| #include <gtest/gtest.h> |
| #include <poll.h> |
| #include <private/dvr/buffer_hub_client.h> |
| #include <private/dvr/bufferhub_rpc.h> |
| #include <private/dvr/detached_buffer.h> |
| #include <sys/epoll.h> |
| #include <sys/eventfd.h> |
| #include <ui/DetachedBufferHandle.h> |
| |
| #include <mutex> |
| #include <thread> |
| |
| #define RETRY_EINTR(fnc_call) \ |
| ([&]() -> decltype(fnc_call) { \ |
| decltype(fnc_call) result; \ |
| do { \ |
| result = (fnc_call); \ |
| } while (result == -1 && errno == EINTR); \ |
| return result; \ |
| })() |
| |
| using android::GraphicBuffer; |
| using android::sp; |
| using android::dvr::BufferConsumer; |
| using android::dvr::BufferProducer; |
| using android::dvr::DetachedBuffer; |
| using android::dvr::BufferHubDefs::IsBufferAcquired; |
| using android::dvr::BufferHubDefs::IsBufferGained; |
| using android::dvr::BufferHubDefs::IsBufferPosted; |
| using android::dvr::BufferHubDefs::IsBufferReleased; |
| using android::dvr::BufferHubDefs::kConsumerStateMask; |
| using android::dvr::BufferHubDefs::kMetadataHeaderSize; |
| using android::dvr::BufferHubDefs::kProducerStateBit; |
| using android::pdx::LocalChannelHandle; |
| using android::pdx::LocalHandle; |
| using android::pdx::Status; |
| |
| const int kWidth = 640; |
| const int kHeight = 480; |
| const int kLayerCount = 1; |
| const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888; |
| const int kUsage = 0; |
| const size_t kUserMetadataSize = 0; |
| const uint64_t kContext = 42; |
| const size_t kMaxConsumerCount = 63; |
| const int kPollTimeoutMs = 100; |
| |
| using LibBufferHubTest = ::testing::Test; |
| |
| TEST_F(LibBufferHubTest, TestBasicUsage) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| // Check that consumers can spawn other consumers. |
| std::unique_ptr<BufferConsumer> c2 = |
| BufferConsumer::Import(c->CreateConsumer()); |
| ASSERT_TRUE(c2.get() != nullptr); |
| |
| // Producer state mask is unique, i.e. 1. |
| EXPECT_EQ(p->buffer_state_bit(), kProducerStateBit); |
| // Consumer state mask cannot have producer bit on. |
| EXPECT_EQ(c->buffer_state_bit() & kProducerStateBit, 0U); |
| // Consumer state mask must be a single, i.e. power of 2. |
| EXPECT_NE(c->buffer_state_bit(), 0U); |
| EXPECT_EQ(c->buffer_state_bit() & (c->buffer_state_bit() - 1), 0U); |
| // Consumer state mask cannot have producer bit on. |
| EXPECT_EQ(c2->buffer_state_bit() & kProducerStateBit, 0U); |
| // Consumer state mask must be a single, i.e. power of 2. |
| EXPECT_NE(c2->buffer_state_bit(), 0U); |
| EXPECT_EQ(c2->buffer_state_bit() & (c2->buffer_state_bit() - 1), 0U); |
| // Each consumer should have unique bit. |
| EXPECT_EQ(c->buffer_state_bit() & c2->buffer_state_bit(), 0U); |
| |
| // Initial state: producer not available, consumers not available. |
| EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| |
| EXPECT_EQ(0, p->Post(LocalHandle(), kContext)); |
| |
| // New state: producer not available, consumers available. |
| EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(1, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| |
| uint64_t context; |
| LocalHandle fence; |
| EXPECT_EQ(0, c->Acquire(&fence, &context)); |
| EXPECT_EQ(kContext, context); |
| EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| |
| EXPECT_EQ(0, c2->Acquire(&fence, &context)); |
| EXPECT_EQ(kContext, context); |
| EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| |
| EXPECT_EQ(0, c->Release(LocalHandle())); |
| EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c2->Discard()); |
| |
| EXPECT_EQ(1, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, p->Gain(&fence)); |
| EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| } |
| |
| TEST_F(LibBufferHubTest, TestEpoll) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)}; |
| ASSERT_TRUE(epoll_fd.IsValid()); |
| |
| epoll_event event; |
| std::array<epoll_event, 64> events; |
| |
| auto event_sources = p->GetEventSources(); |
| ASSERT_LT(event_sources.size(), events.size()); |
| |
| for (const auto& event_source : event_sources) { |
| event = {.events = event_source.event_mask | EPOLLET, |
| .data = {.fd = p->event_fd()}}; |
| ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, |
| &event)); |
| } |
| |
| event_sources = c->GetEventSources(); |
| ASSERT_LT(event_sources.size(), events.size()); |
| |
| for (const auto& event_source : event_sources) { |
| event = {.events = event_source.event_mask | EPOLLET, |
| .data = {.fd = c->event_fd()}}; |
| ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, |
| &event)); |
| } |
| |
| // No events should be signaled initially. |
| ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0)); |
| |
| // Post the producer and check for consumer signal. |
| EXPECT_EQ(0, p->Post({}, kContext)); |
| ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| ASSERT_TRUE(events[0].events & EPOLLIN); |
| ASSERT_EQ(c->event_fd(), events[0].data.fd); |
| |
| // Save the event bits to translate later. |
| event = events[0]; |
| |
| // Check for events again. Edge-triggered mode should prevent any. |
| EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| |
| // Translate the events. |
| auto event_status = c->GetEventMask(event.events); |
| ASSERT_TRUE(event_status); |
| ASSERT_TRUE(event_status.get() & EPOLLIN); |
| |
| // Check for events again. Edge-triggered mode should prevent any. |
| EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), |
| kPollTimeoutMs)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestStateMask) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| |
| // It's ok to create up to kMaxConsumerCount consumer buffers. |
| uint64_t buffer_state_bits = p->buffer_state_bit(); |
| std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs; |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| cs[i] = BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(cs[i].get() != nullptr); |
| // Expect all buffers have unique state mask. |
| EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); |
| buffer_state_bits |= cs[i]->buffer_state_bit(); |
| } |
| EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); |
| |
| // The 64th creation will fail with out-of-memory error. |
| auto state = p->CreateConsumer(); |
| EXPECT_EQ(state.error(), E2BIG); |
| |
| // Release any consumer should allow us to re-create. |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| buffer_state_bits &= ~cs[i]->buffer_state_bit(); |
| cs[i] = nullptr; |
| cs[i] = BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(cs[i].get() != nullptr); |
| // The released state mask will be reused. |
| EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); |
| buffer_state_bits |= cs[i]->buffer_state_bit(); |
| EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); |
| } |
| } |
| |
| TEST_F(LibBufferHubTest, TestStateTransitions) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| uint64_t context; |
| LocalHandle fence; |
| |
| // The producer buffer starts in gained state. |
| |
| // Acquire, release, and gain in gained state should fail. |
| EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); |
| EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); |
| EXPECT_EQ(-EALREADY, p->Gain(&fence)); |
| |
| // Post in gained state should succeed. |
| EXPECT_EQ(0, p->Post(LocalHandle(), kContext)); |
| |
| // Post, release, and gain in posted state should fail. |
| EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); |
| EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); |
| EXPECT_EQ(-EBUSY, p->Gain(&fence)); |
| |
| // Acquire in posted state should succeed. |
| EXPECT_LE(0, c->Acquire(&fence, &context)); |
| |
| // Acquire, post, and gain in acquired state should fail. |
| EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); |
| EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); |
| EXPECT_EQ(-EBUSY, p->Gain(&fence)); |
| |
| // Release in acquired state should succeed. |
| EXPECT_EQ(0, c->Release(LocalHandle())); |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| |
| // Release, acquire, and post in released state should fail. |
| EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); |
| EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); |
| EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext)); |
| |
| // Gain in released state should succeed. |
| EXPECT_EQ(0, p->Gain(&fence)); |
| |
| // Acquire, release, and gain in gained state should fail. |
| EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); |
| EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); |
| EXPECT_EQ(-EALREADY, p->Gain(&fence)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestAsyncStateTransitions) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // The producer buffer starts in gained state. |
| |
| // Acquire, release, and gain in gained state should fail. |
| EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| |
| // Post in gained state should succeed. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(p->buffer_state(), c->buffer_state()); |
| EXPECT_TRUE(IsBufferPosted(p->buffer_state())); |
| |
| // Post, release, and gain in posted state should fail. |
| EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| |
| // Acquire in posted state should succeed. |
| EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(p->buffer_state(), c->buffer_state()); |
| EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); |
| |
| // Acquire, post, and gain in acquired state should fail. |
| EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| |
| // Release in acquired state should succeed. |
| EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(p->buffer_state(), c->buffer_state()); |
| EXPECT_TRUE(IsBufferReleased(p->buffer_state())); |
| |
| // Release, acquire, and post in released state should fail. |
| EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); |
| |
| // Gain in released state should succeed. |
| EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(p->buffer_state(), c->buffer_state()); |
| EXPECT_TRUE(IsBufferGained(p->buffer_state())); |
| |
| // Acquire, release, and gain in gained state should fail. |
| EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_FALSE(invalid_fence.IsValid()); |
| } |
| |
| TEST_F(LibBufferHubTest, TestZeroConsumer) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // Newly created. |
| EXPECT_TRUE(IsBufferGained(p->buffer_state())); |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_TRUE(IsBufferPosted(p->buffer_state())); |
| |
| // The buffer should stay in posted stay until a consumer picks it up. |
| EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| |
| // A new consumer should still be able to acquire the buffer immediately. |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestMaxConsumers) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| |
| std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs; |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| cs[i] = BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(cs[i].get() != nullptr); |
| EXPECT_TRUE(IsBufferGained(cs[i]->buffer_state())); |
| } |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // Post the producer should trigger all consumers to be available. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_TRUE(IsBufferPosted(p->buffer_state())); |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| EXPECT_TRUE( |
| IsBufferPosted(cs[i]->buffer_state(), cs[i]->buffer_state_bit())); |
| EXPECT_LT(0, RETRY_EINTR(cs[i]->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, cs[i]->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); |
| } |
| |
| // All consumers have to release before the buffer is considered to be |
| // released. |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| EXPECT_FALSE(IsBufferReleased(p->buffer_state())); |
| EXPECT_EQ(0, cs[i]->ReleaseAsync(&metadata, invalid_fence)); |
| } |
| |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_TRUE(IsBufferReleased(p->buffer_state())); |
| |
| // Buffer state cross all clients must be consistent. |
| for (size_t i = 0; i < kMaxConsumerCount; i++) { |
| EXPECT_EQ(p->buffer_state(), cs[i]->buffer_state()); |
| } |
| } |
| |
| TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferGained) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| EXPECT_TRUE(IsBufferGained(p->buffer_state())); |
| |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| EXPECT_TRUE(IsBufferGained(c->buffer_state())); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // Post the gained buffer should signal already created consumer. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_TRUE(IsBufferPosted(p->buffer_state())); |
| EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferPosted) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| EXPECT_TRUE(IsBufferGained(p->buffer_state())); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // Post the gained buffer before any consumer gets created. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_TRUE(IsBufferPosted(p->buffer_state())); |
| |
| // Newly created consumer should be automatically sigalled. |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| EXPECT_TRUE(IsBufferPosted(c->buffer_state())); |
| EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferReleased) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| |
| std::unique_ptr<BufferConsumer> c1 = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c1.get() != nullptr); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| |
| // Post, acquire, and release the buffer.. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c1->AcquireAsync(&metadata, &invalid_fence)); |
| EXPECT_EQ(0, c1->ReleaseAsync(&metadata, invalid_fence)); |
| |
| // Note that the next PDX call is on the producer channel, which may be |
| // executed before Release impulse gets executed by bufferhubd. Thus, here we |
| // need to wait until the releasd is confirmed before creating another |
| // consumer. |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_TRUE(IsBufferReleased(p->buffer_state())); |
| |
| // Create another consumer immediately after the release, should not make the |
| // buffer un-released. |
| std::unique_ptr<BufferConsumer> c2 = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c2.get() != nullptr); |
| |
| EXPECT_TRUE(IsBufferReleased(p->buffer_state())); |
| EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); |
| EXPECT_TRUE(IsBufferGained(p->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestWithCustomMetadata) { |
| struct Metadata { |
| int64_t field1; |
| int64_t field2; |
| }; |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| Metadata m = {1, 3}; |
| EXPECT_EQ(0, p->Post(LocalHandle(), m)); |
| EXPECT_LE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| |
| LocalHandle fence; |
| Metadata m2 = {}; |
| EXPECT_EQ(0, c->Acquire(&fence, &m2)); |
| EXPECT_EQ(m.field1, m2.field1); |
| EXPECT_EQ(m.field2, m2.field2); |
| |
| EXPECT_EQ(0, c->Release(LocalHandle())); |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(0))); |
| } |
| |
| TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) { |
| struct Metadata { |
| int64_t field1; |
| int64_t field2; |
| }; |
| struct OverSizedMetadata { |
| int64_t field1; |
| int64_t field2; |
| int64_t field3; |
| }; |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| // It is illegal to post metadata larger than originally requested during |
| // buffer allocation. |
| OverSizedMetadata evil_meta = {}; |
| EXPECT_NE(0, p->Post(LocalHandle(), evil_meta)); |
| EXPECT_GE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| |
| // It is ok to post metadata smaller than originally requested during |
| // buffer allocation. |
| int64_t sequence = 42; |
| EXPECT_EQ(0, p->Post(LocalHandle(), sequence)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) { |
| struct Metadata { |
| int64_t field1; |
| int64_t field2; |
| }; |
| struct OverSizedMetadata { |
| int64_t field1; |
| int64_t field2; |
| int64_t field3; |
| }; |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| Metadata m = {1, 3}; |
| EXPECT_EQ(0, p->Post(LocalHandle(), m)); |
| |
| LocalHandle fence; |
| int64_t sequence; |
| OverSizedMetadata e; |
| |
| // It is illegal to acquire metadata larger than originally requested during |
| // buffer allocation. |
| EXPECT_NE(0, c->Acquire(&fence, &e)); |
| |
| // It is ok to acquire metadata smaller than originally requested during |
| // buffer allocation. |
| EXPECT_EQ(0, c->Acquire(&fence, &sequence)); |
| EXPECT_EQ(m.field1, sequence); |
| } |
| |
| TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| int64_t sequence = 3; |
| EXPECT_EQ(0, p->Post(LocalHandle(), sequence)); |
| |
| LocalHandle fence; |
| EXPECT_EQ(0, c->Acquire(&fence)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestWithNoMeta) { |
| std::unique_ptr<BufferProducer> p = |
| BufferProducer::Create(kWidth, kHeight, kFormat, kUsage); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| LocalHandle fence; |
| |
| EXPECT_EQ(0, p->Post<void>(LocalHandle())); |
| EXPECT_EQ(0, c->Acquire(&fence)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) { |
| std::unique_ptr<BufferProducer> p = |
| BufferProducer::Create(kWidth, kHeight, kFormat, kUsage); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| int64_t sequence = 3; |
| EXPECT_NE(0, p->Post(LocalHandle(), sequence)); |
| } |
| |
| namespace { |
| |
| int PollFd(int fd, int timeout_ms) { |
| pollfd p = {fd, POLLIN, 0}; |
| return poll(&p, 1, timeout_ms); |
| } |
| |
| } // namespace |
| |
| TEST_F(LibBufferHubTest, TestAcquireFence) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| DvrNativeBufferMetadata meta; |
| LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); |
| |
| // Post with unsignaled fence. |
| EXPECT_EQ(0, p->PostAsync(&meta, f1)); |
| |
| // Should acquire a valid fence. |
| LocalHandle f2; |
| EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c->AcquireAsync(&meta, &f2)); |
| EXPECT_TRUE(f2.IsValid()); |
| // The original fence and acquired fence should have different fd number. |
| EXPECT_NE(f1.Get(), f2.Get()); |
| EXPECT_GE(0, PollFd(f2.Get(), 0)); |
| |
| // Signal the original fence will trigger the new fence. |
| eventfd_write(f1.Get(), 1); |
| // Now the original FD has been signaled. |
| EXPECT_LT(0, PollFd(f2.Get(), kPollTimeoutMs)); |
| |
| // Release the consumer with an invalid fence. |
| EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle())); |
| |
| // Should gain an invalid fence. |
| LocalHandle f3; |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, p->GainAsync(&meta, &f3)); |
| EXPECT_FALSE(f3.IsValid()); |
| |
| // Post with a signaled fence. |
| EXPECT_EQ(0, p->PostAsync(&meta, f1)); |
| |
| // Should acquire a valid fence and it's already signalled. |
| LocalHandle f4; |
| EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, c->AcquireAsync(&meta, &f4)); |
| EXPECT_TRUE(f4.IsValid()); |
| EXPECT_LT(0, PollFd(f4.Get(), kPollTimeoutMs)); |
| |
| // Release with an unsignalled fence and signal it immediately after release |
| // without producer gainning. |
| LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); |
| EXPECT_EQ(0, c->ReleaseAsync(&meta, f5)); |
| eventfd_write(f5.Get(), 1); |
| |
| // Should gain a valid fence, which is already signaled. |
| LocalHandle f6; |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(0, p->GainAsync(&meta, &f6)); |
| EXPECT_TRUE(f6.IsValid()); |
| EXPECT_LT(0, PollFd(f6.Get(), kPollTimeoutMs)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestOrphanedAcquire) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p.get() != nullptr); |
| std::unique_ptr<BufferConsumer> c1 = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c1.get() != nullptr); |
| const uint64_t consumer_state_bit1 = c1->buffer_state_bit(); |
| |
| DvrNativeBufferMetadata meta; |
| EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle())); |
| |
| LocalHandle fence; |
| EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); |
| EXPECT_LE(0, c1->AcquireAsync(&meta, &fence)); |
| // Destroy the consumer now will make it orphaned and the buffer is still |
| // acquired. |
| c1 = nullptr; |
| EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| |
| std::unique_ptr<BufferConsumer> c2 = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c2.get() != nullptr); |
| const uint64_t consumer_state_bit2 = c2->buffer_state_bit(); |
| EXPECT_NE(consumer_state_bit1, consumer_state_bit2); |
| |
| // The new consumer is available for acquire. |
| EXPECT_LT(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); |
| EXPECT_LE(0, c2->AcquireAsync(&meta, &fence)); |
| // Releasing the consumer makes the buffer gainable. |
| EXPECT_EQ(0, c2->ReleaseAsync(&meta, LocalHandle())); |
| |
| // The buffer is now available for the producer to gain. |
| EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); |
| |
| // But if another consumer is created in released state. |
| std::unique_ptr<BufferConsumer> c3 = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(c3.get() != nullptr); |
| const uint64_t consumer_state_bit3 = c3->buffer_state_bit(); |
| EXPECT_NE(consumer_state_bit2, consumer_state_bit3); |
| // The consumer buffer is not acquirable. |
| EXPECT_GE(0, RETRY_EINTR(c3->Poll(kPollTimeoutMs))); |
| EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &fence)); |
| |
| // Producer should be able to gain no matter what. |
| EXPECT_EQ(0, p->GainAsync(&meta, &fence)); |
| } |
| |
| TEST_F(LibBufferHubTest, TestDetachBufferFromProducer) { |
| std::unique_ptr<BufferProducer> p = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| std::unique_ptr<BufferConsumer> c = |
| BufferConsumer::Import(p->CreateConsumer()); |
| ASSERT_TRUE(p.get() != nullptr); |
| ASSERT_TRUE(c.get() != nullptr); |
| |
| DvrNativeBufferMetadata metadata; |
| LocalHandle invalid_fence; |
| int p_id = p->id(); |
| |
| // Detach in posted state should fail. |
| EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); |
| EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); |
| auto s1 = p->Detach(); |
| EXPECT_FALSE(s1); |
| |
| // Detach in acquired state should fail. |
| EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); |
| s1 = p->Detach(); |
| EXPECT_FALSE(s1); |
| |
| // Detach in released state should fail. |
| EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); |
| EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); |
| s1 = p->Detach(); |
| EXPECT_FALSE(s1); |
| |
| // Detach in gained state should succeed. |
| EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); |
| s1 = p->Detach(); |
| EXPECT_TRUE(s1); |
| |
| LocalChannelHandle handle = s1.take(); |
| EXPECT_TRUE(handle.valid()); |
| |
| // Both producer and consumer should have hangup. |
| EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); |
| auto s2 = p->GetEventMask(POLLHUP); |
| EXPECT_TRUE(s2); |
| EXPECT_EQ(s2.get(), POLLHUP); |
| |
| EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); |
| s2 = p->GetEventMask(POLLHUP); |
| EXPECT_TRUE(s2); |
| EXPECT_EQ(s2.get(), POLLHUP); |
| |
| auto s3 = p->CreateConsumer(); |
| EXPECT_FALSE(s3); |
| // Note that here the expected error code is EOPNOTSUPP as the socket towards |
| // ProducerChannel has been teared down. |
| EXPECT_EQ(s3.error(), EOPNOTSUPP); |
| |
| s3 = c->CreateConsumer(); |
| EXPECT_FALSE(s3); |
| // Note that here the expected error code is EPIPE returned from |
| // ConsumerChannel::HandleMessage as the socket is still open but the producer |
| // is gone. |
| EXPECT_EQ(s3.error(), EPIPE); |
| |
| // Detached buffer handle can be use to construct a new DetachedBuffer object. |
| auto d = DetachedBuffer::Import(std::move(handle)); |
| EXPECT_FALSE(handle.valid()); |
| EXPECT_TRUE(d->IsConnected()); |
| EXPECT_TRUE(d->IsValid()); |
| |
| ASSERT_TRUE(d->buffer() != nullptr); |
| EXPECT_EQ(d->buffer()->initCheck(), 0); |
| EXPECT_EQ(d->id(), p_id); |
| } |
| |
| TEST_F(LibBufferHubTest, TestCreateDetachedBufferFails) { |
| // Buffer Creation will fail: BLOB format requires height to be 1. |
| auto b1 = DetachedBuffer::Create(kWidth, /*height=2*/ 2, kLayerCount, |
| /*format=*/HAL_PIXEL_FORMAT_BLOB, kUsage, |
| kUserMetadataSize); |
| |
| EXPECT_FALSE(b1->IsConnected()); |
| EXPECT_FALSE(b1->IsValid()); |
| EXPECT_TRUE(b1->buffer() == nullptr); |
| |
| // Buffer Creation will fail: user metadata size too large. |
| auto b2 = DetachedBuffer::Create( |
| kWidth, kHeight, kLayerCount, kFormat, kUsage, |
| /*user_metadata_size=*/std::numeric_limits<size_t>::max()); |
| |
| EXPECT_FALSE(b2->IsConnected()); |
| EXPECT_FALSE(b2->IsValid()); |
| EXPECT_TRUE(b2->buffer() == nullptr); |
| |
| // Buffer Creation will fail: user metadata size too large. |
| auto b3 = DetachedBuffer::Create( |
| kWidth, kHeight, kLayerCount, kFormat, kUsage, |
| /*user_metadata_size=*/std::numeric_limits<size_t>::max() - |
| kMetadataHeaderSize); |
| |
| EXPECT_FALSE(b3->IsConnected()); |
| EXPECT_FALSE(b3->IsValid()); |
| EXPECT_TRUE(b3->buffer() == nullptr); |
| } |
| |
| TEST_F(LibBufferHubTest, TestCreateDetachedBuffer) { |
| auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, |
| kUsage, kUserMetadataSize); |
| int b1_id = b1->id(); |
| |
| EXPECT_TRUE(b1->IsConnected()); |
| EXPECT_TRUE(b1->IsValid()); |
| ASSERT_TRUE(b1->buffer() != nullptr); |
| EXPECT_NE(b1->id(), 0); |
| EXPECT_EQ(b1->buffer()->initCheck(), 0); |
| EXPECT_FALSE(b1->buffer()->isDetachedBuffer()); |
| |
| // Takes a standalone GraphicBuffer which still holds on an |
| // PDX::LocalChannelHandle towards BufferHub. |
| sp<GraphicBuffer> g1 = b1->TakeGraphicBuffer(); |
| ASSERT_TRUE(g1 != nullptr); |
| EXPECT_TRUE(g1->isDetachedBuffer()); |
| |
| EXPECT_FALSE(b1->IsConnected()); |
| EXPECT_FALSE(b1->IsValid()); |
| EXPECT_TRUE(b1->buffer() == nullptr); |
| |
| sp<GraphicBuffer> g2 = b1->TakeGraphicBuffer(); |
| ASSERT_TRUE(g2 == nullptr); |
| |
| auto h1 = g1->takeDetachedBufferHandle(); |
| ASSERT_TRUE(h1 != nullptr); |
| ASSERT_TRUE(h1->isValid()); |
| EXPECT_FALSE(g1->isDetachedBuffer()); |
| |
| auto b2 = DetachedBuffer::Import(std::move(h1->handle())); |
| ASSERT_FALSE(h1->isValid()); |
| EXPECT_TRUE(b2->IsConnected()); |
| EXPECT_TRUE(b2->IsValid()); |
| |
| ASSERT_TRUE(b2->buffer() != nullptr); |
| EXPECT_EQ(b2->buffer()->initCheck(), 0); |
| |
| // The newly created DetachedBuffer should share the original buffer_id. |
| EXPECT_EQ(b2->id(), b1_id); |
| EXPECT_FALSE(b2->buffer()->isDetachedBuffer()); |
| } |
| |
| TEST_F(LibBufferHubTest, TestPromoteDetachedBuffer) { |
| auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, |
| kUsage, kUserMetadataSize); |
| int b1_id = b1->id(); |
| EXPECT_TRUE(b1->IsValid()); |
| |
| auto status_or_handle = b1->Promote(); |
| EXPECT_TRUE(status_or_handle); |
| |
| // The detached buffer should have hangup. |
| EXPECT_GT(RETRY_EINTR(b1->Poll(kPollTimeoutMs)), 0); |
| auto status_or_int = b1->GetEventMask(POLLHUP); |
| EXPECT_TRUE(status_or_int.ok()); |
| EXPECT_EQ(status_or_int.get(), POLLHUP); |
| |
| // The buffer client is still considered as connected but invalid. |
| EXPECT_TRUE(b1->IsConnected()); |
| EXPECT_FALSE(b1->IsValid()); |
| |
| // Gets the channel handle for the producer. |
| LocalChannelHandle h1 = status_or_handle.take(); |
| EXPECT_TRUE(h1.valid()); |
| |
| std::unique_ptr<BufferProducer> p1 = BufferProducer::Import(std::move(h1)); |
| EXPECT_FALSE(h1.valid()); |
| ASSERT_TRUE(p1 != nullptr); |
| int p1_id = p1->id(); |
| |
| // A newly promoted ProducerBuffer should inherit the same buffer id. |
| EXPECT_EQ(b1_id, p1_id); |
| EXPECT_TRUE(IsBufferGained(p1->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestDetachThenPromote) { |
| std::unique_ptr<BufferProducer> p1 = BufferProducer::Create( |
| kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); |
| ASSERT_TRUE(p1.get() != nullptr); |
| int p1_id = p1->id(); |
| |
| // Detached the producer. |
| auto status_or_handle = p1->Detach(); |
| EXPECT_TRUE(status_or_handle.ok()); |
| LocalChannelHandle h1 = status_or_handle.take(); |
| EXPECT_TRUE(h1.valid()); |
| |
| // Detached buffer handle can be use to construct a new DetachedBuffer object. |
| auto b1 = DetachedBuffer::Import(std::move(h1)); |
| EXPECT_FALSE(h1.valid()); |
| EXPECT_TRUE(b1->IsValid()); |
| int b1_id = b1->id(); |
| EXPECT_EQ(b1_id, p1_id); |
| |
| // Promote the detached buffer. |
| status_or_handle = b1->Promote(); |
| // The buffer client is still considered as connected but invalid. |
| EXPECT_TRUE(b1->IsConnected()); |
| EXPECT_FALSE(b1->IsValid()); |
| EXPECT_TRUE(status_or_handle.ok()); |
| |
| // Gets the channel handle for the producer. |
| LocalChannelHandle h2 = status_or_handle.take(); |
| EXPECT_TRUE(h2.valid()); |
| |
| std::unique_ptr<BufferProducer> p2 = BufferProducer::Import(std::move(h2)); |
| EXPECT_FALSE(h2.valid()); |
| ASSERT_TRUE(p2 != nullptr); |
| int p2_id = p2->id(); |
| |
| // A newly promoted ProducerBuffer should inherit the same buffer id. |
| EXPECT_EQ(b1_id, p2_id); |
| EXPECT_TRUE(IsBufferGained(p2->buffer_state())); |
| } |
| |
| TEST_F(LibBufferHubTest, TestDuplicateDetachedBuffer) { |
| auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, |
| kUsage, kUserMetadataSize); |
| int b1_id = b1->id(); |
| EXPECT_TRUE(b1->IsValid()); |
| |
| auto status_or_handle = b1->Duplicate(); |
| EXPECT_TRUE(status_or_handle); |
| |
| // The detached buffer should still be valid. |
| EXPECT_TRUE(b1->IsConnected()); |
| EXPECT_TRUE(b1->IsValid()); |
| |
| // Gets the channel handle for the duplicated buffer. |
| LocalChannelHandle h2 = status_or_handle.take(); |
| EXPECT_TRUE(h2.valid()); |
| |
| std::unique_ptr<DetachedBuffer> b2 = DetachedBuffer::Import(std::move(h2)); |
| EXPECT_FALSE(h2.valid()); |
| ASSERT_TRUE(b2 != nullptr); |
| int b2_id = b2->id(); |
| |
| // These two buffer instances are based on the same physical buffer under the |
| // hood, so they should share the same id. |
| EXPECT_EQ(b1_id, b2_id); |
| // We use buffer_state_bit() to tell those two instances apart. |
| EXPECT_NE(b1->buffer_state_bit(), b2->buffer_state_bit()); |
| EXPECT_NE(b1->buffer_state_bit(), 0ULL); |
| EXPECT_NE(b2->buffer_state_bit(), 0ULL); |
| EXPECT_NE(b1->buffer_state_bit(), kProducerStateBit); |
| EXPECT_NE(b2->buffer_state_bit(), kProducerStateBit); |
| |
| // Both buffer instances should be in gained state. |
| EXPECT_TRUE(IsBufferGained(b1->buffer_state())); |
| EXPECT_TRUE(IsBufferGained(b2->buffer_state())); |
| |
| // Promote the detached buffer should fail as b1 is no longer the exclusive |
| // owner of the buffer.. |
| status_or_handle = b1->Promote(); |
| EXPECT_FALSE(status_or_handle.ok()); |
| EXPECT_EQ(status_or_handle.error(), EINVAL); |
| } |