blob: 3c1ae3e41bf14afecf9297700d032ede861523d0 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "KeyLayoutMap"
#include <android-base/logging.h>
#include <android/keycodes.h>
#include <ftl/enum.h>
#include <input/InputEventLabels.h>
#include <input/KeyLayoutMap.h>
#include <input/Keyboard.h>
#include <log/log.h>
#include <utils/Errors.h>
#include <utils/Timers.h>
#include <utils/Tokenizer.h>
#if defined(__ANDROID__)
#include <vintf/RuntimeInfo.h>
#include <vintf/VintfObject.h>
#endif
#include <cstdlib>
#include <string_view>
#include <unordered_map>
/**
* Log debug output for the parser.
* Enable this via "adb shell setprop log.tag.KeyLayoutMapParser DEBUG" (requires restart)
*/
const bool DEBUG_PARSER =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Parser", ANDROID_LOG_INFO);
// Enables debug output for parser performance.
#define DEBUG_PARSER_PERFORMANCE 0
/**
* Log debug output for mapping.
* Enable this via "adb shell setprop log.tag.KeyLayoutMapMapping DEBUG" (requires restart)
*/
const bool DEBUG_MAPPING =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Mapping", ANDROID_LOG_INFO);
namespace android {
namespace {
std::optional<int> parseInt(const char* str) {
char* end;
errno = 0;
const int value = strtol(str, &end, 0);
if (end == str) {
LOG(ERROR) << "Could not parse " << str;
return {};
}
if (errno == ERANGE) {
LOG(ERROR) << "Out of bounds: " << str;
return {};
}
return value;
}
constexpr const char* WHITESPACE = " \t\r";
template <InputDeviceSensorType S>
constexpr auto sensorPair() {
return std::make_pair(ftl::enum_name<S>(), S);
}
static const std::unordered_map<std::string_view, InputDeviceSensorType> SENSOR_LIST =
{sensorPair<InputDeviceSensorType::ACCELEROMETER>(),
sensorPair<InputDeviceSensorType::MAGNETIC_FIELD>(),
sensorPair<InputDeviceSensorType::ORIENTATION>(),
sensorPair<InputDeviceSensorType::GYROSCOPE>(),
sensorPair<InputDeviceSensorType::LIGHT>(),
sensorPair<InputDeviceSensorType::PRESSURE>(),
sensorPair<InputDeviceSensorType::TEMPERATURE>(),
sensorPair<InputDeviceSensorType::PROXIMITY>(),
sensorPair<InputDeviceSensorType::GRAVITY>(),
sensorPair<InputDeviceSensorType::LINEAR_ACCELERATION>(),
sensorPair<InputDeviceSensorType::ROTATION_VECTOR>(),
sensorPair<InputDeviceSensorType::RELATIVE_HUMIDITY>(),
sensorPair<InputDeviceSensorType::AMBIENT_TEMPERATURE>(),
sensorPair<InputDeviceSensorType::MAGNETIC_FIELD_UNCALIBRATED>(),
sensorPair<InputDeviceSensorType::GAME_ROTATION_VECTOR>(),
sensorPair<InputDeviceSensorType::GYROSCOPE_UNCALIBRATED>(),
sensorPair<InputDeviceSensorType::SIGNIFICANT_MOTION>()};
bool kernelConfigsArePresent(const std::set<std::string>& configs) {
#if defined(__ANDROID__)
std::shared_ptr<const android::vintf::RuntimeInfo> runtimeInfo =
android::vintf::VintfObject::GetInstance()->getRuntimeInfo(
vintf::RuntimeInfo::FetchFlag::CONFIG_GZ);
LOG_ALWAYS_FATAL_IF(runtimeInfo == nullptr, "Kernel configs could not be fetched");
const std::map<std::string, std::string>& kernelConfigs = runtimeInfo->kernelConfigs();
for (const std::string& requiredConfig : configs) {
const auto configIt = kernelConfigs.find(requiredConfig);
if (configIt == kernelConfigs.end()) {
ALOGI("Required kernel config %s is not found", requiredConfig.c_str());
return false;
}
const std::string& option = configIt->second;
if (option != "y" && option != "m") {
ALOGI("Required kernel config %s has option %s", requiredConfig.c_str(),
option.c_str());
return false;
}
}
return true;
#else
(void)configs; // Suppress 'unused variable' warning
return true;
#endif
}
} // namespace
KeyLayoutMap::KeyLayoutMap() = default;
KeyLayoutMap::~KeyLayoutMap() = default;
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::loadContents(const std::string& filename,
const char* contents) {
return load(filename, contents);
}
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::load(const std::string& filename,
const char* contents) {
Tokenizer* tokenizer;
status_t status;
if (contents == nullptr) {
status = Tokenizer::open(String8(filename.c_str()), &tokenizer);
} else {
status = Tokenizer::fromContents(String8(filename.c_str()), contents, &tokenizer);
}
if (status) {
ALOGE("Error %d opening key layout map file %s.", status, filename.c_str());
return Errorf("Error {} opening key layout map file {}.", status, filename.c_str());
}
std::unique_ptr<Tokenizer> t(tokenizer);
auto ret = load(t.get());
if (!ret.ok()) {
return ret;
}
const std::shared_ptr<KeyLayoutMap>& map = *ret;
LOG_ALWAYS_FATAL_IF(map == nullptr, "Returned map should not be null if there's no error");
if (!kernelConfigsArePresent(map->mRequiredKernelConfigs)) {
ALOGI("Not loading %s because the required kernel configs are not set", filename.c_str());
return Errorf("Missing kernel config");
}
map->mLoadFileName = filename;
return ret;
}
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::load(Tokenizer* tokenizer) {
std::shared_ptr<KeyLayoutMap> map = std::shared_ptr<KeyLayoutMap>(new KeyLayoutMap());
status_t status = OK;
if (!map.get()) {
ALOGE("Error allocating key layout map.");
return Errorf("Error allocating key layout map.");
} else {
#if DEBUG_PARSER_PERFORMANCE
nsecs_t startTime = systemTime(SYSTEM_TIME_MONOTONIC);
#endif
Parser parser(map.get(), tokenizer);
status = parser.parse();
#if DEBUG_PARSER_PERFORMANCE
nsecs_t elapsedTime = systemTime(SYSTEM_TIME_MONOTONIC) - startTime;
ALOGD("Parsed key layout map file '%s' %d lines in %0.3fms.",
tokenizer->getFilename().c_str(), tokenizer->getLineNumber(),
elapsedTime / 1000000.0);
#endif
if (!status) {
return std::move(map);
}
}
return Errorf("Load KeyLayoutMap failed {}.", status);
}
status_t KeyLayoutMap::mapKey(int32_t scanCode, int32_t usageCode,
int32_t* outKeyCode, uint32_t* outFlags) const {
const Key* key = getKey(scanCode, usageCode);
if (!key) {
ALOGD_IF(DEBUG_MAPPING, "mapKey: scanCode=%d, usageCode=0x%08x ~ Failed.", scanCode,
usageCode);
*outKeyCode = AKEYCODE_UNKNOWN;
*outFlags = 0;
return NAME_NOT_FOUND;
}
*outKeyCode = key->keyCode;
*outFlags = key->flags;
ALOGD_IF(DEBUG_MAPPING,
"mapKey: scanCode=%d, usageCode=0x%08x ~ Result keyCode=%d, outFlags=0x%08x.",
scanCode, usageCode, *outKeyCode, *outFlags);
return NO_ERROR;
}
// Return pair of sensor type and sensor data index, for the input device abs code
base::Result<std::pair<InputDeviceSensorType, int32_t>> KeyLayoutMap::mapSensor(
int32_t absCode) const {
auto it = mSensorsByAbsCode.find(absCode);
if (it == mSensorsByAbsCode.end()) {
ALOGD_IF(DEBUG_MAPPING, "mapSensor: absCode=%d, ~ Failed.", absCode);
return Errorf("Can't find abs code {}.", absCode);
}
const Sensor& sensor = it->second;
ALOGD_IF(DEBUG_MAPPING, "mapSensor: absCode=%d, sensorType=%s, sensorDataIndex=0x%x.", absCode,
ftl::enum_string(sensor.sensorType).c_str(), sensor.sensorDataIndex);
return std::make_pair(sensor.sensorType, sensor.sensorDataIndex);
}
const KeyLayoutMap::Key* KeyLayoutMap::getKey(int32_t scanCode, int32_t usageCode) const {
if (usageCode) {
auto it = mKeysByUsageCode.find(usageCode);
if (it != mKeysByUsageCode.end()) {
return &it->second;
}
}
if (scanCode) {
auto it = mKeysByScanCode.find(scanCode);
if (it != mKeysByScanCode.end()) {
return &it->second;
}
}
return nullptr;
}
std::vector<int32_t> KeyLayoutMap::findScanCodesForKey(int32_t keyCode) const {
std::vector<int32_t> scanCodes;
for (const auto& [scanCode, key] : mKeysByScanCode) {
if (keyCode == key.keyCode) {
scanCodes.push_back(scanCode);
}
}
return scanCodes;
}
std::vector<int32_t> KeyLayoutMap::findUsageCodesForKey(int32_t keyCode) const {
std::vector<int32_t> usageCodes;
for (const auto& [usageCode, key] : mKeysByUsageCode) {
if (keyCode == key.keyCode && !(key.flags & POLICY_FLAG_FALLBACK_USAGE_MAPPING)) {
usageCodes.push_back(usageCode);
}
}
return usageCodes;
}
std::optional<AxisInfo> KeyLayoutMap::mapAxis(int32_t scanCode) const {
auto it = mAxes.find(scanCode);
if (it == mAxes.end()) {
ALOGD_IF(DEBUG_MAPPING, "mapAxis: scanCode=%d ~ Failed.", scanCode);
return std::nullopt;
}
const AxisInfo& axisInfo = it->second;
ALOGD_IF(DEBUG_MAPPING,
"mapAxis: scanCode=%d ~ Result mode=%d, axis=%d, highAxis=%d, "
"splitValue=%d, flatOverride=%d.",
scanCode, axisInfo.mode, axisInfo.axis, axisInfo.highAxis, axisInfo.splitValue,
axisInfo.flatOverride);
return axisInfo;
}
std::optional<int32_t> KeyLayoutMap::findScanCodeForLed(int32_t ledCode) const {
for (const auto& [scanCode, led] : mLedsByScanCode) {
if (led.ledCode == ledCode) {
ALOGD_IF(DEBUG_MAPPING, "%s: ledCode=%d, scanCode=%d.", __func__, ledCode, scanCode);
return scanCode;
}
}
ALOGD_IF(DEBUG_MAPPING, "%s: ledCode=%d ~ Not found.", __func__, ledCode);
return std::nullopt;
}
std::optional<int32_t> KeyLayoutMap::findUsageCodeForLed(int32_t ledCode) const {
for (const auto& [usageCode, led] : mLedsByUsageCode) {
if (led.ledCode == ledCode) {
ALOGD_IF(DEBUG_MAPPING, "%s: ledCode=%d, usage=%x.", __func__, ledCode, usageCode);
return usageCode;
}
}
ALOGD_IF(DEBUG_MAPPING, "%s: ledCode=%d ~ Not found.", __func__, ledCode);
return std::nullopt;
}
// --- KeyLayoutMap::Parser ---
KeyLayoutMap::Parser::Parser(KeyLayoutMap* map, Tokenizer* tokenizer) :
mMap(map), mTokenizer(tokenizer) {
}
KeyLayoutMap::Parser::~Parser() {
}
status_t KeyLayoutMap::Parser::parse() {
while (!mTokenizer->isEof()) {
ALOGD_IF(DEBUG_PARSER, "Parsing %s: '%s'.", mTokenizer->getLocation().c_str(),
mTokenizer->peekRemainderOfLine().c_str());
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') {
String8 keywordToken = mTokenizer->nextToken(WHITESPACE);
if (keywordToken == "key") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseKey();
if (status) return status;
} else if (keywordToken == "axis") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseAxis();
if (status) return status;
} else if (keywordToken == "led") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseLed();
if (status) return status;
} else if (keywordToken == "sensor") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseSensor();
if (status) return status;
} else if (keywordToken == "requires_kernel_config") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseRequiredKernelConfig();
if (status) return status;
} else {
ALOGE("%s: Expected keyword, got '%s'.", mTokenizer->getLocation().c_str(),
keywordToken.c_str());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') {
ALOGE("%s: Expected end of line or trailing comment, got '%s'.",
mTokenizer->getLocation().c_str(), mTokenizer->peekRemainderOfLine().c_str());
return BAD_VALUE;
}
}
mTokenizer->nextLine();
}
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseKey() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
bool mapUsage = false;
if (codeToken == "usage") {
mapUsage = true;
mTokenizer->skipDelimiters(WHITESPACE);
codeToken = mTokenizer->nextToken(WHITESPACE);
}
std::optional<int> code = parseInt(codeToken.c_str());
if (!code) {
ALOGE("%s: Expected key %s number, got '%s'.", mTokenizer->getLocation().c_str(),
mapUsage ? "usage" : "scan code", codeToken.c_str());
return BAD_VALUE;
}
std::unordered_map<int32_t, Key>& map =
mapUsage ? mMap->mKeysByUsageCode : mMap->mKeysByScanCode;
if (map.find(*code) != map.end()) {
ALOGE("%s: Duplicate entry for key %s '%s'.", mTokenizer->getLocation().c_str(),
mapUsage ? "usage" : "scan code", codeToken.c_str());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 keyCodeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> keyCode = InputEventLookup::getKeyCodeByLabel(keyCodeToken.c_str());
if (!keyCode) {
ALOGE("%s: Expected key code label, got '%s'.", mTokenizer->getLocation().c_str(),
keyCodeToken.c_str());
return BAD_VALUE;
}
uint32_t flags = 0;
for (;;) {
mTokenizer->skipDelimiters(WHITESPACE);
if (mTokenizer->isEol() || mTokenizer->peekChar() == '#') break;
String8 flagToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> flag = InputEventLookup::getKeyFlagByLabel(flagToken.c_str());
if (!flag) {
ALOGE("%s: Expected key flag label, got '%s'.", mTokenizer->getLocation().c_str(),
flagToken.c_str());
return BAD_VALUE;
}
if (flags & *flag) {
ALOGE("%s: Duplicate key flag '%s'.", mTokenizer->getLocation().c_str(),
flagToken.c_str());
return BAD_VALUE;
}
flags |= *flag;
}
ALOGD_IF(DEBUG_PARSER, "Parsed key %s: code=%d, keyCode=%d, flags=0x%08x.",
mapUsage ? "usage" : "scan code", *code, *keyCode, flags);
Key key;
key.keyCode = *keyCode;
key.flags = flags;
map.insert({*code, key});
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseAxis() {
String8 scanCodeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> scanCode = parseInt(scanCodeToken.c_str());
if (!scanCode) {
ALOGE("%s: Expected axis scan code number, got '%s'.", mTokenizer->getLocation().c_str(),
scanCodeToken.c_str());
return BAD_VALUE;
}
if (mMap->mAxes.find(*scanCode) != mMap->mAxes.end()) {
ALOGE("%s: Duplicate entry for axis scan code '%s'.", mTokenizer->getLocation().c_str(),
scanCodeToken.c_str());
return BAD_VALUE;
}
AxisInfo axisInfo;
mTokenizer->skipDelimiters(WHITESPACE);
String8 token = mTokenizer->nextToken(WHITESPACE);
if (token == "invert") {
axisInfo.mode = AxisInfo::MODE_INVERT;
mTokenizer->skipDelimiters(WHITESPACE);
String8 axisToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> axis = InputEventLookup::getAxisByLabel(axisToken.c_str());
if (!axis) {
ALOGE("%s: Expected inverted axis label, got '%s'.",
mTokenizer->getLocation().c_str(), axisToken.c_str());
return BAD_VALUE;
}
axisInfo.axis = *axis;
} else if (token == "split") {
axisInfo.mode = AxisInfo::MODE_SPLIT;
mTokenizer->skipDelimiters(WHITESPACE);
String8 splitToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> splitValue = parseInt(splitToken.c_str());
if (!splitValue) {
ALOGE("%s: Expected split value, got '%s'.",
mTokenizer->getLocation().c_str(), splitToken.c_str());
return BAD_VALUE;
}
axisInfo.splitValue = *splitValue;
mTokenizer->skipDelimiters(WHITESPACE);
String8 lowAxisToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> axis = InputEventLookup::getAxisByLabel(lowAxisToken.c_str());
if (!axis) {
ALOGE("%s: Expected low axis label, got '%s'.",
mTokenizer->getLocation().c_str(), lowAxisToken.c_str());
return BAD_VALUE;
}
axisInfo.axis = *axis;
mTokenizer->skipDelimiters(WHITESPACE);
String8 highAxisToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> highAxis = InputEventLookup::getAxisByLabel(highAxisToken.c_str());
if (!highAxis) {
ALOGE("%s: Expected high axis label, got '%s'.",
mTokenizer->getLocation().c_str(), highAxisToken.c_str());
return BAD_VALUE;
}
axisInfo.highAxis = *highAxis;
} else {
std::optional<int> axis = InputEventLookup::getAxisByLabel(token.c_str());
if (!axis) {
ALOGE("%s: Expected axis label, 'split' or 'invert', got '%s'.",
mTokenizer->getLocation().c_str(), token.c_str());
return BAD_VALUE;
}
axisInfo.axis = *axis;
}
for (;;) {
mTokenizer->skipDelimiters(WHITESPACE);
if (mTokenizer->isEol() || mTokenizer->peekChar() == '#') {
break;
}
String8 keywordToken = mTokenizer->nextToken(WHITESPACE);
if (keywordToken == "flat") {
mTokenizer->skipDelimiters(WHITESPACE);
String8 flatToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> flatOverride = parseInt(flatToken.c_str());
if (!flatOverride) {
ALOGE("%s: Expected flat value, got '%s'.",
mTokenizer->getLocation().c_str(), flatToken.c_str());
return BAD_VALUE;
}
axisInfo.flatOverride = *flatOverride;
} else {
ALOGE("%s: Expected keyword 'flat', got '%s'.", mTokenizer->getLocation().c_str(),
keywordToken.c_str());
return BAD_VALUE;
}
}
ALOGD_IF(DEBUG_PARSER,
"Parsed axis: scanCode=%d, mode=%d, axis=%d, highAxis=%d, "
"splitValue=%d, flatOverride=%d.",
*scanCode, axisInfo.mode, axisInfo.axis, axisInfo.highAxis, axisInfo.splitValue,
axisInfo.flatOverride);
mMap->mAxes.insert({*scanCode, axisInfo});
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseLed() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
bool mapUsage = false;
if (codeToken == "usage") {
mapUsage = true;
mTokenizer->skipDelimiters(WHITESPACE);
codeToken = mTokenizer->nextToken(WHITESPACE);
}
std::optional<int> code = parseInt(codeToken.c_str());
if (!code) {
ALOGE("%s: Expected led %s number, got '%s'.", mTokenizer->getLocation().c_str(),
mapUsage ? "usage" : "scan code", codeToken.c_str());
return BAD_VALUE;
}
std::unordered_map<int32_t, Led>& map =
mapUsage ? mMap->mLedsByUsageCode : mMap->mLedsByScanCode;
if (map.find(*code) != map.end()) {
ALOGE("%s: Duplicate entry for led %s '%s'.", mTokenizer->getLocation().c_str(),
mapUsage ? "usage" : "scan code", codeToken.c_str());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 ledCodeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> ledCode = InputEventLookup::getLedByLabel(ledCodeToken.c_str());
if (!ledCode) {
ALOGE("%s: Expected LED code label, got '%s'.", mTokenizer->getLocation().c_str(),
ledCodeToken.c_str());
return BAD_VALUE;
}
ALOGD_IF(DEBUG_PARSER, "Parsed led %s: code=%d, ledCode=%d.", mapUsage ? "usage" : "scan code",
*code, *ledCode);
Led led;
led.ledCode = *ledCode;
map.insert({*code, led});
return NO_ERROR;
}
static std::optional<InputDeviceSensorType> getSensorType(const char* token) {
auto it = SENSOR_LIST.find(token);
if (it == SENSOR_LIST.end()) {
return std::nullopt;
}
return it->second;
}
static std::optional<int32_t> getSensorDataIndex(String8 token) {
std::string tokenStr(token.c_str());
if (tokenStr == "X") {
return 0;
} else if (tokenStr == "Y") {
return 1;
} else if (tokenStr == "Z") {
return 2;
}
return std::nullopt;
}
// Parse sensor type and data index mapping, as below format
// sensor <raw abs> <sensor type> <sensor data index>
// raw abs : the linux abs code of the axis
// sensor type : string name of InputDeviceSensorType
// sensor data index : the data index of sensor, out of [X, Y, Z]
// Examples:
// sensor 0x00 ACCELEROMETER X
// sensor 0x01 ACCELEROMETER Y
// sensor 0x02 ACCELEROMETER Z
// sensor 0x03 GYROSCOPE X
// sensor 0x04 GYROSCOPE Y
// sensor 0x05 GYROSCOPE Z
status_t KeyLayoutMap::Parser::parseSensor() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int> code = parseInt(codeToken.c_str());
if (!code) {
ALOGE("%s: Expected sensor %s number, got '%s'.", mTokenizer->getLocation().c_str(),
"abs code", codeToken.c_str());
return BAD_VALUE;
}
std::unordered_map<int32_t, Sensor>& map = mMap->mSensorsByAbsCode;
if (map.find(*code) != map.end()) {
ALOGE("%s: Duplicate entry for sensor %s '%s'.", mTokenizer->getLocation().c_str(),
"abs code", codeToken.c_str());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 sensorTypeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<InputDeviceSensorType> typeOpt = getSensorType(sensorTypeToken.c_str());
if (!typeOpt) {
ALOGE("%s: Expected sensor code label, got '%s'.", mTokenizer->getLocation().c_str(),
sensorTypeToken.c_str());
return BAD_VALUE;
}
InputDeviceSensorType sensorType = typeOpt.value();
mTokenizer->skipDelimiters(WHITESPACE);
String8 sensorDataIndexToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int32_t> indexOpt = getSensorDataIndex(sensorDataIndexToken);
if (!indexOpt) {
ALOGE("%s: Expected sensor data index label, got '%s'.", mTokenizer->getLocation().c_str(),
sensorDataIndexToken.c_str());
return BAD_VALUE;
}
int32_t sensorDataIndex = indexOpt.value();
ALOGD_IF(DEBUG_PARSER, "Parsed sensor: abs code=%d, sensorType=%s, sensorDataIndex=%d.", *code,
ftl::enum_string(sensorType).c_str(), sensorDataIndex);
Sensor sensor;
sensor.sensorType = sensorType;
sensor.sensorDataIndex = sensorDataIndex;
map.emplace(*code, sensor);
return NO_ERROR;
}
// Parse the name of a required kernel config.
// The layout won't be used if the specified kernel config is not present
// Examples:
// requires_kernel_config CONFIG_HID_PLAYSTATION
status_t KeyLayoutMap::Parser::parseRequiredKernelConfig() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
std::string configName = codeToken.c_str();
const auto result = mMap->mRequiredKernelConfigs.emplace(configName);
if (!result.second) {
ALOGE("%s: Duplicate entry for required kernel config %s.",
mTokenizer->getLocation().c_str(), configName.c_str());
return BAD_VALUE;
}
ALOGD_IF(DEBUG_PARSER, "Parsed required kernel config: name=%s", configName.c_str());
return NO_ERROR;
}
} // namespace android