| /* |
| * Copyright 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #undef LOG_TAG |
| #define LOG_TAG "RenderEngine" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "SkiaRenderEngine.h" |
| |
| #include <GrBackendSemaphore.h> |
| #include <GrContextOptions.h> |
| #include <GrTypes.h> |
| #include <SkBlendMode.h> |
| #include <SkCanvas.h> |
| #include <SkColor.h> |
| #include <SkColorFilter.h> |
| #include <SkColorMatrix.h> |
| #include <SkColorSpace.h> |
| #include <SkData.h> |
| #include <SkGraphics.h> |
| #include <SkImage.h> |
| #include <SkImageFilters.h> |
| #include <SkImageInfo.h> |
| #include <SkM44.h> |
| #include <SkMatrix.h> |
| #include <SkPaint.h> |
| #include <SkPath.h> |
| #include <SkPoint.h> |
| #include <SkPoint3.h> |
| #include <SkRRect.h> |
| #include <SkRect.h> |
| #include <SkRefCnt.h> |
| #include <SkRegion.h> |
| #include <SkRuntimeEffect.h> |
| #include <SkSamplingOptions.h> |
| #include <SkScalar.h> |
| #include <SkShader.h> |
| #include <SkShadowUtils.h> |
| #include <SkString.h> |
| #include <SkSurface.h> |
| #include <SkTileMode.h> |
| #include <android-base/stringprintf.h> |
| #include <common/FlagManager.h> |
| #include <gui/FenceMonitor.h> |
| #include <gui/TraceUtils.h> |
| #include <include/gpu/ganesh/SkSurfaceGanesh.h> |
| #include <pthread.h> |
| #include <src/core/SkTraceEventCommon.h> |
| #include <sync/sync.h> |
| #include <ui/BlurRegion.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/HdrRenderTypeUtils.h> |
| #include <utils/Trace.h> |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <deque> |
| #include <memory> |
| #include <numeric> |
| |
| #include "Cache.h" |
| #include "ColorSpaces.h" |
| #include "filters/BlurFilter.h" |
| #include "filters/GaussianBlurFilter.h" |
| #include "filters/KawaseBlurFilter.h" |
| #include "filters/LinearEffect.h" |
| #include "log/log_main.h" |
| #include "skia/debug/SkiaCapture.h" |
| #include "skia/debug/SkiaMemoryReporter.h" |
| #include "skia/filters/StretchShaderFactory.h" |
| #include "system/graphics-base-v1.0.h" |
| |
| namespace { |
| |
| // Debugging settings |
| static const bool kPrintLayerSettings = false; |
| static const bool kFlushAfterEveryLayer = kPrintLayerSettings; |
| static constexpr bool kEnableLayerBrightening = true; |
| |
| } // namespace |
| |
| // Utility functions related to SkRect |
| |
| namespace { |
| |
| static inline SkRect getSkRect(const android::FloatRect& rect) { |
| return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); |
| } |
| |
| static inline SkRect getSkRect(const android::Rect& rect) { |
| return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); |
| } |
| |
| /** |
| * Verifies that common, simple bounds + clip combinations can be converted into |
| * a single RRect draw call returning true if possible. If true the radii parameter |
| * will be filled with the correct radii values that combined with bounds param will |
| * produce the insected roundRect. If false, the returned state of the radii param is undefined. |
| */ |
| static bool intersectionIsRoundRect(const SkRect& bounds, const SkRect& crop, |
| const SkRect& insetCrop, const android::vec2& cornerRadius, |
| SkVector radii[4]) { |
| const bool leftEqual = bounds.fLeft == crop.fLeft; |
| const bool topEqual = bounds.fTop == crop.fTop; |
| const bool rightEqual = bounds.fRight == crop.fRight; |
| const bool bottomEqual = bounds.fBottom == crop.fBottom; |
| |
| // In the event that the corners of the bounds only partially align with the crop we |
| // need to ensure that the resulting shape can still be represented as a round rect. |
| // In particular the round rect implementation will scale the value of all corner radii |
| // if the sum of the radius along any edge is greater than the length of that edge. |
| // See https://www.w3.org/TR/css-backgrounds-3/#corner-overlap |
| const bool requiredWidth = bounds.width() > (cornerRadius.x * 2); |
| const bool requiredHeight = bounds.height() > (cornerRadius.y * 2); |
| if (!requiredWidth || !requiredHeight) { |
| return false; |
| } |
| |
| // Check each cropped corner to ensure that it exactly matches the crop or its corner is |
| // contained within the cropped shape and does not need rounded. |
| // compute the UpperLeft corner radius |
| if (leftEqual && topEqual) { |
| radii[0].set(cornerRadius.x, cornerRadius.y); |
| } else if ((leftEqual && bounds.fTop >= insetCrop.fTop) || |
| (topEqual && bounds.fLeft >= insetCrop.fLeft)) { |
| radii[0].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the UpperRight corner radius |
| if (rightEqual && topEqual) { |
| radii[1].set(cornerRadius.x, cornerRadius.y); |
| } else if ((rightEqual && bounds.fTop >= insetCrop.fTop) || |
| (topEqual && bounds.fRight <= insetCrop.fRight)) { |
| radii[1].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the BottomRight corner radius |
| if (rightEqual && bottomEqual) { |
| radii[2].set(cornerRadius.x, cornerRadius.y); |
| } else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) || |
| (bottomEqual && bounds.fRight <= insetCrop.fRight)) { |
| radii[2].set(0, 0); |
| } else { |
| return false; |
| } |
| // compute the BottomLeft corner radius |
| if (leftEqual && bottomEqual) { |
| radii[3].set(cornerRadius.x, cornerRadius.y); |
| } else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) || |
| (bottomEqual && bounds.fLeft >= insetCrop.fLeft)) { |
| radii[3].set(0, 0); |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline std::pair<SkRRect, SkRRect> getBoundsAndClip(const android::FloatRect& boundsRect, |
| const android::FloatRect& cropRect, |
| const android::vec2& cornerRadius) { |
| const SkRect bounds = getSkRect(boundsRect); |
| const SkRect crop = getSkRect(cropRect); |
| |
| SkRRect clip; |
| if (cornerRadius.x > 0 && cornerRadius.y > 0) { |
| // it the crop and the bounds are equivalent or there is no crop then we don't need a clip |
| if (bounds == crop || crop.isEmpty()) { |
| return {SkRRect::MakeRectXY(bounds, cornerRadius.x, cornerRadius.y), clip}; |
| } |
| |
| // This makes an effort to speed up common, simple bounds + clip combinations by |
| // converting them to a single RRect draw. It is possible there are other cases |
| // that can be converted. |
| if (crop.contains(bounds)) { |
| const auto insetCrop = crop.makeInset(cornerRadius.x, cornerRadius.y); |
| if (insetCrop.contains(bounds)) { |
| return {SkRRect::MakeRect(bounds), clip}; // clip is empty - no rounding required |
| } |
| |
| SkVector radii[4]; |
| if (intersectionIsRoundRect(bounds, crop, insetCrop, cornerRadius, radii)) { |
| SkRRect intersectionBounds; |
| intersectionBounds.setRectRadii(bounds, radii); |
| return {intersectionBounds, clip}; |
| } |
| } |
| |
| // we didn't hit any of our fast paths so set the clip to the cropRect |
| clip.setRectXY(crop, cornerRadius.x, cornerRadius.y); |
| } |
| |
| // if we hit this point then we either don't have rounded corners or we are going to rely |
| // on the clip to round the corners for us |
| return {SkRRect::MakeRect(bounds), clip}; |
| } |
| |
| static inline bool layerHasBlur(const android::renderengine::LayerSettings& layer, |
| bool colorTransformModifiesAlpha) { |
| if (layer.backgroundBlurRadius > 0 || layer.blurRegions.size()) { |
| // return false if the content is opaque and would therefore occlude the blur |
| const bool opaqueContent = !layer.source.buffer.buffer || layer.source.buffer.isOpaque; |
| const bool opaqueAlpha = layer.alpha == 1.0f && !colorTransformModifiesAlpha; |
| return layer.skipContentDraw || !(opaqueContent && opaqueAlpha); |
| } |
| return false; |
| } |
| |
| static inline SkColor getSkColor(const android::vec4& color) { |
| return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255); |
| } |
| |
| static inline SkM44 getSkM44(const android::mat4& matrix) { |
| return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], |
| matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], |
| matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], |
| matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]); |
| } |
| |
| static inline SkPoint3 getSkPoint3(const android::vec3& vector) { |
| return SkPoint3::Make(vector.x, vector.y, vector.z); |
| } |
| } // namespace |
| |
| namespace android { |
| namespace renderengine { |
| namespace skia { |
| |
| using base::StringAppendF; |
| |
| std::future<void> SkiaRenderEngine::primeCache(bool shouldPrimeUltraHDR) { |
| Cache::primeShaderCache(this, shouldPrimeUltraHDR); |
| return {}; |
| } |
| |
| sk_sp<SkData> SkiaRenderEngine::SkSLCacheMonitor::load(const SkData& key) { |
| // This "cache" does not actually cache anything. It just allows us to |
| // monitor Skia's internal cache. So this method always returns null. |
| return nullptr; |
| } |
| |
| void SkiaRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data, |
| const SkString& description) { |
| mShadersCachedSinceLastCall++; |
| mTotalShadersCompiled++; |
| ATRACE_FORMAT("SF cache: %i shaders", mTotalShadersCompiled); |
| } |
| |
| int SkiaRenderEngine::reportShadersCompiled() { |
| return mSkSLCacheMonitor.totalShadersCompiled(); |
| } |
| |
| void SkiaRenderEngine::setEnableTracing(bool tracingEnabled) { |
| SkAndroidFrameworkTraceUtil::setEnableTracing(tracingEnabled); |
| } |
| |
| SkiaRenderEngine::SkiaRenderEngine(Threaded threaded, PixelFormat pixelFormat, |
| bool supportsBackgroundBlur) |
| : RenderEngine(threaded), mDefaultPixelFormat(pixelFormat) { |
| if (supportsBackgroundBlur) { |
| ALOGD("Background Blurs Enabled"); |
| mBlurFilter = new KawaseBlurFilter(); |
| } |
| mCapture = std::make_unique<SkiaCapture>(); |
| } |
| |
| SkiaRenderEngine::~SkiaRenderEngine() { } |
| |
| // To be called from backend dtors. |
| void SkiaRenderEngine::finishRenderingAndAbandonContext() { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| |
| if (mBlurFilter) { |
| delete mBlurFilter; |
| } |
| |
| if (mGrContext) { |
| mGrContext->flushAndSubmit(GrSyncCpu::kYes); |
| mGrContext->abandonContext(); |
| } |
| |
| if (mProtectedGrContext) { |
| mProtectedGrContext->flushAndSubmit(GrSyncCpu::kYes); |
| mProtectedGrContext->abandonContext(); |
| } |
| } |
| |
| void SkiaRenderEngine::useProtectedContext(bool useProtectedContext) { |
| if (useProtectedContext == mInProtectedContext || |
| (useProtectedContext && !supportsProtectedContent())) { |
| return; |
| } |
| |
| // release any scratch resources before switching into a new mode |
| if (getActiveGrContext()) { |
| getActiveGrContext()->purgeUnlockedResources(GrPurgeResourceOptions::kScratchResourcesOnly); |
| } |
| |
| // Backend-specific way to switch to protected context |
| if (useProtectedContextImpl( |
| useProtectedContext ? GrProtected::kYes : GrProtected::kNo)) { |
| mInProtectedContext = useProtectedContext; |
| // given that we are sharing the same thread between two GrContexts we need to |
| // make sure that the thread state is reset when switching between the two. |
| if (getActiveGrContext()) { |
| getActiveGrContext()->resetContext(); |
| } |
| } |
| } |
| |
| GrDirectContext* SkiaRenderEngine::getActiveGrContext() { |
| return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get(); |
| } |
| |
| static float toDegrees(uint32_t transform) { |
| switch (transform) { |
| case ui::Transform::ROT_90: |
| return 90.0; |
| case ui::Transform::ROT_180: |
| return 180.0; |
| case ui::Transform::ROT_270: |
| return 270.0; |
| default: |
| return 0.0; |
| } |
| } |
| |
| static SkColorMatrix toSkColorMatrix(const android::mat4& matrix) { |
| return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1], |
| matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2], |
| matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3], |
| matrix[3][3], 0); |
| } |
| |
| static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) { |
| int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK; |
| int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK; |
| |
| // Treat unsupported dataspaces as srgb |
| if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR && |
| destTransfer != HAL_DATASPACE_TRANSFER_HLG && |
| destTransfer != HAL_DATASPACE_TRANSFER_ST2084) { |
| destTransfer = HAL_DATASPACE_TRANSFER_SRGB; |
| } |
| |
| if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR && |
| sourceTransfer != HAL_DATASPACE_TRANSFER_HLG && |
| sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) { |
| sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB; |
| } |
| |
| const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR; |
| const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB; |
| const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR; |
| const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB; |
| |
| return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) && |
| sourceTransfer != destTransfer; |
| } |
| |
| void SkiaRenderEngine::ensureGrContextsCreated() { |
| if (mGrContext) { |
| return; |
| } |
| |
| GrContextOptions options; |
| options.fDisableDriverCorrectnessWorkarounds = true; |
| options.fDisableDistanceFieldPaths = true; |
| options.fReducedShaderVariations = true; |
| options.fPersistentCache = &mSkSLCacheMonitor; |
| std::tie(mGrContext, mProtectedGrContext) = createDirectContexts(options); |
| } |
| |
| void SkiaRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer, |
| bool isRenderable) { |
| // Only run this if RE is running on its own thread. This |
| // way the access to GL/VK operations is guaranteed to be happening on the |
| // same thread. |
| if (!isThreaded()) { |
| return; |
| } |
| // We don't attempt to map a buffer if the buffer contains protected content. In GL this is |
| // important because GPU resources for protected buffers are much more limited. (In Vk we |
| // simply match the existing behavior for protected buffers.) We also never cache any |
| // buffers while in a protected context. |
| const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED; |
| // Don't attempt to map buffers if we're not gpu sampleable. Callers shouldn't send a buffer |
| // over to RenderEngine. |
| const bool isGpuSampleable = buffer->getUsage() & GRALLOC_USAGE_HW_TEXTURE; |
| if (isProtectedBuffer || isProtected() || !isGpuSampleable) { |
| return; |
| } |
| ATRACE_CALL(); |
| |
| // If we were to support caching protected buffers then we will need to switch the |
| // currently bound context if we are not already using the protected context (and subsequently |
| // switch back after the buffer is cached). However, for non-protected content we can bind |
| // the texture in either GL context because they are initialized with the same share_context |
| // which allows the texture state to be shared between them. |
| auto grContext = getActiveGrContext(); |
| auto& cache = mTextureCache; |
| |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| mGraphicBufferExternalRefs[buffer->getId()]++; |
| |
| if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) { |
| if (FlagManager::getInstance().renderable_buffer_usage()) { |
| isRenderable = buffer->getUsage() & GRALLOC_USAGE_HW_RENDER; |
| } |
| std::shared_ptr<AutoBackendTexture::LocalRef> imageTextureRef = |
| std::make_shared<AutoBackendTexture::LocalRef>(grContext, |
| buffer->toAHardwareBuffer(), |
| isRenderable, mTextureCleanupMgr); |
| cache.insert({buffer->getId(), imageTextureRef}); |
| } |
| } |
| |
| void SkiaRenderEngine::unmapExternalTextureBuffer(sp<GraphicBuffer>&& buffer) { |
| ATRACE_CALL(); |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId()); |
| iter != mGraphicBufferExternalRefs.end()) { |
| if (iter->second == 0) { |
| ALOGW("Attempted to unmap GraphicBuffer <id: %" PRId64 |
| "> from RenderEngine texture, but the " |
| "ref count was already zero!", |
| buffer->getId()); |
| mGraphicBufferExternalRefs.erase(buffer->getId()); |
| return; |
| } |
| |
| iter->second--; |
| |
| // Swap contexts if needed prior to deleting this buffer |
| // See Issue 1 of |
| // https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even |
| // when a protected context and an unprotected context are part of the same share group, |
| // protected surfaces may not be accessed by an unprotected context, implying that protected |
| // surfaces may only be freed when a protected context is active. |
| const bool inProtected = mInProtectedContext; |
| useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED); |
| |
| if (iter->second == 0) { |
| mTextureCache.erase(buffer->getId()); |
| mGraphicBufferExternalRefs.erase(buffer->getId()); |
| } |
| |
| // Swap back to the previous context so that cached values of isProtected in SurfaceFlinger |
| // are up-to-date. |
| if (inProtected != mInProtectedContext) { |
| useProtectedContext(inProtected); |
| } |
| } |
| } |
| |
| std::shared_ptr<AutoBackendTexture::LocalRef> SkiaRenderEngine::getOrCreateBackendTexture( |
| const sp<GraphicBuffer>& buffer, bool isOutputBuffer) { |
| // Do not lookup the buffer in the cache for protected contexts |
| if (!isProtected()) { |
| if (const auto& it = mTextureCache.find(buffer->getId()); it != mTextureCache.end()) { |
| return it->second; |
| } |
| } |
| return std::make_shared<AutoBackendTexture::LocalRef>(getActiveGrContext(), |
| buffer->toAHardwareBuffer(), |
| isOutputBuffer, mTextureCleanupMgr); |
| } |
| |
| bool SkiaRenderEngine::canSkipPostRenderCleanup() const { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| return mTextureCleanupMgr.isEmpty(); |
| } |
| |
| void SkiaRenderEngine::cleanupPostRender() { |
| ATRACE_CALL(); |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| mTextureCleanupMgr.cleanup(); |
| } |
| |
| sk_sp<SkShader> SkiaRenderEngine::createRuntimeEffectShader( |
| const RuntimeEffectShaderParameters& parameters) { |
| // The given surface will be stretched by HWUI via matrix transformation |
| // which gets similar results for most surfaces |
| // Determine later on if we need to leverage the stertch shader within |
| // surface flinger |
| const auto& stretchEffect = parameters.layer.stretchEffect; |
| auto shader = parameters.shader; |
| if (stretchEffect.hasEffect()) { |
| const auto targetBuffer = parameters.layer.source.buffer.buffer; |
| const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; |
| if (graphicBuffer && parameters.shader) { |
| shader = mStretchShaderFactory.createSkShader(shader, stretchEffect); |
| } |
| } |
| |
| if (parameters.requiresLinearEffect) { |
| auto effect = |
| shaders::LinearEffect{.inputDataspace = parameters.layer.sourceDataspace, |
| .outputDataspace = parameters.outputDataSpace, |
| .undoPremultipliedAlpha = parameters.undoPremultipliedAlpha, |
| .fakeOutputDataspace = parameters.fakeOutputDataspace}; |
| |
| auto effectIter = mRuntimeEffects.find(effect); |
| sk_sp<SkRuntimeEffect> runtimeEffect = nullptr; |
| if (effectIter == mRuntimeEffects.end()) { |
| runtimeEffect = buildRuntimeEffect(effect); |
| mRuntimeEffects.insert({effect, runtimeEffect}); |
| } else { |
| runtimeEffect = effectIter->second; |
| } |
| |
| mat4 colorTransform = parameters.layer.colorTransform; |
| |
| colorTransform *= |
| mat4::scale(vec4(parameters.layerDimmingRatio, parameters.layerDimmingRatio, |
| parameters.layerDimmingRatio, 1.f)); |
| |
| const auto targetBuffer = parameters.layer.source.buffer.buffer; |
| const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; |
| const auto hardwareBuffer = graphicBuffer ? graphicBuffer->toAHardwareBuffer() : nullptr; |
| return createLinearEffectShader(parameters.shader, effect, runtimeEffect, |
| std::move(colorTransform), parameters.display.maxLuminance, |
| parameters.display.currentLuminanceNits, |
| parameters.layer.source.buffer.maxLuminanceNits, |
| hardwareBuffer, parameters.display.renderIntent); |
| } |
| return parameters.shader; |
| } |
| |
| void SkiaRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) { |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| // Record display settings when capture is running. |
| std::stringstream displaySettings; |
| PrintTo(display, &displaySettings); |
| // Store the DisplaySettings in additional information. |
| canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings", |
| SkData::MakeWithCString(displaySettings.str().c_str())); |
| } |
| |
| // Before doing any drawing, let's make sure that we'll start at the origin of the display. |
| // Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual |
| // displays might have different scaling when compared to the physical screen. |
| |
| canvas->clipRect(getSkRect(display.physicalDisplay)); |
| canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top); |
| |
| const auto clipWidth = display.clip.width(); |
| const auto clipHeight = display.clip.height(); |
| auto rotatedClipWidth = clipWidth; |
| auto rotatedClipHeight = clipHeight; |
| // Scale is contingent on the rotation result. |
| if (display.orientation & ui::Transform::ROT_90) { |
| std::swap(rotatedClipWidth, rotatedClipHeight); |
| } |
| const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) / |
| static_cast<SkScalar>(rotatedClipWidth); |
| const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) / |
| static_cast<SkScalar>(rotatedClipHeight); |
| canvas->scale(scaleX, scaleY); |
| |
| // Canvas rotation is done by centering the clip window at the origin, rotating, translating |
| // back so that the top left corner of the clip is at (0, 0). |
| canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2); |
| canvas->rotate(toDegrees(display.orientation)); |
| canvas->translate(-clipWidth / 2, -clipHeight / 2); |
| canvas->translate(-display.clip.left, -display.clip.top); |
| } |
| |
| class AutoSaveRestore { |
| public: |
| AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); } |
| ~AutoSaveRestore() { restore(); } |
| void replace(SkCanvas* canvas) { |
| mCanvas = canvas; |
| mSaveCount = canvas->save(); |
| } |
| void restore() { |
| if (mCanvas) { |
| mCanvas->restoreToCount(mSaveCount); |
| mCanvas = nullptr; |
| } |
| } |
| |
| private: |
| SkCanvas* mCanvas; |
| int mSaveCount; |
| }; |
| |
| static SkRRect getBlurRRect(const BlurRegion& region) { |
| const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom); |
| const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL), |
| SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR), |
| SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR), |
| SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)}; |
| SkRRect roundedRect; |
| roundedRect.setRectRadii(rect, radii); |
| return roundedRect; |
| } |
| |
| // Arbitrary default margin which should be close enough to zero. |
| constexpr float kDefaultMargin = 0.0001f; |
| static bool equalsWithinMargin(float expected, float value, float margin = kDefaultMargin) { |
| LOG_ALWAYS_FATAL_IF(margin < 0.f, "Margin is negative!"); |
| return std::abs(expected - value) < margin; |
| } |
| |
| namespace { |
| template <typename T> |
| void logSettings(const T& t) { |
| std::stringstream stream; |
| PrintTo(t, &stream); |
| auto string = stream.str(); |
| size_t pos = 0; |
| // Perfetto ignores \n, so split up manually into separate ALOGD statements. |
| const size_t size = string.size(); |
| while (pos < size) { |
| const size_t end = std::min(string.find("\n", pos), size); |
| ALOGD("%s", string.substr(pos, end - pos).c_str()); |
| pos = end + 1; |
| } |
| } |
| } // namespace |
| |
| // Helper class intended to be used on the stack to ensure that texture cleanup |
| // is deferred until after this class goes out of scope. |
| class DeferTextureCleanup final { |
| public: |
| DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) { |
| mMgr.setDeferredStatus(true); |
| } |
| ~DeferTextureCleanup() { mMgr.setDeferredStatus(false); } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup); |
| AutoBackendTexture::CleanupManager& mMgr; |
| }; |
| |
| void SkiaRenderEngine::drawLayersInternal( |
| const std::shared_ptr<std::promise<FenceResult>>&& resultPromise, |
| const DisplaySettings& display, const std::vector<LayerSettings>& layers, |
| const std::shared_ptr<ExternalTexture>& buffer, base::unique_fd&& bufferFence) { |
| ATRACE_FORMAT("%s for %s", __func__, display.namePlusId.c_str()); |
| |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| |
| if (buffer == nullptr) { |
| ALOGE("No output buffer provided. Aborting GPU composition."); |
| resultPromise->set_value(base::unexpected(BAD_VALUE)); |
| return; |
| } |
| |
| validateOutputBufferUsage(buffer->getBuffer()); |
| |
| auto grContext = getActiveGrContext(); |
| LOG_ALWAYS_FATAL_IF(grContext->abandoned(), "GrContext is abandoned/device lost at start of %s", |
| __func__); |
| |
| // any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called |
| DeferTextureCleanup dtc(mTextureCleanupMgr); |
| |
| auto surfaceTextureRef = getOrCreateBackendTexture(buffer->getBuffer(), true); |
| |
| // wait on the buffer to be ready to use prior to using it |
| waitFence(grContext, bufferFence); |
| |
| sk_sp<SkSurface> dstSurface = |
| surfaceTextureRef->getOrCreateSurface(display.outputDataspace, grContext); |
| |
| SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get()); |
| if (dstCanvas == nullptr) { |
| ALOGE("Cannot acquire canvas from Skia."); |
| resultPromise->set_value(base::unexpected(BAD_VALUE)); |
| return; |
| } |
| |
| // setup color filter if necessary |
| sk_sp<SkColorFilter> displayColorTransform; |
| if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { |
| displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform)); |
| } |
| const bool ctModifiesAlpha = |
| displayColorTransform && !displayColorTransform->isAlphaUnchanged(); |
| |
| // Find the max layer white point to determine the max luminance of the scene... |
| const float maxLayerWhitePoint = std::transform_reduce( |
| layers.cbegin(), layers.cend(), 0.f, |
| [](float left, float right) { return std::max(left, right); }, |
| [&](const auto& l) { return l.whitePointNits; }); |
| |
| // ...and compute the dimming ratio if dimming is requested |
| const float displayDimmingRatio = display.targetLuminanceNits > 0.f && |
| maxLayerWhitePoint > 0.f && |
| (kEnableLayerBrightening || display.targetLuminanceNits > maxLayerWhitePoint) |
| ? maxLayerWhitePoint / display.targetLuminanceNits |
| : 1.f; |
| |
| // Find if any layers have requested blur, we'll use that info to decide when to render to an |
| // offscreen buffer and when to render to the native buffer. |
| sk_sp<SkSurface> activeSurface(dstSurface); |
| SkCanvas* canvas = dstCanvas; |
| SkiaCapture::OffscreenState offscreenCaptureState; |
| const LayerSettings* blurCompositionLayer = nullptr; |
| if (mBlurFilter) { |
| bool requiresCompositionLayer = false; |
| for (const auto& layer : layers) { |
| // if the layer doesn't have blur or it is not visible then continue |
| if (!layerHasBlur(layer, ctModifiesAlpha)) { |
| continue; |
| } |
| if (layer.backgroundBlurRadius > 0 && |
| layer.backgroundBlurRadius < mBlurFilter->getMaxCrossFadeRadius()) { |
| requiresCompositionLayer = true; |
| } |
| for (auto region : layer.blurRegions) { |
| if (region.blurRadius < mBlurFilter->getMaxCrossFadeRadius()) { |
| requiresCompositionLayer = true; |
| } |
| } |
| if (requiresCompositionLayer) { |
| activeSurface = dstSurface->makeSurface(dstSurface->imageInfo()); |
| canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState); |
| blurCompositionLayer = &layer; |
| break; |
| } |
| } |
| } |
| |
| AutoSaveRestore surfaceAutoSaveRestore(canvas); |
| // Clear the entire canvas with a transparent black to prevent ghost images. |
| canvas->clear(SK_ColorTRANSPARENT); |
| initCanvas(canvas, display); |
| |
| if (kPrintLayerSettings) { |
| logSettings(display); |
| } |
| for (const auto& layer : layers) { |
| ATRACE_FORMAT("DrawLayer: %s", layer.name.c_str()); |
| |
| if (kPrintLayerSettings) { |
| logSettings(layer); |
| } |
| |
| sk_sp<SkImage> blurInput; |
| if (blurCompositionLayer == &layer) { |
| LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface); |
| LOG_ALWAYS_FATAL_IF(canvas == dstCanvas); |
| |
| // save a snapshot of the activeSurface to use as input to the blur shaders |
| blurInput = activeSurface->makeImageSnapshot(); |
| |
| // blit the offscreen framebuffer into the destination AHB. This ensures that |
| // even if the blurred image does not cover the screen (for example, during |
| // a rotation animation, or if blur regions are used), the entire screen is |
| // initialized. |
| if (layer.blurRegions.size() || FlagManager::getInstance().restore_blur_step()) { |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState); |
| dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()), |
| String8::format("SurfaceID|%" PRId64, id).c_str(), |
| nullptr); |
| dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint); |
| } else { |
| activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint); |
| } |
| } |
| |
| // assign dstCanvas to canvas and ensure that the canvas state is up to date |
| canvas = dstCanvas; |
| surfaceAutoSaveRestore.replace(canvas); |
| initCanvas(canvas, display); |
| |
| LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() != |
| dstSurface->getCanvas()->getSaveCount()); |
| LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() != |
| dstSurface->getCanvas()->getTotalMatrix()); |
| |
| // assign dstSurface to activeSurface |
| activeSurface = dstSurface; |
| } |
| |
| SkAutoCanvasRestore layerAutoSaveRestore(canvas, true); |
| if (CC_UNLIKELY(mCapture->isCaptureRunning())) { |
| // Record the name of the layer if the capture is running. |
| std::stringstream layerSettings; |
| PrintTo(layer, &layerSettings); |
| // Store the LayerSettings in additional information. |
| canvas->drawAnnotation(SkRect::MakeEmpty(), layer.name.c_str(), |
| SkData::MakeWithCString(layerSettings.str().c_str())); |
| } |
| // Layers have a local transform that should be applied to them |
| canvas->concat(getSkM44(layer.geometry.positionTransform).asM33()); |
| |
| const auto [bounds, roundRectClip] = |
| getBoundsAndClip(layer.geometry.boundaries, layer.geometry.roundedCornersCrop, |
| layer.geometry.roundedCornersRadius); |
| if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) { |
| std::unordered_map<uint32_t, sk_sp<SkImage>> cachedBlurs; |
| |
| // if multiple layers have blur, then we need to take a snapshot now because |
| // only the lowest layer will have blurImage populated earlier |
| if (!blurInput) { |
| blurInput = activeSurface->makeImageSnapshot(); |
| } |
| |
| // rect to be blurred in the coordinate space of blurInput |
| SkRect blurRect = canvas->getTotalMatrix().mapRect(bounds.rect()); |
| |
| // Some layers may be much bigger than the screen. If we used |
| // `blurRect` directly, this would allocate a large buffer with no |
| // benefit. Apply the clip, which already takes the display size |
| // into account. The clipped size will then be used to calculate the |
| // size of the buffer we will create for blurring. |
| if (!blurRect.intersect(SkRect::Make(canvas->getDeviceClipBounds()))) { |
| // This should not happen, but if it did, we would use the full |
| // sized layer, which should still be fine. |
| ALOGW("blur bounds does not intersect display clip!"); |
| } |
| |
| // if the clip needs to be applied then apply it now and make sure |
| // it is restored before we attempt to draw any shadows. |
| SkAutoCanvasRestore acr(canvas, true); |
| if (!roundRectClip.isEmpty()) { |
| canvas->clipRRect(roundRectClip, true); |
| } |
| |
| // TODO(b/182216890): Filter out empty layers earlier |
| if (blurRect.width() > 0 && blurRect.height() > 0) { |
| if (layer.backgroundBlurRadius > 0) { |
| ATRACE_NAME("BackgroundBlur"); |
| auto blurredImage = mBlurFilter->generate(grContext, layer.backgroundBlurRadius, |
| blurInput, blurRect); |
| |
| cachedBlurs[layer.backgroundBlurRadius] = blurredImage; |
| |
| mBlurFilter->drawBlurRegion(canvas, bounds, layer.backgroundBlurRadius, 1.0f, |
| blurRect, blurredImage, blurInput); |
| } |
| |
| canvas->concat(getSkM44(layer.blurRegionTransform).asM33()); |
| for (auto region : layer.blurRegions) { |
| if (cachedBlurs[region.blurRadius] == nullptr) { |
| ATRACE_NAME("BlurRegion"); |
| cachedBlurs[region.blurRadius] = |
| mBlurFilter->generate(grContext, region.blurRadius, blurInput, |
| blurRect); |
| } |
| |
| mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius, |
| region.alpha, blurRect, |
| cachedBlurs[region.blurRadius], blurInput); |
| } |
| } |
| } |
| |
| if (layer.shadow.length > 0) { |
| // This would require a new parameter/flag to SkShadowUtils::DrawShadow |
| LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with a shadow"); |
| |
| SkRRect shadowBounds, shadowClip; |
| if (layer.geometry.boundaries == layer.shadow.boundaries) { |
| shadowBounds = bounds; |
| shadowClip = roundRectClip; |
| } else { |
| std::tie(shadowBounds, shadowClip) = |
| getBoundsAndClip(layer.shadow.boundaries, layer.geometry.roundedCornersCrop, |
| layer.geometry.roundedCornersRadius); |
| } |
| |
| // Technically, if bounds is a rect and roundRectClip is not empty, |
| // it means that the bounds and roundedCornersCrop were different |
| // enough that we should intersect them to find the proper shadow. |
| // In practice, this often happens when the two rectangles appear to |
| // not match due to rounding errors. Draw the rounded version, which |
| // looks more like the intent. |
| const auto& rrect = |
| shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds; |
| drawShadow(canvas, rrect, layer.shadow); |
| } |
| |
| const float layerDimmingRatio = layer.whitePointNits <= 0.f |
| ? displayDimmingRatio |
| : (layer.whitePointNits / maxLayerWhitePoint) * displayDimmingRatio; |
| |
| const bool dimInLinearSpace = display.dimmingStage != |
| aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF; |
| |
| const bool isExtendedHdr = (layer.sourceDataspace & ui::Dataspace::RANGE_MASK) == |
| static_cast<int32_t>(ui::Dataspace::RANGE_EXTENDED) && |
| (display.outputDataspace & ui::Dataspace::TRANSFER_MASK) == |
| static_cast<int32_t>(ui::Dataspace::TRANSFER_SRGB); |
| |
| const bool useFakeOutputDataspaceForRuntimeEffect = !dimInLinearSpace && isExtendedHdr; |
| |
| const ui::Dataspace fakeDataspace = useFakeOutputDataspaceForRuntimeEffect |
| ? static_cast<ui::Dataspace>( |
| (display.outputDataspace & ui::Dataspace::STANDARD_MASK) | |
| ui::Dataspace::TRANSFER_GAMMA2_2 | |
| (display.outputDataspace & ui::Dataspace::RANGE_MASK)) |
| : ui::Dataspace::UNKNOWN; |
| |
| // If the input dataspace is range extended, the output dataspace transfer is sRGB |
| // and dimmingStage is GAMMA_OETF, dim in linear space instead, and |
| // set the output dataspace's transfer to be GAMMA2_2. |
| // This allows DPU side to use oetf_gamma_2p2 for extended HDR layer |
| // to avoid tone shift. |
| // The reason of tone shift here is because HDR layers manage white point |
| // luminance in linear space, which color pipelines request GAMMA_OETF break |
| // without a gamma 2.2 fixup. |
| const bool requiresLinearEffect = layer.colorTransform != mat4() || |
| (needsToneMapping(layer.sourceDataspace, display.outputDataspace)) || |
| (dimInLinearSpace && !equalsWithinMargin(1.f, layerDimmingRatio)) || |
| (!dimInLinearSpace && isExtendedHdr); |
| |
| // quick abort from drawing the remaining portion of the layer |
| if (layer.skipContentDraw || |
| (layer.alpha == 0 && !requiresLinearEffect && !layer.disableBlending && |
| (!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) { |
| continue; |
| } |
| |
| const ui::Dataspace layerDataspace = layer.sourceDataspace; |
| |
| SkPaint paint; |
| if (layer.source.buffer.buffer) { |
| ATRACE_NAME("DrawImage"); |
| validateInputBufferUsage(layer.source.buffer.buffer->getBuffer()); |
| const auto& item = layer.source.buffer; |
| auto imageTextureRef = getOrCreateBackendTexture(item.buffer->getBuffer(), false); |
| |
| // if the layer's buffer has a fence, then we must must respect the fence prior to using |
| // the buffer. |
| if (layer.source.buffer.fence != nullptr) { |
| waitFence(grContext, layer.source.buffer.fence->get()); |
| } |
| |
| // isOpaque means we need to ignore the alpha in the image, |
| // replacing it with the alpha specified by the LayerSettings. See |
| // https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean) |
| // The proper way to do this is to use an SkColorType that ignores |
| // alpha, like kRGB_888x_SkColorType, and that is used if the |
| // incoming image is kRGBA_8888_SkColorType. However, the incoming |
| // image may be kRGBA_F16_SkColorType, for which there is no RGBX |
| // SkColorType, or kRGBA_1010102_SkColorType, for which we have |
| // kRGB_101010x_SkColorType, but it is not yet supported as a source |
| // on the GPU. (Adding both is tracked in skbug.com/12048.) In the |
| // meantime, we'll use a workaround that works unless we need to do |
| // any color conversion. The workaround requires that we pretend the |
| // image is already premultiplied, so that we do not premultiply it |
| // before applying SkBlendMode::kPlus. |
| const bool useIsOpaqueWorkaround = item.isOpaque && |
| (imageTextureRef->colorType() == kRGBA_1010102_SkColorType || |
| imageTextureRef->colorType() == kRGBA_F16_SkColorType); |
| const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType |
| : item.isOpaque ? kOpaque_SkAlphaType |
| : item.usePremultipliedAlpha ? kPremul_SkAlphaType |
| : kUnpremul_SkAlphaType; |
| sk_sp<SkImage> image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext); |
| |
| auto texMatrix = getSkM44(item.textureTransform).asM33(); |
| // textureTansform was intended to be passed directly into a shader, so when |
| // building the total matrix with the textureTransform we need to first |
| // normalize it, then apply the textureTransform, then scale back up. |
| texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height()); |
| texMatrix.postScale(image->width(), image->height()); |
| |
| SkMatrix matrix; |
| if (!texMatrix.invert(&matrix)) { |
| matrix = texMatrix; |
| } |
| // The shader does not respect the translation, so we add it to the texture |
| // transform for the SkImage. This will make sure that the correct layer contents |
| // are drawn in the correct part of the screen. |
| matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop); |
| |
| sk_sp<SkShader> shader; |
| |
| if (layer.source.buffer.useTextureFiltering) { |
| shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp, |
| SkSamplingOptions( |
| {SkFilterMode::kLinear, SkMipmapMode::kNone}), |
| &matrix); |
| } else { |
| shader = image->makeShader(SkSamplingOptions(), matrix); |
| } |
| |
| if (useIsOpaqueWorkaround) { |
| shader = SkShaders::Blend(SkBlendMode::kPlus, shader, |
| SkShaders::Color(SkColors::kBlack, |
| toSkColorSpace(layerDataspace))); |
| } |
| |
| paint.setShader(createRuntimeEffectShader( |
| RuntimeEffectShaderParameters{.shader = shader, |
| .layer = layer, |
| .display = display, |
| .undoPremultipliedAlpha = !item.isOpaque && |
| item.usePremultipliedAlpha, |
| .requiresLinearEffect = requiresLinearEffect, |
| .layerDimmingRatio = dimInLinearSpace |
| ? layerDimmingRatio |
| : 1.f, |
| .outputDataSpace = display.outputDataspace, |
| .fakeOutputDataspace = fakeDataspace})); |
| |
| // Turn on dithering when dimming beyond this (arbitrary) threshold... |
| static constexpr float kDimmingThreshold = 0.9f; |
| // ...or we're rendering an HDR layer down to an 8-bit target |
| // Most HDR standards require at least 10-bits of color depth for source content, so we |
| // can just extract the transfer function rather than dig into precise gralloc layout. |
| // Furthermore, we can assume that the only 8-bit target we support is RGBA8888. |
| const bool requiresDownsample = |
| getHdrRenderType(layer.sourceDataspace, |
| std::optional<ui::PixelFormat>(static_cast<ui::PixelFormat>( |
| buffer->getPixelFormat()))) != HdrRenderType::SDR && |
| buffer->getPixelFormat() == PIXEL_FORMAT_RGBA_8888; |
| if (layerDimmingRatio <= kDimmingThreshold || requiresDownsample) { |
| paint.setDither(true); |
| } |
| paint.setAlphaf(layer.alpha); |
| |
| if (imageTextureRef->colorType() == kAlpha_8_SkColorType) { |
| LOG_ALWAYS_FATAL_IF(layer.disableBlending, "Cannot disableBlending with A8"); |
| |
| // SysUI creates the alpha layer as a coverage layer, which is |
| // appropriate for the DPU. Use a color matrix to convert it to |
| // a mask. |
| // TODO (b/219525258): Handle input as a mask. |
| // |
| // The color matrix will convert A8 pixels with no alpha to |
| // black, as described by this vector. If the display handles |
| // the color transform, we need to invert it to find the color |
| // that will result in black after the DPU applies the transform. |
| SkV4 black{0.0f, 0.0f, 0.0f, 1.0f}; // r, g, b, a |
| if (display.colorTransform != mat4() && display.deviceHandlesColorTransform) { |
| SkM44 colorSpaceMatrix = getSkM44(display.colorTransform); |
| if (colorSpaceMatrix.invert(&colorSpaceMatrix)) { |
| black = colorSpaceMatrix * black; |
| } else { |
| // We'll just have to use 0,0,0 as black, which should |
| // be close to correct. |
| ALOGI("Could not invert colorTransform!"); |
| } |
| } |
| SkColorMatrix colorMatrix(0, 0, 0, 0, black[0], |
| 0, 0, 0, 0, black[1], |
| 0, 0, 0, 0, black[2], |
| 0, 0, 0, -1, 1); |
| if (display.colorTransform != mat4() && !display.deviceHandlesColorTransform) { |
| // On the other hand, if the device doesn't handle it, we |
| // have to apply it ourselves. |
| colorMatrix.postConcat(toSkColorMatrix(display.colorTransform)); |
| } |
| paint.setColorFilter(SkColorFilters::Matrix(colorMatrix)); |
| } |
| } else { |
| ATRACE_NAME("DrawColor"); |
| const auto color = layer.source.solidColor; |
| sk_sp<SkShader> shader = SkShaders::Color(SkColor4f{.fR = color.r, |
| .fG = color.g, |
| .fB = color.b, |
| .fA = layer.alpha}, |
| toSkColorSpace(layerDataspace)); |
| paint.setShader(createRuntimeEffectShader( |
| RuntimeEffectShaderParameters{.shader = shader, |
| .layer = layer, |
| .display = display, |
| .undoPremultipliedAlpha = false, |
| .requiresLinearEffect = requiresLinearEffect, |
| .layerDimmingRatio = layerDimmingRatio, |
| .outputDataSpace = display.outputDataspace, |
| .fakeOutputDataspace = fakeDataspace})); |
| } |
| |
| if (layer.disableBlending) { |
| paint.setBlendMode(SkBlendMode::kSrc); |
| } |
| |
| // An A8 buffer will already have the proper color filter attached to |
| // its paint, including the displayColorTransform as needed. |
| if (!paint.getColorFilter()) { |
| if (!dimInLinearSpace && !equalsWithinMargin(1.0, layerDimmingRatio)) { |
| // If we don't dim in linear space, then when we gamma correct the dimming ratio we |
| // can assume a gamma 2.2 transfer function. |
| static constexpr float kInverseGamma22 = 1.f / 2.2f; |
| const auto gammaCorrectedDimmingRatio = |
| std::pow(layerDimmingRatio, kInverseGamma22); |
| auto dimmingMatrix = |
| mat4::scale(vec4(gammaCorrectedDimmingRatio, gammaCorrectedDimmingRatio, |
| gammaCorrectedDimmingRatio, 1.f)); |
| |
| const auto colorFilter = |
| SkColorFilters::Matrix(toSkColorMatrix(std::move(dimmingMatrix))); |
| paint.setColorFilter(displayColorTransform |
| ? displayColorTransform->makeComposed(colorFilter) |
| : colorFilter); |
| } else { |
| paint.setColorFilter(displayColorTransform); |
| } |
| } |
| |
| if (!roundRectClip.isEmpty()) { |
| canvas->clipRRect(roundRectClip, true); |
| } |
| |
| if (!bounds.isRect()) { |
| paint.setAntiAlias(true); |
| canvas->drawRRect(bounds, paint); |
| } else { |
| canvas->drawRect(bounds.rect(), paint); |
| } |
| if (kFlushAfterEveryLayer) { |
| ATRACE_NAME("flush surface"); |
| skgpu::ganesh::Flush(activeSurface); |
| } |
| } |
| for (const auto& borderRenderInfo : display.borderInfoList) { |
| SkPaint p; |
| p.setColor(SkColor4f{borderRenderInfo.color.r, borderRenderInfo.color.g, |
| borderRenderInfo.color.b, borderRenderInfo.color.a}); |
| p.setAntiAlias(true); |
| p.setStyle(SkPaint::kStroke_Style); |
| p.setStrokeWidth(borderRenderInfo.width); |
| SkRegion sk_region; |
| SkPath path; |
| |
| // Construct a final SkRegion using Regions |
| for (const auto& r : borderRenderInfo.combinedRegion) { |
| sk_region.op({r.left, r.top, r.right, r.bottom}, SkRegion::kUnion_Op); |
| } |
| |
| sk_region.getBoundaryPath(&path); |
| canvas->drawPath(path, p); |
| path.close(); |
| } |
| |
| surfaceAutoSaveRestore.restore(); |
| mCapture->endCapture(); |
| { |
| ATRACE_NAME("flush surface"); |
| LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface); |
| skgpu::ganesh::Flush(activeSurface); |
| } |
| |
| auto drawFence = sp<Fence>::make(flushAndSubmit(grContext)); |
| |
| if (ATRACE_ENABLED()) { |
| static gui::FenceMonitor sMonitor("RE Completion"); |
| sMonitor.queueFence(drawFence); |
| } |
| resultPromise->set_value(std::move(drawFence)); |
| } |
| |
| size_t SkiaRenderEngine::getMaxTextureSize() const { |
| return mGrContext->maxTextureSize(); |
| } |
| |
| size_t SkiaRenderEngine::getMaxViewportDims() const { |
| return mGrContext->maxRenderTargetSize(); |
| } |
| |
| void SkiaRenderEngine::drawShadow(SkCanvas* canvas, |
| const SkRRect& casterRRect, |
| const ShadowSettings& settings) { |
| ATRACE_CALL(); |
| const float casterZ = settings.length / 2.0f; |
| const auto flags = |
| settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag; |
| |
| SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ), |
| getSkPoint3(settings.lightPos), settings.lightRadius, |
| getSkColor(settings.ambientColor), getSkColor(settings.spotColor), |
| flags); |
| } |
| |
| void SkiaRenderEngine::onActiveDisplaySizeChanged(ui::Size size) { |
| // This cache multiplier was selected based on review of cache sizes relative |
| // to the screen resolution. Looking at the worst case memory needed by blur (~1.5x), |
| // shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a |
| // conservative default based on that analysis. |
| const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat); |
| const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER; |
| |
| // start by resizing the current context |
| getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); |
| |
| // if it is possible to switch contexts then we will resize the other context |
| const bool originalProtectedState = mInProtectedContext; |
| useProtectedContext(!mInProtectedContext); |
| if (mInProtectedContext != originalProtectedState) { |
| getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); |
| // reset back to the initial context that was active when this method was called |
| useProtectedContext(originalProtectedState); |
| } |
| } |
| |
| void SkiaRenderEngine::dump(std::string& result) { |
| // Dump for the specific backend (GLES or Vk) |
| appendBackendSpecificInfoToDump(result); |
| |
| // Info about protected content |
| StringAppendF(&result, "RenderEngine supports protected context: %d\n", |
| supportsProtectedContent()); |
| StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); |
| StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n", |
| mSkSLCacheMonitor.shadersCachedSinceLastCall()); |
| |
| std::vector<ResourcePair> cpuResourceMap = { |
| {"skia/sk_resource_cache/bitmap_", "Bitmaps"}, |
| {"skia/sk_resource_cache/rrect-blur_", "Masks"}, |
| {"skia/sk_resource_cache/rects-blur_", "Masks"}, |
| {"skia/sk_resource_cache/tessellated", "Shadows"}, |
| {"skia", "Other"}, |
| }; |
| SkiaMemoryReporter cpuReporter(cpuResourceMap, false); |
| SkGraphics::DumpMemoryStatistics(&cpuReporter); |
| StringAppendF(&result, "Skia CPU Caches: "); |
| cpuReporter.logTotals(result); |
| cpuReporter.logOutput(result); |
| |
| { |
| std::lock_guard<std::mutex> lock(mRenderingMutex); |
| |
| std::vector<ResourcePair> gpuResourceMap = { |
| {"texture_renderbuffer", "Texture/RenderBuffer"}, |
| {"texture", "Texture"}, |
| {"gr_text_blob_cache", "Text"}, |
| {"skia", "Other"}, |
| }; |
| SkiaMemoryReporter gpuReporter(gpuResourceMap, true); |
| mGrContext->dumpMemoryStatistics(&gpuReporter); |
| StringAppendF(&result, "Skia's GPU Caches: "); |
| gpuReporter.logTotals(result); |
| gpuReporter.logOutput(result); |
| StringAppendF(&result, "Skia's Wrapped Objects:\n"); |
| gpuReporter.logOutput(result, true); |
| |
| StringAppendF(&result, "RenderEngine tracked buffers: %zu\n", |
| mGraphicBufferExternalRefs.size()); |
| StringAppendF(&result, "Dumping buffer ids...\n"); |
| for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) { |
| StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts); |
| } |
| StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n", |
| mTextureCache.size()); |
| StringAppendF(&result, "Dumping buffer ids...\n"); |
| // TODO(178539829): It would be nice to know which layer these are coming from and what |
| // the texture sizes are. |
| for (const auto& [id, unused] : mTextureCache) { |
| StringAppendF(&result, "- 0x%" PRIx64 "\n", id); |
| } |
| StringAppendF(&result, "\n"); |
| |
| SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true); |
| if (mProtectedGrContext) { |
| mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter); |
| } |
| StringAppendF(&result, "Skia's GPU Protected Caches: "); |
| gpuProtectedReporter.logTotals(result); |
| gpuProtectedReporter.logOutput(result); |
| StringAppendF(&result, "Skia's Protected Wrapped Objects:\n"); |
| gpuProtectedReporter.logOutput(result, true); |
| |
| StringAppendF(&result, "\n"); |
| StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size()); |
| for (const auto& [linearEffect, unused] : mRuntimeEffects) { |
| StringAppendF(&result, "- inputDataspace: %s\n", |
| dataspaceDetails( |
| static_cast<android_dataspace>(linearEffect.inputDataspace)) |
| .c_str()); |
| StringAppendF(&result, "- outputDataspace: %s\n", |
| dataspaceDetails( |
| static_cast<android_dataspace>(linearEffect.outputDataspace)) |
| .c_str()); |
| StringAppendF(&result, "undoPremultipliedAlpha: %s\n", |
| linearEffect.undoPremultipliedAlpha ? "true" : "false"); |
| } |
| } |
| StringAppendF(&result, "\n"); |
| } |
| |
| } // namespace skia |
| } // namespace renderengine |
| } // namespace android |