blob: 35fc4be05646e53fd1247798f38ada112a02d3e2 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "Layer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Layer.h"
#include <android-base/stringprintf.h>
#include <binder/IPCThreadState.h>
#include <compositionengine/Display.h>
#include <compositionengine/Layer.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <gui/BufferItem.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <math.h>
#include <renderengine/RenderEngine.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <ui/DebugUtils.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <algorithm>
#include <mutex>
#include <sstream>
#include "BufferLayer.h"
#include "ColorLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTracer/FrameTracer.h"
#include "LayerProtoHelper.h"
#include "LayerRejecter.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "TimeStats/TimeStats.h"
#define DEBUG_RESIZE 0
namespace android {
using base::StringAppendF;
std::atomic<int32_t> Layer::sSequence{1};
Layer::Layer(const LayerCreationArgs& args)
: mFlinger(args.flinger),
mName(args.name),
mClientRef(args.client),
mWindowType(args.metadata.getInt32(METADATA_WINDOW_TYPE, 0)) {
uint32_t layerFlags = 0;
if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
mCurrentState.active_legacy.w = args.w;
mCurrentState.active_legacy.h = args.h;
mCurrentState.flags = layerFlags;
mCurrentState.active_legacy.transform.set(0, 0);
mCurrentState.crop_legacy.makeInvalid();
mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy;
mCurrentState.z = 0;
mCurrentState.color.a = 1.0f;
mCurrentState.layerStack = 0;
mCurrentState.sequence = 0;
mCurrentState.requested_legacy = mCurrentState.active_legacy;
mCurrentState.active.w = UINT32_MAX;
mCurrentState.active.h = UINT32_MAX;
mCurrentState.active.transform.set(0, 0);
mCurrentState.transform = 0;
mCurrentState.transformToDisplayInverse = false;
mCurrentState.crop.makeInvalid();
mCurrentState.acquireFence = new Fence(-1);
mCurrentState.dataspace = ui::Dataspace::UNKNOWN;
mCurrentState.hdrMetadata.validTypes = 0;
mCurrentState.surfaceDamageRegion = Region::INVALID_REGION;
mCurrentState.cornerRadius = 0.0f;
mCurrentState.api = -1;
mCurrentState.hasColorTransform = false;
mCurrentState.colorSpaceAgnostic = false;
mCurrentState.metadata = args.metadata;
mCurrentState.shadowRadius = 0.f;
// drawing state & current state are identical
mDrawingState = mCurrentState;
CompositorTiming compositorTiming;
args.flinger->getCompositorTiming(&compositorTiming);
mFrameEventHistory.initializeCompositorTiming(compositorTiming);
mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
mCallingPid = args.callingPid;
mCallingUid = args.callingUid;
}
void Layer::onFirstRef() {
mFlinger->onLayerFirstRef(this);
}
Layer::~Layer() {
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
mFrameTracker.logAndResetStats(mName);
mFlinger->onLayerDestroyed(this);
}
LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client,
std::string name, uint32_t w, uint32_t h, uint32_t flags,
LayerMetadata metadata)
: flinger(flinger),
client(client),
name(std::move(name)),
w(w),
h(h),
flags(flags),
metadata(std::move(metadata)) {
IPCThreadState* ipc = IPCThreadState::self();
callingPid = ipc->getCallingPid();
callingUid = ipc->getCallingUid();
}
// ---------------------------------------------------------------------------
// callbacks
// ---------------------------------------------------------------------------
/*
* onLayerDisplayed is only meaningful for BufferLayer, but, is called through
* Layer. So, the implementation is done in BufferLayer. When called on a
* ColorLayer object, it's essentially a NOP.
*/
void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
void Layer::removeRemoteSyncPoints() {
for (auto& point : mRemoteSyncPoints) {
point->setTransactionApplied();
}
mRemoteSyncPoints.clear();
{
for (State pendingState : mPendingStates) {
pendingState.barrierLayer_legacy = nullptr;
}
}
}
void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
if (mCurrentState.zOrderRelativeOf == nullptr) {
return;
}
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative == nullptr) {
setZOrderRelativeOf(nullptr);
return;
}
if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
strongRelative->removeZOrderRelative(this);
mFlinger->setTransactionFlags(eTraversalNeeded);
setZOrderRelativeOf(nullptr);
}
}
void Layer::removeFromCurrentState() {
mRemovedFromCurrentState = true;
// Since we are no longer reachable from CurrentState SurfaceFlinger
// will no longer invoke doTransaction for us, and so we will
// never finish applying transactions. We signal the sync point
// now so that another layer will not become indefinitely
// blocked.
removeRemoteSyncPoints();
{
Mutex::Autolock syncLock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
point->setFrameAvailable();
}
mLocalSyncPoints.clear();
}
mFlinger->markLayerPendingRemovalLocked(this);
}
void Layer::onRemovedFromCurrentState() {
auto layersInTree = getLayersInTree(LayerVector::StateSet::Current);
std::sort(layersInTree.begin(), layersInTree.end());
for (const auto& layer : layersInTree) {
layer->removeFromCurrentState();
layer->removeRelativeZ(layersInTree);
}
}
void Layer::addToCurrentState() {
mRemovedFromCurrentState = false;
for (const auto& child : mCurrentChildren) {
child->addToCurrentState();
}
}
// ---------------------------------------------------------------------------
// set-up
// ---------------------------------------------------------------------------
bool Layer::getPremultipledAlpha() const {
return mPremultipliedAlpha;
}
sp<IBinder> Layer::getHandle() {
Mutex::Autolock _l(mLock);
if (mGetHandleCalled) {
ALOGE("Get handle called twice" );
return nullptr;
}
mGetHandleCalled = true;
return new Handle(mFlinger, this);
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
static Rect reduce(const Rect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
if (exclude.isRect()) {
return win.reduce(exclude.getBounds());
}
return Region(win).subtract(exclude).getBounds();
}
static FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
if (!reduceTransparentRegion) {
return Rect{mScreenBounds};
}
FloatRect bounds = getBounds();
ui::Transform t = getTransform();
// Transform to screen space.
bounds = t.transform(bounds);
return Rect{bounds};
}
FloatRect Layer::getBounds() const {
const State& s(getDrawingState());
return getBounds(getActiveTransparentRegion(s));
}
FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
// Subtract the transparent region and snap to the bounds.
return reduce(mBounds, activeTransparentRegion);
}
ui::Transform Layer::getBufferScaleTransform() const {
// If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
// it isFixedSize) then there may be additional scaling not accounted
// for in the layer transform.
if (!isFixedSize() || getBuffer() == nullptr) {
return {};
}
// If the layer is a buffer state layer, the active width and height
// could be infinite. In that case, return the effective transform.
const uint32_t activeWidth = getActiveWidth(getDrawingState());
const uint32_t activeHeight = getActiveHeight(getDrawingState());
if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) {
return {};
}
int bufferWidth = getBuffer()->getWidth();
int bufferHeight = getBuffer()->getHeight();
if (getBufferTransform() & NATIVE_WINDOW_TRANSFORM_ROT_90) {
std::swap(bufferWidth, bufferHeight);
}
float sx = activeWidth / static_cast<float>(bufferWidth);
float sy = activeHeight / static_cast<float>(bufferHeight);
ui::Transform extraParentScaling;
extraParentScaling.set(sx, 0, 0, sy);
return extraParentScaling;
}
ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const {
// We need to mirror this scaling to child surfaces or we will break the contract where WM can
// treat child surfaces as pixels in the parent surface.
if (!isFixedSize() || getBuffer() == nullptr) {
return mEffectiveTransform;
}
return mEffectiveTransform * bufferScaleTransform;
}
FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const {
// We need the pre scaled layer bounds when computing child bounds to make sure the child is
// cropped to its parent layer after any buffer transform scaling is applied.
if (!isFixedSize() || getBuffer() == nullptr) {
return mBounds;
}
return bufferScaleTransform.inverse().transform(mBounds);
}
void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform,
float parentShadowRadius) {
const State& s(getDrawingState());
// Calculate effective layer transform
mEffectiveTransform = parentTransform * getActiveTransform(s);
// Transform parent bounds to layer space
parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
// Calculate source bounds
mSourceBounds = computeSourceBounds(parentBounds);
// Calculate bounds by croping diplay frame with layer crop and parent bounds
FloatRect bounds = mSourceBounds;
const Rect layerCrop = getCrop(s);
if (!layerCrop.isEmpty()) {
bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
}
bounds = bounds.intersect(parentBounds);
mBounds = bounds;
mScreenBounds = mEffectiveTransform.transform(mBounds);
// Use the layer's own shadow radius if set. Otherwise get the radius from
// parent.
if (s.shadowRadius > 0.f) {
mEffectiveShadowRadius = s.shadowRadius;
} else {
mEffectiveShadowRadius = parentShadowRadius;
}
// Shadow radius is passed down to only one layer so if the layer can draw shadows,
// don't pass it to its children.
const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius;
// Add any buffer scaling to the layer's children.
ui::Transform bufferScaleTransform = getBufferScaleTransform();
for (const sp<Layer>& child : mDrawingChildren) {
child->computeBounds(getBoundsPreScaling(bufferScaleTransform),
getTransformWithScale(bufferScaleTransform), childShadowRadius);
}
}
Rect Layer::getCroppedBufferSize(const State& s) const {
Rect size = getBufferSize(s);
Rect crop = getCrop(s);
if (!crop.isEmpty() && size.isValid()) {
size.intersect(crop, &size);
} else if (!crop.isEmpty()) {
size = crop;
}
return size;
}
void Layer::setupRoundedCornersCropCoordinates(Rect win,
const FloatRect& roundedCornersCrop) const {
// Translate win by the rounded corners rect coordinates, to have all values in
// layer coordinate space.
win.left -= roundedCornersCrop.left;
win.right -= roundedCornersCrop.left;
win.top -= roundedCornersCrop.top;
win.bottom -= roundedCornersCrop.top;
}
void Layer::latchBasicGeometry(compositionengine::LayerFECompositionState& compositionState) const {
const auto& drawingState{getDrawingState()};
const uint32_t layerStack = getLayerStack();
const auto alpha = static_cast<float>(getAlpha());
const bool opaque = isOpaque(drawingState);
const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
auto blendMode = Hwc2::IComposerClient::BlendMode::NONE;
if (!opaque || alpha != 1.0f) {
blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED
: Hwc2::IComposerClient::BlendMode::COVERAGE;
}
// TODO(b/121291683): Instead of filling in a passed-in compositionState
// structure, switch to Layer owning the structure and have
// CompositionEngine be able to get a reference to it.
compositionState.layerStackId =
(layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt;
compositionState.internalOnly = getPrimaryDisplayOnly();
compositionState.isVisible = isVisible();
compositionState.isOpaque = opaque && !usesRoundedCorners && alpha == 1.f;
compositionState.contentDirty = contentDirty;
contentDirty = false;
compositionState.geomLayerBounds = mBounds;
compositionState.geomLayerTransform = getTransform();
compositionState.geomInverseLayerTransform = compositionState.geomLayerTransform.inverse();
compositionState.transparentRegionHint = getActiveTransparentRegion(drawingState);
compositionState.blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
compositionState.alpha = alpha;
}
void Layer::latchGeometry(compositionengine::LayerFECompositionState& compositionState) const {
const auto& drawingState{getDrawingState()};
int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0);
sp<Layer> parent = mDrawingParent.promote();
if (parent.get()) {
auto& parentState = parent->getDrawingState();
const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0);
if (parentType > 0 && parentAppId > 0) {
type = parentType;
appId = parentAppId;
}
}
compositionState.geomBufferSize = getBufferSize(drawingState);
compositionState.geomContentCrop = getBufferCrop();
compositionState.geomCrop = getCrop(drawingState);
compositionState.geomBufferTransform = getBufferTransform();
compositionState.geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
compositionState.geomUsesSourceCrop = usesSourceCrop();
compositionState.isSecure = isSecure();
compositionState.type = type;
compositionState.appId = appId;
}
void Layer::latchPerFrameState(compositionengine::LayerFECompositionState& compositionState) const {
const auto& drawingState{getDrawingState()};
compositionState.forceClientComposition = false;
compositionState.isColorspaceAgnostic = isColorSpaceAgnostic();
compositionState.dataspace = getDataSpace();
compositionState.colorTransform = getColorTransform();
compositionState.colorTransformIsIdentity = !hasColorTransform();
compositionState.surfaceDamage = surfaceDamageRegion;
compositionState.hasProtectedContent = isProtected();
const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
const bool drawsShadows = mEffectiveShadowRadius != 0.f;
compositionState.isOpaque =
isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf;
// Force client composition for special cases known only to the front-end.
if (isHdrY410() || usesRoundedCorners || drawsShadows) {
compositionState.forceClientComposition = true;
}
}
void Layer::latchCursorCompositionState(
compositionengine::LayerFECompositionState& compositionState) const {
// This gives us only the "orientation" component of the transform
const State& drawingState{getDrawingState()};
// Apply the layer's transform, followed by the display's global transform
// Here we're guaranteed that the layer's transform preserves rects
Rect win = getCroppedBufferSize(drawingState);
// Subtract the transparent region and snap to the bounds
Rect bounds = reduce(win, getActiveTransparentRegion(drawingState));
Rect frame(getTransform().transform(bounds));
compositionState.cursorFrame = frame;
}
bool Layer::onPreComposition(nsecs_t) {
return false;
}
void Layer::latchCompositionState(compositionengine::LayerFECompositionState& compositionState,
compositionengine::LayerFE::StateSubset subset) const {
using StateSubset = compositionengine::LayerFE::StateSubset;
switch (subset) {
case StateSubset::BasicGeometry:
latchBasicGeometry(compositionState);
break;
case StateSubset::GeometryAndContent:
latchBasicGeometry(compositionState);
latchGeometry(compositionState);
latchPerFrameState(compositionState);
break;
case StateSubset::Content:
latchPerFrameState(compositionState);
break;
}
}
const char* Layer::getDebugName() const {
return mName.c_str();
}
// ---------------------------------------------------------------------------
// drawing...
// ---------------------------------------------------------------------------
std::optional<renderengine::LayerSettings> Layer::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
if (!getCompositionLayer()) {
return {};
}
FloatRect bounds = getBounds();
half alpha = getAlpha();
renderengine::LayerSettings layerSettings;
layerSettings.geometry.boundaries = bounds;
if (targetSettings.useIdentityTransform) {
layerSettings.geometry.positionTransform = mat4();
} else {
layerSettings.geometry.positionTransform = getTransform().asMatrix4();
}
if (hasColorTransform()) {
layerSettings.colorTransform = getColorTransform();
}
const auto roundedCornerState = getRoundedCornerState();
layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius;
layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect;
layerSettings.alpha = alpha;
layerSettings.sourceDataspace = getDataSpace();
return layerSettings;
}
std::optional<renderengine::LayerSettings> Layer::prepareShadowClientComposition(
const renderengine::LayerSettings& casterLayerSettings, const Rect& displayViewport,
ui::Dataspace outputDataspace) {
renderengine::ShadowSettings shadow = getShadowSettings(displayViewport);
if (shadow.length <= 0.f) {
return {};
}
const float casterAlpha = casterLayerSettings.alpha;
const bool casterIsOpaque = ((casterLayerSettings.source.buffer.buffer != nullptr) &&
casterLayerSettings.source.buffer.isOpaque);
renderengine::LayerSettings shadowLayer = casterLayerSettings;
shadowLayer.shadow = shadow;
// If the casting layer is translucent, we need to fill in the shadow underneath the layer.
// Otherwise the generated shadow will only be shown around the casting layer.
shadowLayer.shadow.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f);
shadowLayer.shadow.ambientColor *= casterAlpha;
shadowLayer.shadow.spotColor *= casterAlpha;
shadowLayer.sourceDataspace = outputDataspace;
shadowLayer.source.buffer.buffer = nullptr;
if (shadowLayer.shadow.ambientColor.a <= 0.f && shadowLayer.shadow.spotColor.a <= 0.f) {
return {};
}
float casterCornerRadius = shadowLayer.geometry.roundedCornersRadius;
const FloatRect& cornerRadiusCropRect = casterLayerSettings.geometry.roundedCornersCrop;
const FloatRect& casterRect = shadowLayer.geometry.boundaries;
// crop used to set the corner radius may be larger than the content rect. Adjust the corner
// radius accordingly.
if (casterCornerRadius > 0.f) {
float cropRectOffset = std::max(std::abs(cornerRadiusCropRect.top - casterRect.top),
std::abs(cornerRadiusCropRect.left - casterRect.left));
if (cropRectOffset > casterCornerRadius) {
casterCornerRadius = 0;
} else {
casterCornerRadius -= cropRectOffset;
}
shadowLayer.geometry.roundedCornersRadius = casterCornerRadius;
}
return shadowLayer;
}
Hwc2::IComposerClient::Composition Layer::getCompositionType(
const sp<const DisplayDevice>& display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
LOG_FATAL_IF(!outputLayer);
return outputLayer->getState().hwc ? (*outputLayer->getState().hwc).hwcCompositionType
: Hwc2::IComposerClient::Composition::CLIENT;
}
bool Layer::getClearClientTarget(const sp<const DisplayDevice>& display) const {
const auto outputLayer = findOutputLayerForDisplay(display);
LOG_FATAL_IF(!outputLayer);
return outputLayer->getState().clearClientTarget;
}
bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
if (point->getFrameNumber() <= mCurrentFrameNumber) {
// Don't bother with a SyncPoint, since we've already latched the
// relevant frame
return false;
}
if (isRemovedFromCurrentState()) {
return false;
}
Mutex::Autolock lock(mLocalSyncPointMutex);
mLocalSyncPoints.push_back(point);
return true;
}
// ----------------------------------------------------------------------------
// local state
// ----------------------------------------------------------------------------
bool Layer::isSecure() const {
const State& s(mDrawingState);
return (s.flags & layer_state_t::eLayerSecure);
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
void Layer::pushPendingState() {
if (!mCurrentState.modified) {
return;
}
ATRACE_CALL();
// If this transaction is waiting on the receipt of a frame, generate a sync
// point and send it to the remote layer.
// We don't allow installing sync points after we are removed from the current state
// as we won't be able to signal our end.
if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) {
sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote();
if (barrierLayer == nullptr) {
ALOGE("[%s] Unable to promote barrier Layer.", getDebugName());
// If we can't promote the layer we are intended to wait on,
// then it is expired or otherwise invalid. Allow this transaction
// to be applied as per normal (no synchronization).
mCurrentState.barrierLayer_legacy = nullptr;
} else {
auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber_legacy, this);
if (barrierLayer->addSyncPoint(syncPoint)) {
std::stringstream ss;
ss << "Adding sync point " << mCurrentState.frameNumber_legacy;
ATRACE_NAME(ss.str().c_str());
mRemoteSyncPoints.push_back(std::move(syncPoint));
} else {
// We already missed the frame we're supposed to synchronize
// on, so go ahead and apply the state update
mCurrentState.barrierLayer_legacy = nullptr;
}
}
// Wake us up to check if the frame has been received
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mPendingStates.push_back(mCurrentState);
ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
}
void Layer::popPendingState(State* stateToCommit) {
ATRACE_CALL();
*stateToCommit = mPendingStates[0];
mPendingStates.removeAt(0);
ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
}
bool Layer::applyPendingStates(State* stateToCommit) {
bool stateUpdateAvailable = false;
while (!mPendingStates.empty()) {
if (mPendingStates[0].barrierLayer_legacy != nullptr) {
if (mRemoteSyncPoints.empty()) {
// If we don't have a sync point for this, apply it anyway. It
// will be visually wrong, but it should keep us from getting
// into too much trouble.
ALOGE("[%s] No local sync point found", getDebugName());
popPendingState(stateToCommit);
stateUpdateAvailable = true;
continue;
}
if (mRemoteSyncPoints.front()->getFrameNumber() !=
mPendingStates[0].frameNumber_legacy) {
ALOGE("[%s] Unexpected sync point frame number found", getDebugName());
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
continue;
}
if (mRemoteSyncPoints.front()->frameIsAvailable()) {
ATRACE_NAME("frameIsAvailable");
// Apply the state update
popPendingState(stateToCommit);
stateUpdateAvailable = true;
// Signal our end of the sync point and then dispose of it
mRemoteSyncPoints.front()->setTransactionApplied();
mRemoteSyncPoints.pop_front();
} else {
ATRACE_NAME("!frameIsAvailable");
break;
}
} else {
popPendingState(stateToCommit);
stateUpdateAvailable = true;
}
}
// If we still have pending updates, wake SurfaceFlinger back up and point
// it at this layer so we can process them
if (!mPendingStates.empty()) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
mCurrentState.modified = false;
return stateUpdateAvailable;
}
uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) {
const State& s(getDrawingState());
const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) ||
(stateToCommit->requested_legacy.h != s.requested_legacy.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} }}\n",
this, getName().c_str(), getBufferTransform(), getEffectiveScalingMode(),
stateToCommit->active_legacy.w, stateToCommit->active_legacy.h,
stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top,
stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom,
stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(),
stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h,
s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top,
s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(),
s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h);
}
// Don't let Layer::doTransaction update the drawing state
// if we have a pending resize, unless we are in fixed-size mode.
// the drawing state will be updated only once we receive a buffer
// with the correct size.
//
// In particular, we want to make sure the clip (which is part
// of the geometry state) is latched together with the size but is
// latched immediately when no resizing is involved.
//
// If a sideband stream is attached, however, we want to skip this
// optimization so that transactions aren't missed when a buffer
// never arrives
//
// In the case that we don't have a buffer we ignore other factors
// and avoid entering the resizePending state. At a high level the
// resizePending state is to avoid applying the state of the new buffer
// to the old buffer. However in the state where we don't have an old buffer
// there is no such concern but we may still be being used as a parent layer.
const bool resizePending =
((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) ||
(stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) &&
(getBuffer() != nullptr);
if (!isFixedSize()) {
if (resizePending && mSidebandStream == nullptr) {
flags |= eDontUpdateGeometryState;
}
}
// Here we apply various requested geometry states, depending on our
// latching configuration. See Layer.h for a detailed discussion of
// how geometry latching is controlled.
if (!(flags & eDontUpdateGeometryState)) {
State& editCurrentState(getCurrentState());
// There is an awkward asymmetry in the handling of the crop states in the position
// states, as can be seen below. Largely this arises from position and transform
// being stored in the same data structure while having different latching rules.
// b/38182305
//
// Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to
// applyPendingStates in the presence of deferred transactions.
editCurrentState.active_legacy = editCurrentState.requested_legacy;
stateToCommit->active_legacy = stateToCommit->requested_legacy;
}
return flags;
}
uint32_t Layer::doTransaction(uint32_t flags) {
ATRACE_CALL();
if (mLayerDetached) {
// Ensure BLAST buffer callbacks are processed.
// detachChildren and mLayerDetached were implemented to avoid geometry updates
// to layers in the cases of animation. For BufferQueue layers buffers are still
// consumed as normal. This is useful as otherwise the client could get hung
// inevitably waiting on a buffer to return. We recreate this semantic for BufferQueue
// even though it is a little consistent. detachChildren is shortly slated for removal
// by the hierarchy mirroring work so we don't need to worry about it too much.
mDrawingState.callbackHandles = mCurrentState.callbackHandles;
mCurrentState.callbackHandles = {};
return flags;
}
if (mChildrenChanged) {
flags |= eVisibleRegion;
mChildrenChanged = false;
}
pushPendingState();
State c = getCurrentState();
if (!applyPendingStates(&c)) {
return flags;
}
flags = doTransactionResize(flags, &c);
const State& s(getDrawingState());
if (getActiveGeometry(c) != getActiveGeometry(s)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (c.sequence != s.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
const uint8_t type = getActiveTransform(c).getType();
mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE);
}
if (mCurrentState.inputInfoChanged) {
flags |= eInputInfoChanged;
mCurrentState.inputInfoChanged = false;
}
// Commit the transaction
commitTransaction(c);
mPendingStatesSnapshot = mPendingStates;
mCurrentState.callbackHandles = {};
return flags;
}
void Layer::commitTransaction(const State& stateToCommit) {
mDrawingState = stateToCommit;
}
uint32_t Layer::getTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_and(~flags) & flags;
}
uint32_t Layer::setTransactionFlags(uint32_t flags) {
return mTransactionFlags.fetch_or(flags);
}
bool Layer::setPosition(float x, float y) {
if (mCurrentState.requested_legacy.transform.tx() == x &&
mCurrentState.requested_legacy.transform.ty() == y)
return false;
mCurrentState.sequence++;
// We update the requested and active position simultaneously because
// we want to apply the position portion of the transform matrix immediately,
// but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
mCurrentState.requested_legacy.transform.set(x, y);
// Here we directly update the active state
// unlike other setters, because we store it within
// the transform, but use different latching rules.
// b/38182305
mCurrentState.active_legacy.transform.set(x, y);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setLayer(z)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
ssize_t idx = mCurrentChildren.indexOf(childLayer);
if (idx < 0) {
return false;
}
if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
mCurrentChildren.removeAt(idx);
mCurrentChildren.add(childLayer);
return true;
}
return false;
}
bool Layer::setLayer(int32_t z) {
if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
mCurrentState.sequence++;
mCurrentState.z = z;
mCurrentState.modified = true;
// Discard all relative layering.
if (mCurrentState.zOrderRelativeOf != nullptr) {
sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
if (strongRelative != nullptr) {
strongRelative->removeZOrderRelative(this);
}
setZOrderRelativeOf(nullptr);
}
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::removeZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.remove(relative);
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::addZOrderRelative(const wp<Layer>& relative) {
mCurrentState.zOrderRelatives.add(relative);
mCurrentState.modified = true;
mCurrentState.sequence++;
setTransactionFlags(eTransactionNeeded);
}
void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
mCurrentState.zOrderRelativeOf = relativeOf;
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.isRelativeOf = relativeOf != nullptr;
setTransactionFlags(eTransactionNeeded);
}
bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
if (handle == nullptr) {
return false;
}
sp<Layer> relative = handle->owner.promote();
if (relative == nullptr) {
return false;
}
if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
mCurrentState.zOrderRelativeOf == relative) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
mCurrentState.z = relativeZ;
auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
if (oldZOrderRelativeOf != nullptr) {
oldZOrderRelativeOf->removeZOrderRelative(this);
}
setZOrderRelativeOf(relative);
relative->addZOrderRelative(this);
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h)
return false;
mCurrentState.requested_legacy.w = w;
mCurrentState.requested_legacy.h = h;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
// record the new size, from this point on, when the client request
// a buffer, it'll get the new size.
setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h);
return true;
}
bool Layer::setAlpha(float alpha) {
if (mCurrentState.color.a == alpha) return false;
mCurrentState.sequence++;
mCurrentState.color.a = alpha;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
if (!mCurrentState.bgColorLayer && alpha == 0) {
return false;
}
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
if (!mCurrentState.bgColorLayer && alpha != 0) {
// create background color layer if one does not yet exist
uint32_t flags = ISurfaceComposerClient::eFXSurfaceColor;
std::string name = mName + "BackgroundColorLayer";
mCurrentState.bgColorLayer = mFlinger->getFactory().createColorLayer(
LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags,
LayerMetadata()));
// add to child list
addChild(mCurrentState.bgColorLayer);
mFlinger->mLayersAdded = true;
// set up SF to handle added color layer
if (isRemovedFromCurrentState()) {
mCurrentState.bgColorLayer->onRemovedFromCurrentState();
}
mFlinger->setTransactionFlags(eTransactionNeeded);
} else if (mCurrentState.bgColorLayer && alpha == 0) {
mCurrentState.bgColorLayer->reparent(nullptr);
mCurrentState.bgColorLayer = nullptr;
return true;
}
mCurrentState.bgColorLayer->setColor(color);
mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
mCurrentState.bgColorLayer->setAlpha(alpha);
mCurrentState.bgColorLayer->setDataspace(dataspace);
return true;
}
bool Layer::setCornerRadius(float cornerRadius) {
if (mCurrentState.cornerRadius == cornerRadius) return false;
mCurrentState.sequence++;
mCurrentState.cornerRadius = cornerRadius;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
bool allowNonRectPreservingTransforms) {
ui::Transform t;
t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored");
return false;
}
mCurrentState.sequence++;
mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx,
matrix.dsdy);
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setTransparentRegionHint(const Region& transparent) {
mCurrentState.requestedTransparentRegion_legacy = transparent;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags) return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setCrop_legacy(const Rect& crop) {
if (mCurrentState.requestedCrop_legacy == crop) return false;
mCurrentState.sequence++;
mCurrentState.requestedCrop_legacy = crop;
mCurrentState.crop_legacy = crop;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setOverrideScalingMode(int32_t scalingMode) {
if (scalingMode == mOverrideScalingMode) return false;
mOverrideScalingMode = scalingMode;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setMetadata(const LayerMetadata& data) {
if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false;
mCurrentState.sequence++;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setLayerStack(uint32_t layerStack) {
if (mCurrentState.layerStack == layerStack) return false;
mCurrentState.sequence++;
mCurrentState.layerStack = layerStack;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
bool Layer::setColorSpaceAgnostic(const bool agnostic) {
if (mCurrentState.colorSpaceAgnostic == agnostic) {
return false;
}
mCurrentState.sequence++;
mCurrentState.colorSpaceAgnostic = agnostic;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
uint32_t Layer::getLayerStack() const {
auto p = mDrawingParent.promote();
if (p == nullptr) {
return getDrawingState().layerStack;
}
return p->getLayerStack();
}
bool Layer::setShadowRadius(float shadowRadius) {
if (mCurrentState.shadowRadius == shadowRadius) {
return false;
}
mCurrentState.sequence++;
mCurrentState.shadowRadius = shadowRadius;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
ATRACE_CALL();
mCurrentState.barrierLayer_legacy = barrierLayer;
mCurrentState.frameNumber_legacy = frameNumber;
// We don't set eTransactionNeeded, because just receiving a deferral
// request without any other state updates shouldn't actually induce a delay
mCurrentState.modified = true;
pushPendingState();
mCurrentState.barrierLayer_legacy = nullptr;
mCurrentState.frameNumber_legacy = 0;
mCurrentState.modified = false;
}
void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
deferTransactionUntil_legacy(handle->owner.promote(), frameNumber);
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
bool Layer::isHiddenByPolicy() const {
const State& s(mDrawingState);
const auto& parent = mDrawingParent.promote();
if (parent != nullptr && parent->isHiddenByPolicy()) {
return true;
}
if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
if (zOrderRelativeOf->isHiddenByPolicy()) {
return true;
}
}
}
return s.flags & layer_state_t::eLayerHidden;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
if (mPotentialCursor) {
usage |= GraphicBuffer::USAGE_CURSOR;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::updateTransformHint(const sp<const DisplayDevice>& display) const {
uint32_t orientation = 0;
// Disable setting transform hint if the debug flag is set.
if (!mFlinger->mDebugDisableTransformHint) {
// The transform hint is used to improve performance, but we can
// only have a single transform hint, it cannot
// apply to all displays.
const ui::Transform& planeTransform = display->getTransform();
orientation = planeTransform.getOrientation();
if (orientation & ui::Transform::ROT_INVALID) {
orientation = 0;
}
}
setTransformHint(orientation);
}
// ----------------------------------------------------------------------------
// debugging
// ----------------------------------------------------------------------------
// TODO(marissaw): add new layer state info to layer debugging
LayerDebugInfo Layer::getLayerDebugInfo() const {
using namespace std::string_literals;
LayerDebugInfo info;
const State& ds = getDrawingState();
info.mName = getName();
sp<Layer> parent = getParent();
info.mParentName = parent ? parent->getName() : "none"s;
info.mType = getType();
info.mTransparentRegion = ds.activeTransparentRegion_legacy;
info.mVisibleRegion = debugGetVisibleRegionOnDefaultDisplay();
info.mSurfaceDamageRegion = surfaceDamageRegion;
info.mLayerStack = getLayerStack();
info.mX = ds.active_legacy.transform.tx();
info.mY = ds.active_legacy.transform.ty();
info.mZ = ds.z;
info.mWidth = ds.active_legacy.w;
info.mHeight = ds.active_legacy.h;
info.mCrop = ds.crop_legacy;
info.mColor = ds.color;
info.mFlags = ds.flags;
info.mPixelFormat = getPixelFormat();
info.mDataSpace = static_cast<android_dataspace>(getDataSpace());
info.mMatrix[0][0] = ds.active_legacy.transform[0][0];
info.mMatrix[0][1] = ds.active_legacy.transform[0][1];
info.mMatrix[1][0] = ds.active_legacy.transform[1][0];
info.mMatrix[1][1] = ds.active_legacy.transform[1][1];
{
sp<const GraphicBuffer> buffer = getBuffer();
if (buffer != 0) {
info.mActiveBufferWidth = buffer->getWidth();
info.mActiveBufferHeight = buffer->getHeight();
info.mActiveBufferStride = buffer->getStride();
info.mActiveBufferFormat = buffer->format;
} else {
info.mActiveBufferWidth = 0;
info.mActiveBufferHeight = 0;
info.mActiveBufferStride = 0;
info.mActiveBufferFormat = 0;
}
}
info.mNumQueuedFrames = getQueuedFrameCount();
info.mRefreshPending = isBufferLatched();
info.mIsOpaque = isOpaque(ds);
info.mContentDirty = contentDirty;
return info;
}
void Layer::miniDumpHeader(std::string& result) {
result.append("-------------------------------");
result.append("-------------------------------");
result.append("-----------------------------\n");
result.append(" Layer name\n");
result.append(" Z | ");
result.append(" Window Type | ");
result.append(" Comp Type | ");
result.append(" Transform | ");
result.append(" Disp Frame (LTRB) | ");
result.append(" Source Crop (LTRB)\n");
result.append("-------------------------------");
result.append("-------------------------------");
result.append("-----------------------------\n");
}
void Layer::miniDump(std::string& result, const sp<DisplayDevice>& displayDevice) const {
auto outputLayer = findOutputLayerForDisplay(displayDevice);
if (!outputLayer) {
return;
}
std::string name;
if (mName.length() > 77) {
std::string shortened;
shortened.append(mName, 0, 36);
shortened.append("[...]");
shortened.append(mName, mName.length() - 36);
name = std::move(shortened);
} else {
name = mName;
}
StringAppendF(&result, " %s\n", name.c_str());
const State& layerState(getDrawingState());
const auto& compositionState = outputLayer->getState();
if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
StringAppendF(&result, " rel %6d | ", layerState.z);
} else {
StringAppendF(&result, " %10d | ", layerState.z);
}
StringAppendF(&result, " %10d | ", mWindowType);
StringAppendF(&result, "%10s | ", toString(getCompositionType(displayDevice)).c_str());
StringAppendF(&result, "%10s | ",
toString(getCompositionLayer() ? compositionState.bufferTransform
: static_cast<Hwc2::Transform>(0))
.c_str());
const Rect& frame = compositionState.displayFrame;
StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
const FloatRect& crop = compositionState.sourceCrop;
StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, crop.right,
crop.bottom);
result.append("- - - - - - - - - - - - - - - -");
result.append("- - - - - - - - - - - - - - - -");
result.append("- - - - - - - - - - - - - - -\n");
}
void Layer::dumpFrameStats(std::string& result) const {
mFrameTracker.dumpStats(result);
}
void Layer::clearFrameStats() {
mFrameTracker.clearStats();
}
void Layer::logFrameStats() {
mFrameTracker.logAndResetStats(mName);
}
void Layer::getFrameStats(FrameStats* outStats) const {
mFrameTracker.getStats(outStats);
}
void Layer::dumpFrameEvents(std::string& result) {
StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this);
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.checkFencesForCompletion();
mFrameEventHistory.dump(result);
}
void Layer::dumpCallingUidPid(std::string& result) const {
StringAppendF(&result, "Layer %s (%s) pid:%d uid:%d\n", getName().c_str(), getType(),
mCallingPid, mCallingUid);
}
void Layer::onDisconnect() {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.onDisconnect();
const int32_t layerId = getSequence();
mFlinger->mTimeStats->onDestroy(layerId);
mFlinger->mFrameTracer->onDestroy(layerId);
}
void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
FrameEventHistoryDelta* outDelta) {
if (newTimestamps) {
mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber,
getName().c_str(), newTimestamps->postedTime);
mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber,
newTimestamps->acquireFence);
}
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (newTimestamps) {
// If there are any unsignaled fences in the aquire timeline at this
// point, the previously queued frame hasn't been latched yet. Go ahead
// and try to get the signal time here so the syscall is taken out of
// the main thread's critical path.
mAcquireTimeline.updateSignalTimes();
// Push the new fence after updating since it's likely still pending.
mAcquireTimeline.push(newTimestamps->acquireFence);
mFrameEventHistory.addQueue(*newTimestamps);
}
if (outDelta) {
mFrameEventHistory.getAndResetDelta(outDelta);
}
}
size_t Layer::getChildrenCount() const {
size_t count = 0;
for (const sp<Layer>& child : mCurrentChildren) {
count += 1 + child->getChildrenCount();
}
return count;
}
void Layer::addChild(const sp<Layer>& layer) {
mChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
mCurrentChildren.add(layer);
layer->setParent(this);
}
ssize_t Layer::removeChild(const sp<Layer>& layer) {
mChildrenChanged = true;
setTransactionFlags(eTransactionNeeded);
layer->setParent(nullptr);
return mCurrentChildren.remove(layer);
}
bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
sp<Handle> handle = nullptr;
sp<Layer> newParent = nullptr;
if (newParentHandle == nullptr) {
return false;
}
handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
if (attachChildren()) {
setTransactionFlags(eTransactionNeeded);
}
for (const sp<Layer>& child : mCurrentChildren) {
newParent->addChild(child);
}
mCurrentChildren.clear();
return true;
}
void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
for (const sp<Layer>& child : mDrawingChildren) {
child->mDrawingParent = newParent;
child->computeBounds(newParent->mBounds,
newParent->getTransformWithScale(newParent->getBufferScaleTransform()),
newParent->mEffectiveShadowRadius);
}
}
bool Layer::reparent(const sp<IBinder>& newParentHandle) {
bool callSetTransactionFlags = false;
// While layers are detached, we allow most operations
// and simply halt performing the actual transaction. However
// for reparent != null we would enter the mRemovedFromCurrentState
// state, regardless of whether doTransaction was called, and
// so we need to prevent the update here.
if (mLayerDetached && newParentHandle == nullptr) {
return false;
}
sp<Layer> newParent;
if (newParentHandle != nullptr) {
auto handle = static_cast<Handle*>(newParentHandle.get());
newParent = handle->owner.promote();
if (newParent == nullptr) {
ALOGE("Unable to promote Layer handle");
return false;
}
if (newParent == this) {
ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
return false;
}
}
sp<Layer> parent = getParent();
if (parent != nullptr) {
parent->removeChild(this);
}
if (newParentHandle != nullptr) {
newParent->addChild(this);
if (!newParent->isRemovedFromCurrentState()) {
addToCurrentState();
} else {
onRemovedFromCurrentState();
}
if (mLayerDetached) {
mLayerDetached = false;
callSetTransactionFlags = true;
}
} else {
onRemovedFromCurrentState();
}
if (callSetTransactionFlags || attachChildren()) {
setTransactionFlags(eTransactionNeeded);
}
return true;
}
bool Layer::detachChildren() {
for (const sp<Layer>& child : mCurrentChildren) {
sp<Client> parentClient = mClientRef.promote();
sp<Client> client(child->mClientRef.promote());
if (client != nullptr && parentClient != client) {
child->mLayerDetached = true;
child->detachChildren();
child->removeRemoteSyncPoints();
}
}
return true;
}
bool Layer::attachChildren() {
bool changed = false;
for (const sp<Layer>& child : mCurrentChildren) {
sp<Client> parentClient = mClientRef.promote();
sp<Client> client(child->mClientRef.promote());
if (client != nullptr && parentClient != client) {
if (child->mLayerDetached) {
child->mLayerDetached = false;
changed = true;
}
changed |= child->attachChildren();
}
}
return changed;
}
bool Layer::setColorTransform(const mat4& matrix) {
static const mat4 identityMatrix = mat4();
if (mCurrentState.colorTransform == matrix) {
return false;
}
++mCurrentState.sequence;
mCurrentState.colorTransform = matrix;
mCurrentState.hasColorTransform = matrix != identityMatrix;
mCurrentState.modified = true;
setTransactionFlags(eTransactionNeeded);
return true;
}
mat4 Layer::getColorTransform() const {
mat4 colorTransform = mat4(getDrawingState().colorTransform);
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
colorTransform = parent->getColorTransform() * colorTransform;
}
return colorTransform;
}
bool Layer::hasColorTransform() const {
bool hasColorTransform = getDrawingState().hasColorTransform;
if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
hasColorTransform = hasColorTransform || parent->hasColorTransform();
}
return hasColorTransform;
}
bool Layer::isLegacyDataSpace() const {
// return true when no higher bits are set
return !(getDataSpace() &
(ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK |
ui::Dataspace::RANGE_MASK));
}
void Layer::setParent(const sp<Layer>& layer) {
mCurrentParent = layer;
}
int32_t Layer::getZ(LayerVector::StateSet stateSet) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
return state.z;
}
bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
return state.isRelativeOf;
}
__attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
if (state.zOrderRelatives.size() == 0) {
*outSkipRelativeZUsers = true;
return children;
}
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
if (child->usingRelativeZ(stateSet)) {
continue;
}
traverse.add(child);
}
return traverse;
}
/**
* Negatively signed relatives are before 'this' in Z-order.
*/
void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
// In the case we have other layers who are using a relative Z to us, makeTraversalList will
// produce a new list for traversing, including our relatives, and not including our children
// who are relatives of another surface. In the case that there are no relative Z,
// makeTraversalList returns our children directly to avoid significant overhead.
// However in this case we need to take the responsibility for filtering children which
// are relatives of another surface here.
bool skipRelativeZUsers = false;
const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseInZOrder(stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInZOrder(stateSet, visitor);
}
}
/**
* Positively signed relatives are before 'this' in reverse Z-order.
*/
void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
// See traverseInZOrder for documentation.
bool skipRelativeZUsers = false;
LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
int32_t i = 0;
for (i = int32_t(list.size()) - 1; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
if (relative->getZ(stateSet) < 0) {
break;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
visitor(this);
for (; i >= 0; i--) {
const auto& relative = list[i];
if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
continue;
}
relative->traverseInReverseZOrder(stateSet, visitor);
}
}
LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree) {
LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
"makeTraversalList received invalid stateSet");
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
LayerVector traverse(stateSet);
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
// Only add relative layers that are also descendents of the top most parent of the tree.
// If a relative layer is not a descendent, then it should be ignored.
if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
traverse.add(strongRelative);
}
}
for (const sp<Layer>& child : children) {
const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
// If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
// descendent of the top most parent of the tree. If it's not a descendent, then just add
// the child here since it won't be added later as a relative.
if (std::binary_search(layersInTree.begin(), layersInTree.end(),
childState.zOrderRelativeOf.promote().get())) {
continue;
}
traverse.add(child);
}
return traverse;
}
void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
size_t i = 0;
for (; i < list.size(); i++) {
const auto& relative = list[i];
if (relative->getZ(stateSet) >= 0) {
break;
}
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
visitor(this);
for (; i < list.size(); i++) {
const auto& relative = list[i];
relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
}
std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
std::vector<Layer*> layersInTree = {this};
for (size_t i = 0; i < children.size(); i++) {
const auto& child = children[i];
std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
}
return layersInTree;
}
void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor) {
std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
std::sort(layersInTree.begin(), layersInTree.end());
traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
}
ui::Transform Layer::getTransform() const {
return mEffectiveTransform;
}
half Layer::getAlpha() const {
const auto& p = mDrawingParent.promote();
half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
return parentAlpha * getDrawingState().color.a;
}
half4 Layer::getColor() const {
const half4 color(getDrawingState().color);
return half4(color.r, color.g, color.b, getAlpha());
}
Layer::RoundedCornerState Layer::getRoundedCornerState() const {
const auto& p = mDrawingParent.promote();
if (p != nullptr) {
RoundedCornerState parentState = p->getRoundedCornerState();
if (parentState.radius > 0) {
ui::Transform t = getActiveTransform(getDrawingState());
t = t.inverse();
parentState.cropRect = t.transform(parentState.cropRect);
// The rounded corners shader only accepts 1 corner radius for performance reasons,
// but a transform matrix can define horizontal and vertical scales.
// Let's take the average between both of them and pass into the shader, practically we
// never do this type of transformation on windows anyway.
parentState.radius *= (t[0][0] + t[1][1]) / 2.0f;
return parentState;
}
}
const float radius = getDrawingState().cornerRadius;
return radius > 0 && getCrop(getDrawingState()).isValid()
? RoundedCornerState(getCrop(getDrawingState()).toFloatRect(), radius)
: RoundedCornerState();
}
renderengine::ShadowSettings Layer::getShadowSettings(const Rect& viewport) const {
renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings;
// Shift the spot light x-position to the middle of the display and then
// offset it by casting layer's screen pos.
state.lightPos.x = (viewport.width() / 2.f) - mScreenBounds.left;
state.lightPos.y -= mScreenBounds.top;
state.length = mEffectiveShadowRadius;
return state;
}
void Layer::commitChildList() {
for (size_t i = 0; i < mCurrentChildren.size(); i++) {
const auto& child = mCurrentChildren[i];
child->commitChildList();
}
mDrawingChildren = mCurrentChildren;
mDrawingParent = mCurrentParent;
}
static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) {
if (weakBinderHandle == nullptr) {
return nullptr;
}
sp<IBinder> binderHandle = weakBinderHandle.promote();
if (binderHandle == nullptr) {
return nullptr;
}
sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get());
if (handle == nullptr) {
return nullptr;
}
return handle->owner;
}
void Layer::setInputInfo(const InputWindowInfo& info) {
mCurrentState.inputInfo = info;
mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle);
mCurrentState.modified = true;
mCurrentState.inputInfoChanged = true;
setTransactionFlags(eTransactionNeeded);
}
void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags) const {
ui::Transform transform = getTransform();
if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
for (const auto& pendingState : mPendingStatesSnapshot) {
auto barrierLayer = pendingState.barrierLayer_legacy.promote();
if (barrierLayer != nullptr) {
BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer();
barrierLayerProto->set_id(barrierLayer->sequence);
barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy);
}
}
auto buffer = getBuffer();
if (buffer != nullptr) {
LayerProtoHelper::writeToProto(buffer,
[&]() { return layerInfo->mutable_active_buffer(); });
LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()),
layerInfo->mutable_buffer_transform());
}
layerInfo->set_invalidate(contentDirty);
layerInfo->set_is_protected(isProtected());
layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace())));
layerInfo->set_queued_frames(getQueuedFrameCount());
layerInfo->set_refresh_pending(isBufferLatched());
layerInfo->set_curr_frame(mCurrentFrameNumber);
layerInfo->set_effective_scaling_mode(getEffectiveScalingMode());
layerInfo->set_corner_radius(getRoundedCornerState().radius);
LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
[&]() { return layerInfo->mutable_position(); });
LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
LayerProtoHelper::writeToProto(debugGetVisibleRegionOnDefaultDisplay(),
[&]() { return layerInfo->mutable_visible_region(); });
LayerProtoHelper::writeToProto(surfaceDamageRegion,
[&]() { return layerInfo->mutable_damage_region(); });
}
if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
LayerProtoHelper::writeToProto(mSourceBounds,
[&]() { return layerInfo->mutable_source_bounds(); });
LayerProtoHelper::writeToProto(mScreenBounds,
[&]() { return layerInfo->mutable_screen_bounds(); });
}
}
void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
uint32_t traceFlags) const {
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
const State& state = useDrawing ? mDrawingState : mCurrentState;
ui::Transform requestedTransform = state.active_legacy.transform;
if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
layerInfo->set_id(sequence);
layerInfo->set_name(getName().c_str());
layerInfo->set_type(getType());
for (const auto& child : children) {
layerInfo->add_children(child->sequence);
}
for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
sp<Layer> strongRelative = weakRelative.promote();
if (strongRelative != nullptr) {
layerInfo->add_relatives(strongRelative->sequence);
}
}
LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
[&]() { return layerInfo->mutable_transparent_region(); });
layerInfo->set_layer_stack(getLayerStack());
layerInfo->set_z(state.z);
LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(),
[&]() {
return layerInfo->mutable_requested_position();
});
LayerProtoHelper::writeSizeToProto(state.active_legacy.w, state.active_legacy.h,
[&]() { return layerInfo->mutable_size(); });
LayerProtoHelper::writeToProto(state.crop_legacy,
[&]() { return layerInfo->mutable_crop(); });
layerInfo->set_is_opaque(isOpaque(state));
layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
LayerProtoHelper::writeToProto(state.color,
[&]() { return layerInfo->mutable_requested_color(); });
layerInfo->set_flags(state.flags);
LayerProtoHelper::writeToProto(requestedTransform,
layerInfo->mutable_requested_transform());
auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
if (parent != nullptr) {
layerInfo->set_parent(parent->sequence);
} else {
layerInfo->set_parent(-1);
}
auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
if (zOrderRelativeOf != nullptr) {
layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
} else {
layerInfo->set_z_order_relative_of(-1);
}
}
if (traceFlags & SurfaceTracing::TRACE_INPUT) {
LayerProtoHelper::writeToProto(state.inputInfo, state.touchableRegionCrop,
[&]() { return layerInfo->mutable_input_window_info(); });
}
if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
auto protoMap = layerInfo->mutable_metadata();
for (const auto& entry : state.metadata.mMap) {
(*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
}
}
}
bool Layer::isRemovedFromCurrentState() const {
return mRemovedFromCurrentState;
}
InputWindowInfo Layer::fillInputInfo() {
InputWindowInfo info = mDrawingState.inputInfo;
if (info.displayId == ADISPLAY_ID_NONE) {
info.displayId = getLayerStack();
}
ui::Transform t = getTransform();
const float xScale = t.sx();
const float yScale = t.sy();
int32_t xSurfaceInset = info.surfaceInset;
int32_t ySurfaceInset = info.surfaceInset;
if (xScale != 1.0f || yScale != 1.0f) {
info.windowXScale *= (xScale != 0.0f) ? 1.0f / xScale : 0.0f;
info.windowYScale *= (yScale != 0.0f) ? 1.0f / yScale : 0.0f;
info.touchableRegion.scaleSelf(xScale, yScale);
xSurfaceInset = std::round(xSurfaceInset * xScale);
ySurfaceInset = std::round(ySurfaceInset * yScale);
}
// Transform layer size to screen space and inset it by surface insets.
// If this is a portal window, set the touchableRegion to the layerBounds.
Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE
? getBufferSize(getDrawingState())
: info.touchableRegion.getBounds();
if (!layerBounds.isValid()) {
layerBounds = getCroppedBufferSize(getDrawingState());
}
layerBounds = t.transform(layerBounds);
// clamp inset to layer bounds
xSurfaceInset = (xSurfaceInset >= 0) ? std::min(xSurfaceInset, layerBounds.getWidth() / 2) : 0;
ySurfaceInset = (ySurfaceInset >= 0) ? std::min(ySurfaceInset, layerBounds.getHeight() / 2) : 0;
layerBounds.inset(xSurfaceInset, ySurfaceInset, xSurfaceInset, ySurfaceInset);
// Input coordinate should match the layer bounds.
info.frameLeft = layerBounds.left;
info.frameTop = layerBounds.top;
info.frameRight = layerBounds.right;
info.frameBottom = layerBounds.bottom;
// Position the touchable region relative to frame screen location and restrict it to frame
// bounds.
info.touchableRegion = info.touchableRegion.translate(info.frameLeft, info.frameTop);
info.visible = canReceiveInput();
auto cropLayer = mDrawingState.touchableRegionCrop.promote();
if (info.replaceTouchableRegionWithCrop) {
if (cropLayer == nullptr) {
info.touchableRegion = Region(Rect{mScreenBounds});
} else {
info.touchableRegion = Region(Rect{cropLayer->mScreenBounds});
}
} else if (cropLayer != nullptr) {
info.touchableRegion = info.touchableRegion.intersect(Rect{cropLayer->mScreenBounds});
}
return info;
}
bool Layer::hasInput() const {
return mDrawingState.inputInfo.token != nullptr;
}
std::shared_ptr<compositionengine::Layer> Layer::getCompositionLayer() const {
return nullptr;
}
bool Layer::canReceiveInput() const {
return !isHiddenByPolicy();
}
compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
const sp<const DisplayDevice>& display) const {
return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionLayer().get());
}
Region Layer::debugGetVisibleRegionOnDefaultDisplay() const {
sp<DisplayDevice> displayDevice = mFlinger->getDefaultDisplayDeviceLocked();
if (displayDevice == nullptr) {
return {};
}
auto outputLayer = findOutputLayerForDisplay(displayDevice);
if (outputLayer == nullptr) {
return {};
}
return outputLayer->getState().visibleRegion;
}
void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
// copy drawing state from cloned layer
mDrawingState = clonedFrom->mDrawingState;
mClonedFrom = clonedFrom;
// TODO: (b/140756730) Ignore input for now since InputDispatcher doesn't support multiple
// InputWindows per client token yet.
mDrawingState.inputInfo.token = nullptr;
}
void Layer::updateMirrorInfo() {
if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) {
// If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false,
// it means that there is a clone, but the layer it was cloned from has been destroyed. In
// that case, we want to delete the reference to the clone since we want it to get
// destroyed. The root, this layer, will still be around since the client can continue
// to hold a reference, but no cloned layers will be displayed.
mClonedChild = nullptr;
return;
}
std::map<sp<Layer>, sp<Layer>> clonedLayersMap;
// If the real layer exists and is in current state, add the clone as a child of the root.
// There's no need to remove from drawingState when the layer is offscreen since currentState is
// copied to drawingState for the root layer. So the clonedChild is always removed from
// drawingState and then needs to be added back each traversal.
if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) {
addChildToDrawing(mClonedChild);
}
mClonedChild->updateClonedDrawingState(clonedLayersMap);
mClonedChild->updateClonedChildren(this, clonedLayersMap);
mClonedChild->updateClonedRelatives(clonedLayersMap);
}
void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
// If the layer the clone was cloned from is alive, copy the content of the drawingState
// to the clone. If the real layer is no longer alive, continue traversing the children
// since we may be able to pull out other children that are still alive.
if (isClonedFromAlive()) {
sp<Layer> clonedFrom = getClonedFrom();
mDrawingState = clonedFrom->mDrawingState;
// TODO: (b/140756730) Ignore input for now since InputDispatcher doesn't support multiple
// InputWindows per client token yet.
mDrawingState.inputInfo.token = nullptr;
clonedLayersMap.emplace(clonedFrom, this);
}
// The clone layer may have children in drawingState since they may have been created and
// added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones
// that already exist, since we can just re-use them.
// The drawingChildren will not get overwritten by the currentChildren since the clones are
// not updated in the regular traversal. They are skipped since the root will lose the
// reference to them when it copies its currentChildren to drawing.
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedDrawingState(clonedLayersMap);
}
}
void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot,
std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
mDrawingChildren.clear();
if (!isClonedFromAlive()) {
return;
}
sp<Layer> clonedFrom = getClonedFrom();
for (sp<Layer>& child : clonedFrom->mDrawingChildren) {
if (child == mirrorRoot) {
// This is to avoid cyclical mirroring.
continue;
}
sp<Layer> clonedChild = clonedLayersMap[child];
if (clonedChild == nullptr) {
clonedChild = child->createClone();
clonedLayersMap[child] = clonedChild;
}
addChildToDrawing(clonedChild);
clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap);
}
}
void Layer::updateClonedRelatives(std::map<sp<Layer>, sp<Layer>> clonedLayersMap) {
mDrawingState.zOrderRelativeOf = nullptr;
mDrawingState.zOrderRelatives.clear();
if (!isClonedFromAlive()) {
return;
}
sp<Layer> clonedFrom = getClonedFrom();
for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) {
sp<Layer> relative = relativeWeak.promote();
auto clonedRelative = clonedLayersMap[relative];
if (clonedRelative != nullptr) {
mDrawingState.zOrderRelatives.add(clonedRelative);
}
}
// Check if the relativeLayer for the real layer is part of the cloned hierarchy.
// It's possible that the layer it's relative to is outside the requested cloned hierarchy.
// In that case, we treat the layer as if the relativeOf has been removed. This way, it will
// still traverse the children, but the layer with the missing relativeOf will not be shown
// on screen.
sp<Layer> relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote();
sp<Layer> clonedRelativeOf = clonedLayersMap[relativeOf];
if (clonedRelativeOf != nullptr) {
mDrawingState.zOrderRelativeOf = clonedRelativeOf;
}
for (sp<Layer>& child : mDrawingChildren) {
child->updateClonedRelatives(clonedLayersMap);
}
}
void Layer::addChildToDrawing(const sp<Layer>& layer) {
mDrawingChildren.add(layer);
layer->mDrawingParent = this;
}
// ---------------------------------------------------------------------------
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif