| /* |
| * Copyright 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <GLES2/gl2.h> |
| #include <GLES2/gl2ext.h> |
| |
| #include <utils/String8.h> |
| #include <utils/Trace.h> |
| |
| #include "Description.h" |
| #include "Program.h" |
| #include "ProgramCache.h" |
| |
| namespace android { |
| // ----------------------------------------------------------------------------------------------- |
| |
| /* |
| * A simple formatter class to automatically add the endl and |
| * manage the indentation. |
| */ |
| |
| class Formatter; |
| static Formatter& indent(Formatter& f); |
| static Formatter& dedent(Formatter& f); |
| |
| class Formatter { |
| String8 mString; |
| int mIndent; |
| typedef Formatter& (*FormaterManipFunc)(Formatter&); |
| friend Formatter& indent(Formatter& f); |
| friend Formatter& dedent(Formatter& f); |
| |
| public: |
| Formatter() : mIndent(0) {} |
| |
| String8 getString() const { return mString; } |
| |
| friend Formatter& operator<<(Formatter& out, const char* in) { |
| for (int i = 0; i < out.mIndent; i++) { |
| out.mString.append(" "); |
| } |
| out.mString.append(in); |
| out.mString.append("\n"); |
| return out; |
| } |
| friend inline Formatter& operator<<(Formatter& out, const String8& in) { |
| return operator<<(out, in.string()); |
| } |
| friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) { |
| return (*func)(to); |
| } |
| }; |
| Formatter& indent(Formatter& f) { |
| f.mIndent++; |
| return f; |
| } |
| Formatter& dedent(Formatter& f) { |
| f.mIndent--; |
| return f; |
| } |
| |
| // ----------------------------------------------------------------------------------------------- |
| |
| ANDROID_SINGLETON_STATIC_INSTANCE(ProgramCache) |
| |
| ProgramCache::ProgramCache() {} |
| |
| ProgramCache::~ProgramCache() {} |
| |
| void ProgramCache::primeCache(bool useColorManagement) { |
| uint32_t shaderCount = 0; |
| uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK; |
| // Prime the cache for all combinations of the above masks, |
| // leaving off the experimental color matrix mask options. |
| |
| nsecs_t timeBefore = systemTime(); |
| for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) { |
| Key shaderKey; |
| shaderKey.set(keyMask, keyVal); |
| uint32_t tex = shaderKey.getTextureTarget(); |
| if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) { |
| continue; |
| } |
| Program* program = mCache.valueFor(shaderKey); |
| if (program == nullptr) { |
| program = generateProgram(shaderKey); |
| mCache.add(shaderKey, program); |
| shaderCount++; |
| } |
| } |
| |
| // Prime for sRGB->P3 conversion |
| if (useColorManagement) { |
| Key shaderKey; |
| shaderKey.set(Key::BLEND_MASK | Key::TEXTURE_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK | |
| Key::INPUT_TF_MASK | Key::OUTPUT_TF_MASK, |
| Key::BLEND_PREMULT | Key::TEXTURE_EXT | Key::OUTPUT_TRANSFORM_MATRIX_ON | |
| Key::INPUT_TF_SRGB | Key::OUTPUT_TF_SRGB); |
| for (int i = 0; i < 4; i++) { |
| shaderKey.set(Key::OPACITY_MASK, |
| (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT); |
| shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE); |
| Program* program = mCache.valueFor(shaderKey); |
| if (program == nullptr) { |
| program = generateProgram(shaderKey); |
| mCache.add(shaderKey, program); |
| shaderCount++; |
| } |
| } |
| } |
| |
| nsecs_t timeAfter = systemTime(); |
| float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6; |
| ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs); |
| } |
| |
| ProgramCache::Key ProgramCache::computeKey(const Description& description) { |
| Key needs; |
| needs.set(Key::TEXTURE_MASK, |
| !description.mTextureEnabled |
| ? Key::TEXTURE_OFF |
| : description.mTexture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES |
| ? Key::TEXTURE_EXT |
| : description.mTexture.getTextureTarget() == GL_TEXTURE_2D |
| ? Key::TEXTURE_2D |
| : Key::TEXTURE_OFF) |
| .set(Key::ALPHA_MASK, |
| (description.mColor.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE) |
| .set(Key::BLEND_MASK, |
| description.mPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL) |
| .set(Key::OPACITY_MASK, |
| description.mOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT) |
| .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK, |
| description.hasInputTransformMatrix() ? |
| Key::INPUT_TRANSFORM_MATRIX_ON : Key::INPUT_TRANSFORM_MATRIX_OFF) |
| .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK, |
| description.hasOutputTransformMatrix() || description.hasColorMatrix() ? |
| Key::OUTPUT_TRANSFORM_MATRIX_ON : Key::OUTPUT_TRANSFORM_MATRIX_OFF); |
| |
| needs.set(Key::Y410_BT2020_MASK, |
| description.mY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF); |
| |
| if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) { |
| switch (description.mInputTransferFunction) { |
| case Description::TransferFunction::LINEAR: |
| default: |
| needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR); |
| break; |
| case Description::TransferFunction::SRGB: |
| needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB); |
| break; |
| case Description::TransferFunction::ST2084: |
| needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084); |
| break; |
| case Description::TransferFunction::HLG: |
| needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG); |
| break; |
| } |
| |
| switch (description.mOutputTransferFunction) { |
| case Description::TransferFunction::LINEAR: |
| default: |
| needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR); |
| break; |
| case Description::TransferFunction::SRGB: |
| needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB); |
| break; |
| case Description::TransferFunction::ST2084: |
| needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084); |
| break; |
| case Description::TransferFunction::HLG: |
| needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG); |
| break; |
| } |
| } |
| |
| return needs; |
| } |
| |
| // Generate EOTF that converts signal values to relative display light, |
| // both normalized to [0, 1]. |
| void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) { |
| switch (needs.getInputTF()) { |
| case Key::INPUT_TF_SRGB: |
| fs << R"__SHADER__( |
| float EOTF_sRGB(float srgb) { |
| return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4); |
| } |
| |
| vec3 EOTF_sRGB(const vec3 srgb) { |
| return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b)); |
| } |
| |
| vec3 EOTF(const vec3 srgb) { |
| return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb)); |
| } |
| )__SHADER__"; |
| break; |
| case Key::INPUT_TF_ST2084: |
| fs << R"__SHADER__( |
| vec3 EOTF(const highp vec3 color) { |
| const highp float m1 = (2610.0 / 4096.0) / 4.0; |
| const highp float m2 = (2523.0 / 4096.0) * 128.0; |
| const highp float c1 = (3424.0 / 4096.0); |
| const highp float c2 = (2413.0 / 4096.0) * 32.0; |
| const highp float c3 = (2392.0 / 4096.0) * 32.0; |
| |
| highp vec3 tmp = pow(color, 1.0 / vec3(m2)); |
| tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp); |
| return pow(tmp, 1.0 / vec3(m1)); |
| } |
| )__SHADER__"; |
| break; |
| case Key::INPUT_TF_HLG: |
| fs << R"__SHADER__( |
| highp float EOTF_channel(const highp float channel) { |
| const highp float a = 0.17883277; |
| const highp float b = 0.28466892; |
| const highp float c = 0.55991073; |
| return channel <= 0.5 ? channel * channel / 3.0 : |
| (exp((channel - c) / a) + b) / 12.0; |
| } |
| |
| vec3 EOTF(const highp vec3 color) { |
| return vec3(EOTF_channel(color.r), EOTF_channel(color.g), |
| EOTF_channel(color.b)); |
| } |
| )__SHADER__"; |
| break; |
| default: |
| fs << R"__SHADER__( |
| vec3 EOTF(const vec3 linear) { |
| return linear; |
| } |
| )__SHADER__"; |
| break; |
| } |
| } |
| |
| void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) { |
| // Convert relative light to absolute light. |
| switch (needs.getInputTF()) { |
| case Key::INPUT_TF_ST2084: |
| fs << R"__SHADER__( |
| highp vec3 ScaleLuminance(highp vec3 color) { |
| return color * 10000.0; |
| } |
| )__SHADER__"; |
| break; |
| case Key::INPUT_TF_HLG: |
| fs << R"__SHADER__( |
| highp vec3 ScaleLuminance(highp vec3 color) { |
| // The formula is: |
| // alpha * pow(Y, gamma - 1.0) * color + beta; |
| // where alpha is 1000.0, gamma is 1.2, beta is 0.0. |
| return color * 1000.0 * pow(color.y, 0.2); |
| } |
| )__SHADER__"; |
| break; |
| default: |
| fs << R"__SHADER__( |
| highp vec3 ScaleLuminance(highp vec3 color) { |
| return color * displayMaxLuminance; |
| } |
| )__SHADER__"; |
| break; |
| } |
| |
| // Tone map absolute light to display luminance range. |
| switch (needs.getInputTF()) { |
| case Key::INPUT_TF_ST2084: |
| case Key::INPUT_TF_HLG: |
| switch (needs.getOutputTF()) { |
| case Key::OUTPUT_TF_HLG: |
| // Right now when mixed PQ and HLG contents are presented, |
| // HLG content will always be converted to PQ. However, for |
| // completeness, we simply clamp the value to [0.0, 1000.0]. |
| fs << R"__SHADER__( |
| highp vec3 ToneMap(highp vec3 color) { |
| return clamp(color, 0.0, 1000.0); |
| } |
| )__SHADER__"; |
| break; |
| case Key::OUTPUT_TF_ST2084: |
| fs << R"__SHADER__( |
| highp vec3 ToneMap(highp vec3 color) { |
| return color; |
| } |
| )__SHADER__"; |
| break; |
| default: |
| fs << R"__SHADER__( |
| highp vec3 ToneMap(highp vec3 color) { |
| const float maxMasteringLumi = 1000.0; |
| const float maxContentLumi = 1000.0; |
| const float maxInLumi = min(maxMasteringLumi, maxContentLumi); |
| float maxOutLumi = displayMaxLuminance; |
| |
| float nits = color.y; |
| |
| // clamp to max input luminance |
| nits = clamp(nits, 0.0, maxInLumi); |
| |
| // scale [0.0, maxInLumi] to [0.0, maxOutLumi] |
| if (maxInLumi <= maxOutLumi) { |
| nits *= maxOutLumi / maxInLumi; |
| } else { |
| // three control points |
| const float x0 = 10.0; |
| const float y0 = 17.0; |
| float x1 = maxOutLumi * 0.75; |
| float y1 = x1; |
| float x2 = x1 + (maxInLumi - x1) / 2.0; |
| float y2 = y1 + (maxOutLumi - y1) * 0.75; |
| |
| // horizontal distances between the last three control points |
| float h12 = x2 - x1; |
| float h23 = maxInLumi - x2; |
| // tangents at the last three control points |
| float m1 = (y2 - y1) / h12; |
| float m3 = (maxOutLumi - y2) / h23; |
| float m2 = (m1 + m3) / 2.0; |
| |
| if (nits < x0) { |
| // scale [0.0, x0] to [0.0, y0] linearly |
| float slope = y0 / x0; |
| nits *= slope; |
| } else if (nits < x1) { |
| // scale [x0, x1] to [y0, y1] linearly |
| float slope = (y1 - y0) / (x1 - x0); |
| nits = y0 + (nits - x0) * slope; |
| } else if (nits < x2) { |
| // scale [x1, x2] to [y1, y2] using Hermite interp |
| float t = (nits - x1) / h12; |
| nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) + |
| (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t; |
| } else { |
| // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp |
| float t = (nits - x2) / h23; |
| nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) + |
| (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t; |
| } |
| } |
| |
| return color * (nits / max(1e-6, color.y)); |
| } |
| )__SHADER__"; |
| break; |
| } |
| break; |
| default: |
| // inverse tone map; the output luminance can be up to maxOutLumi. |
| fs << R"__SHADER__( |
| highp vec3 ToneMap(highp vec3 color) { |
| const float maxOutLumi = 3000.0; |
| |
| const float x0 = 5.0; |
| const float y0 = 2.5; |
| float x1 = displayMaxLuminance * 0.7; |
| float y1 = maxOutLumi * 0.15; |
| float x2 = displayMaxLuminance * 0.9; |
| float y2 = maxOutLumi * 0.45; |
| float x3 = displayMaxLuminance; |
| float y3 = maxOutLumi; |
| |
| float c1 = y1 / 3.0; |
| float c2 = y2 / 2.0; |
| float c3 = y3 / 1.5; |
| |
| float nits = color.y; |
| |
| float scale; |
| if (nits <= x0) { |
| // scale [0.0, x0] to [0.0, y0] linearly |
| const float slope = y0 / x0; |
| nits *= slope; |
| } else if (nits <= x1) { |
| // scale [x0, x1] to [y0, y1] using a curve |
| float t = (nits - x0) / (x1 - x0); |
| nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1; |
| } else if (nits <= x2) { |
| // scale [x1, x2] to [y1, y2] using a curve |
| float t = (nits - x1) / (x2 - x1); |
| nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2; |
| } else { |
| // scale [x2, x3] to [y2, y3] using a curve |
| float t = (nits - x2) / (x3 - x2); |
| nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3; |
| } |
| |
| return color * (nits / max(1e-6, color.y)); |
| } |
| )__SHADER__"; |
| break; |
| } |
| |
| // convert absolute light to relative light. |
| switch (needs.getOutputTF()) { |
| case Key::OUTPUT_TF_ST2084: |
| fs << R"__SHADER__( |
| highp vec3 NormalizeLuminance(highp vec3 color) { |
| return color / 10000.0; |
| } |
| )__SHADER__"; |
| break; |
| case Key::OUTPUT_TF_HLG: |
| fs << R"__SHADER__( |
| highp vec3 NormalizeLuminance(highp vec3 color) { |
| return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2); |
| } |
| )__SHADER__"; |
| break; |
| default: |
| fs << R"__SHADER__( |
| highp vec3 NormalizeLuminance(highp vec3 color) { |
| return color / displayMaxLuminance; |
| } |
| )__SHADER__"; |
| break; |
| } |
| } |
| |
| // Generate OOTF that modifies the relative scence light to relative display light. |
| void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) { |
| if (!needs.needsToneMapping()) { |
| fs << R"__SHADER__( |
| highp vec3 OOTF(const highp vec3 color) { |
| return color; |
| } |
| )__SHADER__"; |
| } else { |
| generateToneMappingProcess(fs, needs); |
| fs << R"__SHADER__( |
| highp vec3 OOTF(const highp vec3 color) { |
| return NormalizeLuminance(ToneMap(ScaleLuminance(color))); |
| } |
| )__SHADER__"; |
| } |
| } |
| |
| // Generate OETF that converts relative display light to signal values, |
| // both normalized to [0, 1] |
| void ProgramCache::generateOETF(Formatter& fs, const Key& needs) { |
| switch (needs.getOutputTF()) { |
| case Key::OUTPUT_TF_SRGB: |
| fs << R"__SHADER__( |
| float OETF_sRGB(const float linear) { |
| return linear <= 0.0031308 ? |
| linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055; |
| } |
| |
| vec3 OETF_sRGB(const vec3 linear) { |
| return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b)); |
| } |
| |
| vec3 OETF(const vec3 linear) { |
| return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)); |
| } |
| )__SHADER__"; |
| break; |
| case Key::OUTPUT_TF_ST2084: |
| fs << R"__SHADER__( |
| vec3 OETF(const vec3 linear) { |
| const highp float m1 = (2610.0 / 4096.0) / 4.0; |
| const highp float m2 = (2523.0 / 4096.0) * 128.0; |
| const highp float c1 = (3424.0 / 4096.0); |
| const highp float c2 = (2413.0 / 4096.0) * 32.0; |
| const highp float c3 = (2392.0 / 4096.0) * 32.0; |
| |
| highp vec3 tmp = pow(linear, vec3(m1)); |
| tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp); |
| return pow(tmp, vec3(m2)); |
| } |
| )__SHADER__"; |
| break; |
| case Key::OUTPUT_TF_HLG: |
| fs << R"__SHADER__( |
| highp float OETF_channel(const highp float channel) { |
| const highp float a = 0.17883277; |
| const highp float b = 0.28466892; |
| const highp float c = 0.55991073; |
| return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) : |
| a * log(12.0 * channel - b) + c; |
| } |
| |
| vec3 OETF(const highp vec3 color) { |
| return vec3(OETF_channel(color.r), OETF_channel(color.g), |
| OETF_channel(color.b)); |
| } |
| )__SHADER__"; |
| break; |
| default: |
| fs << R"__SHADER__( |
| vec3 OETF(const vec3 linear) { |
| return linear; |
| } |
| )__SHADER__"; |
| break; |
| } |
| } |
| |
| String8 ProgramCache::generateVertexShader(const Key& needs) { |
| Formatter vs; |
| if (needs.isTexturing()) { |
| vs << "attribute vec4 texCoords;" |
| << "varying vec2 outTexCoords;"; |
| } |
| vs << "attribute vec4 position;" |
| << "uniform mat4 projection;" |
| << "uniform mat4 texture;" |
| << "void main(void) {" << indent << "gl_Position = projection * position;"; |
| if (needs.isTexturing()) { |
| vs << "outTexCoords = (texture * texCoords).st;"; |
| } |
| vs << dedent << "}"; |
| return vs.getString(); |
| } |
| |
| String8 ProgramCache::generateFragmentShader(const Key& needs) { |
| Formatter fs; |
| if (needs.getTextureTarget() == Key::TEXTURE_EXT) { |
| fs << "#extension GL_OES_EGL_image_external : require"; |
| } |
| |
| // default precision is required-ish in fragment shaders |
| fs << "precision mediump float;"; |
| |
| if (needs.getTextureTarget() == Key::TEXTURE_EXT) { |
| fs << "uniform samplerExternalOES sampler;" |
| << "varying vec2 outTexCoords;"; |
| } else if (needs.getTextureTarget() == Key::TEXTURE_2D) { |
| fs << "uniform sampler2D sampler;" |
| << "varying vec2 outTexCoords;"; |
| } |
| |
| if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) { |
| fs << "uniform vec4 color;"; |
| } |
| |
| if (needs.isY410BT2020()) { |
| fs << R"__SHADER__( |
| vec3 convertY410BT2020(const vec3 color) { |
| const vec3 offset = vec3(0.0625, 0.5, 0.5); |
| const mat3 transform = mat3( |
| vec3(1.1678, 1.1678, 1.1678), |
| vec3( 0.0, -0.1878, 2.1481), |
| vec3(1.6836, -0.6523, 0.0)); |
| // Y is in G, U is in R, and V is in B |
| return clamp(transform * (color.grb - offset), 0.0, 1.0); |
| } |
| )__SHADER__"; |
| } |
| |
| if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) { |
| // Currently, display maximum luminance is needed when doing tone mapping. |
| if (needs.needsToneMapping()) { |
| fs << "uniform float displayMaxLuminance;"; |
| } |
| |
| if (needs.hasInputTransformMatrix()) { |
| fs << "uniform mat4 inputTransformMatrix;"; |
| fs << R"__SHADER__( |
| highp vec3 InputTransform(const highp vec3 color) { |
| return vec3(inputTransformMatrix * vec4(color, 1.0)); |
| } |
| )__SHADER__"; |
| } else { |
| fs << R"__SHADER__( |
| highp vec3 InputTransform(const highp vec3 color) { |
| return color; |
| } |
| )__SHADER__"; |
| } |
| |
| // the transformation from a wider colorspace to a narrower one can |
| // result in >1.0 or <0.0 pixel values |
| if (needs.hasOutputTransformMatrix()) { |
| fs << "uniform mat4 outputTransformMatrix;"; |
| fs << R"__SHADER__( |
| highp vec3 OutputTransform(const highp vec3 color) { |
| return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0); |
| } |
| )__SHADER__"; |
| } else { |
| fs << R"__SHADER__( |
| highp vec3 OutputTransform(const highp vec3 color) { |
| return clamp(color, 0.0, 1.0); |
| } |
| )__SHADER__"; |
| } |
| |
| generateEOTF(fs, needs); |
| generateOOTF(fs, needs); |
| generateOETF(fs, needs); |
| } |
| |
| fs << "void main(void) {" << indent; |
| if (needs.isTexturing()) { |
| fs << "gl_FragColor = texture2D(sampler, outTexCoords);"; |
| if (needs.isY410BT2020()) { |
| fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);"; |
| } |
| } else { |
| fs << "gl_FragColor.rgb = color.rgb;"; |
| fs << "gl_FragColor.a = 1.0;"; |
| } |
| if (needs.isOpaque()) { |
| fs << "gl_FragColor.a = 1.0;"; |
| } |
| if (needs.hasAlpha()) { |
| // modulate the current alpha value with alpha set |
| if (needs.isPremultiplied()) { |
| // ... and the color too if we're premultiplied |
| fs << "gl_FragColor *= color.a;"; |
| } else { |
| fs << "gl_FragColor.a *= color.a;"; |
| } |
| } |
| |
| if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) { |
| if (!needs.isOpaque() && needs.isPremultiplied()) { |
| // un-premultiply if needed before linearization |
| // avoid divide by 0 by adding 0.5/256 to the alpha channel |
| fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);"; |
| } |
| fs << "gl_FragColor.rgb = OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));"; |
| if (!needs.isOpaque() && needs.isPremultiplied()) { |
| // and re-premultiply if needed after gamma correction |
| fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);"; |
| } |
| } |
| |
| fs << dedent << "}"; |
| return fs.getString(); |
| } |
| |
| Program* ProgramCache::generateProgram(const Key& needs) { |
| ATRACE_CALL(); |
| |
| // vertex shader |
| String8 vs = generateVertexShader(needs); |
| |
| // fragment shader |
| String8 fs = generateFragmentShader(needs); |
| |
| Program* program = new Program(needs, vs.string(), fs.string()); |
| return program; |
| } |
| |
| void ProgramCache::useProgram(const Description& description) { |
| // generate the key for the shader based on the description |
| Key needs(computeKey(description)); |
| |
| // look-up the program in the cache |
| Program* program = mCache.valueFor(needs); |
| if (program == nullptr) { |
| // we didn't find our program, so generate one... |
| nsecs_t time = -systemTime(); |
| program = generateProgram(needs); |
| mCache.add(needs, program); |
| time += systemTime(); |
| |
| ALOGV(">>> generated new program: needs=%08X, time=%u ms (%zu programs)", needs.mKey, |
| uint32_t(ns2ms(time)), mCache.size()); |
| } |
| |
| // here we have a suitable program for this description |
| if (program->isValid()) { |
| program->use(); |
| program->setUniforms(description); |
| } |
| } |
| |
| } /* namespace android */ |