blob: 2ab5b65eddb5228abd7ef1d490c00d367f4b1865 [file] [log] [blame]
#include <gtest/gtest.h>
#include <poll.h>
#include <private/dvr/buffer_hub_client.h>
#include <private/dvr/bufferhub_rpc.h>
#include <private/dvr/detached_buffer.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <ui/DetachedBufferHandle.h>
#include <mutex>
#include <thread>
#define RETRY_EINTR(fnc_call) \
([&]() -> decltype(fnc_call) { \
decltype(fnc_call) result; \
do { \
result = (fnc_call); \
} while (result == -1 && errno == EINTR); \
return result; \
})()
using android::GraphicBuffer;
using android::sp;
using android::dvr::BufferConsumer;
using android::dvr::BufferProducer;
using android::dvr::DetachedBuffer;
using android::dvr::BufferHubDefs::IsBufferAcquired;
using android::dvr::BufferHubDefs::IsBufferGained;
using android::dvr::BufferHubDefs::IsBufferPosted;
using android::dvr::BufferHubDefs::IsBufferReleased;
using android::dvr::BufferHubDefs::kConsumerStateMask;
using android::dvr::BufferHubDefs::kMetadataHeaderSize;
using android::dvr::BufferHubDefs::kProducerStateBit;
using android::pdx::LocalChannelHandle;
using android::pdx::LocalHandle;
using android::pdx::Status;
const int kWidth = 640;
const int kHeight = 480;
const int kLayerCount = 1;
const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888;
const int kUsage = 0;
const size_t kUserMetadataSize = 0;
const uint64_t kContext = 42;
const size_t kMaxConsumerCount = 63;
const int kPollTimeoutMs = 100;
using LibBufferHubTest = ::testing::Test;
TEST_F(LibBufferHubTest, TestBasicUsage) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
// Check that consumers can spawn other consumers.
std::unique_ptr<BufferConsumer> c2 =
BufferConsumer::Import(c->CreateConsumer());
ASSERT_TRUE(c2.get() != nullptr);
// Producer state mask is unique, i.e. 1.
EXPECT_EQ(p->buffer_state_bit(), kProducerStateBit);
// Consumer state mask cannot have producer bit on.
EXPECT_EQ(c->buffer_state_bit() & kProducerStateBit, 0U);
// Consumer state mask must be a single, i.e. power of 2.
EXPECT_NE(c->buffer_state_bit(), 0U);
EXPECT_EQ(c->buffer_state_bit() & (c->buffer_state_bit() - 1), 0U);
// Consumer state mask cannot have producer bit on.
EXPECT_EQ(c2->buffer_state_bit() & kProducerStateBit, 0U);
// Consumer state mask must be a single, i.e. power of 2.
EXPECT_NE(c2->buffer_state_bit(), 0U);
EXPECT_EQ(c2->buffer_state_bit() & (c2->buffer_state_bit() - 1), 0U);
// Each consumer should have unique bit.
EXPECT_EQ(c->buffer_state_bit() & c2->buffer_state_bit(), 0U);
// Initial state: producer not available, consumers not available.
EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, p->Post(LocalHandle(), kContext));
// New state: producer not available, consumers available.
EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(1, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
uint64_t context;
LocalHandle fence;
EXPECT_EQ(0, c->Acquire(&fence, &context));
EXPECT_EQ(kContext, context);
EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c2->Acquire(&fence, &context));
EXPECT_EQ(kContext, context);
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c2->Discard());
EXPECT_EQ(1, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, p->Gain(&fence));
EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
}
TEST_F(LibBufferHubTest, TestEpoll) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)};
ASSERT_TRUE(epoll_fd.IsValid());
epoll_event event;
std::array<epoll_event, 64> events;
auto event_sources = p->GetEventSources();
ASSERT_LT(event_sources.size(), events.size());
for (const auto& event_source : event_sources) {
event = {.events = event_source.event_mask | EPOLLET,
.data = {.fd = p->event_fd()}};
ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd,
&event));
}
event_sources = c->GetEventSources();
ASSERT_LT(event_sources.size(), events.size());
for (const auto& event_source : event_sources) {
event = {.events = event_source.event_mask | EPOLLET,
.data = {.fd = c->event_fd()}};
ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd,
&event));
}
// No events should be signaled initially.
ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0));
// Post the producer and check for consumer signal.
EXPECT_EQ(0, p->Post({}, kContext));
ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
ASSERT_TRUE(events[0].events & EPOLLIN);
ASSERT_EQ(c->event_fd(), events[0].data.fd);
// Save the event bits to translate later.
event = events[0];
// Check for events again. Edge-triggered mode should prevent any.
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
// Translate the events.
auto event_status = c->GetEventMask(event.events);
ASSERT_TRUE(event_status);
ASSERT_TRUE(event_status.get() & EPOLLIN);
// Check for events again. Edge-triggered mode should prevent any.
EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(),
kPollTimeoutMs));
}
TEST_F(LibBufferHubTest, TestStateMask) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
// It's ok to create up to kMaxConsumerCount consumer buffers.
uint64_t buffer_state_bits = p->buffer_state_bit();
std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs;
for (size_t i = 0; i < kMaxConsumerCount; i++) {
cs[i] = BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(cs[i].get() != nullptr);
// Expect all buffers have unique state mask.
EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U);
buffer_state_bits |= cs[i]->buffer_state_bit();
}
EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask);
// The 64th creation will fail with out-of-memory error.
auto state = p->CreateConsumer();
EXPECT_EQ(state.error(), E2BIG);
// Release any consumer should allow us to re-create.
for (size_t i = 0; i < kMaxConsumerCount; i++) {
buffer_state_bits &= ~cs[i]->buffer_state_bit();
cs[i] = nullptr;
cs[i] = BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(cs[i].get() != nullptr);
// The released state mask will be reused.
EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U);
buffer_state_bits |= cs[i]->buffer_state_bit();
EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask);
}
}
TEST_F(LibBufferHubTest, TestStateTransitions) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
uint64_t context;
LocalHandle fence;
// The producer buffer starts in gained state.
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EALREADY, p->Gain(&fence));
// Post in gained state should succeed.
EXPECT_EQ(0, p->Post(LocalHandle(), kContext));
// Post, release, and gain in posted state should fail.
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EBUSY, p->Gain(&fence));
// Acquire in posted state should succeed.
EXPECT_LE(0, c->Acquire(&fence, &context));
// Acquire, post, and gain in acquired state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
EXPECT_EQ(-EBUSY, p->Gain(&fence));
// Release in acquired state should succeed.
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
// Release, acquire, and post in released state should fail.
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, p->Post(LocalHandle(), kContext));
// Gain in released state should succeed.
EXPECT_EQ(0, p->Gain(&fence));
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context));
EXPECT_EQ(-EBUSY, c->Release(LocalHandle()));
EXPECT_EQ(-EALREADY, p->Gain(&fence));
}
TEST_F(LibBufferHubTest, TestAsyncStateTransitions) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// The producer buffer starts in gained state.
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
// Post in gained state should succeed.
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_EQ(p->buffer_state(), c->buffer_state());
EXPECT_TRUE(IsBufferPosted(p->buffer_state()));
// Post, release, and gain in posted state should fail.
EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence));
EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
// Acquire in posted state should succeed.
EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(p->buffer_state(), c->buffer_state());
EXPECT_TRUE(IsBufferAcquired(p->buffer_state()));
// Acquire, post, and gain in acquired state should fail.
EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence));
EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
// Release in acquired state should succeed.
EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(p->buffer_state(), c->buffer_state());
EXPECT_TRUE(IsBufferReleased(p->buffer_state()));
// Release, acquire, and post in released state should fail.
EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence));
// Gain in released state should succeed.
EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(p->buffer_state(), c->buffer_state());
EXPECT_TRUE(IsBufferGained(p->buffer_state()));
// Acquire, release, and gain in gained state should fail.
EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence));
EXPECT_FALSE(invalid_fence.IsValid());
}
TEST_F(LibBufferHubTest, TestZeroConsumer) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// Newly created.
EXPECT_TRUE(IsBufferGained(p->buffer_state()));
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_TRUE(IsBufferPosted(p->buffer_state()));
// The buffer should stay in posted stay until a consumer picks it up.
EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
// A new consumer should still be able to acquire the buffer immediately.
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_TRUE(IsBufferAcquired(c->buffer_state()));
}
TEST_F(LibBufferHubTest, TestMaxConsumers) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::array<std::unique_ptr<BufferConsumer>, kMaxConsumerCount> cs;
for (size_t i = 0; i < kMaxConsumerCount; i++) {
cs[i] = BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(cs[i].get() != nullptr);
EXPECT_TRUE(IsBufferGained(cs[i]->buffer_state()));
}
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// Post the producer should trigger all consumers to be available.
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_TRUE(IsBufferPosted(p->buffer_state()));
for (size_t i = 0; i < kMaxConsumerCount; i++) {
EXPECT_TRUE(
IsBufferPosted(cs[i]->buffer_state(), cs[i]->buffer_state_bit()));
EXPECT_LT(0, RETRY_EINTR(cs[i]->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, cs[i]->AcquireAsync(&metadata, &invalid_fence));
EXPECT_TRUE(IsBufferAcquired(p->buffer_state()));
}
// All consumers have to release before the buffer is considered to be
// released.
for (size_t i = 0; i < kMaxConsumerCount; i++) {
EXPECT_FALSE(IsBufferReleased(p->buffer_state()));
EXPECT_EQ(0, cs[i]->ReleaseAsync(&metadata, invalid_fence));
}
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_TRUE(IsBufferReleased(p->buffer_state()));
// Buffer state cross all clients must be consistent.
for (size_t i = 0; i < kMaxConsumerCount; i++) {
EXPECT_EQ(p->buffer_state(), cs[i]->buffer_state());
}
}
TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferGained) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
EXPECT_TRUE(IsBufferGained(p->buffer_state()));
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
EXPECT_TRUE(IsBufferGained(c->buffer_state()));
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// Post the gained buffer should signal already created consumer.
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_TRUE(IsBufferPosted(p->buffer_state()));
EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_TRUE(IsBufferAcquired(c->buffer_state()));
}
TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferPosted) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
EXPECT_TRUE(IsBufferGained(p->buffer_state()));
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// Post the gained buffer before any consumer gets created.
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_TRUE(IsBufferPosted(p->buffer_state()));
// Newly created consumer should be automatically sigalled.
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
EXPECT_TRUE(IsBufferPosted(c->buffer_state()));
EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence));
EXPECT_TRUE(IsBufferAcquired(c->buffer_state()));
}
TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferReleased) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c1 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c1.get() != nullptr);
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
// Post, acquire, and release the buffer..
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c1->AcquireAsync(&metadata, &invalid_fence));
EXPECT_EQ(0, c1->ReleaseAsync(&metadata, invalid_fence));
// Note that the next PDX call is on the producer channel, which may be
// executed before Release impulse gets executed by bufferhubd. Thus, here we
// need to wait until the releasd is confirmed before creating another
// consumer.
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_TRUE(IsBufferReleased(p->buffer_state()));
// Create another consumer immediately after the release, should not make the
// buffer un-released.
std::unique_ptr<BufferConsumer> c2 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c2.get() != nullptr);
EXPECT_TRUE(IsBufferReleased(p->buffer_state()));
EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence));
EXPECT_TRUE(IsBufferGained(p->buffer_state()));
}
TEST_F(LibBufferHubTest, TestWithCustomMetadata) {
struct Metadata {
int64_t field1;
int64_t field2;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
Metadata m = {1, 3};
EXPECT_EQ(0, p->Post(LocalHandle(), m));
EXPECT_LE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
LocalHandle fence;
Metadata m2 = {};
EXPECT_EQ(0, c->Acquire(&fence, &m2));
EXPECT_EQ(m.field1, m2.field1);
EXPECT_EQ(m.field2, m2.field2);
EXPECT_EQ(0, c->Release(LocalHandle()));
EXPECT_LT(0, RETRY_EINTR(p->Poll(0)));
}
TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) {
struct Metadata {
int64_t field1;
int64_t field2;
};
struct OverSizedMetadata {
int64_t field1;
int64_t field2;
int64_t field3;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
// It is illegal to post metadata larger than originally requested during
// buffer allocation.
OverSizedMetadata evil_meta = {};
EXPECT_NE(0, p->Post(LocalHandle(), evil_meta));
EXPECT_GE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
// It is ok to post metadata smaller than originally requested during
// buffer allocation.
int64_t sequence = 42;
EXPECT_EQ(0, p->Post(LocalHandle(), sequence));
}
TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) {
struct Metadata {
int64_t field1;
int64_t field2;
};
struct OverSizedMetadata {
int64_t field1;
int64_t field2;
int64_t field3;
};
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(Metadata));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
Metadata m = {1, 3};
EXPECT_EQ(0, p->Post(LocalHandle(), m));
LocalHandle fence;
int64_t sequence;
OverSizedMetadata e;
// It is illegal to acquire metadata larger than originally requested during
// buffer allocation.
EXPECT_NE(0, c->Acquire(&fence, &e));
// It is ok to acquire metadata smaller than originally requested during
// buffer allocation.
EXPECT_EQ(0, c->Acquire(&fence, &sequence));
EXPECT_EQ(m.field1, sequence);
}
TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
int64_t sequence = 3;
EXPECT_EQ(0, p->Post(LocalHandle(), sequence));
LocalHandle fence;
EXPECT_EQ(0, c->Acquire(&fence));
}
TEST_F(LibBufferHubTest, TestWithNoMeta) {
std::unique_ptr<BufferProducer> p =
BufferProducer::Create(kWidth, kHeight, kFormat, kUsage);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
LocalHandle fence;
EXPECT_EQ(0, p->Post<void>(LocalHandle()));
EXPECT_EQ(0, c->Acquire(&fence));
}
TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) {
std::unique_ptr<BufferProducer> p =
BufferProducer::Create(kWidth, kHeight, kFormat, kUsage);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
int64_t sequence = 3;
EXPECT_NE(0, p->Post(LocalHandle(), sequence));
}
namespace {
int PollFd(int fd, int timeout_ms) {
pollfd p = {fd, POLLIN, 0};
return poll(&p, 1, timeout_ms);
}
} // namespace
TEST_F(LibBufferHubTest, TestAcquireFence) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0);
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c.get() != nullptr);
DvrNativeBufferMetadata meta;
LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK));
// Post with unsignaled fence.
EXPECT_EQ(0, p->PostAsync(&meta, f1));
// Should acquire a valid fence.
LocalHandle f2;
EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c->AcquireAsync(&meta, &f2));
EXPECT_TRUE(f2.IsValid());
// The original fence and acquired fence should have different fd number.
EXPECT_NE(f1.Get(), f2.Get());
EXPECT_GE(0, PollFd(f2.Get(), 0));
// Signal the original fence will trigger the new fence.
eventfd_write(f1.Get(), 1);
// Now the original FD has been signaled.
EXPECT_LT(0, PollFd(f2.Get(), kPollTimeoutMs));
// Release the consumer with an invalid fence.
EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle()));
// Should gain an invalid fence.
LocalHandle f3;
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, p->GainAsync(&meta, &f3));
EXPECT_FALSE(f3.IsValid());
// Post with a signaled fence.
EXPECT_EQ(0, p->PostAsync(&meta, f1));
// Should acquire a valid fence and it's already signalled.
LocalHandle f4;
EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, c->AcquireAsync(&meta, &f4));
EXPECT_TRUE(f4.IsValid());
EXPECT_LT(0, PollFd(f4.Get(), kPollTimeoutMs));
// Release with an unsignalled fence and signal it immediately after release
// without producer gainning.
LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK));
EXPECT_EQ(0, c->ReleaseAsync(&meta, f5));
eventfd_write(f5.Get(), 1);
// Should gain a valid fence, which is already signaled.
LocalHandle f6;
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
EXPECT_EQ(0, p->GainAsync(&meta, &f6));
EXPECT_TRUE(f6.IsValid());
EXPECT_LT(0, PollFd(f6.Get(), kPollTimeoutMs));
}
TEST_F(LibBufferHubTest, TestOrphanedAcquire) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p.get() != nullptr);
std::unique_ptr<BufferConsumer> c1 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c1.get() != nullptr);
const uint64_t consumer_state_bit1 = c1->buffer_state_bit();
DvrNativeBufferMetadata meta;
EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle()));
LocalHandle fence;
EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs)));
EXPECT_LE(0, c1->AcquireAsync(&meta, &fence));
// Destroy the consumer now will make it orphaned and the buffer is still
// acquired.
c1 = nullptr;
EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
std::unique_ptr<BufferConsumer> c2 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c2.get() != nullptr);
const uint64_t consumer_state_bit2 = c2->buffer_state_bit();
EXPECT_NE(consumer_state_bit1, consumer_state_bit2);
// The new consumer is available for acquire.
EXPECT_LT(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs)));
EXPECT_LE(0, c2->AcquireAsync(&meta, &fence));
// Releasing the consumer makes the buffer gainable.
EXPECT_EQ(0, c2->ReleaseAsync(&meta, LocalHandle()));
// The buffer is now available for the producer to gain.
EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs)));
// But if another consumer is created in released state.
std::unique_ptr<BufferConsumer> c3 =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(c3.get() != nullptr);
const uint64_t consumer_state_bit3 = c3->buffer_state_bit();
EXPECT_NE(consumer_state_bit2, consumer_state_bit3);
// The consumer buffer is not acquirable.
EXPECT_GE(0, RETRY_EINTR(c3->Poll(kPollTimeoutMs)));
EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &fence));
// Producer should be able to gain no matter what.
EXPECT_EQ(0, p->GainAsync(&meta, &fence));
}
TEST_F(LibBufferHubTest, TestDetachBufferFromProducer) {
std::unique_ptr<BufferProducer> p = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
std::unique_ptr<BufferConsumer> c =
BufferConsumer::Import(p->CreateConsumer());
ASSERT_TRUE(p.get() != nullptr);
ASSERT_TRUE(c.get() != nullptr);
DvrNativeBufferMetadata metadata;
LocalHandle invalid_fence;
int p_id = p->id();
// Detach in posted state should fail.
EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence));
EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0);
auto s1 = p->Detach();
EXPECT_FALSE(s1);
// Detach in acquired state should fail.
EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence));
s1 = p->Detach();
EXPECT_FALSE(s1);
// Detach in released state should fail.
EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence));
EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0);
s1 = p->Detach();
EXPECT_FALSE(s1);
// Detach in gained state should succeed.
EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence));
s1 = p->Detach();
EXPECT_TRUE(s1);
LocalChannelHandle handle = s1.take();
EXPECT_TRUE(handle.valid());
// Both producer and consumer should have hangup.
EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0);
auto s2 = p->GetEventMask(POLLHUP);
EXPECT_TRUE(s2);
EXPECT_EQ(s2.get(), POLLHUP);
EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0);
s2 = p->GetEventMask(POLLHUP);
EXPECT_TRUE(s2);
EXPECT_EQ(s2.get(), POLLHUP);
auto s3 = p->CreateConsumer();
EXPECT_FALSE(s3);
// Note that here the expected error code is EOPNOTSUPP as the socket towards
// ProducerChannel has been teared down.
EXPECT_EQ(s3.error(), EOPNOTSUPP);
s3 = c->CreateConsumer();
EXPECT_FALSE(s3);
// Note that here the expected error code is EPIPE returned from
// ConsumerChannel::HandleMessage as the socket is still open but the producer
// is gone.
EXPECT_EQ(s3.error(), EPIPE);
// Detached buffer handle can be use to construct a new DetachedBuffer object.
auto d = DetachedBuffer::Import(std::move(handle));
EXPECT_FALSE(handle.valid());
EXPECT_TRUE(d->IsConnected());
EXPECT_TRUE(d->IsValid());
ASSERT_TRUE(d->buffer() != nullptr);
EXPECT_EQ(d->buffer()->initCheck(), 0);
EXPECT_EQ(d->id(), p_id);
}
TEST_F(LibBufferHubTest, TestCreateDetachedBufferFails) {
// Buffer Creation will fail: BLOB format requires height to be 1.
auto b1 = DetachedBuffer::Create(kWidth, /*height=2*/ 2, kLayerCount,
/*format=*/HAL_PIXEL_FORMAT_BLOB, kUsage,
kUserMetadataSize);
EXPECT_FALSE(b1->IsConnected());
EXPECT_FALSE(b1->IsValid());
EXPECT_TRUE(b1->buffer() == nullptr);
// Buffer Creation will fail: user metadata size too large.
auto b2 = DetachedBuffer::Create(
kWidth, kHeight, kLayerCount, kFormat, kUsage,
/*user_metadata_size=*/std::numeric_limits<size_t>::max());
EXPECT_FALSE(b2->IsConnected());
EXPECT_FALSE(b2->IsValid());
EXPECT_TRUE(b2->buffer() == nullptr);
// Buffer Creation will fail: user metadata size too large.
auto b3 = DetachedBuffer::Create(
kWidth, kHeight, kLayerCount, kFormat, kUsage,
/*user_metadata_size=*/std::numeric_limits<size_t>::max() -
kMetadataHeaderSize);
EXPECT_FALSE(b3->IsConnected());
EXPECT_FALSE(b3->IsValid());
EXPECT_TRUE(b3->buffer() == nullptr);
}
TEST_F(LibBufferHubTest, TestCreateDetachedBuffer) {
auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat,
kUsage, kUserMetadataSize);
int b1_id = b1->id();
EXPECT_TRUE(b1->IsConnected());
EXPECT_TRUE(b1->IsValid());
ASSERT_TRUE(b1->buffer() != nullptr);
EXPECT_NE(b1->id(), 0);
EXPECT_EQ(b1->buffer()->initCheck(), 0);
EXPECT_FALSE(b1->buffer()->isDetachedBuffer());
// Takes a standalone GraphicBuffer which still holds on an
// PDX::LocalChannelHandle towards BufferHub.
sp<GraphicBuffer> g1 = b1->TakeGraphicBuffer();
ASSERT_TRUE(g1 != nullptr);
EXPECT_TRUE(g1->isDetachedBuffer());
EXPECT_FALSE(b1->IsConnected());
EXPECT_FALSE(b1->IsValid());
EXPECT_TRUE(b1->buffer() == nullptr);
sp<GraphicBuffer> g2 = b1->TakeGraphicBuffer();
ASSERT_TRUE(g2 == nullptr);
auto h1 = g1->takeDetachedBufferHandle();
ASSERT_TRUE(h1 != nullptr);
ASSERT_TRUE(h1->isValid());
EXPECT_FALSE(g1->isDetachedBuffer());
auto b2 = DetachedBuffer::Import(std::move(h1->handle()));
ASSERT_FALSE(h1->isValid());
EXPECT_TRUE(b2->IsConnected());
EXPECT_TRUE(b2->IsValid());
ASSERT_TRUE(b2->buffer() != nullptr);
EXPECT_EQ(b2->buffer()->initCheck(), 0);
// The newly created DetachedBuffer should share the original buffer_id.
EXPECT_EQ(b2->id(), b1_id);
EXPECT_FALSE(b2->buffer()->isDetachedBuffer());
}
TEST_F(LibBufferHubTest, TestPromoteDetachedBuffer) {
auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat,
kUsage, kUserMetadataSize);
int b1_id = b1->id();
EXPECT_TRUE(b1->IsValid());
auto status_or_handle = b1->Promote();
EXPECT_TRUE(status_or_handle);
// The detached buffer should have hangup.
EXPECT_GT(RETRY_EINTR(b1->Poll(kPollTimeoutMs)), 0);
auto status_or_int = b1->GetEventMask(POLLHUP);
EXPECT_TRUE(status_or_int.ok());
EXPECT_EQ(status_or_int.get(), POLLHUP);
// The buffer client is still considered as connected but invalid.
EXPECT_TRUE(b1->IsConnected());
EXPECT_FALSE(b1->IsValid());
// Gets the channel handle for the producer.
LocalChannelHandle h1 = status_or_handle.take();
EXPECT_TRUE(h1.valid());
std::unique_ptr<BufferProducer> p1 = BufferProducer::Import(std::move(h1));
EXPECT_FALSE(h1.valid());
ASSERT_TRUE(p1 != nullptr);
int p1_id = p1->id();
// A newly promoted ProducerBuffer should inherit the same buffer id.
EXPECT_EQ(b1_id, p1_id);
EXPECT_TRUE(IsBufferGained(p1->buffer_state()));
}
TEST_F(LibBufferHubTest, TestDetachThenPromote) {
std::unique_ptr<BufferProducer> p1 = BufferProducer::Create(
kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t));
ASSERT_TRUE(p1.get() != nullptr);
int p1_id = p1->id();
// Detached the producer.
auto status_or_handle = p1->Detach();
EXPECT_TRUE(status_or_handle.ok());
LocalChannelHandle h1 = status_or_handle.take();
EXPECT_TRUE(h1.valid());
// Detached buffer handle can be use to construct a new DetachedBuffer object.
auto b1 = DetachedBuffer::Import(std::move(h1));
EXPECT_FALSE(h1.valid());
EXPECT_TRUE(b1->IsValid());
int b1_id = b1->id();
EXPECT_EQ(b1_id, p1_id);
// Promote the detached buffer.
status_or_handle = b1->Promote();
// The buffer client is still considered as connected but invalid.
EXPECT_TRUE(b1->IsConnected());
EXPECT_FALSE(b1->IsValid());
EXPECT_TRUE(status_or_handle.ok());
// Gets the channel handle for the producer.
LocalChannelHandle h2 = status_or_handle.take();
EXPECT_TRUE(h2.valid());
std::unique_ptr<BufferProducer> p2 = BufferProducer::Import(std::move(h2));
EXPECT_FALSE(h2.valid());
ASSERT_TRUE(p2 != nullptr);
int p2_id = p2->id();
// A newly promoted ProducerBuffer should inherit the same buffer id.
EXPECT_EQ(b1_id, p2_id);
EXPECT_TRUE(IsBufferGained(p2->buffer_state()));
}
TEST_F(LibBufferHubTest, TestDuplicateDetachedBuffer) {
auto b1 = DetachedBuffer::Create(kWidth, kHeight, kLayerCount, kFormat,
kUsage, kUserMetadataSize);
int b1_id = b1->id();
EXPECT_TRUE(b1->IsValid());
auto status_or_handle = b1->Duplicate();
EXPECT_TRUE(status_or_handle);
// The detached buffer should still be valid.
EXPECT_TRUE(b1->IsConnected());
EXPECT_TRUE(b1->IsValid());
// Gets the channel handle for the duplicated buffer.
LocalChannelHandle h2 = status_or_handle.take();
EXPECT_TRUE(h2.valid());
std::unique_ptr<DetachedBuffer> b2 = DetachedBuffer::Import(std::move(h2));
EXPECT_FALSE(h2.valid());
ASSERT_TRUE(b2 != nullptr);
int b2_id = b2->id();
// These two buffer instances are based on the same physical buffer under the
// hood, so they should share the same id.
EXPECT_EQ(b1_id, b2_id);
// We use buffer_state_bit() to tell those two instances apart.
EXPECT_NE(b1->buffer_state_bit(), b2->buffer_state_bit());
EXPECT_NE(b1->buffer_state_bit(), 0ULL);
EXPECT_NE(b2->buffer_state_bit(), 0ULL);
EXPECT_NE(b1->buffer_state_bit(), kProducerStateBit);
EXPECT_NE(b2->buffer_state_bit(), kProducerStateBit);
// Both buffer instances should be in gained state.
EXPECT_TRUE(IsBufferGained(b1->buffer_state()));
EXPECT_TRUE(IsBufferGained(b2->buffer_state()));
// Promote the detached buffer should fail as b1 is no longer the exclusive
// owner of the buffer..
status_or_handle = b1->Promote();
EXPECT_FALSE(status_or_handle.ok());
EXPECT_EQ(status_or_handle.error(), EINVAL);
}