| /* |
| * Copyright (C) 2005 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <assert.h> |
| #include <dirent.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <linux/ioctl.h> |
| #include <memory.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/capability.h> |
| #include <sys/epoll.h> |
| #include <sys/inotify.h> |
| #include <sys/ioctl.h> |
| #include <sys/stat.h> |
| #include <sys/sysmacros.h> |
| #include <unistd.h> |
| |
| #define LOG_TAG "EventHub" |
| |
| // #define LOG_NDEBUG 0 |
| #include <android-base/file.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <cutils/properties.h> |
| #include <ftl/enum.h> |
| #include <input/KeyCharacterMap.h> |
| #include <input/KeyLayoutMap.h> |
| #include <input/PrintTools.h> |
| #include <input/VirtualKeyMap.h> |
| #include <openssl/sha.h> |
| #include <statslog.h> |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/Timers.h> |
| |
| #include <filesystem> |
| #include <optional> |
| #include <regex> |
| #include <utility> |
| |
| #include "EventHub.h" |
| |
| #include "KeyCodeClassifications.h" |
| |
| #define INDENT " " |
| #define INDENT2 " " |
| #define INDENT3 " " |
| |
| using android::base::StringPrintf; |
| |
| namespace android { |
| |
| using namespace ftl::flag_operators; |
| |
| static const char* DEVICE_INPUT_PATH = "/dev/input"; |
| // v4l2 devices go directly into /dev |
| static const char* DEVICE_PATH = "/dev"; |
| |
| static constexpr size_t OBFUSCATED_LENGTH = 8; |
| |
| static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0; |
| static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1; |
| |
| static constexpr size_t EVENT_BUFFER_SIZE = 256; |
| |
| // Mapping for input battery class node IDs lookup. |
| // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt |
| static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES = |
| {{"capacity", InputBatteryClass::CAPACITY}, |
| {"capacity_level", InputBatteryClass::CAPACITY_LEVEL}, |
| {"status", InputBatteryClass::STATUS}}; |
| |
| // Mapping for input battery class node names lookup. |
| // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt |
| static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES = |
| {{InputBatteryClass::CAPACITY, "capacity"}, |
| {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"}, |
| {InputBatteryClass::STATUS, "status"}}; |
| |
| // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c |
| static const std::unordered_map<std::string, int32_t> BATTERY_STATUS = |
| {{"Unknown", BATTERY_STATUS_UNKNOWN}, |
| {"Charging", BATTERY_STATUS_CHARGING}, |
| {"Discharging", BATTERY_STATUS_DISCHARGING}, |
| {"Not charging", BATTERY_STATUS_NOT_CHARGING}, |
| {"Full", BATTERY_STATUS_FULL}}; |
| |
| // Mapping taken from |
| // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484 |
| static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5}, |
| {"Low", 10}, |
| {"Normal", 55}, |
| {"High", 70}, |
| {"Full", 100}, |
| {"Unknown", 50}}; |
| |
| // Mapping for input led class node names lookup. |
| // https://www.kernel.org/doc/html/latest/leds/leds-class.html |
| static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES = |
| {{"red", InputLightClass::RED}, |
| {"green", InputLightClass::GREEN}, |
| {"blue", InputLightClass::BLUE}, |
| {"global", InputLightClass::GLOBAL}, |
| {"brightness", InputLightClass::BRIGHTNESS}, |
| {"multi_index", InputLightClass::MULTI_INDEX}, |
| {"multi_intensity", InputLightClass::MULTI_INTENSITY}, |
| {"max_brightness", InputLightClass::MAX_BRIGHTNESS}, |
| {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT}}; |
| |
| // Mapping for input multicolor led class node names. |
| // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html |
| static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES = |
| {{InputLightClass::BRIGHTNESS, "brightness"}, |
| {InputLightClass::MULTI_INDEX, "multi_index"}, |
| {InputLightClass::MULTI_INTENSITY, "multi_intensity"}}; |
| |
| // Mapping for light color name and the light color |
| const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED}, |
| {"green", LightColor::GREEN}, |
| {"blue", LightColor::BLUE}}; |
| |
| // Mapping for country code to Layout info. |
| // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf. |
| const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS = |
| {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // NOT_SUPPORTED |
| {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}}, // ARABIC |
| {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}}, // BELGIAN |
| {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_BILINGUAL |
| {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}}, // CANADIAN_FRENCH |
| {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}}, // CZECH_REPUBLIC |
| {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}}, // DANISH |
| {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}}, // FINNISH |
| {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}}, // FRENCH |
| {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}}, // GERMAN |
| {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}}, // GREEK |
| {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}}, // HEBREW |
| {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}}, // HUNGARY |
| {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}}, // INTERNATIONAL (ISO) |
| {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}}, // ITALIAN |
| {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}}, // JAPAN |
| {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}}, // KOREAN |
| {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}}, // LATIN_AMERICA |
| {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}}, // DUTCH |
| {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}}, // NORWEGIAN |
| {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}}, // PERSIAN |
| {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}}, // POLAND |
| {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}}, // PORTUGUESE |
| {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}}, // RUSSIA |
| {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}}, // SLOVAKIA |
| {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}}, // SPANISH |
| {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}}, // SWEDISH |
| {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}}, // SWISS_FRENCH |
| {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWISS_GERMAN |
| {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}}, // SWITZERLAND |
| {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}}, // TAIWAN |
| {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q |
| {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}}, // UK |
| {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}}, // US |
| {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}}, // YUGOSLAVIA |
| {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F |
| |
| static std::string sha1(const std::string& in) { |
| SHA_CTX ctx; |
| SHA1_Init(&ctx); |
| SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size()); |
| u_char digest[SHA_DIGEST_LENGTH]; |
| SHA1_Final(digest, &ctx); |
| |
| std::string out; |
| for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) { |
| out += StringPrintf("%02x", digest[i]); |
| } |
| return out; |
| } |
| |
| /** |
| * Return true if name matches "v4l-touch*" |
| */ |
| static bool isV4lTouchNode(std::string name) { |
| return name.find("v4l-touch") != std::string::npos; |
| } |
| |
| /** |
| * Returns true if V4L devices should be scanned. |
| * |
| * The system property ro.input.video_enabled can be used to control whether |
| * EventHub scans and opens V4L devices. As V4L does not support multiple |
| * clients, EventHub effectively blocks access to these devices when it opens |
| * them. |
| * |
| * Setting this to "false" would prevent any video devices from being discovered and |
| * associated with input devices. |
| * |
| * This property can be used as follows: |
| * 1. To turn off features that are dependent on video device presence. |
| * 2. During testing and development, to allow other clients to read video devices |
| * directly from /dev. |
| */ |
| static bool isV4lScanningEnabled() { |
| return property_get_bool("ro.input.video_enabled", /*default_value=*/true); |
| } |
| |
| static nsecs_t processEventTimestamp(const struct input_event& event) { |
| // Use the time specified in the event instead of the current time |
| // so that downstream code can get more accurate estimates of |
| // event dispatch latency from the time the event is enqueued onto |
| // the evdev client buffer. |
| // |
| // The event's timestamp fortuitously uses the same monotonic clock |
| // time base as the rest of Android. The kernel event device driver |
| // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). |
| // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere |
| // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a |
| // system call that also queries ktime_get_ts(). |
| |
| const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) + |
| microseconds_to_nanoseconds(event.input_event_usec); |
| return inputEventTime; |
| } |
| |
| /** |
| * Returns the sysfs root path of the input device. |
| */ |
| static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) { |
| std::error_code errorCode; |
| |
| // Stat the device path to get the major and minor number of the character file |
| struct stat statbuf; |
| if (stat(devicePath, &statbuf) == -1) { |
| ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno)); |
| return std::nullopt; |
| } |
| |
| unsigned int major_num = major(statbuf.st_rdev); |
| unsigned int minor_num = minor(statbuf.st_rdev); |
| |
| // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event |
| auto sysfsPath = std::filesystem::path("/sys/dev/char/"); |
| sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num); |
| sysfsPath = std::filesystem::canonical(sysfsPath, errorCode); |
| |
| // Make sure nothing went wrong in call to canonical() |
| if (errorCode) { |
| ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(), |
| errorCode.message().c_str()); |
| return std::nullopt; |
| } |
| |
| // Continue to go up a directory until we reach a directory named "input" |
| while (sysfsPath != "/" && sysfsPath.filename() != "input") { |
| sysfsPath = sysfsPath.parent_path(); |
| } |
| |
| // Then go up one more and you will be at the sysfs root of the device |
| sysfsPath = sysfsPath.parent_path(); |
| |
| // Make sure we didn't reach root path and that directory actually exists |
| if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) { |
| if (errorCode) { |
| ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), |
| errorCode.message().c_str()); |
| } |
| |
| // Not found |
| return std::nullopt; |
| } |
| |
| return sysfsPath; |
| } |
| |
| /** |
| * Returns the list of files under a specified path. |
| */ |
| static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) { |
| std::vector<std::filesystem::path> nodes; |
| std::error_code errorCode; |
| auto iter = std::filesystem::directory_iterator(path, errorCode); |
| while (!errorCode && iter != std::filesystem::directory_iterator()) { |
| nodes.push_back(iter->path()); |
| iter++; |
| } |
| return nodes; |
| } |
| |
| /** |
| * Returns the list of files under a specified directory in a sysfs path. |
| * Example: |
| * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory |
| * in the sysfs path. |
| */ |
| static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot, |
| SysfsClass clazz) { |
| std::string nodeStr = ftl::enum_string(clazz); |
| std::for_each(nodeStr.begin(), nodeStr.end(), |
| [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); }); |
| std::vector<std::filesystem::path> nodes; |
| for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) { |
| nodes = allFilesInPath(path / nodeStr); |
| } |
| return nodes; |
| } |
| |
| static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray( |
| std::filesystem::path path) { |
| std::string indexStr; |
| if (!base::ReadFileToString(path, &indexStr)) { |
| return std::nullopt; |
| } |
| |
| // Parse the multi color LED index file, refer to kernel docs |
| // leds/leds-class-multicolor.html |
| std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]"); |
| std::smatch results; |
| std::array<LightColor, COLOR_NUM> colors; |
| if (!std::regex_match(indexStr, results, indexPattern)) { |
| return std::nullopt; |
| } |
| |
| for (size_t i = 1; i < results.size(); i++) { |
| const auto it = LIGHT_COLORS.find(results[i].str()); |
| if (it != LIGHT_COLORS.end()) { |
| // intensities.emplace(it->second, 0); |
| colors[i - 1] = it->second; |
| } |
| } |
| return colors; |
| } |
| |
| /** |
| * Read country code information exposed through the sysfs path and convert it to Layout info. |
| */ |
| static std::optional<RawLayoutInfo> readLayoutConfiguration( |
| const std::filesystem::path& sysfsRootPath) { |
| // Check the sysfs root path |
| int32_t hidCountryCode = -1; |
| std::string str; |
| if (base::ReadFileToString(sysfsRootPath / "country", &str)) { |
| hidCountryCode = std::stoi(str, nullptr, 16); |
| // Update this condition if new supported country codes are added to HID spec. |
| if (hidCountryCode > 35 || hidCountryCode < 0) { |
| ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d", |
| sysfsRootPath.c_str(), hidCountryCode); |
| } |
| } |
| const auto it = LAYOUT_INFOS.find(hidCountryCode); |
| if (it != LAYOUT_INFOS.end()) { |
| return it->second; |
| } |
| |
| return std::nullopt; |
| } |
| |
| /** |
| * Read information about batteries exposed through the sysfs path. |
| */ |
| static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration( |
| const std::filesystem::path& sysfsRootPath) { |
| std::unordered_map<int32_t, RawBatteryInfo> batteryInfos; |
| int32_t nextBatteryId = 0; |
| // Check if device has any battery. |
| const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY); |
| for (const auto& nodePath : paths) { |
| RawBatteryInfo info; |
| info.id = ++nextBatteryId; |
| info.path = nodePath; |
| info.name = nodePath.filename(); |
| |
| // Scan the path for all the files |
| // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt |
| const auto& files = allFilesInPath(nodePath); |
| for (const auto& file : files) { |
| const auto it = BATTERY_CLASSES.find(file.filename().string()); |
| if (it != BATTERY_CLASSES.end()) { |
| info.flags |= it->second; |
| } |
| } |
| batteryInfos.insert_or_assign(info.id, info); |
| ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str()); |
| } |
| return batteryInfos; |
| } |
| |
| /** |
| * Read information about lights exposed through the sysfs path. |
| */ |
| static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration( |
| const std::filesystem::path& sysfsRootPath) { |
| std::unordered_map<int32_t, RawLightInfo> lightInfos; |
| int32_t nextLightId = 0; |
| // Check if device has any lights. |
| const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS); |
| for (const auto& nodePath : paths) { |
| RawLightInfo info; |
| info.id = ++nextLightId; |
| info.path = nodePath; |
| info.name = nodePath.filename(); |
| info.maxBrightness = std::nullopt; |
| |
| // Light name should follow the naming pattern <name>:<color>:<function> |
| // Refer kernel docs /leds/leds-class.html for valid supported LED names. |
| std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)"); |
| std::smatch results; |
| |
| if (std::regex_match(info.name, results, indexPattern)) { |
| // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo |
| // we only care about sections <color> and <function> which will be at index 2 and 3. |
| for (int i = 2; i <= 3; i++) { |
| const auto it = LIGHT_CLASSES.find(results.str(i)); |
| if (it != LIGHT_CLASSES.end()) { |
| info.flags |= it->second; |
| } |
| } |
| |
| // Set name of the raw light to <function> which represents playerIDs for LEDs that |
| // turn on/off based on the current player ID (Refer to PeripheralController.cpp for |
| // player ID logic) |
| info.name = results.str(3); |
| } |
| // Scan the path for all the files |
| // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt |
| const auto& files = allFilesInPath(nodePath); |
| for (const auto& file : files) { |
| const auto it = LIGHT_CLASSES.find(file.filename().string()); |
| if (it != LIGHT_CLASSES.end()) { |
| info.flags |= it->second; |
| // If the node has maximum brightness, read it |
| if (it->second == InputLightClass::MAX_BRIGHTNESS) { |
| std::string str; |
| if (base::ReadFileToString(file, &str)) { |
| info.maxBrightness = std::stoi(str); |
| } |
| } |
| } |
| } |
| lightInfos.insert_or_assign(info.id, info); |
| ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str()); |
| } |
| return lightInfos; |
| } |
| |
| // --- Global Functions --- |
| |
| ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, |
| ftl::Flags<InputDeviceClass> deviceClasses) { |
| // Touch devices get dibs on touch-related axes. |
| if (deviceClasses.test(InputDeviceClass::TOUCH)) { |
| switch (axis) { |
| case ABS_X: |
| case ABS_Y: |
| case ABS_PRESSURE: |
| case ABS_TOOL_WIDTH: |
| case ABS_DISTANCE: |
| case ABS_TILT_X: |
| case ABS_TILT_Y: |
| case ABS_MT_SLOT: |
| case ABS_MT_TOUCH_MAJOR: |
| case ABS_MT_TOUCH_MINOR: |
| case ABS_MT_WIDTH_MAJOR: |
| case ABS_MT_WIDTH_MINOR: |
| case ABS_MT_ORIENTATION: |
| case ABS_MT_POSITION_X: |
| case ABS_MT_POSITION_Y: |
| case ABS_MT_TOOL_TYPE: |
| case ABS_MT_BLOB_ID: |
| case ABS_MT_TRACKING_ID: |
| case ABS_MT_PRESSURE: |
| case ABS_MT_DISTANCE: |
| return InputDeviceClass::TOUCH; |
| } |
| } |
| |
| if (deviceClasses.test(InputDeviceClass::SENSOR)) { |
| switch (axis) { |
| case ABS_X: |
| case ABS_Y: |
| case ABS_Z: |
| case ABS_RX: |
| case ABS_RY: |
| case ABS_RZ: |
| return InputDeviceClass::SENSOR; |
| } |
| } |
| |
| // External stylus gets the pressure axis |
| if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) { |
| if (axis == ABS_PRESSURE) { |
| return InputDeviceClass::EXTERNAL_STYLUS; |
| } |
| } |
| |
| // Joystick devices get the rest. |
| return deviceClasses & InputDeviceClass::JOYSTICK; |
| } |
| |
| // --- RawAbsoluteAxisInfo --- |
| |
| std::ostream& operator<<(std::ostream& out, const RawAbsoluteAxisInfo& info) { |
| if (info.valid) { |
| out << "min=" << info.minValue << ", max=" << info.maxValue << ", flat=" << info.flat |
| << ", fuzz=" << info.fuzz << ", resolution=" << info.resolution; |
| } else { |
| out << "unknown range"; |
| } |
| return out; |
| } |
| |
| // --- EventHub::Device --- |
| |
| EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier, |
| std::shared_ptr<const AssociatedDevice> assocDev) |
| : fd(fd), |
| id(id), |
| path(std::move(path)), |
| identifier(std::move(identifier)), |
| classes(0), |
| configuration(nullptr), |
| virtualKeyMap(nullptr), |
| ffEffectPlaying(false), |
| ffEffectId(-1), |
| associatedDevice(std::move(assocDev)), |
| controllerNumber(0), |
| enabled(true), |
| isVirtual(fd < 0), |
| currentFrameDropped(false) {} |
| |
| EventHub::Device::~Device() { |
| close(); |
| } |
| |
| void EventHub::Device::close() { |
| if (fd >= 0) { |
| ::close(fd); |
| fd = -1; |
| } |
| } |
| |
| status_t EventHub::Device::enable() { |
| fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK); |
| if (fd < 0) { |
| ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno)); |
| return -errno; |
| } |
| enabled = true; |
| return OK; |
| } |
| |
| status_t EventHub::Device::disable() { |
| close(); |
| enabled = false; |
| return OK; |
| } |
| |
| bool EventHub::Device::hasValidFd() const { |
| return !isVirtual && enabled; |
| } |
| |
| const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const { |
| return keyMap.keyCharacterMap; |
| } |
| |
| template <std::size_t N> |
| status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) { |
| if (!hasValidFd()) { |
| return BAD_VALUE; |
| } |
| if ((_IOC_SIZE(ioctlCode) == 0)) { |
| ioctlCode |= _IOC(0, 0, 0, bitArray.bytes()); |
| } |
| |
| typename BitArray<N>::Buffer buffer; |
| status_t ret = ioctl(fd, ioctlCode, buffer.data()); |
| bitArray.loadFromBuffer(buffer); |
| return ret; |
| } |
| |
| void EventHub::Device::configureFd() { |
| // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type |
| if (classes.test(InputDeviceClass::KEYBOARD)) { |
| // Disable kernel key repeat since we handle it ourselves |
| unsigned int repeatRate[] = {0, 0}; |
| if (ioctl(fd, EVIOCSREP, repeatRate)) { |
| ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno)); |
| } |
| } |
| |
| // Tell the kernel that we want to use the monotonic clock for reporting timestamps |
| // associated with input events. This is important because the input system |
| // uses the timestamps extensively and assumes they were recorded using the monotonic |
| // clock. |
| int clockId = CLOCK_MONOTONIC; |
| if (classes.test(InputDeviceClass::SENSOR)) { |
| // Each new sensor event should use the same time base as |
| // SystemClock.elapsedRealtimeNanos(). |
| clockId = CLOCK_BOOTTIME; |
| } |
| bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); |
| ALOGI("usingClockIoctl=%s", toString(usingClockIoctl)); |
| |
| // Query the initial state of keys and switches, which is tracked by EventHub. |
| readDeviceState(); |
| } |
| |
| void EventHub::Device::readDeviceState() { |
| if (readDeviceBitMask(EVIOCGKEY(0), keyState) < 0) { |
| ALOGD("Unable to query the global key state for %s: %s", path.c_str(), strerror(errno)); |
| } |
| if (readDeviceBitMask(EVIOCGSW(0), swState) < 0) { |
| ALOGD("Unable to query the global switch state for %s: %s", path.c_str(), strerror(errno)); |
| } |
| |
| // Read absolute axis info and values for all available axes for the device. |
| populateAbsoluteAxisStates(); |
| } |
| |
| void EventHub::Device::populateAbsoluteAxisStates() { |
| absState.clear(); |
| |
| for (int axis = 0; axis <= ABS_MAX; axis++) { |
| if (!absBitmask.test(axis)) { |
| continue; |
| } |
| struct input_absinfo info {}; |
| if (ioctl(fd, EVIOCGABS(axis), &info)) { |
| ALOGE("Error reading absolute controller %d for device %s fd %d: %s", axis, |
| identifier.name.c_str(), fd, strerror(errno)); |
| continue; |
| } |
| auto& [axisInfo, value] = absState[axis]; |
| axisInfo.valid = true; |
| axisInfo.minValue = info.minimum; |
| axisInfo.maxValue = info.maximum; |
| axisInfo.flat = info.flat; |
| axisInfo.fuzz = info.fuzz; |
| axisInfo.resolution = info.resolution; |
| value = info.value; |
| } |
| } |
| |
| bool EventHub::Device::hasKeycodeLocked(int keycode) const { |
| if (!keyMap.haveKeyLayout()) { |
| return false; |
| } |
| |
| std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode); |
| const size_t N = scanCodes.size(); |
| for (size_t i = 0; i < N && i <= KEY_MAX; i++) { |
| int32_t sc = scanCodes[i]; |
| if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) { |
| return true; |
| } |
| } |
| |
| std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode); |
| if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void EventHub::Device::loadConfigurationLocked() { |
| configurationFile = |
| getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier, |
| InputDeviceConfigurationFileType:: |
| CONFIGURATION); |
| if (configurationFile.empty()) { |
| ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str()); |
| } else { |
| android::base::Result<std::unique_ptr<PropertyMap>> propertyMap = |
| PropertyMap::load(configurationFile.c_str()); |
| if (!propertyMap.ok()) { |
| ALOGE("Error loading input device configuration file for device '%s'. " |
| "Using default configuration.", |
| identifier.name.c_str()); |
| } else { |
| configuration = std::move(*propertyMap); |
| } |
| } |
| } |
| |
| bool EventHub::Device::loadVirtualKeyMapLocked() { |
| // The virtual key map is supplied by the kernel as a system board property file. |
| std::string propPath = "/sys/board_properties/virtualkeys."; |
| propPath += identifier.getCanonicalName(); |
| if (access(propPath.c_str(), R_OK)) { |
| return false; |
| } |
| virtualKeyMap = VirtualKeyMap::load(propPath); |
| return virtualKeyMap != nullptr; |
| } |
| |
| status_t EventHub::Device::loadKeyMapLocked() { |
| return keyMap.load(identifier, configuration.get()); |
| } |
| |
| bool EventHub::Device::isExternalDeviceLocked() { |
| if (configuration) { |
| std::optional<bool> isInternal = configuration->getBool("device.internal"); |
| if (isInternal.has_value()) { |
| return !isInternal.value(); |
| } |
| } |
| return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH; |
| } |
| |
| bool EventHub::Device::deviceHasMicLocked() { |
| if (configuration) { |
| std::optional<bool> hasMic = configuration->getBool("audio.mic"); |
| if (hasMic.has_value()) { |
| return hasMic.value(); |
| } |
| } |
| return false; |
| } |
| |
| void EventHub::Device::setLedStateLocked(int32_t led, bool on) { |
| int32_t sc; |
| if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) { |
| struct input_event ev; |
| ev.input_event_sec = 0; |
| ev.input_event_usec = 0; |
| ev.type = EV_LED; |
| ev.code = sc; |
| ev.value = on ? 1 : 0; |
| |
| ssize_t nWrite; |
| do { |
| nWrite = write(fd, &ev, sizeof(struct input_event)); |
| } while (nWrite == -1 && errno == EINTR); |
| } |
| } |
| |
| void EventHub::Device::setLedForControllerLocked() { |
| for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { |
| setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1); |
| } |
| } |
| |
| status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const { |
| if (!keyMap.haveKeyLayout()) { |
| return NAME_NOT_FOUND; |
| } |
| |
| std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led); |
| if (scanCode.has_value()) { |
| if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) { |
| *outScanCode = *scanCode; |
| return NO_ERROR; |
| } |
| } |
| return NAME_NOT_FOUND; |
| } |
| |
| void EventHub::Device::trackInputEvent(const struct input_event& event) { |
| switch (event.type) { |
| case EV_KEY: { |
| LOG_ALWAYS_FATAL_IF(!currentFrameDropped && |
| !keyState.set(static_cast<size_t>(event.code), |
| event.value != 0), |
| "%s: device '%s' received invalid EV_KEY event code: %s value: %d", |
| __func__, identifier.name.c_str(), |
| InputEventLookup::getLinuxEvdevLabel(EV_KEY, event.code, 1) |
| .code.c_str(), |
| event.value); |
| break; |
| } |
| case EV_SW: { |
| LOG_ALWAYS_FATAL_IF(!currentFrameDropped && |
| !swState.set(static_cast<size_t>(event.code), |
| event.value != 0), |
| "%s: device '%s' received invalid EV_SW event code: %s value: %d", |
| __func__, identifier.name.c_str(), |
| InputEventLookup::getLinuxEvdevLabel(EV_SW, event.code, 1) |
| .code.c_str(), |
| event.value); |
| break; |
| } |
| case EV_ABS: { |
| if (currentFrameDropped) { |
| break; |
| } |
| auto it = absState.find(event.code); |
| LOG_ALWAYS_FATAL_IF(it == absState.end(), |
| "%s: device '%s' received invalid EV_ABS event code: %s value: %d", |
| __func__, identifier.name.c_str(), |
| InputEventLookup::getLinuxEvdevLabel(EV_ABS, event.code, 0) |
| .code.c_str(), |
| event.value); |
| it->second.value = event.value; |
| break; |
| } |
| case EV_SYN: { |
| switch (event.code) { |
| case SYN_REPORT: |
| if (currentFrameDropped) { |
| // To recover after a SYN_DROPPED, we need to query the state of the device |
| // to synchronize our device state with the kernel's to account for the |
| // dropped events on receiving the next SYN_REPORT. |
| // Note we don't drop the SYN_REPORT at this point but it is used by the |
| // InputDevice to reset and repopulate mapper state |
| readDeviceState(); |
| currentFrameDropped = false; |
| } |
| break; |
| case SYN_DROPPED: |
| // When we receive SYN_DROPPED, all events in the current frame should be |
| // dropped up to and including next SYN_REPORT |
| currentFrameDropped = true; |
| break; |
| default: |
| break; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * Get the capabilities for the current process. |
| * Crashes the system if unable to create / check / destroy the capabilities object. |
| */ |
| class Capabilities final { |
| public: |
| explicit Capabilities() { |
| mCaps = cap_get_proc(); |
| LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process"); |
| } |
| |
| /** |
| * Check whether the current process has a specific capability |
| * in the set of effective capabilities. |
| * Return CAP_SET if the process has the requested capability |
| * Return CAP_CLEAR otherwise. |
| */ |
| cap_flag_value_t checkEffectiveCapability(cap_value_t capability) { |
| cap_flag_value_t value; |
| const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value); |
| LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability"); |
| return value; |
| } |
| |
| ~Capabilities() { |
| const int result = cap_free(mCaps); |
| LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure"); |
| } |
| |
| private: |
| cap_t mCaps; |
| }; |
| |
| static void ensureProcessCanBlockSuspend() { |
| Capabilities capabilities; |
| const bool canBlockSuspend = |
| capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET; |
| LOG_ALWAYS_FATAL_IF(!canBlockSuspend, |
| "Input must be able to block suspend to properly process events"); |
| } |
| |
| // --- EventHub --- |
| |
| const int EventHub::EPOLL_MAX_EVENTS; |
| |
| EventHub::EventHub(void) |
| : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), |
| mNextDeviceId(1), |
| mControllerNumbers(), |
| mNeedToSendFinishedDeviceScan(false), |
| mNeedToReopenDevices(false), |
| mNeedToScanDevices(true), |
| mPendingEventCount(0), |
| mPendingEventIndex(0), |
| mPendingINotify(false) { |
| ensureProcessCanBlockSuspend(); |
| |
| mEpollFd = epoll_create1(EPOLL_CLOEXEC); |
| LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno)); |
| |
| mINotifyFd = inotify_init1(IN_CLOEXEC); |
| LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno)); |
| |
| std::error_code errorCode; |
| bool isDeviceInotifyAdded = false; |
| if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) { |
| addDeviceInputInotify(); |
| } else { |
| addDeviceInotify(); |
| isDeviceInotifyAdded = true; |
| if (errorCode) { |
| ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), |
| errorCode.message().c_str()); |
| } |
| } |
| |
| if (isV4lScanningEnabled() && !isDeviceInotifyAdded) { |
| addDeviceInotify(); |
| } else { |
| ALOGI("Video device scanning disabled"); |
| } |
| |
| struct epoll_event eventItem = {}; |
| eventItem.events = EPOLLIN | EPOLLWAKEUP; |
| eventItem.data.fd = mINotifyFd; |
| int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); |
| |
| int wakeFds[2]; |
| result = pipe2(wakeFds, O_CLOEXEC); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); |
| |
| mWakeReadPipeFd = wakeFds[0]; |
| mWakeWritePipeFd = wakeFds[1]; |
| |
| result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", |
| errno); |
| |
| result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", |
| errno); |
| |
| eventItem.data.fd = mWakeReadPipeFd; |
| result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", |
| errno); |
| } |
| |
| EventHub::~EventHub(void) { |
| closeAllDevicesLocked(); |
| |
| ::close(mEpollFd); |
| ::close(mINotifyFd); |
| ::close(mWakeReadPipeFd); |
| ::close(mWakeWritePipeFd); |
| } |
| |
| /** |
| * On devices that don't have any input devices (like some development boards), the /dev/input |
| * directory will be absent. However, the user may still plug in an input device at a later time. |
| * Add watch for contents of /dev/input only when /dev/input appears. |
| */ |
| void EventHub::addDeviceInputInotify() { |
| mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE); |
| LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s", |
| DEVICE_INPUT_PATH, strerror(errno)); |
| } |
| |
| void EventHub::addDeviceInotify() { |
| mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); |
| LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH, |
| strerror(errno)); |
| } |
| |
| InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| return device != nullptr ? device->identifier : InputDeviceIdentifier(); |
| } |
| |
| ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0); |
| } |
| |
| int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| return device != nullptr ? device->controllerNumber : 0; |
| } |
| |
| std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || device->configuration == nullptr) { |
| return {}; |
| } |
| return *device->configuration; |
| } |
| |
| status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, |
| RawAbsoluteAxisInfo* outAxisInfo) const { |
| outAxisInfo->clear(); |
| if (axis < 0 || axis > ABS_MAX) { |
| return NAME_NOT_FOUND; |
| } |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr) { |
| return NAME_NOT_FOUND; |
| } |
| // We can read the RawAbsoluteAxisInfo even if the device is disabled and doesn't have a valid |
| // fd, because the info is populated once when the device is first opened, and it doesn't change |
| // throughout the device lifecycle. |
| auto it = device->absState.find(axis); |
| if (it == device->absState.end()) { |
| return NAME_NOT_FOUND; |
| } |
| *outAxisInfo = it->second.info; |
| return OK; |
| } |
| |
| bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { |
| if (axis >= 0 && axis <= REL_MAX) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| return device != nullptr ? device->relBitmask.test(axis) : false; |
| } |
| return false; |
| } |
| |
| bool EventHub::hasInputProperty(int32_t deviceId, int property) const { |
| std::scoped_lock _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr |
| ? device->propBitmask.test(property) |
| : false; |
| } |
| |
| bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const { |
| std::scoped_lock _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr |
| ? device->mscBitmask.test(mscEvent) |
| : false; |
| } |
| |
| int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { |
| if (scanCode < 0 || scanCode > KEY_MAX) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd() || !device->keyBitmask.test(scanCode)) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| } |
| |
| int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd() || !device->keyMap.haveKeyLayout()) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| const std::vector<int32_t> scanCodes = |
| device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode); |
| if (scanCodes.empty()) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| return std::any_of(scanCodes.begin(), scanCodes.end(), |
| [&device](const int32_t sc) { |
| return sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc); |
| }) |
| ? AKEY_STATE_DOWN |
| : AKEY_STATE_UP; |
| } |
| |
| int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const { |
| std::scoped_lock _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr || |
| device->keyMap.keyLayoutMap == nullptr) { |
| return AKEYCODE_UNKNOWN; |
| } |
| std::vector<int32_t> scanCodes = |
| device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode); |
| if (scanCodes.empty()) { |
| ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input" |
| "device %d", |
| locationKeyCode, deviceId); |
| return AKEYCODE_UNKNOWN; |
| } |
| if (scanCodes.size() > 1) { |
| ALOGW("Multiple scan codes map to the same key code %d, returning only the first match", |
| locationKeyCode); |
| } |
| int32_t outKeyCode; |
| status_t mapKeyRes = |
| device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode); |
| switch (mapKeyRes) { |
| case OK: |
| break; |
| case NAME_NOT_FOUND: |
| // key character map doesn't re-map this scanCode, hence the keyCode remains the same |
| outKeyCode = locationKeyCode; |
| break; |
| default: |
| ALOGW("Failed to get key code for key location: Key character map returned error %s", |
| statusToString(mapKeyRes).c_str()); |
| outKeyCode = AKEYCODE_UNKNOWN; |
| break; |
| } |
| // Remap if there is a Key remapping added to the KCM and return the remapped key |
| return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode); |
| } |
| |
| int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { |
| if (sw < 0 || sw > SW_MAX) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd() || !device->swBitmask.test(sw)) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| } |
| |
| status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { |
| *outValue = 0; |
| if (axis < 0 || axis > ABS_MAX) { |
| return NAME_NOT_FOUND; |
| } |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd()) { |
| return NAME_NOT_FOUND; |
| } |
| const auto it = device->absState.find(axis); |
| if (it == device->absState.end()) { |
| return NAME_NOT_FOUND; |
| } |
| *outValue = it->second.value; |
| return OK; |
| } |
| |
| base::Result<std::vector<int32_t>> EventHub::getMtSlotValues(int32_t deviceId, int32_t axis, |
| size_t slotCount) const { |
| std::scoped_lock _l(mLock); |
| const Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->hasValidFd() || !device->absBitmask.test(axis)) { |
| return base::ResultError("device problem or axis not supported", NAME_NOT_FOUND); |
| } |
| std::vector<int32_t> outValues(slotCount + 1); |
| outValues[0] = axis; |
| const size_t bufferSize = outValues.size() * sizeof(int32_t); |
| if (ioctl(device->fd, EVIOCGMTSLOTS(bufferSize), outValues.data()) != OK) { |
| return base::ErrnoError(); |
| } |
| return std::move(outValues); |
| } |
| |
| bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes, |
| uint8_t* outFlags) const { |
| std::scoped_lock _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->keyMap.haveKeyLayout()) { |
| for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) { |
| if (device->hasKeycodeLocked(keyCodes[codeIndex])) { |
| outFlags[codeIndex] = 1; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void EventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr) { |
| return; |
| } |
| const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap(); |
| if (kcm) { |
| kcm->addKeyRemapping(fromKeyCode, toKeyCode); |
| } |
| } |
| |
| status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState, |
| int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| status_t status = NAME_NOT_FOUND; |
| |
| if (device != nullptr) { |
| // Check the key character map first. |
| const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap(); |
| if (kcm) { |
| if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { |
| *outFlags = 0; |
| status = NO_ERROR; |
| } |
| } |
| |
| // Check the key layout next. |
| if (status != NO_ERROR && device->keyMap.haveKeyLayout()) { |
| if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) { |
| status = NO_ERROR; |
| } |
| } |
| |
| if (status == NO_ERROR) { |
| if (kcm) { |
| // Remap keys based on user-defined key remappings and key behavior defined in the |
| // corresponding kcm file |
| *outKeycode = kcm->applyKeyRemapping(*outKeycode); |
| |
| // Remap keys based on Key behavior defined in KCM file |
| std::tie(*outKeycode, *outMetaState) = |
| kcm->applyKeyBehavior(*outKeycode, metaState); |
| } else { |
| *outMetaState = metaState; |
| } |
| } |
| } |
| |
| if (status != NO_ERROR) { |
| *outKeycode = 0; |
| *outFlags = 0; |
| *outMetaState = metaState; |
| } |
| |
| return status; |
| } |
| |
| status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| |
| if (device == nullptr || !device->keyMap.haveKeyLayout()) { |
| return NAME_NOT_FOUND; |
| } |
| std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode); |
| if (!info.has_value()) { |
| return NAME_NOT_FOUND; |
| } |
| *outAxisInfo = *info; |
| return NO_ERROR; |
| } |
| |
| base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId, |
| int32_t absCode) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| |
| if (device != nullptr && device->keyMap.haveKeyLayout()) { |
| return device->keyMap.keyLayoutMap->mapSensor(absCode); |
| } |
| return Errorf("Device not found or device has no key layout."); |
| } |
| |
| // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device |
| // associated with the device ID. Returns an empty map if no miscellaneous device found. |
| const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked( |
| int32_t deviceId) const { |
| static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {}; |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->associatedDevice) { |
| return EMPTY_BATTERY_INFO; |
| } |
| return device->associatedDevice->batteryInfos; |
| } |
| |
| std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| std::vector<int32_t> batteryIds; |
| |
| for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) { |
| batteryIds.push_back(id); |
| } |
| |
| return batteryIds; |
| } |
| |
| std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, |
| int32_t batteryId) const { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getBatteryInfoLocked(deviceId); |
| |
| auto it = infos.find(batteryId); |
| if (it != infos.end()) { |
| return it->second; |
| } |
| |
| return std::nullopt; |
| } |
| |
| // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated |
| // with the device ID. Returns an empty map if no miscellaneous device found. |
| const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked( |
| int32_t deviceId) const { |
| static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {}; |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->associatedDevice) { |
| return EMPTY_LIGHT_INFO; |
| } |
| return device->associatedDevice->lightInfos; |
| } |
| |
| std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| std::vector<int32_t> lightIds; |
| |
| for (const auto& [id, info] : getLightInfoLocked(deviceId)) { |
| lightIds.push_back(id); |
| } |
| |
| return lightIds; |
| } |
| |
| std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getLightInfoLocked(deviceId); |
| |
| auto it = infos.find(lightId); |
| if (it != infos.end()) { |
| return it->second; |
| } |
| |
| return std::nullopt; |
| } |
| |
| std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getLightInfoLocked(deviceId); |
| auto it = infos.find(lightId); |
| if (it == infos.end()) { |
| return std::nullopt; |
| } |
| std::string buffer; |
| if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS), |
| &buffer)) { |
| return std::nullopt; |
| } |
| return std::stoi(buffer); |
| } |
| |
| std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities( |
| int32_t deviceId, int32_t lightId) const { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getLightInfoLocked(deviceId); |
| auto lightIt = infos.find(lightId); |
| if (lightIt == infos.end()) { |
| return std::nullopt; |
| } |
| |
| auto ret = |
| getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX)); |
| |
| if (!ret.has_value()) { |
| return std::nullopt; |
| } |
| std::array<LightColor, COLOR_NUM> colors = ret.value(); |
| |
| std::string intensityStr; |
| if (!base::ReadFileToString(lightIt->second.path / |
| LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY), |
| &intensityStr)) { |
| return std::nullopt; |
| } |
| |
| // Intensity node outputs 3 color values |
| std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]"); |
| std::smatch results; |
| |
| if (!std::regex_match(intensityStr, results, intensityPattern)) { |
| return std::nullopt; |
| } |
| std::unordered_map<LightColor, int32_t> intensities; |
| for (size_t i = 1; i < results.size(); i++) { |
| int value = std::stoi(results[i].str()); |
| intensities.emplace(colors[i - 1], value); |
| } |
| return intensities; |
| } |
| |
| void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getLightInfoLocked(deviceId); |
| auto lightIt = infos.find(lightId); |
| if (lightIt == infos.end()) { |
| ALOGE("%s lightId %d not found ", __func__, lightId); |
| return; |
| } |
| |
| if (!base::WriteStringToFile(std::to_string(brightness), |
| lightIt->second.path / |
| LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) { |
| ALOGE("Can not write to file, error: %s", strerror(errno)); |
| } |
| } |
| |
| void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId, |
| std::unordered_map<LightColor, int32_t> intensities) { |
| std::scoped_lock _l(mLock); |
| |
| const auto infos = getLightInfoLocked(deviceId); |
| auto lightIt = infos.find(lightId); |
| if (lightIt == infos.end()) { |
| ALOGE("Light Id %d does not exist.", lightId); |
| return; |
| } |
| |
| auto ret = |
| getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX)); |
| |
| if (!ret.has_value()) { |
| return; |
| } |
| std::array<LightColor, COLOR_NUM> colors = ret.value(); |
| |
| std::string rgbStr; |
| for (size_t i = 0; i < COLOR_NUM; i++) { |
| auto it = intensities.find(colors[i]); |
| if (it != intensities.end()) { |
| rgbStr += std::to_string(it->second); |
| // Insert space between colors |
| if (i < COLOR_NUM - 1) { |
| rgbStr += " "; |
| } |
| } |
| } |
| // Append new line |
| rgbStr += "\n"; |
| |
| if (!base::WriteStringToFile(rgbStr, |
| lightIt->second.path / |
| LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) { |
| ALOGE("Can not write to file, error: %s", strerror(errno)); |
| } |
| } |
| |
| std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->associatedDevice) { |
| return std::nullopt; |
| } |
| return device->associatedDevice->layoutInfo; |
| } |
| |
| void EventHub::setExcludedDevices(const std::vector<std::string>& devices) { |
| std::scoped_lock _l(mLock); |
| |
| mExcludedDevices = devices; |
| } |
| |
| bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) { |
| return device->keyBitmask.test(scanCode); |
| } |
| return false; |
| } |
| |
| bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr) { |
| return device->hasKeycodeLocked(keyCode); |
| } |
| return false; |
| } |
| |
| bool EventHub::hasLed(int32_t deviceId, int32_t led) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| int32_t sc; |
| if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) { |
| return device->ledBitmask.test(sc); |
| } |
| return false; |
| } |
| |
| void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->hasValidFd()) { |
| device->setLedStateLocked(led, on); |
| } |
| } |
| |
| void EventHub::getVirtualKeyDefinitions(int32_t deviceId, |
| std::vector<VirtualKeyDefinition>& outVirtualKeys) const { |
| outVirtualKeys.clear(); |
| |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->virtualKeyMap) { |
| const std::vector<VirtualKeyDefinition> virtualKeys = |
| device->virtualKeyMap->getVirtualKeys(); |
| outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end()); |
| } |
| } |
| |
| const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr) { |
| return device->getKeyCharacterMap(); |
| } |
| return nullptr; |
| } |
| |
| // If provided map is null, it will reset key character map to default KCM. |
| bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) { |
| return false; |
| } |
| if (map == nullptr) { |
| device->keyMap.keyCharacterMap->clearLayoutOverlay(); |
| return true; |
| } |
| device->keyMap.keyCharacterMap->combine(*map); |
| return true; |
| } |
| |
| static std::string generateDescriptor(InputDeviceIdentifier& identifier) { |
| std::string rawDescriptor; |
| rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product); |
| // TODO add handling for USB devices to not uniqueify kbs that show up twice |
| if (!identifier.uniqueId.empty()) { |
| rawDescriptor += "uniqueId:"; |
| rawDescriptor += identifier.uniqueId; |
| } |
| if (identifier.nonce != 0) { |
| rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce); |
| } |
| |
| if (identifier.vendor == 0 && identifier.product == 0) { |
| // If we don't know the vendor and product id, then the device is probably |
| // built-in so we need to rely on other information to uniquely identify |
| // the input device. Usually we try to avoid relying on the device name or |
| // location but for built-in input device, they are unlikely to ever change. |
| if (!identifier.name.empty()) { |
| rawDescriptor += "name:"; |
| rawDescriptor += identifier.name; |
| } else if (!identifier.location.empty()) { |
| rawDescriptor += "location:"; |
| rawDescriptor += identifier.location; |
| } |
| } |
| identifier.descriptor = sha1(rawDescriptor); |
| return rawDescriptor; |
| } |
| |
| void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { |
| // Compute a device descriptor that uniquely identifies the device. |
| // The descriptor is assumed to be a stable identifier. Its value should not |
| // change between reboots, reconnections, firmware updates or new releases |
| // of Android. In practice we sometimes get devices that cannot be uniquely |
| // identified. In this case we enforce uniqueness between connected devices. |
| // Ideally, we also want the descriptor to be short and relatively opaque. |
| // Note that we explicitly do not use the path or location for external devices |
| // as their path or location will change as they are plugged/unplugged or moved |
| // to different ports. We do fallback to using name and location in the case of |
| // internal devices which are detected by the vendor and product being 0 in |
| // generateDescriptor. If two identical descriptors are detected we will fallback |
| // to using a 'nonce' and incrementing it until the new descriptor no longer has |
| // a match with any existing descriptors. |
| |
| identifier.nonce = 0; |
| std::string rawDescriptor = generateDescriptor(identifier); |
| // Enforce that the generated descriptor is unique. |
| while (hasDeviceWithDescriptorLocked(identifier.descriptor)) { |
| identifier.nonce++; |
| rawDescriptor = generateDescriptor(identifier); |
| } |
| ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(), |
| identifier.descriptor.c_str()); |
| } |
| |
| std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked( |
| const std::filesystem::path& devicePath) const { |
| const std::optional<std::filesystem::path> sysfsRootPathOpt = |
| getSysfsRootPath(devicePath.c_str()); |
| if (!sysfsRootPathOpt) { |
| return nullptr; |
| } |
| |
| const auto& path = *sysfsRootPathOpt; |
| |
| std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>( |
| AssociatedDevice{.sysfsRootPath = path, |
| .batteryInfos = readBatteryConfiguration(path), |
| .lightInfos = readLightsConfiguration(path), |
| .layoutInfo = readLayoutConfiguration(path)}); |
| |
| bool associatedDeviceChanged = false; |
| for (const auto& [id, dev] : mDevices) { |
| if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) { |
| if (*associatedDevice != *dev->associatedDevice) { |
| associatedDeviceChanged = true; |
| dev->associatedDevice = associatedDevice; |
| } |
| associatedDevice = dev->associatedDevice; |
| } |
| } |
| ALOGI_IF(associatedDeviceChanged, |
| "The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s", |
| path.c_str(), associatedDevice->dump().c_str()); |
| |
| return associatedDevice; |
| } |
| |
| bool EventHub::AssociatedDevice::isChanged() const { |
| std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos = |
| readBatteryConfiguration(sysfsRootPath); |
| std::unordered_map<int32_t, RawLightInfo> newLightInfos = |
| readLightsConfiguration(sysfsRootPath); |
| std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath); |
| |
| if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos && |
| newLayoutInfo == layoutInfo) { |
| return false; |
| } |
| return true; |
| } |
| |
| void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->hasValidFd()) { |
| ff_effect effect; |
| memset(&effect, 0, sizeof(effect)); |
| effect.type = FF_RUMBLE; |
| effect.id = device->ffEffectId; |
| // evdev FF_RUMBLE effect only supports two channels of vibration. |
| effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX); |
| effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX); |
| effect.replay.length = element.duration.count(); |
| effect.replay.delay = 0; |
| if (ioctl(device->fd, EVIOCSFF, &effect)) { |
| ALOGW("Could not upload force feedback effect to device %s due to error %d.", |
| device->identifier.name.c_str(), errno); |
| return; |
| } |
| device->ffEffectId = effect.id; |
| |
| struct input_event ev; |
| ev.input_event_sec = 0; |
| ev.input_event_usec = 0; |
| ev.type = EV_FF; |
| ev.code = device->ffEffectId; |
| ev.value = 1; |
| if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| ALOGW("Could not start force feedback effect on device %s due to error %d.", |
| device->identifier.name.c_str(), errno); |
| return; |
| } |
| device->ffEffectPlaying = true; |
| } |
| } |
| |
| void EventHub::cancelVibrate(int32_t deviceId) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->hasValidFd()) { |
| if (device->ffEffectPlaying) { |
| device->ffEffectPlaying = false; |
| |
| struct input_event ev; |
| ev.input_event_sec = 0; |
| ev.input_event_usec = 0; |
| ev.type = EV_FF; |
| ev.code = device->ffEffectId; |
| ev.value = 0; |
| if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| ALOGW("Could not stop force feedback effect on device %s due to error %d.", |
| device->identifier.name.c_str(), errno); |
| return; |
| } |
| } |
| } |
| } |
| |
| std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| std::vector<int32_t> vibrators; |
| Device* device = getDeviceLocked(deviceId); |
| if (device != nullptr && device->hasValidFd() && |
| device->classes.test(InputDeviceClass::VIBRATOR)) { |
| vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX); |
| vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX); |
| } |
| return vibrators; |
| } |
| |
| /** |
| * Checks both mDevices and mOpeningDevices for a device with the descriptor passed. |
| */ |
| bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const { |
| for (const auto& device : mOpeningDevices) { |
| if (descriptor == device->identifier.descriptor) { |
| return true; |
| } |
| } |
| |
| for (const auto& [id, device] : mDevices) { |
| if (descriptor == device->identifier.descriptor) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { |
| if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) { |
| deviceId = mBuiltInKeyboardId; |
| } |
| const auto& it = mDevices.find(deviceId); |
| return it != mDevices.end() ? it->second.get() : nullptr; |
| } |
| |
| EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const { |
| for (const auto& [id, device] : mDevices) { |
| if (device->path == devicePath) { |
| return device.get(); |
| } |
| } |
| return nullptr; |
| } |
| |
| /** |
| * The file descriptor could be either input device, or a video device (associated with a |
| * specific input device). Check both cases here, and return the device that this event |
| * belongs to. Caller can compare the fd's once more to determine event type. |
| * Looks through all input devices, and only attached video devices. Unattached video |
| * devices are ignored. |
| */ |
| EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const { |
| for (const auto& [id, device] : mDevices) { |
| if (device->fd == fd) { |
| // This is an input device event |
| return device.get(); |
| } |
| if (device->videoDevice && device->videoDevice->getFd() == fd) { |
| // This is a video device event |
| return device.get(); |
| } |
| } |
| // We do not check mUnattachedVideoDevices here because they should not participate in epoll, |
| // and therefore should never be looked up by fd. |
| return nullptr; |
| } |
| |
| std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const { |
| std::filesystem::path batteryPath; |
| { |
| // Do not read the sysfs node to get the battery state while holding |
| // the EventHub lock. For some peripheral devices, reading battery state |
| // can be broken and take 5+ seconds. Holding the lock in this case would |
| // block all other event processing during this time. For now, we assume this |
| // call never happens on the InputReader thread and read the sysfs node outside |
| // the lock to prevent event processing from being blocked by this call. |
| std::scoped_lock _l(mLock); |
| |
| const auto& infos = getBatteryInfoLocked(deviceId); |
| auto it = infos.find(batteryId); |
| if (it == infos.end()) { |
| return std::nullopt; |
| } |
| batteryPath = it->second.path; |
| } // release lock |
| |
| std::string buffer; |
| |
| // Some devices report battery capacity as an integer through the "capacity" file |
| if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY), |
| &buffer)) { |
| return std::stoi(base::Trim(buffer)); |
| } |
| |
| // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX |
| // These values are taken from kernel source code include/linux/power_supply.h |
| if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL), |
| &buffer)) { |
| // Remove any white space such as trailing new line |
| const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer)); |
| if (levelIt != BATTERY_LEVEL.end()) { |
| return levelIt->second; |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const { |
| std::filesystem::path batteryPath; |
| { |
| // Do not read the sysfs node to get the battery state while holding |
| // the EventHub lock. For some peripheral devices, reading battery state |
| // can be broken and take 5+ seconds. Holding the lock in this case would |
| // block all other event processing during this time. For now, we assume this |
| // call never happens on the InputReader thread and read the sysfs node outside |
| // the lock to prevent event processing from being blocked by this call. |
| std::scoped_lock _l(mLock); |
| |
| const auto& infos = getBatteryInfoLocked(deviceId); |
| auto it = infos.find(batteryId); |
| if (it == infos.end()) { |
| return std::nullopt; |
| } |
| batteryPath = it->second.path; |
| } // release lock |
| |
| std::string buffer; |
| |
| if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS), |
| &buffer)) { |
| ALOGE("Failed to read sysfs battery info: %s", strerror(errno)); |
| return std::nullopt; |
| } |
| |
| // Remove white space like trailing new line |
| const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer)); |
| if (statusIt != BATTERY_STATUS.end()) { |
| return statusIt->second; |
| } |
| |
| return std::nullopt; |
| } |
| |
| std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) { |
| std::scoped_lock _l(mLock); |
| |
| std::array<input_event, EVENT_BUFFER_SIZE> readBuffer; |
| |
| std::vector<RawEvent> events; |
| bool awoken = false; |
| for (;;) { |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| // Reopen input devices if needed. |
| if (mNeedToReopenDevices) { |
| mNeedToReopenDevices = false; |
| |
| ALOGI("Reopening all input devices due to a configuration change."); |
| |
| closeAllDevicesLocked(); |
| mNeedToScanDevices = true; |
| break; // return to the caller before we actually rescan |
| } |
| |
| // Report any devices that had last been added/removed. |
| for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) { |
| std::unique_ptr<Device> device = std::move(*it); |
| ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str()); |
| const int32_t deviceId = (device->id == mBuiltInKeyboardId) |
| ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID |
| : device->id; |
| events.push_back({ |
| .when = now, |
| .deviceId = deviceId, |
| .type = DEVICE_REMOVED, |
| }); |
| it = mClosingDevices.erase(it); |
| mNeedToSendFinishedDeviceScan = true; |
| if (events.size() == EVENT_BUFFER_SIZE) { |
| break; |
| } |
| } |
| |
| if (mNeedToScanDevices) { |
| mNeedToScanDevices = false; |
| scanDevicesLocked(); |
| mNeedToSendFinishedDeviceScan = true; |
| } |
| |
| while (!mOpeningDevices.empty()) { |
| std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin()); |
| mOpeningDevices.pop_back(); |
| ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str()); |
| const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| events.push_back({ |
| .when = now, |
| .deviceId = deviceId, |
| .type = DEVICE_ADDED, |
| }); |
| |
| // Try to find a matching video device by comparing device names |
| for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end(); |
| it++) { |
| std::unique_ptr<TouchVideoDevice>& videoDevice = *it; |
| if (tryAddVideoDeviceLocked(*device, videoDevice)) { |
| // videoDevice was transferred to 'device' |
| it = mUnattachedVideoDevices.erase(it); |
| break; |
| } |
| } |
| |
| auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device)); |
| if (!inserted) { |
| ALOGW("Device id %d exists, replaced.", device->id); |
| } |
| mNeedToSendFinishedDeviceScan = true; |
| if (events.size() == EVENT_BUFFER_SIZE) { |
| break; |
| } |
| } |
| |
| if (mNeedToSendFinishedDeviceScan) { |
| mNeedToSendFinishedDeviceScan = false; |
| events.push_back({ |
| .when = now, |
| .type = FINISHED_DEVICE_SCAN, |
| }); |
| if (events.size() == EVENT_BUFFER_SIZE) { |
| break; |
| } |
| } |
| |
| // Grab the next input event. |
| bool deviceChanged = false; |
| while (mPendingEventIndex < mPendingEventCount) { |
| const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; |
| if (eventItem.data.fd == mINotifyFd) { |
| if (eventItem.events & EPOLLIN) { |
| mPendingINotify = true; |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); |
| } |
| continue; |
| } |
| |
| if (eventItem.data.fd == mWakeReadPipeFd) { |
| if (eventItem.events & EPOLLIN) { |
| ALOGV("awoken after wake()"); |
| awoken = true; |
| char wakeReadBuffer[16]; |
| ssize_t nRead; |
| do { |
| nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer)); |
| } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer)); |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", |
| eventItem.events); |
| } |
| continue; |
| } |
| |
| Device* device = getDeviceByFdLocked(eventItem.data.fd); |
| if (device == nullptr) { |
| ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events, |
| eventItem.data.fd); |
| ALOG_ASSERT(!DEBUG); |
| continue; |
| } |
| if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) { |
| if (eventItem.events & EPOLLIN) { |
| size_t numFrames = device->videoDevice->readAndQueueFrames(); |
| if (numFrames == 0) { |
| ALOGE("Received epoll event for video device %s, but could not read frame", |
| device->videoDevice->getName().c_str()); |
| } |
| } else if (eventItem.events & EPOLLHUP) { |
| // TODO(b/121395353) - consider adding EPOLLRDHUP |
| ALOGI("Removing video device %s due to epoll hang-up event.", |
| device->videoDevice->getName().c_str()); |
| unregisterVideoDeviceFromEpollLocked(*device->videoDevice); |
| device->videoDevice = nullptr; |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, |
| device->videoDevice->getName().c_str()); |
| ALOG_ASSERT(!DEBUG); |
| } |
| continue; |
| } |
| // This must be an input event |
| if (eventItem.events & EPOLLIN) { |
| int32_t readSize = |
| read(device->fd, readBuffer.data(), |
| sizeof(decltype(readBuffer)::value_type) * readBuffer.size()); |
| if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { |
| // Device was removed before INotify noticed. |
| ALOGW("could not get event, removed? (fd: %d size: %" PRId32 |
| " capacity: %zu errno: %d)\n", |
| device->fd, readSize, readBuffer.size(), errno); |
| deviceChanged = true; |
| closeDeviceLocked(*device); |
| } else if (readSize < 0) { |
| if (errno != EAGAIN && errno != EINTR) { |
| ALOGW("could not get event (errno=%d)", errno); |
| } |
| } else if ((readSize % sizeof(struct input_event)) != 0) { |
| ALOGE("could not get event (wrong size: %d)", readSize); |
| } else { |
| const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| |
| const size_t count = size_t(readSize) / sizeof(struct input_event); |
| for (size_t i = 0; i < count; i++) { |
| struct input_event& iev = readBuffer[i]; |
| device->trackInputEvent(iev); |
| events.push_back({ |
| .when = processEventTimestamp(iev), |
| .readTime = systemTime(SYSTEM_TIME_MONOTONIC), |
| .deviceId = deviceId, |
| .type = iev.type, |
| .code = iev.code, |
| .value = iev.value, |
| }); |
| } |
| if (events.size() >= EVENT_BUFFER_SIZE) { |
| // The result buffer is full. Reset the pending event index |
| // so we will try to read the device again on the next iteration. |
| mPendingEventIndex -= 1; |
| break; |
| } |
| } |
| } else if (eventItem.events & EPOLLHUP) { |
| ALOGI("Removing device %s due to epoll hang-up event.", |
| device->identifier.name.c_str()); |
| deviceChanged = true; |
| closeDeviceLocked(*device); |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, |
| device->identifier.name.c_str()); |
| } |
| } |
| |
| // readNotify() will modify the list of devices so this must be done after |
| // processing all other events to ensure that we read all remaining events |
| // before closing the devices. |
| if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { |
| mPendingINotify = false; |
| const auto res = readNotifyLocked(); |
| if (!res.ok()) { |
| ALOGW("Failed to read from inotify: %s", res.error().message().c_str()); |
| } |
| deviceChanged = true; |
| } |
| |
| // Report added or removed devices immediately. |
| if (deviceChanged) { |
| continue; |
| } |
| |
| // Return now if we have collected any events or if we were explicitly awoken. |
| if (!events.empty() || awoken) { |
| break; |
| } |
| |
| // Poll for events. |
| // When a device driver has pending (unread) events, it acquires |
| // a kernel wake lock. Once the last pending event has been read, the device |
| // driver will release the kernel wake lock, but the epoll will hold the wakelock, |
| // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait |
| // is called again for the same fd that produced the event. |
| // Thus the system can only sleep if there are no events pending or |
| // currently being processed. |
| // |
| // The timeout is advisory only. If the device is asleep, it will not wake just to |
| // service the timeout. |
| mPendingEventIndex = 0; |
| |
| mLock.unlock(); // release lock before poll |
| |
| int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); |
| |
| mLock.lock(); // reacquire lock after poll |
| |
| if (pollResult == 0) { |
| // Timed out. |
| mPendingEventCount = 0; |
| break; |
| } |
| |
| if (pollResult < 0) { |
| // An error occurred. |
| mPendingEventCount = 0; |
| |
| // Sleep after errors to avoid locking up the system. |
| // Hopefully the error is transient. |
| if (errno != EINTR) { |
| ALOGW("poll failed (errno=%d)\n", errno); |
| usleep(100000); |
| } |
| } else { |
| // Some events occurred. |
| mPendingEventCount = size_t(pollResult); |
| } |
| } |
| |
| // All done, return the number of events we read. |
| return events; |
| } |
| |
| std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) { |
| std::scoped_lock _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr || !device->videoDevice) { |
| return {}; |
| } |
| return device->videoDevice->consumeFrames(); |
| } |
| |
| void EventHub::wake() { |
| ALOGV("wake() called"); |
| |
| ssize_t nWrite; |
| do { |
| nWrite = write(mWakeWritePipeFd, "W", 1); |
| } while (nWrite == -1 && errno == EINTR); |
| |
| if (nWrite != 1 && errno != EAGAIN) { |
| ALOGW("Could not write wake signal: %s", strerror(errno)); |
| } |
| } |
| |
| void EventHub::scanDevicesLocked() { |
| status_t result; |
| std::error_code errorCode; |
| |
| if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) { |
| result = scanDirLocked(DEVICE_INPUT_PATH); |
| if (result < 0) { |
| ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH); |
| } |
| } else { |
| if (errorCode) { |
| ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), |
| errorCode.message().c_str()); |
| } |
| } |
| if (isV4lScanningEnabled()) { |
| result = scanVideoDirLocked(DEVICE_PATH); |
| if (result != OK) { |
| ALOGE("scan video dir failed for %s", DEVICE_PATH); |
| } |
| } |
| if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) { |
| createVirtualKeyboardLocked(); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| status_t EventHub::registerFdForEpoll(int fd) { |
| // TODO(b/121395353) - consider adding EPOLLRDHUP |
| struct epoll_event eventItem = {}; |
| eventItem.events = EPOLLIN | EPOLLWAKEUP; |
| eventItem.data.fd = fd; |
| if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { |
| ALOGE("Could not add fd to epoll instance: %s", strerror(errno)); |
| return -errno; |
| } |
| return OK; |
| } |
| |
| status_t EventHub::unregisterFdFromEpoll(int fd) { |
| if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) { |
| ALOGW("Could not remove fd from epoll instance: %s", strerror(errno)); |
| return -errno; |
| } |
| return OK; |
| } |
| |
| status_t EventHub::registerDeviceForEpollLocked(Device& device) { |
| status_t result = registerFdForEpoll(device.fd); |
| if (result != OK) { |
| ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id); |
| return result; |
| } |
| if (device.videoDevice) { |
| registerVideoDeviceForEpollLocked(*device.videoDevice); |
| } |
| return result; |
| } |
| |
| void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) { |
| status_t result = registerFdForEpoll(videoDevice.getFd()); |
| if (result != OK) { |
| ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str()); |
| } |
| } |
| |
| status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) { |
| if (device.hasValidFd()) { |
| status_t result = unregisterFdFromEpoll(device.fd); |
| if (result != OK) { |
| ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id); |
| return result; |
| } |
| } |
| if (device.videoDevice) { |
| unregisterVideoDeviceFromEpollLocked(*device.videoDevice); |
| } |
| return OK; |
| } |
| |
| void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) { |
| if (videoDevice.hasValidFd()) { |
| status_t result = unregisterFdFromEpoll(videoDevice.getFd()); |
| if (result != OK) { |
| ALOGW("Could not remove video device fd from epoll for device: %s", |
| videoDevice.getName().c_str()); |
| } |
| } |
| } |
| |
| void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier, |
| ftl::Flags<InputDeviceClass> classes) { |
| SHA256_CTX ctx; |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()), |
| identifier.uniqueId.size()); |
| std::array<uint8_t, SHA256_DIGEST_LENGTH> digest; |
| SHA256_Final(digest.data(), &ctx); |
| |
| std::string obfuscatedId; |
| for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) { |
| obfuscatedId += StringPrintf("%02x", digest[i]); |
| } |
| |
| android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(), |
| identifier.vendor, identifier.product, identifier.version, |
| identifier.bus, obfuscatedId.c_str(), classes.get()); |
| } |
| |
| void EventHub::openDeviceLocked(const std::string& devicePath) { |
| // If an input device happens to register around the time when EventHub's constructor runs, it |
| // is possible that the same input event node (for example, /dev/input/event3) will be noticed |
| // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices |
| // from getting registered, ensure that this path is not already covered by an existing device. |
| for (const auto& [deviceId, device] : mDevices) { |
| if (device->path == devicePath) { |
| return; // device was already registered |
| } |
| } |
| |
| char buffer[80]; |
| |
| ALOGV("Opening device: %s", devicePath.c_str()); |
| |
| int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK); |
| if (fd < 0) { |
| ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno)); |
| return; |
| } |
| |
| InputDeviceIdentifier identifier; |
| |
| // Get device name. |
| if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { |
| ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.name = buffer; |
| } |
| |
| // Check to see if the device is on our excluded list |
| for (size_t i = 0; i < mExcludedDevices.size(); i++) { |
| const std::string& item = mExcludedDevices[i]; |
| if (identifier.name == item) { |
| ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str()); |
| close(fd); |
| return; |
| } |
| } |
| |
| // Get device driver version. |
| int driverVersion; |
| if (ioctl(fd, EVIOCGVERSION, &driverVersion)) { |
| ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno)); |
| close(fd); |
| return; |
| } |
| |
| // Get device identifier. |
| struct input_id inputId; |
| if (ioctl(fd, EVIOCGID, &inputId)) { |
| ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno)); |
| close(fd); |
| return; |
| } |
| identifier.bus = inputId.bustype; |
| identifier.product = inputId.product; |
| identifier.vendor = inputId.vendor; |
| identifier.version = inputId.version; |
| |
| // Get device physical location. |
| if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { |
| // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.location = buffer; |
| } |
| |
| // Get device unique id. |
| if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { |
| // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.uniqueId = buffer; |
| } |
| |
| // Attempt to get the bluetooth address of an input device from the uniqueId. |
| if (identifier.bus == BUS_BLUETOOTH && |
| std::regex_match(identifier.uniqueId, |
| std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) { |
| identifier.bluetoothAddress = identifier.uniqueId; |
| // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address. |
| for (auto& c : *identifier.bluetoothAddress) { |
| c = ::toupper(c); |
| } |
| } |
| |
| // Fill in the descriptor. |
| assignDescriptorLocked(identifier); |
| |
| // Allocate device. (The device object takes ownership of the fd at this point.) |
| int32_t deviceId = mNextDeviceId++; |
| std::unique_ptr<Device> device = |
| std::make_unique<Device>(fd, deviceId, devicePath, identifier, |
| obtainAssociatedDeviceLocked(devicePath)); |
| |
| ALOGV("add device %d: %s\n", deviceId, devicePath.c_str()); |
| ALOGV(" bus: %04x\n" |
| " vendor %04x\n" |
| " product %04x\n" |
| " version %04x\n", |
| identifier.bus, identifier.vendor, identifier.product, identifier.version); |
| ALOGV(" name: \"%s\"\n", identifier.name.c_str()); |
| ALOGV(" location: \"%s\"\n", identifier.location.c_str()); |
| ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.c_str()); |
| ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.c_str()); |
| ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff, |
| driverVersion & 0xff); |
| |
| // Load the configuration file for the device. |
| device->loadConfigurationLocked(); |
| |
| // Figure out the kinds of events the device reports. |
| device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask); |
| device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask); |
| device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask); |
| |
| // See if this is a device with keys. This could be full keyboard, or other devices like |
| // gamepads, joysticks, and styluses with buttons that should generate key presses. |
| bool haveKeyboardKeys = |
| device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1); |
| bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) || |
| device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI); |
| bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) || |
| device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3); |
| if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) { |
| device->classes |= InputDeviceClass::KEYBOARD; |
| } |
| |
| // See if this is a cursor device such as a trackball or mouse. |
| if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) && |
| device->relBitmask.test(REL_Y)) { |
| device->classes |= InputDeviceClass::CURSOR; |
| } |
| |
| // See if the device is specially configured to be of a certain type. |
| if (device->configuration) { |
| std::string deviceType = device->configuration->getString("device.type").value_or(""); |
| if (deviceType == "rotaryEncoder") { |
| device->classes |= InputDeviceClass::ROTARY_ENCODER; |
| } else if (deviceType == "externalStylus") { |
| device->classes |= InputDeviceClass::EXTERNAL_STYLUS; |
| } |
| } |
| |
| // See if this is a touch pad. |
| // Is this a new modern multi-touch driver? |
| if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) { |
| // Some joysticks such as the PS3 controller report axes that conflict |
| // with the ABS_MT range. Try to confirm that the device really is |
| // a touch screen. |
| if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) { |
| device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT); |
| if (device->propBitmask.test(INPUT_PROP_POINTER) && |
| !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) { |
| device->classes |= InputDeviceClass::TOUCHPAD; |
| } |
| } |
| // Is this an old style single-touch driver? |
| } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) && |
| device->absBitmask.test(ABS_Y)) { |
| device->classes |= InputDeviceClass::TOUCH; |
| // Is this a stylus that reports contact/pressure independently of touch coordinates? |
| } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) && |
| !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) { |
| device->classes |= InputDeviceClass::EXTERNAL_STYLUS; |
| } |
| |
| // See if this device is a joystick. |
| // Assumes that joysticks always have gamepad buttons in order to distinguish them |
| // from other devices such as accelerometers that also have absolute axes. |
| if (haveGamepadButtons) { |
| auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK; |
| for (int i = 0; i <= ABS_MAX; i++) { |
| if (device->absBitmask.test(i) && |
| (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) { |
| device->classes = assumedClasses; |
| break; |
| } |
| } |
| } |
| |
| // Check whether this device is an accelerometer. |
| if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) { |
| device->classes |= InputDeviceClass::SENSOR; |
| } |
| |
| // Check whether this device has switches. |
| for (int i = 0; i <= SW_MAX; i++) { |
| if (device->swBitmask.test(i)) { |
| device->classes |= InputDeviceClass::SWITCH; |
| break; |
| } |
| } |
| |
| // Check whether this device supports the vibrator. |
| if (device->ffBitmask.test(FF_RUMBLE)) { |
| device->classes |= InputDeviceClass::VIBRATOR; |
| } |
| |
| // Configure virtual keys. |
| if ((device->classes.test(InputDeviceClass::TOUCH))) { |
| // Load the virtual keys for the touch screen, if any. |
| // We do this now so that we can make sure to load the keymap if necessary. |
| bool success = device->loadVirtualKeyMapLocked(); |
| if (success) { |
| device->classes |= InputDeviceClass::KEYBOARD; |
| } |
| } |
| |
| // Load the key map. |
| // We need to do this for joysticks too because the key layout may specify axes, and for |
| // sensor as well because the key layout may specify the axes to sensor data mapping. |
| status_t keyMapStatus = NAME_NOT_FOUND; |
| if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK | |
| InputDeviceClass::SENSOR)) { |
| // Load the keymap for the device. |
| keyMapStatus = device->loadKeyMapLocked(); |
| } |
| |
| // Configure the keyboard, gamepad or virtual keyboard. |
| if (device->classes.test(InputDeviceClass::KEYBOARD)) { |
| // Register the keyboard as a built-in keyboard if it is eligible. |
| if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD && |
| isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(), |
| &device->keyMap)) { |
| mBuiltInKeyboardId = device->id; |
| } |
| |
| // 'Q' key support = cheap test of whether this is an alpha-capable kbd |
| if (device->hasKeycodeLocked(AKEYCODE_Q)) { |
| device->classes |= InputDeviceClass::ALPHAKEY; |
| } |
| |
| // See if this device has a D-pad. |
| if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(), |
| [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { |
| device->classes |= InputDeviceClass::DPAD; |
| } |
| |
| // See if this device has a gamepad. |
| if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(), |
| [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { |
| device->classes |= InputDeviceClass::GAMEPAD; |
| } |
| |
| // See if this device has any stylus buttons that we would want to fuse with touch data. |
| if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) && |
| !device->classes.any(InputDeviceClass::ALPHAKEY) && |
| std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(), |
| [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { |
| device->classes |= InputDeviceClass::EXTERNAL_STYLUS; |
| } |
| } |
| |
| // If the device isn't recognized as something we handle, don't monitor it. |
| if (device->classes == ftl::Flags<InputDeviceClass>(0)) { |
| ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(), |
| device->identifier.name.c_str()); |
| return; |
| } |
| |
| // Classify InputDeviceClass::BATTERY. |
| if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) { |
| device->classes |= InputDeviceClass::BATTERY; |
| } |
| |
| // Classify InputDeviceClass::LIGHT. |
| if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) { |
| device->classes |= InputDeviceClass::LIGHT; |
| } |
| |
| // Determine whether the device has a mic. |
| if (device->deviceHasMicLocked()) { |
| device->classes |= InputDeviceClass::MIC; |
| } |
| |
| // Determine whether the device is external or internal. |
| if (device->isExternalDeviceLocked()) { |
| device->classes |= InputDeviceClass::EXTERNAL; |
| } |
| |
| if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) && |
| device->classes.test(InputDeviceClass::GAMEPAD)) { |
| device->controllerNumber = getNextControllerNumberLocked(device->identifier.name); |
| device->setLedForControllerLocked(); |
| } |
| |
| if (registerDeviceForEpollLocked(*device) != OK) { |
| return; |
| } |
| |
| device->configureFd(); |
| |
| ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, " |
| "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ", |
| deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(), |
| device->classes.string().c_str(), device->configurationFile.c_str(), |
| device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(), |
| toString(mBuiltInKeyboardId == deviceId)); |
| |
| addDeviceLocked(std::move(device)); |
| } |
| |
| void EventHub::openVideoDeviceLocked(const std::string& devicePath) { |
| std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath); |
| if (!videoDevice) { |
| ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str()); |
| return; |
| } |
| // Transfer ownership of this video device to a matching input device |
| for (const auto& [id, device] : mDevices) { |
| if (tryAddVideoDeviceLocked(*device, videoDevice)) { |
| return; // 'device' now owns 'videoDevice' |
| } |
| } |
| |
| // Couldn't find a matching input device, so just add it to a temporary holding queue. |
| // A matching input device may appear later. |
| ALOGI("Adding video device %s to list of unattached video devices", |
| videoDevice->getName().c_str()); |
| mUnattachedVideoDevices.push_back(std::move(videoDevice)); |
| } |
| |
| bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device, |
| std::unique_ptr<TouchVideoDevice>& videoDevice) { |
| if (videoDevice->getName() != device.identifier.name) { |
| return false; |
| } |
| device.videoDevice = std::move(videoDevice); |
| if (device.enabled) { |
| registerVideoDeviceForEpollLocked(*device.videoDevice); |
| } |
| return true; |
| } |
| |
| bool EventHub::isDeviceEnabled(int32_t deviceId) const { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr) { |
| ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return false; |
| } |
| return device->enabled; |
| } |
| |
| status_t EventHub::enableDevice(int32_t deviceId) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr) { |
| ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return BAD_VALUE; |
| } |
| if (device->enabled) { |
| ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId); |
| return OK; |
| } |
| status_t result = device->enable(); |
| if (result != OK) { |
| ALOGE("Failed to enable device %" PRId32, deviceId); |
| return result; |
| } |
| |
| device->configureFd(); |
| |
| return registerDeviceForEpollLocked(*device); |
| } |
| |
| status_t EventHub::disableDevice(int32_t deviceId) { |
| std::scoped_lock _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == nullptr) { |
| ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); |
| return BAD_VALUE; |
| } |
| if (!device->enabled) { |
| ALOGW("Duplicate call to %s, input device already disabled", __func__); |
| return OK; |
| } |
| unregisterDeviceFromEpollLocked(*device); |
| return device->disable(); |
| } |
| |
| // TODO(b/274755573): Shift to uevent handling on native side and remove this method |
| // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a |
| // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to |
| // directly observe UEvents instead of triggering from Java side. |
| void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) { |
| std::scoped_lock _l(mLock); |
| |
| // Check in opening devices |
| for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) { |
| std::unique_ptr<Device>& device = *it; |
| if (device->associatedDevice && |
| sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) != |
| std::string::npos && |
| device->associatedDevice->isChanged()) { |
| it = mOpeningDevices.erase(it); |
| openDeviceLocked(device->path); |
| } |
| } |
| |
| // Check in already added device |
| std::vector<Device*> devicesToReopen; |
| for (const auto& [id, device] : mDevices) { |
| if (device->associatedDevice && |
| sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) != |
| std::string::npos && |
| device->associatedDevice->isChanged()) { |
| devicesToReopen.push_back(device.get()); |
| } |
| } |
| for (const auto& device : devicesToReopen) { |
| closeDeviceLocked(*device); |
| openDeviceLocked(device->path); |
| } |
| devicesToReopen.clear(); |
| } |
| |
| void EventHub::createVirtualKeyboardLocked() { |
| InputDeviceIdentifier identifier; |
| identifier.name = "Virtual"; |
| identifier.uniqueId = "<virtual>"; |
| assignDescriptorLocked(identifier); |
| |
| std::unique_ptr<Device> device = |
| std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>", |
| identifier, /*associatedDevice=*/nullptr); |
| device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY | |
| InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL; |
| device->loadKeyMapLocked(); |
| addDeviceLocked(std::move(device)); |
| } |
| |
| void EventHub::addDeviceLocked(std::unique_ptr<Device> device) { |
| reportDeviceAddedForStatisticsLocked(device->identifier, device->classes); |
| mOpeningDevices.push_back(std::move(device)); |
| } |
| |
| int32_t EventHub::getNextControllerNumberLocked(const std::string& name) { |
| if (mControllerNumbers.isFull()) { |
| ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", |
| name.c_str()); |
| return 0; |
| } |
| // Since the controller number 0 is reserved for non-controllers, translate all numbers up by |
| // one |
| return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); |
| } |
| |
| void EventHub::releaseControllerNumberLocked(int32_t num) { |
| if (num > 0) { |
| mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); |
| } |
| } |
| |
| void EventHub::closeDeviceByPathLocked(const std::string& devicePath) { |
| Device* device = getDeviceByPathLocked(devicePath); |
| if (device != nullptr) { |
| closeDeviceLocked(*device); |
| return; |
| } |
| ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str()); |
| } |
| |
| /** |
| * Find the video device by filename, and close it. |
| * The video device is closed by path during an inotify event, where we don't have the |
| * additional context about the video device fd, or the associated input device. |
| */ |
| void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) { |
| // A video device may be owned by an existing input device, or it may be stored in |
| // the mUnattachedVideoDevices queue. Check both locations. |
| for (const auto& [id, device] : mDevices) { |
| if (device->videoDevice && device->videoDevice->getPath() == devicePath) { |
| unregisterVideoDeviceFromEpollLocked(*device->videoDevice); |
| device->videoDevice = nullptr; |
| return; |
| } |
| } |
| std::erase_if(mUnattachedVideoDevices, |
| [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) { |
| return videoDevice->getPath() == devicePath; |
| }); |
| } |
| |
| void EventHub::closeAllDevicesLocked() { |
| mUnattachedVideoDevices.clear(); |
| while (!mDevices.empty()) { |
| closeDeviceLocked(*(mDevices.begin()->second)); |
| } |
| } |
| |
| void EventHub::closeDeviceLocked(Device& device) { |
| ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(), |
| device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str()); |
| |
| if (device.id == mBuiltInKeyboardId) { |
| ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", |
| device.path.c_str(), mBuiltInKeyboardId); |
| mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; |
| } |
| |
| unregisterDeviceFromEpollLocked(device); |
| if (device.videoDevice) { |
| // This must be done after the video device is removed from epoll |
| mUnattachedVideoDevices.push_back(std::move(device.videoDevice)); |
| } |
| |
| releaseControllerNumberLocked(device.controllerNumber); |
| device.controllerNumber = 0; |
| device.close(); |
| mClosingDevices.push_back(std::move(mDevices[device.id])); |
| |
| mDevices.erase(device.id); |
| } |
| |
| base::Result<void> EventHub::readNotifyLocked() { |
| static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event)); |
| uint8_t eventBuffer[512]; |
| ssize_t sizeRead; |
| |
| ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); |
| do { |
| sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer)); |
| } while (sizeRead < 0 && errno == EINTR); |
| |
| if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno)); |
| |
| for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) { |
| const inotify_event* event; |
| event = (const inotify_event*)(eventBuffer + eventPos); |
| if (event->len == 0) continue; |
| |
| handleNotifyEventLocked(*event); |
| |
| const ssize_t eventSize = EVENT_SIZE + event->len; |
| sizeRead -= eventSize; |
| eventPos += eventSize; |
| } |
| return {}; |
| } |
| |
| void EventHub::handleNotifyEventLocked(const inotify_event& event) { |
| if (event.wd == mDeviceInputWd) { |
| std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name; |
| if (event.mask & IN_CREATE) { |
| openDeviceLocked(filename); |
| } else { |
| ALOGI("Removing device '%s' due to inotify event\n", filename.c_str()); |
| closeDeviceByPathLocked(filename); |
| } |
| } else if (event.wd == mDeviceWd) { |
| if (isV4lTouchNode(event.name)) { |
| std::string filename = std::string(DEVICE_PATH) + "/" + event.name; |
| if (event.mask & IN_CREATE) { |
| openVideoDeviceLocked(filename); |
| } else { |
| ALOGI("Removing video device '%s' due to inotify event", filename.c_str()); |
| closeVideoDeviceByPathLocked(filename); |
| } |
| } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) { |
| addDeviceInputInotify(); |
| } |
| } else { |
| LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd); |
| } |
| } |
| |
| status_t EventHub::scanDirLocked(const std::string& dirname) { |
| for (const auto& entry : std::filesystem::directory_iterator(dirname)) { |
| openDeviceLocked(entry.path()); |
| } |
| return 0; |
| } |
| |
| /** |
| * Look for all dirname/v4l-touch* devices, and open them. |
| */ |
| status_t EventHub::scanVideoDirLocked(const std::string& dirname) { |
| for (const auto& entry : std::filesystem::directory_iterator(dirname)) { |
| if (isV4lTouchNode(entry.path())) { |
| ALOGI("Found touch video device %s", entry.path().c_str()); |
| openVideoDeviceLocked(entry.path()); |
| } |
| } |
| return OK; |
| } |
| |
| void EventHub::requestReopenDevices() { |
| ALOGV("requestReopenDevices() called"); |
| |
| std::scoped_lock _l(mLock); |
| mNeedToReopenDevices = true; |
| } |
| |
| void EventHub::dump(std::string& dump) const { |
| dump += "Event Hub State:\n"; |
| |
| { // acquire lock |
| std::scoped_lock _l(mLock); |
| |
| dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); |
| |
| dump += INDENT "Devices:\n"; |
| |
| for (const auto& [id, device] : mDevices) { |
| if (mBuiltInKeyboardId == device->id) { |
| dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", |
| device->id, device->identifier.name.c_str()); |
| } else { |
| dump += StringPrintf(INDENT2 "%d: %s\n", device->id, |
| device->identifier.name.c_str()); |
| } |
| dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str()); |
| dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str()); |
| dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled)); |
| dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str()); |
| dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str()); |
| dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); |
| dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str()); |
| dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " |
| "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n", |
| device->identifier.bus, device->identifier.vendor, |
| device->identifier.product, device->identifier.version, |
| toString(device->identifier.bluetoothAddress).c_str()); |
| dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n", |
| device->keyMap.keyLayoutFile.c_str()); |
| dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n", |
| device->keyMap.keyCharacterMapFile.c_str()); |
| if (device->associatedDevice && device->associatedDevice->layoutInfo) { |
| dump += StringPrintf(INDENT3 "LanguageTag: %s\n", |
| device->associatedDevice->layoutInfo->languageTag.c_str()); |
| dump += StringPrintf(INDENT3 "LayoutType: %s\n", |
| device->associatedDevice->layoutInfo->layoutType.c_str()); |
| } |
| dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n", |
| device->configurationFile.c_str()); |
| dump += StringPrintf(INDENT3 "VideoDevice: %s\n", |
| device->videoDevice ? device->videoDevice->dump().c_str() |
| : "<none>"); |
| dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n", |
| device->associatedDevice |
| ? device->associatedDevice->sysfsRootPath.c_str() |
| : "<none>"); |
| if (device->keyBitmask.any(0, KEY_MAX + 1)) { |
| const auto pressedKeys = device->keyState.dumpSetIndices(", ", [](int i) { |
| return InputEventLookup::getLinuxEvdevLabel(EV_KEY, i, 1).code; |
| }); |
| dump += StringPrintf(INDENT3 "KeyState (pressed): %s\n", pressedKeys.c_str()); |
| } |
| if (device->swBitmask.any(0, SW_MAX + 1)) { |
| const auto pressedSwitches = device->swState.dumpSetIndices(", ", [](int i) { |
| return InputEventLookup::getLinuxEvdevLabel(EV_SW, i, 1).code; |
| }); |
| dump += StringPrintf(INDENT3 "SwState (pressed): %s\n", pressedSwitches.c_str()); |
| } |
| if (!device->absState.empty()) { |
| std::string axisValues; |
| for (const auto& [axis, state] : device->absState) { |
| if (!axisValues.empty()) { |
| axisValues += ", "; |
| } |
| axisValues += StringPrintf("%s=%d", |
| InputEventLookup::getLinuxEvdevLabel(EV_ABS, axis, 0) |
| .code.c_str(), |
| state.value); |
| } |
| dump += INDENT3 "AbsState: " + axisValues + "\n"; |
| } |
| } |
| |
| dump += INDENT "Unattached video devices:\n"; |
| for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) { |
| dump += INDENT2 + videoDevice->dump() + "\n"; |
| } |
| if (mUnattachedVideoDevices.empty()) { |
| dump += INDENT2 "<none>\n"; |
| } |
| } // release lock |
| } |
| |
| void EventHub::monitor() const { |
| // Acquire and release the lock to ensure that the event hub has not deadlocked. |
| std::unique_lock<std::mutex> lock(mLock); |
| } |
| |
| std::string EventHub::AssociatedDevice::dump() const { |
| return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(), |
| batteryInfos.size(), lightInfos.size()); |
| } |
| |
| } // namespace android |