| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Macros.h" |
| |
| #include "InputDevice.h" |
| |
| #include <algorithm> |
| |
| #include <android/sysprop/InputProperties.sysprop.h> |
| #include <ftl/flags.h> |
| |
| #include "CursorInputMapper.h" |
| #include "ExternalStylusInputMapper.h" |
| #include "InputReaderContext.h" |
| #include "JoystickInputMapper.h" |
| #include "KeyboardInputMapper.h" |
| #include "MultiTouchInputMapper.h" |
| #include "PeripheralController.h" |
| #include "RotaryEncoderInputMapper.h" |
| #include "SensorInputMapper.h" |
| #include "SingleTouchInputMapper.h" |
| #include "SwitchInputMapper.h" |
| #include "TouchpadInputMapper.h" |
| #include "VibratorInputMapper.h" |
| |
| namespace android { |
| |
| InputDevice::InputDevice(InputReaderContext* context, int32_t id, int32_t generation, |
| const InputDeviceIdentifier& identifier) |
| : mContext(context), |
| mId(id), |
| mGeneration(generation), |
| mControllerNumber(0), |
| mIdentifier(identifier), |
| mClasses(0), |
| mSources(0), |
| mIsWaking(false), |
| mIsExternal(false), |
| mHasMic(false), |
| mDropUntilNextSync(false) {} |
| |
| InputDevice::~InputDevice() {} |
| |
| bool InputDevice::isEnabled() { |
| if (!hasEventHubDevices()) { |
| return false; |
| } |
| // An input device composed of sub devices can be individually enabled or disabled. |
| // If any of the sub device is enabled then the input device is considered as enabled. |
| bool enabled = false; |
| for_each_subdevice([&enabled](auto& context) { enabled |= context.isDeviceEnabled(); }); |
| return enabled; |
| } |
| |
| std::list<NotifyArgs> InputDevice::updateEnableState(nsecs_t when, |
| const InputReaderConfiguration& readerConfig, |
| bool forceEnable) { |
| bool enable = forceEnable; |
| if (!forceEnable) { |
| // If the device was explicitly disabled by the user, it would be present in the |
| // "disabledDevices" list. This device should be disabled. |
| enable = readerConfig.disabledDevices.find(mId) == readerConfig.disabledDevices.end(); |
| |
| // If a device is associated with a specific display but there is no |
| // associated DisplayViewport, don't enable the device. |
| if (enable && (mAssociatedDisplayPort || mAssociatedDisplayUniqueId) && |
| !mAssociatedViewport) { |
| const std::string desc = mAssociatedDisplayPort |
| ? "port " + std::to_string(*mAssociatedDisplayPort) |
| : "uniqueId " + *mAssociatedDisplayUniqueId; |
| ALOGW("Cannot enable input device %s because it is associated " |
| "with %s, but the corresponding viewport is not found", |
| getName().c_str(), desc.c_str()); |
| enable = false; |
| } |
| } |
| |
| std::list<NotifyArgs> out; |
| if (isEnabled() == enable) { |
| return out; |
| } |
| |
| // When resetting some devices, the driver needs to be queried to ensure that a proper reset is |
| // performed. The querying must happen when the device is enabled, so we reset after enabling |
| // but before disabling the device. See MultiTouchMotionAccumulator::reset for more information. |
| if (enable) { |
| for_each_subdevice([](auto& context) { context.enableDevice(); }); |
| out += reset(when); |
| } else { |
| out += reset(when); |
| for_each_subdevice([](auto& context) { context.disableDevice(); }); |
| } |
| // Must change generation to flag this device as changed |
| bumpGeneration(); |
| return out; |
| } |
| |
| void InputDevice::dump(std::string& dump, const std::string& eventHubDevStr) { |
| InputDeviceInfo deviceInfo = getDeviceInfo(); |
| |
| dump += StringPrintf(INDENT "Device %d: %s\n", deviceInfo.getId(), |
| deviceInfo.getDisplayName().c_str()); |
| dump += StringPrintf(INDENT "%s", eventHubDevStr.c_str()); |
| dump += StringPrintf(INDENT2 "Generation: %d\n", mGeneration); |
| dump += StringPrintf(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); |
| dump += StringPrintf(INDENT2 "IsWaking: %s\n", toString(mIsWaking)); |
| dump += StringPrintf(INDENT2 "AssociatedDisplayPort: "); |
| if (mAssociatedDisplayPort) { |
| dump += StringPrintf("%" PRIu8 "\n", *mAssociatedDisplayPort); |
| } else { |
| dump += "<none>\n"; |
| } |
| dump += StringPrintf(INDENT2 "AssociatedDisplayUniqueId: "); |
| if (mAssociatedDisplayUniqueId) { |
| dump += StringPrintf("%s\n", mAssociatedDisplayUniqueId->c_str()); |
| } else { |
| dump += "<none>\n"; |
| } |
| dump += StringPrintf(INDENT2 "HasMic: %s\n", toString(mHasMic)); |
| dump += StringPrintf(INDENT2 "Sources: %s\n", |
| inputEventSourceToString(deviceInfo.getSources()).c_str()); |
| dump += StringPrintf(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); |
| dump += StringPrintf(INDENT2 "ControllerNum: %d\n", deviceInfo.getControllerNumber()); |
| |
| const std::vector<InputDeviceInfo::MotionRange>& ranges = deviceInfo.getMotionRanges(); |
| if (!ranges.empty()) { |
| dump += INDENT2 "Motion Ranges:\n"; |
| for (size_t i = 0; i < ranges.size(); i++) { |
| const InputDeviceInfo::MotionRange& range = ranges[i]; |
| const char* label = InputEventLookup::getAxisLabel(range.axis); |
| char name[32]; |
| if (label) { |
| strncpy(name, label, sizeof(name)); |
| name[sizeof(name) - 1] = '\0'; |
| } else { |
| snprintf(name, sizeof(name), "%d", range.axis); |
| } |
| dump += StringPrintf(INDENT3 |
| "%s: source=%s, " |
| "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f, resolution=%0.3f\n", |
| name, inputEventSourceToString(range.source).c_str(), range.min, |
| range.max, range.flat, range.fuzz, range.resolution); |
| } |
| } |
| |
| for_each_mapper([&dump](InputMapper& mapper) { mapper.dump(dump); }); |
| if (mController) { |
| mController->dump(dump); |
| } |
| } |
| |
| void InputDevice::addEmptyEventHubDevice(int32_t eventHubId) { |
| if (mDevices.find(eventHubId) != mDevices.end()) { |
| return; |
| } |
| std::unique_ptr<InputDeviceContext> contextPtr(new InputDeviceContext(*this, eventHubId)); |
| std::vector<std::unique_ptr<InputMapper>> mappers; |
| |
| mDevices.insert({eventHubId, std::make_pair(std::move(contextPtr), std::move(mappers))}); |
| } |
| |
| [[nodiscard]] std::list<NotifyArgs> InputDevice::addEventHubDevice( |
| nsecs_t when, int32_t eventHubId, const InputReaderConfiguration& readerConfig) { |
| if (mDevices.find(eventHubId) != mDevices.end()) { |
| return {}; |
| } |
| |
| // Add an empty device configure and keep it enabled to allow mapper population with correct |
| // configuration/context, |
| // Note: we need to ensure device is kept enabled till mappers are configured |
| // TODO: b/281852638 refactor tests to remove this flag and reliance on the empty device |
| addEmptyEventHubDevice(eventHubId); |
| std::list<NotifyArgs> out = configureInternal(when, readerConfig, {}, /*forceEnable=*/true); |
| |
| DevicePair& devicePair = mDevices[eventHubId]; |
| devicePair.second = createMappers(*devicePair.first, readerConfig); |
| |
| // Must change generation to flag this device as changed |
| bumpGeneration(); |
| return out; |
| } |
| |
| void InputDevice::removeEventHubDevice(int32_t eventHubId) { |
| if (mController != nullptr && mController->getEventHubId() == eventHubId) { |
| // Delete mController, since the corresponding eventhub device is going away |
| mController = nullptr; |
| } |
| mDevices.erase(eventHubId); |
| } |
| |
| std::list<NotifyArgs> InputDevice::configure(nsecs_t when, |
| const InputReaderConfiguration& readerConfig, |
| ConfigurationChanges changes) { |
| return configureInternal(when, readerConfig, changes); |
| } |
| std::list<NotifyArgs> InputDevice::configureInternal(nsecs_t when, |
| const InputReaderConfiguration& readerConfig, |
| ConfigurationChanges changes, |
| bool forceEnable) { |
| std::list<NotifyArgs> out; |
| mSources = 0; |
| mClasses = ftl::Flags<InputDeviceClass>(0); |
| mControllerNumber = 0; |
| |
| for_each_subdevice([this](InputDeviceContext& context) { |
| mClasses |= context.getDeviceClasses(); |
| int32_t controllerNumber = context.getDeviceControllerNumber(); |
| if (controllerNumber > 0) { |
| if (mControllerNumber && mControllerNumber != controllerNumber) { |
| ALOGW("InputDevice::configure(): composite device contains multiple unique " |
| "controller numbers"); |
| } |
| mControllerNumber = controllerNumber; |
| } |
| }); |
| |
| mIsExternal = mClasses.test(InputDeviceClass::EXTERNAL); |
| mHasMic = mClasses.test(InputDeviceClass::MIC); |
| |
| using Change = InputReaderConfiguration::Change; |
| |
| if (!changes.any() || !isIgnored()) { |
| // Full configuration should happen the first time configure is called |
| // and when the device type is changed. Changing a device type can |
| // affect various other parameters so should result in a |
| // reconfiguration. |
| if (!changes.any() || changes.test(Change::DEVICE_TYPE)) { |
| mConfiguration.clear(); |
| for_each_subdevice([this](InputDeviceContext& context) { |
| std::optional<PropertyMap> configuration = |
| getEventHub()->getConfiguration(context.getEventHubId()); |
| if (configuration) { |
| mConfiguration.addAll(&(*configuration)); |
| } |
| }); |
| |
| mAssociatedDeviceType = |
| getValueByKey(readerConfig.deviceTypeAssociations, mIdentifier.location); |
| mIsWaking = mConfiguration.getBool("device.wake").value_or(false); |
| mShouldSmoothScroll = mConfiguration.getBool("device.viewBehavior_smoothScroll"); |
| } |
| |
| if (!changes.any() || changes.test(Change::DEVICE_ALIAS)) { |
| if (!(mClasses.test(InputDeviceClass::VIRTUAL))) { |
| std::string alias = mContext->getPolicy()->getDeviceAlias(mIdentifier); |
| if (mAlias != alias) { |
| mAlias = alias; |
| bumpGeneration(); |
| } |
| } |
| } |
| |
| if (!changes.any() || changes.test(Change::DISPLAY_INFO)) { |
| const auto oldAssociatedDisplayId = getAssociatedDisplayId(); |
| |
| // In most situations, no port or name will be specified. |
| mAssociatedDisplayPort = std::nullopt; |
| mAssociatedDisplayUniqueId = std::nullopt; |
| mAssociatedViewport = std::nullopt; |
| // Find the display port that corresponds to the current input port. |
| const std::string& inputPort = mIdentifier.location; |
| if (!inputPort.empty()) { |
| const std::unordered_map<std::string, uint8_t>& ports = |
| readerConfig.portAssociations; |
| const auto& displayPort = ports.find(inputPort); |
| if (displayPort != ports.end()) { |
| mAssociatedDisplayPort = std::make_optional(displayPort->second); |
| } else { |
| const std::unordered_map<std::string, std::string>& displayUniqueIds = |
| readerConfig.uniqueIdAssociations; |
| const auto& displayUniqueId = displayUniqueIds.find(inputPort); |
| if (displayUniqueId != displayUniqueIds.end()) { |
| mAssociatedDisplayUniqueId = displayUniqueId->second; |
| } |
| } |
| } |
| |
| // If it is associated with a specific display, then find the corresponding viewport |
| // which will be used to enable/disable the device. |
| if (mAssociatedDisplayPort) { |
| mAssociatedViewport = |
| readerConfig.getDisplayViewportByPort(*mAssociatedDisplayPort); |
| if (!mAssociatedViewport) { |
| ALOGW("Input device %s should be associated with display on port %" PRIu8 ", " |
| "but the corresponding viewport is not found.", |
| getName().c_str(), *mAssociatedDisplayPort); |
| } |
| } else if (mAssociatedDisplayUniqueId != std::nullopt) { |
| mAssociatedViewport = |
| readerConfig.getDisplayViewportByUniqueId(*mAssociatedDisplayUniqueId); |
| if (!mAssociatedViewport) { |
| ALOGW("Input device %s should be associated with display %s but the " |
| "corresponding viewport cannot be found", |
| getName().c_str(), mAssociatedDisplayUniqueId->c_str()); |
| } |
| } |
| |
| if (getAssociatedDisplayId() != oldAssociatedDisplayId) { |
| bumpGeneration(); |
| } |
| } |
| |
| for_each_mapper([this, when, &readerConfig, changes, &out](InputMapper& mapper) { |
| out += mapper.reconfigure(when, readerConfig, changes); |
| mSources |= mapper.getSources(); |
| }); |
| |
| if (!changes.any() || changes.test(Change::ENABLED_STATE) || |
| changes.test(Change::DISPLAY_INFO)) { |
| // Whether a device is enabled can depend on the display association, |
| // so update the enabled state when there is a change in display info. |
| out += updateEnableState(when, readerConfig, forceEnable); |
| } |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> InputDevice::reset(nsecs_t when) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.reset(when); }); |
| |
| mContext->updateGlobalMetaState(); |
| |
| out.push_back(notifyReset(when)); |
| return out; |
| } |
| |
| std::list<NotifyArgs> InputDevice::process(const RawEvent* rawEvents, size_t count) { |
| // Process all of the events in order for each mapper. |
| // We cannot simply ask each mapper to process them in bulk because mappers may |
| // have side-effects that must be interleaved. For example, joystick movement events and |
| // gamepad button presses are handled by different mappers but they should be dispatched |
| // in the order received. |
| std::list<NotifyArgs> out; |
| for (const RawEvent* rawEvent = rawEvents; count != 0; rawEvent++) { |
| if (debugRawEvents()) { |
| const auto [type, code, value] = |
| InputEventLookup::getLinuxEvdevLabel(rawEvent->type, rawEvent->code, |
| rawEvent->value); |
| ALOGD("Input event: eventHubDevice=%d type=%s code=%s value=%s when=%" PRId64, |
| rawEvent->deviceId, type.c_str(), code.c_str(), value.c_str(), rawEvent->when); |
| } |
| |
| if (mDropUntilNextSync) { |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| out += reset(rawEvent->when); |
| mDropUntilNextSync = false; |
| ALOGD_IF(debugRawEvents(), "Recovered from input event buffer overrun."); |
| } else { |
| ALOGD_IF(debugRawEvents(), |
| "Dropped input event while waiting for next input sync."); |
| } |
| } else if (rawEvent->type == EV_SYN && rawEvent->code == SYN_DROPPED) { |
| ALOGI("Detected input event buffer overrun for device %s.", getName().c_str()); |
| mDropUntilNextSync = true; |
| } else { |
| for_each_mapper_in_subdevice(rawEvent->deviceId, [&](InputMapper& mapper) { |
| out += mapper.process(rawEvent); |
| }); |
| } |
| --count; |
| } |
| postProcess(out); |
| return out; |
| } |
| |
| void InputDevice::postProcess(std::list<NotifyArgs>& args) const { |
| if (mIsWaking) { |
| // Update policy flags to request wake for the `NotifyArgs` that come from waking devices. |
| for (auto& arg : args) { |
| if (const auto notifyMotionArgs = std::get_if<NotifyMotionArgs>(&arg)) { |
| notifyMotionArgs->policyFlags |= POLICY_FLAG_WAKE; |
| } else if (const auto notifySwitchArgs = std::get_if<NotifySwitchArgs>(&arg)) { |
| notifySwitchArgs->policyFlags |= POLICY_FLAG_WAKE; |
| } else if (const auto notifyKeyArgs = std::get_if<NotifyKeyArgs>(&arg)) { |
| notifyKeyArgs->policyFlags |= POLICY_FLAG_WAKE; |
| } |
| } |
| } |
| } |
| |
| std::list<NotifyArgs> InputDevice::timeoutExpired(nsecs_t when) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.timeoutExpired(when); }); |
| return out; |
| } |
| |
| std::list<NotifyArgs> InputDevice::updateExternalStylusState(const StylusState& state) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.updateExternalStylusState(state); }); |
| return out; |
| } |
| |
| InputDeviceInfo InputDevice::getDeviceInfo() { |
| InputDeviceInfo outDeviceInfo; |
| outDeviceInfo.initialize(mId, mGeneration, mControllerNumber, mIdentifier, mAlias, mIsExternal, |
| mHasMic, getAssociatedDisplayId().value_or(ADISPLAY_ID_NONE), |
| {mShouldSmoothScroll}); |
| |
| for_each_mapper( |
| [&outDeviceInfo](InputMapper& mapper) { mapper.populateDeviceInfo(outDeviceInfo); }); |
| |
| if (mController) { |
| mController->populateDeviceInfo(&outDeviceInfo); |
| } |
| return outDeviceInfo; |
| } |
| |
| int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return getState(sourceMask, keyCode, &InputMapper::getKeyCodeState); |
| } |
| |
| int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return getState(sourceMask, scanCode, &InputMapper::getScanCodeState); |
| } |
| |
| int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return getState(sourceMask, switchCode, &InputMapper::getSwitchState); |
| } |
| |
| int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { |
| int32_t result = AKEY_STATE_UNKNOWN; |
| for (auto& deviceEntry : mDevices) { |
| auto& devicePair = deviceEntry.second; |
| auto& mappers = devicePair.second; |
| for (auto& mapperPtr : mappers) { |
| InputMapper& mapper = *mapperPtr; |
| if (sourcesMatchMask(mapper.getSources(), sourceMask)) { |
| // If any mapper reports AKEY_STATE_DOWN or AKEY_STATE_VIRTUAL, return that |
| // value. Otherwise, return AKEY_STATE_UP as long as one mapper reports it. |
| int32_t currentResult = (mapper.*getStateFunc)(sourceMask, code); |
| if (currentResult >= AKEY_STATE_DOWN) { |
| return currentResult; |
| } else if (currentResult == AKEY_STATE_UP) { |
| result = currentResult; |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| std::vector<std::unique_ptr<InputMapper>> InputDevice::createMappers( |
| InputDeviceContext& contextPtr, const InputReaderConfiguration& readerConfig) { |
| ftl::Flags<InputDeviceClass> classes = contextPtr.getDeviceClasses(); |
| std::vector<std::unique_ptr<InputMapper>> mappers; |
| |
| // Switch-like devices. |
| if (classes.test(InputDeviceClass::SWITCH)) { |
| mappers.push_back(createInputMapper<SwitchInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Scroll wheel-like devices. |
| if (classes.test(InputDeviceClass::ROTARY_ENCODER)) { |
| mappers.push_back(createInputMapper<RotaryEncoderInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Vibrator-like devices. |
| if (classes.test(InputDeviceClass::VIBRATOR)) { |
| mappers.push_back(createInputMapper<VibratorInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Battery-like devices or light-containing devices. |
| // PeripheralController will be created with associated EventHub device. |
| if (classes.test(InputDeviceClass::BATTERY) || classes.test(InputDeviceClass::LIGHT)) { |
| mController = std::make_unique<PeripheralController>(contextPtr); |
| } |
| |
| // Keyboard-like devices. |
| uint32_t keyboardSource = 0; |
| int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; |
| if (classes.test(InputDeviceClass::KEYBOARD)) { |
| keyboardSource |= AINPUT_SOURCE_KEYBOARD; |
| } |
| if (classes.test(InputDeviceClass::ALPHAKEY)) { |
| keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; |
| } |
| if (classes.test(InputDeviceClass::DPAD)) { |
| keyboardSource |= AINPUT_SOURCE_DPAD; |
| } |
| if (classes.test(InputDeviceClass::GAMEPAD)) { |
| keyboardSource |= AINPUT_SOURCE_GAMEPAD; |
| } |
| |
| if (keyboardSource != 0) { |
| mappers.push_back(createInputMapper<KeyboardInputMapper>(contextPtr, readerConfig, |
| keyboardSource, keyboardType)); |
| } |
| |
| // Cursor-like devices. |
| if (classes.test(InputDeviceClass::CURSOR)) { |
| mappers.push_back(createInputMapper<CursorInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Touchscreens and touchpad devices. |
| static const bool ENABLE_TOUCHPAD_GESTURES_LIBRARY = |
| sysprop::InputProperties::enable_touchpad_gestures_library().value_or(true); |
| // TODO(b/272518665): Fix the new touchpad stack for Sony DualShock 4 (5c4, 9cc) touchpads, or |
| // at least load this setting from the IDC file. |
| const InputDeviceIdentifier identifier = contextPtr.getDeviceIdentifier(); |
| const bool isSonyDualShock4Touchpad = identifier.vendor == 0x054c && |
| (identifier.product == 0x05c4 || identifier.product == 0x09cc); |
| if (ENABLE_TOUCHPAD_GESTURES_LIBRARY && classes.test(InputDeviceClass::TOUCHPAD) && |
| classes.test(InputDeviceClass::TOUCH_MT) && !isSonyDualShock4Touchpad) { |
| mappers.push_back(createInputMapper<TouchpadInputMapper>(contextPtr, readerConfig)); |
| } else if (classes.test(InputDeviceClass::TOUCH_MT)) { |
| mappers.push_back(createInputMapper<MultiTouchInputMapper>(contextPtr, readerConfig)); |
| } else if (classes.test(InputDeviceClass::TOUCH)) { |
| mappers.push_back(createInputMapper<SingleTouchInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Joystick-like devices. |
| if (classes.test(InputDeviceClass::JOYSTICK)) { |
| mappers.push_back(createInputMapper<JoystickInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // Motion sensor enabled devices. |
| if (classes.test(InputDeviceClass::SENSOR)) { |
| mappers.push_back(createInputMapper<SensorInputMapper>(contextPtr, readerConfig)); |
| } |
| |
| // External stylus-like devices. |
| if (classes.test(InputDeviceClass::EXTERNAL_STYLUS)) { |
| mappers.push_back(createInputMapper<ExternalStylusInputMapper>(contextPtr, readerConfig)); |
| } |
| return mappers; |
| } |
| |
| bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, const std::vector<int32_t>& keyCodes, |
| uint8_t* outFlags) { |
| bool result = false; |
| for_each_mapper([&result, sourceMask, keyCodes, outFlags](InputMapper& mapper) { |
| if (sourcesMatchMask(mapper.getSources(), sourceMask)) { |
| result |= mapper.markSupportedKeyCodes(sourceMask, keyCodes, outFlags); |
| } |
| }); |
| return result; |
| } |
| |
| int32_t InputDevice::getKeyCodeForKeyLocation(int32_t locationKeyCode) const { |
| std::optional<int32_t> result = first_in_mappers<int32_t>( |
| [locationKeyCode](const InputMapper& mapper) -> std::optional<int32_t> const { |
| if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD)) { |
| return std::make_optional(mapper.getKeyCodeForKeyLocation(locationKeyCode)); |
| } |
| return std::nullopt; |
| }); |
| if (!result) { |
| ALOGE("Failed to get key code for key location: No matching InputMapper with source mask " |
| "KEYBOARD found. The provided input device with id %d has sources %s.", |
| getId(), inputEventSourceToString(getSources()).c_str()); |
| return AKEYCODE_UNKNOWN; |
| } |
| return *result; |
| } |
| |
| std::list<NotifyArgs> InputDevice::vibrate(const VibrationSequence& sequence, ssize_t repeat, |
| int32_t token) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.vibrate(sequence, repeat, token); }); |
| return out; |
| } |
| |
| std::list<NotifyArgs> InputDevice::cancelVibrate(int32_t token) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.cancelVibrate(token); }); |
| return out; |
| } |
| |
| bool InputDevice::isVibrating() { |
| bool vibrating = false; |
| for_each_mapper([&vibrating](InputMapper& mapper) { vibrating |= mapper.isVibrating(); }); |
| return vibrating; |
| } |
| |
| /* There's no guarantee the IDs provided by the different mappers are unique, so if we have two |
| * different vibration mappers then we could have duplicate IDs. |
| * Alternatively, if we have a merged device that has multiple evdev nodes with FF_* capabilities, |
| * we would definitely have duplicate IDs. |
| */ |
| std::vector<int32_t> InputDevice::getVibratorIds() { |
| std::vector<int32_t> vibrators; |
| for_each_mapper([&vibrators](InputMapper& mapper) { |
| std::vector<int32_t> devVibs = mapper.getVibratorIds(); |
| vibrators.reserve(vibrators.size() + devVibs.size()); |
| vibrators.insert(vibrators.end(), devVibs.begin(), devVibs.end()); |
| }); |
| return vibrators; |
| } |
| |
| bool InputDevice::enableSensor(InputDeviceSensorType sensorType, |
| std::chrono::microseconds samplingPeriod, |
| std::chrono::microseconds maxBatchReportLatency) { |
| bool success = true; |
| for_each_mapper( |
| [&success, sensorType, samplingPeriod, maxBatchReportLatency](InputMapper& mapper) { |
| success &= mapper.enableSensor(sensorType, samplingPeriod, maxBatchReportLatency); |
| }); |
| return success; |
| } |
| |
| void InputDevice::disableSensor(InputDeviceSensorType sensorType) { |
| for_each_mapper([sensorType](InputMapper& mapper) { mapper.disableSensor(sensorType); }); |
| } |
| |
| void InputDevice::flushSensor(InputDeviceSensorType sensorType) { |
| for_each_mapper([sensorType](InputMapper& mapper) { mapper.flushSensor(sensorType); }); |
| } |
| |
| std::list<NotifyArgs> InputDevice::cancelTouch(nsecs_t when, nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| for_each_mapper([&](InputMapper& mapper) { out += mapper.cancelTouch(when, readTime); }); |
| return out; |
| } |
| |
| bool InputDevice::setLightColor(int32_t lightId, int32_t color) { |
| return mController ? mController->setLightColor(lightId, color) : false; |
| } |
| |
| bool InputDevice::setLightPlayerId(int32_t lightId, int32_t playerId) { |
| return mController ? mController->setLightPlayerId(lightId, playerId) : false; |
| } |
| |
| std::optional<int32_t> InputDevice::getLightColor(int32_t lightId) { |
| return mController ? mController->getLightColor(lightId) : std::nullopt; |
| } |
| |
| std::optional<int32_t> InputDevice::getLightPlayerId(int32_t lightId) { |
| return mController ? mController->getLightPlayerId(lightId) : std::nullopt; |
| } |
| |
| int32_t InputDevice::getMetaState() { |
| int32_t result = 0; |
| for_each_mapper([&result](InputMapper& mapper) { result |= mapper.getMetaState(); }); |
| return result; |
| } |
| |
| void InputDevice::updateMetaState(int32_t keyCode) { |
| first_in_mappers<bool>([keyCode](InputMapper& mapper) { |
| if (sourcesMatchMask(mapper.getSources(), AINPUT_SOURCE_KEYBOARD) && |
| mapper.updateMetaState(keyCode)) { |
| return std::make_optional(true); |
| } |
| return std::optional<bool>(); |
| }); |
| } |
| |
| void InputDevice::addKeyRemapping(int32_t fromKeyCode, int32_t toKeyCode) { |
| for_each_subdevice([fromKeyCode, toKeyCode](auto& context) { |
| context.addKeyRemapping(fromKeyCode, toKeyCode); |
| }); |
| } |
| |
| void InputDevice::bumpGeneration() { |
| mGeneration = mContext->bumpGeneration(); |
| } |
| |
| NotifyDeviceResetArgs InputDevice::notifyReset(nsecs_t when) { |
| return NotifyDeviceResetArgs(mContext->getNextId(), when, mId); |
| } |
| |
| std::optional<int32_t> InputDevice::getAssociatedDisplayId() { |
| // Check if we had associated to the specific display. |
| if (mAssociatedViewport) { |
| return mAssociatedViewport->displayId; |
| } |
| |
| // No associated display port, check if some InputMapper is associated. |
| return first_in_mappers<int32_t>( |
| [](InputMapper& mapper) { return mapper.getAssociatedDisplayId(); }); |
| } |
| |
| // returns the number of mappers associated with the device |
| size_t InputDevice::getMapperCount() { |
| size_t count = 0; |
| for (auto& deviceEntry : mDevices) { |
| auto& devicePair = deviceEntry.second; |
| auto& mappers = devicePair.second; |
| count += mappers.size(); |
| } |
| return count; |
| } |
| |
| void InputDevice::updateLedState(bool reset) { |
| for_each_mapper([reset](InputMapper& mapper) { mapper.updateLedState(reset); }); |
| } |
| |
| std::optional<int32_t> InputDevice::getBatteryEventHubId() const { |
| return mController ? std::make_optional(mController->getEventHubId()) : std::nullopt; |
| } |
| |
| InputDeviceContext::InputDeviceContext(InputDevice& device, int32_t eventHubId) |
| : mDevice(device), |
| mContext(device.getContext()), |
| mEventHub(device.getContext()->getEventHub()), |
| mId(eventHubId), |
| mDeviceId(device.getId()) {} |
| |
| InputDeviceContext::~InputDeviceContext() {} |
| |
| } // namespace android |