) {
ATRACE_FORMAT_INSTANT("%s: false [eSidebandStreamChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eColorSpaceAgnosticChanged) {
if (mDrawingState.colorSpaceAgnostic != s.colorSpaceAgnostic) {
ATRACE_FORMAT_INSTANT("%s: false [eColorSpaceAgnosticChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eShadowRadiusChanged) {
if (mDrawingState.shadowRadius != s.shadowRadius) {
ATRACE_FORMAT_INSTANT("%s: false [eShadowRadiusChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eFixedTransformHintChanged) {
if (mDrawingState.fixedTransformHint != s.fixedTransformHint) {
ATRACE_FORMAT_INSTANT("%s: false [eFixedTransformHintChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eTrustedOverlayChanged) {
if (mDrawingState.isTrustedOverlay != s.isTrustedOverlay) {
ATRACE_FORMAT_INSTANT("%s: false [eTrustedOverlayChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eStretchChanged) {
StretchEffect temp = s.stretchEffect;
temp.sanitize();
if (mDrawingState.stretchEffect != temp) {
ATRACE_FORMAT_INSTANT("%s: false [eStretchChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eBufferCropChanged) {
if (mDrawingState.bufferCrop != s.bufferCrop) {
ATRACE_FORMAT_INSTANT("%s: false [eBufferCropChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDestinationFrameChanged) {
if (mDrawingState.destinationFrame != s.destinationFrame) {
ATRACE_FORMAT_INSTANT("%s: false [eDestinationFrameChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eDimmingEnabledChanged) {
if (mDrawingState.dimmingEnabled != s.dimmingEnabled) {
ATRACE_FORMAT_INSTANT("%s: false [eDimmingEnabledChanged changed]", __func__);
return false;
}
}
if (s.what & layer_state_t::eExtendedRangeBrightnessChanged) {
if (mDrawingState.currentHdrSdrRatio != s.currentHdrSdrRatio ||
mDrawingState.desiredHdrSdrRatio != s.desiredHdrSdrRatio) {
ATRACE_FORMAT_INSTANT("%s: false [eExtendedRangeBrightnessChanged changed]", __func__);
return false;
}
}
return true;
}
sp<LayerFE> Layer::getCompositionEngineLayerFE() const {
// There's no need to get a CE Layer if the layer isn't going to draw anything.
return hasSomethingToDraw() ? mLegacyLayerFE : nullptr;
}
const LayerSnapshot* Layer::getLayerSnapshot() const {
return mSnapshot.get();
}
LayerSnapshot* Layer::editLayerSnapshot() {
return mSnapshot.get();
}
std::unique_ptr<frontend::LayerSnapshot> Layer::stealLayerSnapshot() {
return std::move(mSnapshot);
}
void Layer::updateLayerSnapshot(std::unique_ptr<frontend::LayerSnapshot> snapshot) {
mSnapshot = std::move(snapshot);
}
const compositionengine::LayerFECompositionState* Layer::getCompositionState() const {
return mSnapshot.get();
}
sp<LayerFE> Layer::copyCompositionEngineLayerFE() const {
auto result = mFlinger->getFactory().createLayerFE(mName);
result->mSnapshot = std::make_unique<LayerSnapshot>(*mSnapshot);
return result;
}
sp<LayerFE> Layer::getCompositionEngineLayerFE(
const frontend::LayerHierarchy::TraversalPath& path) {
for (auto& [p, layerFE] : mLayerFEs) {
if (p == path) {
return layerFE;
}
}
auto layerFE = mFlinger->getFactory().createLayerFE(mName);
mLayerFEs.emplace_back(path, layerFE);
return layerFE;
}
void Layer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mBufferInfo.mSurfaceDamage;
}
}
void Layer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool Layer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if (!hasSomethingToDraw()) {
return false;
}
// if the layer has the opaque flag, then we're always opaque
if ((s.flags & layer_state_t::eLayerOpaque) == layer_state_t::eLayerOpaque) {
return true;
}
// If the buffer has no alpha channel, then we are opaque
if (hasBufferOrSidebandStream() && LayerSnapshot::isOpaqueFormat(getPixelFormat())) {
return true;
}
// Lastly consider the layer opaque if drawing a color with alpha == 1.0
return fillsColor() && getAlpha() == 1.0_hf;
}
bool Layer::canReceiveInput() const {
return !isHiddenByPolicy() && (mBufferInfo.mBuffer == nullptr || getAlpha() > 0.0f);
}
bool Layer::isVisible() const {
if (!hasSomethingToDraw()) {
return false;
}
if (isHiddenByPolicy()) {
return false;
}
return getAlpha() > 0.0f || hasBlur();
}
void Layer::onCompositionPresented(const DisplayDevice* display,
const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mBufferInfo.mFrameLatencyNeeded) return;
for (const auto& handle : mDrawingState.callbackHandles) {
handle->gpuCompositionDoneFence = glDoneFence;
handle->compositorTiming = compositorTiming;
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime;
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const int32_t layerId = getSequence();
mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime);
const auto outputLayer = findOutputLayerForDisplay(display);
if (outputLayer && outputLayer->requiresClientComposition()) {
nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp;
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber,
clientCompositionTimestamp,
FrameTracer::FrameEvent::FALLBACK_COMPOSITION);
// Update the SurfaceFrames in the drawing state
if (mDrawingState.bufferSurfaceFrameTX) {
mDrawingState.bufferSurfaceFrameTX->setGpuComposition();
}
for (auto& [token, surfaceFrame] : mDrawingState.bufferlessSurfaceFramesTX) {
surfaceFrame->setGpuComposition();
}
}
std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime;
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (display) {
const Fps refreshRate = display->refreshRateSelector().getActiveMode().fps;
const std::optional<Fps> renderRate =
mFlinger->mScheduler->getFrameRateOverride(getOwnerUid());
const auto vote = frameRateToSetFrameRateVotePayload(getFrameRateForLayerTree());
const auto gameMode = getGameMode();
if (presentFence->isValid()) {
mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence,
refreshRate, renderRate, vote, gameMode);
mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber,
presentFence,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else if (const auto displayId = PhysicalDisplayId::tryCast(display->getId());
displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
// The HWC doesn't support present fences, so use the present timestamp instead.
const nsecs_t presentTimestamp =
mFlinger->getHwComposer().getPresentTimestamp(*displayId);
const nsecs_t now = systemTime(CLOCK_MONOTONIC);
const nsecs_t vsyncPeriod = display->getVsyncPeriodFromHWC();
const nsecs_t actualPresentTime = now - ((now - presentTimestamp) % vsyncPeriod);
mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime,
refreshRate, renderRate, vote, gameMode);
mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(),
mCurrentFrameNumber, actualPresentTime,
FrameTracer::FrameEvent::PRESENT_FENCE);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
}
mFrameTracker.advanceFrame();
mBufferInfo.mFrameLatencyNeeded = false;
}
bool Layer::willReleaseBufferOnLatch() const {
return !mDrawingState.buffer && mBufferInfo.mBuffer;
}
bool Layer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
const bool bgColorOnly = mDrawingState.bgColorLayer != nullptr;
return latchBufferImpl(recomputeVisibleRegions, latchTime, bgColorOnly);
}
bool Layer::latchBufferImpl(bool& recomputeVisibleRegions, nsecs_t latchTime, bool bgColorOnly) {
ATRACE_FORMAT_INSTANT("latchBuffer %s - %" PRIu64, getDebugName(),
getDrawingState().frameNumber);
bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
if (refreshRequired) {
return refreshRequired;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!fenceHasSignaled()) {
ATRACE_NAME("!fenceHasSignaled()");
mFlinger->onLayerUpdate();
return false;
}
updateTexImage(latchTime, bgColorOnly);
// Capture the old state of the layer for comparisons later
BufferInfo oldBufferInfo = mBufferInfo;
const bool oldOpacity = isOpaque(mDrawingState);
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mDrawingState.frameNumber;
gatherBufferInfo();
if (mBufferInfo.mBuffer) {
// We latched a buffer that will be presented soon. Clear the previously presented layer
// stack list.
mPreviouslyPresentedLayerStacks.clear();
}
if (mDrawingState.buffer == nullptr) {
const bool bufferReleased = oldBufferInfo.mBuffer != nullptr;
recomputeVisibleRegions = bufferReleased;
return bufferReleased;
}
if (oldBufferInfo.mBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) ||
(mBufferInfo.mTransform != oldBufferInfo.mTransform) ||
(mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) ||
(mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) {
recomputeVisibleRegions = true;
}
if (oldBufferInfo.mBuffer != nullptr) {
uint32_t bufWidth = mBufferInfo.mBuffer->getWidth();
uint32_t bufHeight = mBufferInfo.mBuffer->getHeight();
if (bufWidth != oldBufferInfo.mBuffer->getWidth() ||
bufHeight != oldBufferInfo.mBuffer->getHeight()) {
recomputeVisibleRegions = true;
}
}
if (oldOpacity != isOpaque(mDrawingState)) {
recomputeVisibleRegions = true;
}
return true;
}
bool Layer::hasReadyFrame() const {
return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
}
bool Layer::isProtected() const {
return (mBufferInfo.mBuffer != nullptr) &&
(mBufferInfo.mBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
void Layer::latchAndReleaseBuffer() {
if (hasReadyFrame()) {
bool ignored = false;
latchBuffer(ignored, systemTime());
}
releasePendingBuffer(systemTime());
}
PixelFormat Layer::getPixelFormat() const {
return mBufferInfo.mPixelFormat;
}
bool Layer::getTransformToDisplayInverse() const {
return mBufferInfo.mTransformToDisplayInverse;
}
Rect Layer::getBufferCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
if (!mBufferInfo.mCrop.isEmpty()) {
// if the buffer crop is defined, we use that
return mBufferInfo.mCrop;
} else if (mBufferInfo.mBuffer != nullptr) {
// otherwise we use the whole buffer
return mBufferInfo.mBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
return Rect();
}
}
uint32_t Layer::getBufferTransform() const {
return mBufferInfo.mTransform;
}
ui::Dataspace Layer::getDataSpace() const {
return hasBufferOrSidebandStream() ? mBufferInfo.mDataspace : mDrawingState.dataspace;
}
bool Layer::isFrontBuffered() const {
if (mBufferInfo.mBuffer == nullptr) {
return false;
}
return mBufferInfo.mBuffer->getUsage() & AHARDWAREBUFFER_USAGE_FRONT_BUFFER;
}
ui::Dataspace Layer::translateDataspace(ui::Dataspace dataspace) {
ui::Dataspace updatedDataspace = dataspace;
// translate legacy dataspaces to modern dataspaces
switch (dataspace) {
// Treat unknown dataspaces as V0_sRGB
case ui::Dataspace::UNKNOWN:
case ui::Dataspace::SRGB:
updatedDataspace = ui::Dataspace::V0_SRGB;
break;
case ui::Dataspace::SRGB_LINEAR:
updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR;
break;
case ui::Dataspace::JFIF:
updatedDataspace = ui::Dataspace::V0_JFIF;
break;
case ui::Dataspace::BT601_625:
updatedDataspace = ui::Dataspace::V0_BT601_625;
break;
case ui::Dataspace::BT601_525:
updatedDataspace = ui::Dataspace::V0_BT601_525;
break;
case ui::Dataspace::BT709:
updatedDataspace = ui::Dataspace::V0_BT709;
break;
default:
break;
}
return updatedDataspace;
}
sp<GraphicBuffer> Layer::getBuffer() const {
return mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getBuffer() : nullptr;
}
void Layer::setTransformHintLegacy(ui::Transform::RotationFlags displayTransformHint) {
mTransformHintLegacy = getFixedTransformHint();
if (mTransformHintLegacy == ui::Transform::ROT_INVALID) {
mTransformHintLegacy = displayTransformHint;
}
mSkipReportingTransformHint = false;
}
const std::shared_ptr<renderengine::ExternalTexture>& Layer::getExternalTexture() const {
return mBufferInfo.mBuffer;
}
bool Layer::setColor(const half3& color) {
if (mDrawingState.color.rgb == color) {
return false;
}
mDrawingState.sequence++;
mDrawingState.color.rgb = color;
mDrawingState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::fillsColor() const {
return !hasBufferOrSidebandStream() && mDrawingState.color.r >= 0.0_hf &&
mDrawingState.color.g >= 0.0_hf && mDrawingState.color.b >= 0.0_hf;
}
bool Layer::hasBlur() const {
return getBackgroundBlurRadius() > 0 || getDrawingState().blurRegions.size() > 0;
}
void Layer::updateSnapshot(bool updateGeometry) {
if (!getCompositionEngineLayerFE()) {
return;
}
auto* snapshot = editLayerSnapshot();
if (updateGeometry) {
prepareBasicGeometryCompositionState();
prepareGeometryCompositionState();
snapshot->roundedCorner = getRoundedCornerState();
snapshot->transformedBounds = mScreenBounds;
if (mEffectiveShadowRadius > 0.f) {
snapshot->shadowSettings = mFlinger->mDrawingState.globalShadowSettings;
// Note: this preserves existing behavior of shadowing the entire layer and not cropping
// it if transparent regions are present. This may not be necessary since shadows are
// typically cast by layers without transparent regions.
snapshot->shadowSettings.boundaries = mBounds;
const float casterAlpha = snapshot->alpha;
const bool casterIsOpaque =
((mBufferInfo.mBuffer != nullptr) && isOpaque(mDrawingState));
// If the casting layer is translucent, we need to fill in the shadow underneath the
// layer. Otherwise the generated shadow will only be shown around the casting layer.
snapshot->shadowSettings.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f);
snapshot->shadowSettings.ambientColor *= casterAlpha;
snapshot->shadowSettings.spotColor *= casterAlpha;
}
snapshot->shadowSettings.length = mEffectiveShadowRadius;
}
snapshot->contentOpaque = isOpaque(mDrawingState);
snapshot->layerOpaqueFlagSet =
(mDrawingState.flags & layer_state_t::eLayerOpaque) == layer_state_t::eLayerOpaque;
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
snapshot->parentTransform = p->getTransform();
} else {
snapshot->parentTransform.reset();
}
snapshot->bufferSize = getBufferSize(mDrawingState);
snapshot->externalTexture = mBufferInfo.mBuffer;
snapshot->hasReadyFrame = hasReadyFrame();
preparePerFrameCompositionState();
}
void Layer::updateChildrenSnapshots(bool updateGeometry) {
for (const sp<Layer>& child : mDrawingChildren) {
child->updateSnapshot(updateGeometry);
child->updateChildrenSnapshots(updateGeometry);
}
}
void Layer::updateMetadataSnapshot(const LayerMetadata& parentMetadata) {
mSnapshot->layerMetadata = parentMetadata;
mSnapshot->layerMetadata.merge(mDrawingState.metadata);
for (const sp<Layer>& child : mDrawingChildren) {
child->updateMetadataSnapshot(mSnapshot->layerMetadata);
}
}
void Layer::updateRelativeMetadataSnapshot(const LayerMetadata& relativeLayerMetadata,
std::unordered_set<Layer*>& visited) {
if (visited.find(this) != visited.end()) {
ALOGW("Cycle containing layer %s detected in z-order relatives", getDebugName());
return;
}
visited.insert(this);
mSnapshot->relativeLayerMetadata = relativeLayerMetadata;
if (mDrawingState.zOrderRelatives.empty()) {
return;
}
LayerMetadata childRelativeLayerMetadata = mSnapshot->relativeLayerMetadata;
childRelativeLayerMetadata.merge(mSnapshot->layerMetadata);
for (wp<Layer> weakRelative : mDrawingState.zOrderRelatives) {
sp<Layer> relative = weakRelative.promote();
if (!relative) {
continue;
}
relative->updateRelativeMetadataSnapshot(childRelativeLayerMetadata, visited);
}
}
bool Layer::setTrustedPresentationInfo(TrustedPresentationThresholds const& thresholds,
TrustedPresentationListener const& listener) {
bool hadTrustedPresentationListener = hasTrustedPresentationListener();
mTrustedPresentationListener = listener;
mTrustedPresentationThresholds = thresholds;
bool haveTrustedPresentationListener = hasTrustedPresentationListener();
if (!hadTrustedPresentationListener && haveTrustedPresentationListener) {
mFlinger->mNumTrustedPresentationListeners++;
} else if (hadTrustedPresentationListener && !haveTrustedPresentationListener) {
mFlinger->mNumTrustedPresentationListeners--;
}
// Reset trusted presentation states to ensure we start the time again.
mEnteredTrustedPresentationStateTime = -1;
mLastReportedTrustedPresentationState = false;
mLastComputedTrustedPresentationState = false;
// If there's a new trusted presentation listener, the code needs to go through the composite
// path to ensure it recomutes the current state and invokes the TrustedPresentationListener if
// we're already in the requested state.
return haveTrustedPresentationListener;
}
void Layer::updateLastLatchTime(nsecs_t latchTime) {
mLastLatchTime = latchTime;
}
void Layer::setIsSmallDirty(const Region& damageRegion,
const ui::Transform& layerToDisplayTransform) {
mSmallDirty = false;
if (!mFlinger->mScheduler->supportSmallDirtyDetection(mOwnerAppId)) {
return;
}
if (mWindowType != WindowInfo::Type::APPLICATION &&
mWindowType != WindowInfo::Type::BASE_APPLICATION) {
return;
}
Rect bounds = damageRegion.getBounds();
if (!bounds.isValid()) {
return;
}
// Transform to screen space.
bounds = layerToDisplayTransform.transform(bounds);
// If the damage region is a small dirty, this could give the hint for the layer history that
// it could suppress the heuristic rate when calculating.
mSmallDirty = mFlinger->mScheduler->isSmallDirtyArea(mOwnerAppId,
bounds.getWidth() * bounds.getHeight());
}
void Layer::setIsSmallDirty(frontend::LayerSnapshot* snapshot) {
setIsSmallDirty(snapshot->surfaceDamage, snapshot->localTransform);
snapshot->isSmallDirty = mSmallDirty;
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"