blob: 6e393f03fabcc58b8d011815ae6efc7e801d8aeb [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "RenderEngine"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SkiaRenderEngine.h"
#include <GrBackendSemaphore.h>
#include <GrContextOptions.h>
#include <GrTypes.h>
#include <SkBlendMode.h>
#include <SkCanvas.h>
#include <SkColor.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <SkColorSpace.h>
#include <SkData.h>
#include <SkGraphics.h>
#include <SkImage.h>
#include <SkImageFilters.h>
#include <SkImageInfo.h>
#include <SkM44.h>
#include <SkMatrix.h>
#include <SkPaint.h>
#include <SkPath.h>
#include <SkPoint.h>
#include <SkPoint3.h>
#include <SkRRect.h>
#include <SkRect.h>
#include <SkRefCnt.h>
#include <SkRegion.h>
#include <SkRuntimeEffect.h>
#include <SkSamplingOptions.h>
#include <SkScalar.h>
#include <SkShader.h>
#include <SkShadowUtils.h>
#include <SkString.h>
#include <SkSurface.h>
#include <SkTileMode.h>
#include <android-base/stringprintf.h>
#include <common/FlagManager.h>
#include <gui/FenceMonitor.h>
#include <gui/TraceUtils.h>
#include <include/gpu/ganesh/SkSurfaceGanesh.h>
#include <pthread.h>
#include <src/core/SkTraceEventCommon.h>
#include <sync/sync.h>
#include <ui/BlurRegion.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <ui/HdrRenderTypeUtils.h>
#include <utils/Trace.h>
#include <cmath>
#include <cstdint>
#include <deque>
#include <memory>
#include <numeric>
#include "Cache.h"
#include "ColorSpaces.h"
#include "filters/BlurFilter.h"
#include "filters/GaussianBlurFilter.h"
#include "filters/KawaseBlurFilter.h"
#include "filters/LinearEffect.h"
#include "log/log_main.h"
#include "skia/debug/SkiaCapture.h"
#include "skia/debug/SkiaMemoryReporter.h"
#include "skia/filters/StretchShaderFactory.h"
#include "system/graphics-base-v1.0.h"
namespace {
// Debugging settings
static const bool kPrintLayerSettings = false;
static const bool kFlushAfterEveryLayer = kPrintLayerSettings;
static constexpr bool kEnableLayerBrightening = true;
} // namespace
// Utility functions related to SkRect
namespace {
static inline SkRect getSkRect(const android::FloatRect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
static inline SkRect getSkRect(const android::Rect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
/**
* Verifies that common, simple bounds + clip combinations can be converted into
* a single RRect draw call returning true if possible. If true the radii parameter
* will be filled with the correct radii values that combined with bounds param will
* produce the insected roundRect. If false, the returned state of the radii param is undefined.
*/
static bool intersectionIsRoundRect(const SkRect& bounds, const SkRect& crop,
const SkRect& insetCrop, const android::vec2& cornerRadius,
SkVector radii[4]) {
const bool leftEqual = bounds.fLeft == crop.fLeft;
const bool topEqual = bounds.fTop == crop.fTop;
const bool rightEqual = bounds.fRight == crop.fRight;
const bool bottomEqual = bounds.fBottom == crop.fBottom;
// In the event that the corners of the bounds only partially align with the crop we
// need to ensure that the resulting shape can still be represented as a round rect.
// In particular the round rect implementation will scale the value of all corner radii
// if the sum of the radius along any edge is greater than the length of that edge.
// See https://www.w3.org/TR/css-backgrounds-3/#corner-overlap
const bool requiredWidth = bounds.width() > (cornerRadius.x * 2);
const bool requiredHeight = bounds.height() > (cornerRadius.y * 2);
if (!requiredWidth || !requiredHeight) {
return false;
}
// Check each cropped corner to ensure that it exactly matches the crop or its corner is
// contained within the cropped shape and does not need rounded.
// compute the UpperLeft corner radius
if (leftEqual && topEqual) {
radii[0].set(cornerRadius.x, cornerRadius.y);
} else if ((leftEqual && bounds.fTop >= insetCrop.fTop) ||
(topEqual && bounds.fLeft >= insetCrop.fLeft)) {
radii[0].set(0, 0);
} else {
return false;
}
// compute the UpperRight corner radius
if (rightEqual && topEqual) {
radii[1].set(cornerRadius.x, cornerRadius.y);
} else if ((rightEqual && bounds.fTop >= insetCrop.fTop) ||
(topEqual && bounds.fRight <= insetCrop.fRight)) {
radii[1].set(0, 0);
} else {
return false;
}
// compute the BottomRight corner radius
if (rightEqual && bottomEqual) {
radii[2].set(cornerRadius.x, cornerRadius.y);
} else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) ||
(bottomEqual && bounds.fRight <= insetCrop.fRight)) {
radii[2].set(0, 0);
} else {
return false;
}
// compute the BottomLeft corner radius
if (leftEqual && bottomEqual) {
radii[3].set(cornerRadius.x, cornerRadius.y);
} else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) ||
(bottomEqual && bounds.fLeft >= insetCrop.fLeft)) {
radii[3].set(0, 0);
} else {
return false;
}
return true;
}
static inline std::pair<SkRRect, SkRRect> getBoundsAndClip(const android::FloatRect& boundsRect,
const android::FloatRect& cropRect,
const android::vec2& cornerRadius) {
const SkRect bounds = getSkRect(boundsRect);
const SkRect crop = getSkRect(cropRect);
SkRRect clip;
if (cornerRadius.x > 0 && cornerRadius.y > 0) {
// it the crop and the bounds are equivalent or there is no crop then we don't need a clip
if (bounds == crop || crop.isEmpty()) {
return {SkRRect::MakeRectXY(bounds, cornerRadius.x, cornerRadius.y), clip};
}
// This makes an effort to speed up common, simple bounds + clip combinations by
// converting them to a single RRect draw. It is possible there are other cases
// that can be converted.
if (crop.contains(bounds)) {
const auto insetCrop = crop.makeInset(cornerRadius.x, cornerRadius.y);
if (insetCrop.contains(bounds)) {
return {SkRRect::MakeRect(bounds), clip}; // clip is empty - no rounding required
}
SkVector radii[4];
if (intersectionIsRoundRect(bounds, crop, insetCrop, cornerRadius, radii)) {
SkRRect intersectionBounds;
intersectionBounds.setRectRadii(bounds, radii);
return {intersectionBounds, clip};
}
}
// we didn't hit any of our fast paths so set the clip to the cropRect
clip.setRectXY(crop, cornerRadius.x, cornerRadius.y);
}
// if we hit this point then we either don't have rounded corners or we are going to rely
// on the clip to round the corners for us
return {SkRRect::MakeRect(bounds), clip};
}
static inline bool layerHasBlur(const android::renderengine::LayerSettings& layer,
bool colorTransformModifiesAlpha) {
if (layer.backgroundBlurRadius > 0 || layer.blurRegions.size()) {
// return false if the content is opaque and would therefore occlude the blur
const bool opaqueContent = !layer.source.buffer.buffer || layer.source.buffer.isOpaque;
const bool opaqueAlpha = layer.alpha == 1.0f && !colorTransformModifiesAlpha;
return layer.skipContentDraw || !(opaqueContent && opaqueAlpha);
}
return false;
}
static inline SkColor getSkColor(const android::vec4& color) {
return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255);
}
static inline SkM44 getSkM44(const android::mat4& matrix) {
return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0],
matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1],
matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2],
matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]);
}
static inline SkPoint3 getSkPoint3(const android::vec3& vector) {
return SkPoint3::Make(vector.x, vector.y, vector.z);
}
} // namespace
namespace android {
namespace renderengine {
namespace skia {
using base::StringAppendF;
std::future<void> SkiaRenderEngine::primeCache(bool shouldPrimeUltraHDR) {
Cache::primeShaderCache(this, shouldPrimeUltraHDR);
return {};
}
sk_sp<SkData> SkiaRenderEngine::SkSLCacheMonitor::load(const SkData& key) {
// This "cache" does not actually cache anything. It just allows us to
// monitor Skia's internal cache. So this method always returns null.
return nullptr;
}
void SkiaRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data,
const SkString& description) {
mShadersCachedSinceLastCall++;
mTotalShadersCompiled++;
ATRACE_FORMAT("SF cache: %i shaders", mTotalShadersCompiled);
}
int SkiaRenderEngine::reportShadersCompiled() {
return mSkSLCacheMonitor.totalShadersCompiled();
}
void SkiaRenderEngine::setEnableTracing(bool tracingEnabled) {
SkAndroidFrameworkTraceUtil::setEnableTracing(tracingEnabled);
}
SkiaRenderEngine::SkiaRenderEngine(Threaded threaded, PixelFormat pixelFormat,
bool supportsBackgroundBlur)
: RenderEngine(threaded), mDefaultPixelFormat(pixelFormat) {
if (supportsBackgroundBlur) {
ALOGD("Background Blurs Enabled");
mBlurFilter = new KawaseBlurFilter();
}
mCapture = std::make_unique<SkiaCapture>();
}
SkiaRenderEngine::~SkiaRenderEngine() { }
// To be called from backend dtors.
void SkiaRenderEngine::finishRenderingAndAbandonContext() {
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (mBlurFilter) {
delete mBlurFilter;
}
if (mGrContext) {
mGrContext->flushAndSubmit(GrSyncCpu::kYes);
mGrContext->abandonContext();
}
if (mProtectedGrContext) {
mProtectedGrContext->flushAndSubmit(GrSyncCpu::kYes);
mProtectedGrContext->abandonContext();
}
}
void SkiaRenderEngine::useProtectedContext(bool useProtectedContext) {
if (useProtectedContext == mInProtectedContext ||
(useProtectedContext && !supportsProtectedContent())) {
return;
}
// release any scratch resources before switching into a new mode
if (getActiveGrContext()) {
getActiveGrContext()->purgeUnlockedResources(GrPurgeResourceOptions::kScratchResourcesOnly);
}
// Backend-specific way to switch to protected context
if (useProtectedContextImpl(
useProtectedContext ? GrProtected::kYes : GrProtected::kNo)) {
mInProtectedContext = useProtectedContext;
// given that we are sharing the same thread between two GrContexts we need to
// make sure that the thread state is reset when switching between the two.
if (getActiveGrContext()) {
getActiveGrContext()->resetContext();
}
}
}
GrDirectContext* SkiaRenderEngine::getActiveGrContext() {
return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get();
}
static float toDegrees(uint32_t transform) {
switch (transform) {
case ui::Transform::ROT_90:
return 90.0;
case ui::Transform::ROT_180:
return 180.0;
case ui::Transform::ROT_270:
return 270.0;
default:
return 0.0;
}
}
static SkColorMatrix toSkColorMatrix(const android::mat4& matrix) {
return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1],
matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2],
matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3],
matrix[3][3], 0);
}
static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) {
int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK;
int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK;
// Treat unsupported dataspaces as srgb
if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
destTransfer != HAL_DATASPACE_TRANSFER_HLG &&
destTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
destTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR &&
sourceTransfer != HAL_DATASPACE_TRANSFER_HLG &&
sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) {
sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB;
}
const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB;
const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR;
const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB;
return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) &&
sourceTransfer != destTransfer;
}
void SkiaRenderEngine::ensureGrContextsCreated() {
if (mGrContext) {
return;
}
GrContextOptions options;
options.fDisableDriverCorrectnessWorkarounds = true;
options.fDisableDistanceFieldPaths = true;
options.fReducedShaderVariations = true;
options.fPersistentCache = &mSkSLCacheMonitor;
std::tie(mGrContext, mProtectedGrContext) = createDirectContexts(options);
}
void SkiaRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer,
bool isRenderable) {
// Only run this if RE is running on its own thread. This
// way the access to GL/VK operations is guaranteed to be happening on the
// same thread.
if (!isThreaded()) {
return;
}
// We don't attempt to map a buffer if the buffer contains protected content. In GL this is
// important because GPU resources for protected buffers are much more limited. (In Vk we
// simply match the existing behavior for protected buffers.) We also never cache any
// buffers while in a protected context.
const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED;
// Don't attempt to map buffers if we're not gpu sampleable. Callers shouldn't send a buffer
// over to RenderEngine.
const bool isGpuSampleable = buffer->getUsage() & GRALLOC_USAGE_HW_TEXTURE;
if (isProtectedBuffer || isProtected() || !isGpuSampleable) {
return;
}
ATRACE_CALL();
// If we were to support caching protected buffers then we will need to switch the
// currently bound context if we are not already using the protected context (and subsequently
// switch back after the buffer is cached). However, for non-protected content we can bind
// the texture in either GL context because they are initialized with the same share_context
// which allows the texture state to be shared between them.
auto grContext = getActiveGrContext();
auto& cache = mTextureCache;
std::lock_guard<std::mutex> lock(mRenderingMutex);
mGraphicBufferExternalRefs[buffer->getId()]++;
if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) {
if (FlagManager::getInstance().renderable_buffer_usage()) {
isRenderable = buffer->getUsage() & GRALLOC_USAGE_HW_RENDER;
}
std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef =
std::make_shared<AutoBackendTexture::LocalRef>(grContext,
buffer->toAHardwareBuffer(),
isRenderable, mTextureCleanupMgr);
cache.insert({buffer->getId(), imageTextureRef});
}
}
void SkiaRenderEngine::unmapExternalTextureBuffer(sp<GraphicBuffer>&& buffer) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId());
iter != mGraphicBufferExternalRefs.end()) {
if (iter->second == 0) {
ALOGW("Attempted to unmap GraphicBuffer <id: %" PRId64
"> from RenderEngine texture, but the "
"ref count was already zero!",
buffer->getId());
mGraphicBufferExternalRefs.erase(buffer->getId());
return;
}
iter->second--;
// Swap contexts if needed prior to deleting this buffer
// See Issue 1 of
// https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even
// when a protected context and an unprotected context are part of the same share group,
// protected surfaces may not be accessed by an unprotected context, implying that protected
// surfaces may only be freed when a protected context is active.
const bool inProtected = mInProtectedContext;
useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
if (iter->second == 0) {
mTextureCache.erase(buffer->getId());
mGraphicBufferExternalRefs.erase(buffer->getId());
}
// Swap back to the previous context so that cached values of isProtected in SurfaceFlinger
// are up-to-date.
if (inProtected != mInProtectedContext) {
useProtectedContext(inProtected);
}
}
}
std::shared_ptr<AutoBackendTexture::LocalRef> SkiaRenderEngine::getOrCreateBackendTexture(
const sp<GraphicBuffer>& buffer, bool isOutputBuffer) {
// Do not lookup the buffer in the cache for protected contexts
if (!isProtected()) {
if (const auto& it = mTextureCache.find(buffer->getId()); it != mTextureCache.end()) {
return it->second;
}
}
return std::make_shared<AutoBackendTexture::LocalRef>(getActiveGrContext(),
buffer->toAHardwareBuffer(),
isOutputBuffer, mTextureCleanupMgr);
}
bool SkiaRenderEngine::canSkipPostRenderCleanup() const {
std::lock_guard<std::mutex> lock(mRenderingMutex);
return mTextureCleanupMgr.isEmpty();
}
void SkiaRenderEngine::cleanupPostRender() {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mRenderingMutex);
mTextureCleanupMgr.cleanup();
}
sk_sp<SkShader> SkiaRenderEngine::createRuntimeEffectShader(
const RuntimeEffectShaderParameters& parameters) {
// The given surface will be stretched by HWUI via matrix transformation
// which gets similar results for most surfaces
// Determine later on if we need to leverage the stertch shader within
// surface flinger
const auto& stretchEffect = parameters.layer.stretchEffect;
auto shader = parameters.shader;
if (stretchEffect.hasEffect()) {
const auto targetBuffer = parameters.layer.source.buffer.buffer;
const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr;
if (graphicBuffer && parameters.shader) {
shader = mStretchShaderFactory.createSkShader(shader, stretchEffect);
}
}
if (parameters.requiresLinearEffect) {
auto effect =
shaders::LinearEffect{.inputDataspace = parameters.layer.sourceDataspace,
.outputDataspace = parameters.outputDataSpace,
.undoPremultipliedAlpha = parameters.undoPremultipliedAlpha,
.fakeOutputDataspace = parameters.fakeOutputDataspace};
auto effectIter = mRuntimeEffects.find(effect);
sk_sp<SkRuntimeEffect> runtimeEffect = nullptr;
if (effectIter == mRuntimeEffects.end()) {
runtimeEffect = buildRuntimeEffect(effect);
mRuntimeEffects.insert({effect, runtimeEffect});
} else {
runtimeEffect = effectIter->second;
}
mat4 colorTransform = parameters.layer.colorTransform;
colorTransform *=
mat4::scale(vec4(parameters.layerDimmingRatio, parameters.layerDimmingRatio,
parameters.layerDimmingRatio, 1.f));
const auto targetBuffer = parameters.layer.source.buffer.buffer;
const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr;
const auto hardwareBuffer = graphicBuffer ? graphicBuffer->toAHardwareBuffer() : nullptr;
return createLinearEffectShader(parameters.shader, effect, runtimeEffect,
std::move(colorTransform), parameters.display.maxLuminance,
parameters.display.currentLuminanceNits,
parameters.layer.source.buffer.maxLuminanceNits,
hardwareBuffer, parameters.display.renderIntent);
}
return parameters.shader;
}
void SkiaRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) {
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record display settings when capture is running.
std::stringstream displaySettings;
PrintTo(display, &displaySettings);
// Store the DisplaySettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings",
SkData::MakeWithCString(displaySettings.str().c_str()));
}
// Before doing any drawing, let's make sure that we'll start at the origin of the display.
// Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual
// displays might have different scaling when compared to the physical screen.
canvas->clipRect(getSkRect(display.physicalDisplay));
canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top);
const auto clipWidth = display.clip.width();
const auto clipHeight = display.clip.height();
auto rotatedClipWidth = clipWidth;
auto rotatedClipHeight = clipHeight;
// Scale is contingent on the rotation result.
if (display.orientation & ui::Transform::ROT_90) {
std::swap(rotatedClipWidth, rotatedClipHeight);
}
const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) /
static_cast<SkScalar>(rotatedClipWidth);
const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) /
static_cast<SkScalar>(rotatedClipHeight);
canvas->scale(scaleX, scaleY);
// Canvas rotation is done by centering the clip window at the origin, rotating, translating
// back so that the top left corner of the clip is at (0, 0).
canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2);
canvas->rotate(toDegrees(display.orientation));
canvas->translate(-clipWidth / 2, -clipHeight / 2);
canvas->translate(-display.clip.left, -display.clip.top);
}
class AutoSaveRestore {
public:
AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); }
~AutoSaveRestore() { restore(); }
void replace(SkCanvas* canvas) {
mCanvas = canvas;
mSaveCount = canvas->save();
}
void restore() {
if (mCanvas) {
mCanvas->restoreToCount(mSaveCount);
mCanvas = nullptr;
}
}
private:
SkCanvas* mCanvas;
int mSaveCount;
};
static SkRRect getBlurRRect(const BlurRegion& region) {
const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom);
const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL),
SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR),
SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR),
SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)};
SkRRect roundedRect;
roundedRect.setRectRadii(rect, radii);
return roundedRect;
}
// Arbitrary default margin which should be close enough to zero.
constexpr float kDefaultMargin = 0.0001f;
static bool equalsWithinMargin(float expected, float value, float margin = kDefaultMargin) {
LOG_ALWAYS_FATAL_IF(margin < 0.f, "Margin is negative!");
return std::abs(expected - value) < margin;
}
namespace {
template <typename T>
void logSettings(const T& t) {
std::stringstream stream;
PrintTo(t, &stream);
auto string = stream.str();
size_t pos = 0;
// Perfetto ignores \n, so split up manually into separate ALOGD statements.
const size_t size = string.size();
while (pos < size) {
const size_t end = std::min(string.find("\n", pos), size);
ALOGD("%s", string.substr(pos, end - pos).c_str());
pos = end + 1;
}
}
} // namespace
// Helper class intended to be used on the stack to ensure that texture cleanup
// is deferred until after this class goes out of scope.
class DeferTextureCleanup final {
public:
DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) {
mMgr.setDeferredStatus(true);
}
~DeferTextureCleanup() { mMgr.setDeferredStatus(false); }
private:
DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup);
AutoBackendTexture::CleanupManager& mMgr;
};
void SkiaRenderEngine::drawLayersInternal(
const std::shared_ptr<std::promise<FenceResult>>&& resultPromise,
const DisplaySettings& display, const std::vector<LayerSettings>& layers,
const std::shared_ptr<ExternalTexture>& buffer, base::unique_fd&& bufferFence) {
ATRACE_FORMAT("%s for %s", __func__, display.namePlusId.c_str());
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (buffer == nullptr) {
ALOGE("No output buffer provided. Aborting GPU composition.");
resultPromise->set_value(base::unexpected(BAD_VALUE));
return;
}
validateOutputBufferUsage(buffer->getBuffer());
auto grContext = getActiveGrContext();
LOG_ALWAYS_FATAL_IF(grContext->abandoned(), "GrContext is abandoned/device lost at start of %s",
__func__);
// any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called
DeferTextureCleanup dtc(mTextureCleanupMgr);
auto surfaceTextureRef = getOrCreateBackendTexture(buffer->getBuffer(), true);
// wait on the buffer to be ready to use prior to using it
waitFence(grContext, bufferFence);
sk_sp<SkSurface> dstSurface =
surfaceTextureRef->getOrCreateSurface(display.outputDataspace, grContext);
SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get());
if (dstCanvas == nullptr) {
ALOGE("Cannot acquire canvas from Skia.");
resultPromise->set_value(base::unexpected(BAD_VALUE));
return;
}
// setup color filter if necessary
sk_sp<SkColorFilter> displayColorTransform;
if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) {
displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform));
}
const bool ctModifiesAlpha =
displayColorTransform && !displayColorTransform->isAlphaUnchanged();
// Find the max layer white point to determine the max luminance of the scene...
const float maxLayerWhitePoint = std::transform_reduce(
layers.cbegin(), layers.cend(), 0.f,
[](float left, float right) { return std::max(left, right); },
[&](const auto& l) { return l.whitePointNits; });
// ...and compute the dimming ratio if dimming is requested
const float displayDimmingRatio = display.targetLuminanceNits > 0.f &&
maxLayerWhitePoint > 0.f &&
(kEnableLayerBrightening || display.targetLuminanceNits > maxLayerWhitePoint)
? maxLayerWhitePoint / display.targetLuminanceNits
: 1.f;
// Find if any layers have requested blur, we'll use that info to decide when to render to an
// offscreen buffer and when to render to the native buffer.
sk_sp<SkSurface> activeSurface(dstSurface);
SkCanvas* canvas = dstCanvas;
SkiaCapture::OffscreenState offscreenCaptureState;
const LayerSettings* blurCompositionLayer = nullptr;
if (mBlurFilter) {
bool requiresCompositionLayer = false;
for (const auto& layer : layers) {
// if the layer doesn't have blur or it is not visible then continue
if (!layerHasBlur(layer, ctModifiesAlpha)) {
continue;
}
if (layer.backgroundBlurRadius > 0 &&
layer.backgroundBlurRadius < mBlurFilter->getMaxCrossFadeRadius()) {
requiresCompositionLayer = true;
}
for (auto region : layer.blurRegions) {
if (region.blurRadius < mBlurFilter->getMaxCrossFadeRadius()) {
requiresCompositionLayer = true;
}
}
if (requiresCompositionLayer) {
activeSurface = dstSurface->makeSurface(dstSurface->imageInfo());
canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState);
blurCompositionLayer = &layer;
break;
}
}
}
AutoSaveRestore surfaceAutoSaveRestore(canvas);
// Clear the entire canvas with a transparent black to prevent ghost images.
canvas->clear(SK_ColorTRANSPARENT);
initCanvas(canvas, display);
if (kPrintLayerSettings) {
logSettings(display);
}
for (const auto& layer : layers) {
ATRACE_FORMAT("DrawLayer: %s", layer.name.c_str());
if (kPrintLayerSettings) {
logSettings(layer);
}
sk_sp<SkImage> blurInput;
if (blurCompositionLayer == &layer) {
LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface);
LOG_ALWAYS_FATAL_IF(canvas == dstCanvas);
// save a snapshot of the activeSurface to use as input to the blur shaders
blurInput = activeSurface->makeImageSnapshot();
// blit the offscreen framebuffer into the destination AHB. This ensures that
// even if the blurred image does not cover the screen (for example, during
// a rotation animation, or if blur regions are used), the entire screen is
// initialized.
if (layer.blurRegions.size() || FlagManager::getInstance().restore_blur_step()) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState);
dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()),
String8::format("SurfaceID|%" PRId64, id).c_str(),
nullptr);
dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint);
} else {
activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint);
}
}
// assign dstCanvas to canvas and ensure that the canvas state is up to date
canvas = dstCanvas;
surfaceAutoSaveRestore.replace(canvas);
initCanvas(canvas, display);
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() !=
dstSurface->getCanvas()->getSaveCount());
LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() !=
dstSurface->getCanvas()->getTotalMatrix());
// assign dstSurface to activeSurface
activeSurface = dstSurface;
}
SkAutoCanvasRestore layerAutoSaveRestore(canvas, true);
if (CC_UNLIKELY(mCapture->isCaptureRunning())) {
// Record the name of the layer if the capture is running.
std::stringstream layerSettings;
PrintTo(layer, &layerSettings);
// Store the LayerSettings in additional information.
canvas->drawAnnotation(SkRect::MakeEmpty(), layer.name.c_str(),
SkData::MakeWithCString(layerSettings.str().c_str()));
}
// Layers have a local transform that should be applied to them
canvas->concat(getSkM44(layer.geometry.positionTransform).asM33());
const auto [bounds, roundRectClip] =
getBoundsAndClip(layer.geometry.boundaries, layer.geometry.roundedCornersCrop,
layer.geometry.roundedCornersRadius);
if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) {
std::unordered_map<uint32_t, sk_sp<SkImage>> cachedBlurs;
// if multiple layers have blur, then we need to take a snapshot now because
// only the lowest layer will have blurImage populated earlier
if (!blurInput) {
blurInput = activeSurface->makeImageSnapshot();
}
// rect to be blurred in the coordinate space of blurInput
SkRect blurRect = canvas->getTotalMatrix().mapRect(bounds.rect());
// Some layers may be much bigger than the screen. If we used
// `blurRect` directly, this would allocate a large buffer with no
// benefit. Apply the clip, which already takes the display size
// into account. The clipped size will then be used to calculate the
// size of the buffer we will create for blurring.
if (!blurRect.intersect(SkRect::Make(canvas->getDeviceClipBounds()))) {
// This should not happen, but if it did, we would use the full
// sized layer, which should still be fine.
ALOGW("blur bounds does not intersect display clip!");
}
// if the clip needs to be applied then apply it now and make sure
// it is restored before we attempt to draw any shadows.
SkAutoCanvasRestore acr(canvas, true);
if (!roundRectClip.isEmpty()) {
canvas->clipRRect(roundRectClip, true);
}
// TODO(b/182216890): Filter out empty layers earlier
if (blurRect.width() > 0 && blurRect.height() > 0) {
if (layer.backgroundBlurRadius > 0) {
ATRACE_NAME("BackgroundBlur");
auto blurredImage = mBlurFilter->generate(grContext, layer.backgroundBlurRadius,
blurInput, blurRect);
cachedBlurs[layer.backgroundBlurRadius] = blurredImage;
mBlurFilter->drawBlurRegion(canvas, bounds, layer.backgroundBlurRadius, 1.0f,
blurRect, blurredImage, blurInput);
}
canvas->concat(getSkM44(layer.blurRegionTransform).asM33());
for (auto region : layer.blurRegions) {
if (cachedBlurs[region.blurRadius] == nullptr) {
ATRACE_NAME("BlurRegion");
cachedBlurs[region.blurRadius] =
mBlurFilter->generate(grContext, region.blurRadius, blurInput,
blurRect);
}
mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius,
region.alpha, blurRect,
cachedBlurs[region.blurRadius], blurInput);
}
}
}
if (layer.shadow.length > 0) {
// This would require a new parameter/flag to SkShadowUtils::DrawShadow
LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with a shadow");
SkRRect shadowBounds, shadowClip;
if (layer.geometry.boundaries == layer.shadow.boundaries) {
shadowBounds = bounds;
shadowClip = roundRectClip;
} else {
std::tie(shadowBounds, shadowClip) =
getBoundsAndClip(layer.shadow.boundaries, layer.geometry.roundedCornersCrop,
layer.geometry.roundedCornersRadius);
}
// Technically, if bounds is a rect and roundRectClip is not empty,
// it means that the bounds and roundedCornersCrop were different
// enough that we should intersect them to find the proper shadow.
// In practice, this often happens when the two rectangles appear to
// not match due to rounding errors. Draw the rounded version, which
// looks more like the intent.
const auto& rrect =
shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds;
drawShadow(canvas, rrect, layer.shadow);
}
const float layerDimmingRatio = layer.whitePointNits <= 0.f
? displayDimmingRatio
: (layer.whitePointNits / maxLayerWhitePoint) * displayDimmingRatio;
const bool dimInLinearSpace = display.dimmingStage !=
aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF;
const bool isExtendedHdr = (layer.sourceDataspace & ui::Dataspace::RANGE_MASK) ==
static_cast<int32_t>(ui::Dataspace::RANGE_EXTENDED) &&
(display.outputDataspace & ui::Dataspace::TRANSFER_MASK) ==
static_cast<int32_t>(ui::Dataspace::TRANSFER_SRGB);
const bool useFakeOutputDataspaceForRuntimeEffect = !dimInLinearSpace && isExtendedHdr;
const ui::Dataspace fakeDataspace = useFakeOutputDataspaceForRuntimeEffect
? static_cast<ui::Dataspace>(
(display.outputDataspace & ui::Dataspace::STANDARD_MASK) |
ui::Dataspace::TRANSFER_GAMMA2_2 |
(display.outputDataspace & ui::Dataspace::RANGE_MASK))
: ui::Dataspace::UNKNOWN;
// If the input dataspace is range extended, the output dataspace transfer is sRGB
// and dimmingStage is GAMMA_OETF, dim in linear space instead, and
// set the output dataspace's transfer to be GAMMA2_2.
// This allows DPU side to use oetf_gamma_2p2 for extended HDR layer
// to avoid tone shift.
// The reason of tone shift here is because HDR layers manage white point
// luminance in linear space, which color pipelines request GAMMA_OETF break
// without a gamma 2.2 fixup.
const bool requiresLinearEffect = layer.colorTransform != mat4() ||
(needsToneMapping(layer.sourceDataspace, display.outputDataspace)) ||
(dimInLinearSpace && !equalsWithinMargin(1.f, layerDimmingRatio)) ||
(!dimInLinearSpace && isExtendedHdr);
// quick abort from drawing the remaining portion of the layer
if (layer.skipContentDraw ||
(layer.alpha == 0 && !requiresLinearEffect && !layer.disableBlending &&
(!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) {
continue;
}
const ui::Dataspace layerDataspace = layer.sourceDataspace;
SkPaint paint;
if (layer.source.buffer.buffer) {
ATRACE_NAME("DrawImage");
validateInputBufferUsage(layer.source.buffer.buffer->getBuffer());
const auto& item = layer.source.buffer;
auto imageTextureRef = getOrCreateBackendTexture(item.buffer->getBuffer(), false);
// if the layer's buffer has a fence, then we must must respect the fence prior to using
// the buffer.
if (layer.source.buffer.fence != nullptr) {
waitFence(grContext, layer.source.buffer.fence->get());
}
// isOpaque means we need to ignore the alpha in the image,
// replacing it with the alpha specified by the LayerSettings. See
// https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean)
// The proper way to do this is to use an SkColorType that ignores
// alpha, like kRGB_888x_SkColorType, and that is used if the
// incoming image is kRGBA_8888_SkColorType. However, the incoming
// image may be kRGBA_F16_SkColorType, for which there is no RGBX
// SkColorType, or kRGBA_1010102_SkColorType, for which we have
// kRGB_101010x_SkColorType, but it is not yet supported as a source
// on the GPU. (Adding both is tracked in skbug.com/12048.) In the
// meantime, we'll use a workaround that works unless we need to do
// any color conversion. The workaround requires that we pretend the
// image is already premultiplied, so that we do not premultiply it
// before applying SkBlendMode::kPlus.
const bool useIsOpaqueWorkaround = item.isOpaque &&
(imageTextureRef->colorType() == kRGBA_1010102_SkColorType ||
imageTextureRef->colorType() == kRGBA_F16_SkColorType);
const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType
: item.isOpaque ? kOpaque_SkAlphaType
: item.usePremultipliedAlpha ? kPremul_SkAlphaType
: kUnpremul_SkAlphaType;
sk_sp<SkImage> image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext);
auto texMatrix = getSkM44(item.textureTransform).asM33();
// textureTansform was intended to be passed directly into a shader, so when
// building the total matrix with the textureTransform we need to first
// normalize it, then apply the textureTransform, then scale back up.
texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height());
texMatrix.postScale(image->width(), image->height());
SkMatrix matrix;
if (!texMatrix.invert(&matrix)) {
matrix = texMatrix;
}
// The shader does not respect the translation, so we add it to the texture
// transform for the SkImage. This will make sure that the correct layer contents
// are drawn in the correct part of the screen.
matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop);
sk_sp<SkShader> shader;
if (layer.source.buffer.useTextureFiltering) {
shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp,
SkSamplingOptions(
{SkFilterMode::kLinear, SkMipmapMode::kNone}),
&matrix);
} else {
shader = image->makeShader(SkSamplingOptions(), matrix);
}
if (useIsOpaqueWorkaround) {
shader = SkShaders::Blend(SkBlendMode::kPlus, shader,
SkShaders::Color(SkColors::kBlack,
toSkColorSpace(layerDataspace)));
}
paint.setShader(createRuntimeEffectShader(
RuntimeEffectShaderParameters{.shader = shader,
.layer = layer,
.display = display,
.undoPremultipliedAlpha = !item.isOpaque &&
item.usePremultipliedAlpha,
.requiresLinearEffect = requiresLinearEffect,
.layerDimmingRatio = dimInLinearSpace
? layerDimmingRatio
: 1.f,
.outputDataSpace = display.outputDataspace,
.fakeOutputDataspace = fakeDataspace}));
// Turn on dithering when dimming beyond this (arbitrary) threshold...
static constexpr float kDimmingThreshold = 0.9f;
// ...or we're rendering an HDR layer down to an 8-bit target
// Most HDR standards require at least 10-bits of color depth for source content, so we
// can just extract the transfer function rather than dig into precise gralloc layout.
// Furthermore, we can assume that the only 8-bit target we support is RGBA8888.
const bool requiresDownsample =
getHdrRenderType(layer.sourceDataspace,
std::optional<ui::PixelFormat>(static_cast<ui::PixelFormat>(
buffer->getPixelFormat()))) != HdrRenderType::SDR &&
buffer->getPixelFormat() == PIXEL_FORMAT_RGBA_8888;
if (layerDimmingRatio <= kDimmingThreshold || requiresDownsample) {
paint.setDither(true);
}
paint.setAlphaf(layer.alpha);
if (imageTextureRef->colorType() == kAlpha_8_SkColorType) {
LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with A8");
// SysUI creates the alpha layer as a coverage layer, which is
// appropriate for the DPU. Use a color matrix to convert it to
// a mask.
// TODO (b/219525258): Handle input as a mask.
//
// The color matrix will convert A8 pixels with no alpha to
// black, as described by this vector. If the display handles
// the color transform, we need to invert it to find the color
// that will result in black after the DPU applies the transform.
SkV4 black{0.0f, 0.0f, 0.0f, 1.0f}; // r, g, b, a
if (display.colorTransform != mat4() && display.deviceHandlesColorTransform) {
SkM44 colorSpaceMatrix = getSkM44(display.colorTransform);
if (colorSpaceMatrix.invert(&colorSpaceMatrix)) {
black = colorSpaceMatrix * black;
} else {
// We'll just have to use 0,0,0 as black, which should
// be close to correct.
ALOGI("Could not invert colorTransform!");
}
}
SkColorMatrix colorMatrix(0, 0, 0, 0, black[0],
0, 0, 0, 0, black[1],
0, 0, 0, 0, black[2],
0, 0, 0, -1, 1);
if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) {
// On the other hand, if the device doesn't handle it, we
// have to apply it ourselves.
colorMatrix.postConcat(toSkColorMatrix(display.colorTransform));
}
paint.setColorFilter(SkColorFilters::Matrix(colorMatrix));
}
} else {
ATRACE_NAME("DrawColor");
const auto color = layer.source.solidColor;
sk_sp<SkShader> shader = SkShaders::Color(SkColor4f{.fR = color.r,
.fG = color.g,
.fB = color.b,
.fA = layer.alpha},
toSkColorSpace(layerDataspace));
paint.setShader(createRuntimeEffectShader(
RuntimeEffectShaderParameters{.shader = shader,
.layer = layer,
.display = display,
.undoPremultipliedAlpha = false,
.requiresLinearEffect = requiresLinearEffect,
.layerDimmingRatio = layerDimmingRatio,
.outputDataSpace = display.outputDataspace,
.fakeOutputDataspace = fakeDataspace}));
}
if (layer.disableBlending) {
paint.setBlendMode(SkBlendMode::kSrc);
}
// An A8 buffer will already have the proper color filter attached to
// its paint, including the displayColorTransform as needed.
if (!paint.getColorFilter()) {
if (!dimInLinearSpace && !equalsWithinMargin(1.0, layerDimmingRatio)) {
// If we don't dim in linear space, then when we gamma correct the dimming ratio we
// can assume a gamma 2.2 transfer function.
static constexpr float kInverseGamma22 = 1.f / 2.2f;
const auto gammaCorrectedDimmingRatio =
std::pow(layerDimmingRatio, kInverseGamma22);
auto dimmingMatrix =
mat4::scale(vec4(gammaCorrectedDimmingRatio, gammaCorrectedDimmingRatio,
gammaCorrectedDimmingRatio, 1.f));
const auto colorFilter =
SkColorFilters::Matrix(toSkColorMatrix(std::move(dimmingMatrix)));
paint.setColorFilter(displayColorTransform
? displayColorTransform->makeComposed(colorFilter)
: colorFilter);
} else {
paint.setColorFilter(displayColorTransform);
}
}
if (!roundRectClip.isEmpty()) {
canvas->clipRRect(roundRectClip, true);
}
if (!bounds.isRect()) {
paint.setAntiAlias(true);
canvas->drawRRect(bounds, paint);
} else {
canvas->drawRect(bounds.rect(), paint);
}
if (kFlushAfterEveryLayer) {
ATRACE_NAME("flush surface");
skgpu::ganesh::Flush(activeSurface);
}
}
for (const auto& borderRenderInfo : display.borderInfoList) {
SkPaint p;
p.setColor(SkColor4f{borderRenderInfo.color.r, borderRenderInfo.color.g,
borderRenderInfo.color.b, borderRenderInfo.color.a});
p.setAntiAlias(true);
p.setStyle(SkPaint::kStroke_Style);
p.setStrokeWidth(borderRenderInfo.width);
SkRegion sk_region;
SkPath path;
// Construct a final SkRegion using Regions
for (const auto& r : borderRenderInfo.combinedRegion) {
sk_region.op({r.left, r.top, r.right, r.bottom}, SkRegion::kUnion_Op);
}
sk_region.getBoundaryPath(&path);
canvas->drawPath(path, p);
path.close();
}
surfaceAutoSaveRestore.restore();
mCapture->endCapture();
{
ATRACE_NAME("flush surface");
LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface);
skgpu::ganesh::Flush(activeSurface);
}
auto drawFence = sp<Fence>::make(flushAndSubmit(grContext));
if (ATRACE_ENABLED()) {
static gui::FenceMonitor sMonitor("RE Completion");
sMonitor.queueFence(drawFence);
}
resultPromise->set_value(std::move(drawFence));
}
size_t SkiaRenderEngine::getMaxTextureSize() const {
return mGrContext->maxTextureSize();
}
size_t SkiaRenderEngine::getMaxViewportDims() const {
return mGrContext->maxRenderTargetSize();
}
void SkiaRenderEngine::drawShadow(SkCanvas* canvas,
const SkRRect& casterRRect,
const ShadowSettings& settings) {
ATRACE_CALL();
const float casterZ = settings.length / 2.0f;
const auto flags =
settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag;
SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ),
getSkPoint3(settings.lightPos), settings.lightRadius,
getSkColor(settings.ambientColor), getSkColor(settings.spotColor),
flags);
}
void SkiaRenderEngine::onActiveDisplaySizeChanged(ui::Size size) {
// This cache multiplier was selected based on review of cache sizes relative
// to the screen resolution. Looking at the worst case memory needed by blur (~1.5x),
// shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a
// conservative default based on that analysis.
const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat);
const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER;
// start by resizing the current context
getActiveGrContext()->setResourceCacheLimit(maxResourceBytes);
// if it is possible to switch contexts then we will resize the other context
const bool originalProtectedState = mInProtectedContext;
useProtectedContext(!mInProtectedContext);
if (mInProtectedContext != originalProtectedState) {
getActiveGrContext()->setResourceCacheLimit(maxResourceBytes);
// reset back to the initial context that was active when this method was called
useProtectedContext(originalProtectedState);
}
}
void SkiaRenderEngine::dump(std::string& result) {
// Dump for the specific backend (GLES or Vk)
appendBackendSpecificInfoToDump(result);
// Info about protected content
StringAppendF(&result, "RenderEngine supports protected context: %d\n",
supportsProtectedContent());
StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n",
mSkSLCacheMonitor.shadersCachedSinceLastCall());
std::vector<ResourcePair> cpuResourceMap = {
{"skia/sk_resource_cache/bitmap_", "Bitmaps"},
{"skia/sk_resource_cache/rrect-blur_", "Masks"},
{"skia/sk_resource_cache/rects-blur_", "Masks"},
{"skia/sk_resource_cache/tessellated", "Shadows"},
{"skia", "Other"},
};
SkiaMemoryReporter cpuReporter(cpuResourceMap, false);
SkGraphics::DumpMemoryStatistics(&cpuReporter);
StringAppendF(&result, "Skia CPU Caches: ");
cpuReporter.logTotals(result);
cpuReporter.logOutput(result);
{
std::lock_guard<std::mutex> lock(mRenderingMutex);
std::vector<ResourcePair> gpuResourceMap = {
{"texture_renderbuffer", "Texture/RenderBuffer"},
{"texture", "Texture"},
{"gr_text_blob_cache", "Text"},
{"skia", "Other"},
};
SkiaMemoryReporter gpuReporter(gpuResourceMap, true);
mGrContext->dumpMemoryStatistics(&gpuReporter);
StringAppendF(&result, "Skia's GPU Caches: ");
gpuReporter.logTotals(result);
gpuReporter.logOutput(result);
StringAppendF(&result, "Skia's Wrapped Objects:\n");
gpuReporter.logOutput(result, true);
StringAppendF(&result, "RenderEngine tracked buffers: %zu\n",
mGraphicBufferExternalRefs.size());
StringAppendF(&result, "Dumping buffer ids...\n");
for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) {
StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts);
}
StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n",
mTextureCache.size());
StringAppendF(&result, "Dumping buffer ids...\n");
// TODO(178539829): It would be nice to know which layer these are coming from and what
// the texture sizes are.
for (const auto& [id, unused] : mTextureCache) {
StringAppendF(&result, "- 0x%" PRIx64 "\n", id);
}
StringAppendF(&result, "\n");
SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true);
if (mProtectedGrContext) {
mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter);
}
StringAppendF(&result, "Skia's GPU Protected Caches: ");
gpuProtectedReporter.logTotals(result);
gpuProtectedReporter.logOutput(result);
StringAppendF(&result, "Skia's Protected Wrapped Objects:\n");
gpuProtectedReporter.logOutput(result, true);
StringAppendF(&result, "\n");
StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size());
for (const auto& [linearEffect, unused] : mRuntimeEffects) {
StringAppendF(&result, "- inputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.inputDataspace))
.c_str());
StringAppendF(&result, "- outputDataspace: %s\n",
dataspaceDetails(
static_cast<android_dataspace>(linearEffect.outputDataspace))
.c_str());
StringAppendF(&result, "undoPremultipliedAlpha: %s\n",
linearEffect.undoPremultipliedAlpha ? "true" : "false");
}
}
StringAppendF(&result, "\n");
}
} // namespace skia
} // namespace renderengine
} // namespace android