| /* |
| * Copyright 2020 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #pragma once |
| |
| #include <ftl/details/array_traits.h> |
| #include <ftl/initializer_list.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace android::ftl { |
| |
| constexpr struct IteratorRangeTag { |
| } kIteratorRange; |
| |
| // Fixed-capacity, statically allocated counterpart of std::vector. Like std::array, StaticVector |
| // allocates contiguous storage for N elements of type T at compile time, but stores at most (rather |
| // than exactly) N elements. Unlike std::array, its default constructor does not require T to have a |
| // default constructor, since elements are constructed in place as the vector grows. Operations that |
| // insert an element (emplace_back, push_back, etc.) fail when the vector is full. The API otherwise |
| // adheres to standard containers, except the unstable_erase operation that does not preserve order, |
| // and the replace operation that destructively emplaces. |
| // |
| // Unlike std::vector, T does not require copy/move assignment, so may be an object with const data |
| // members, or be const itself. |
| // |
| // StaticVector<T, 1> is analogous to an iterable std::optional. |
| // StaticVector<T, 0> is an error. |
| // |
| // Example usage: |
| // |
| // ftl::StaticVector<char, 3> vector; |
| // assert(vector.empty()); |
| // |
| // vector = {'a', 'b'}; |
| // assert(vector.size() == 2u); |
| // |
| // vector.push_back('c'); |
| // assert(vector.full()); |
| // |
| // assert(!vector.push_back('d')); |
| // assert(vector.size() == 3u); |
| // |
| // vector.unstable_erase(vector.begin()); |
| // assert(vector == (ftl::StaticVector{'c', 'b'})); |
| // |
| // vector.pop_back(); |
| // assert(vector.back() == 'c'); |
| // |
| // const char array[] = "hi"; |
| // vector = ftl::StaticVector(array); |
| // assert(vector == (ftl::StaticVector{'h', 'i', '\0'})); |
| // |
| // ftl::StaticVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?'); |
| // assert(strings.size() == 3u); |
| // assert(strings[0] == "abc"); |
| // assert(strings[1] == "123"); |
| // assert(strings[2] == "???"); |
| // |
| template <typename T, std::size_t N> |
| class StaticVector final : details::ArrayTraits<T>, |
| details::ArrayIterators<StaticVector<T, N>, T>, |
| details::ArrayComparators<StaticVector> { |
| static_assert(N > 0); |
| |
| // For constructor that moves from a smaller convertible vector. |
| template <typename, std::size_t> |
| friend class StaticVector; |
| |
| using details::ArrayTraits<T>::construct_at; |
| using details::ArrayTraits<T>::replace_at; |
| using details::ArrayTraits<T>::in_place_swap_ranges; |
| using details::ArrayTraits<T>::uninitialized_copy; |
| |
| using Iter = details::ArrayIterators<StaticVector, T>; |
| friend Iter; |
| |
| // There is ambiguity when constructing from two iterator-like elements like pointers: |
| // they could be an iterator range, or arguments for in-place construction. Assume the |
| // latter unless they are input iterators and cannot be used to construct elements. If |
| // the former is intended, the caller can pass an IteratorRangeTag to disambiguate. |
| template <typename I, typename Traits = std::iterator_traits<I>> |
| using is_input_iterator = |
| std::conjunction<std::is_base_of<std::input_iterator_tag, typename Traits::iterator_category>, |
| std::negation<std::is_constructible<T, I>>>; |
| |
| public: |
| FTL_ARRAY_TRAIT(T, value_type); |
| FTL_ARRAY_TRAIT(T, size_type); |
| FTL_ARRAY_TRAIT(T, difference_type); |
| |
| FTL_ARRAY_TRAIT(T, pointer); |
| FTL_ARRAY_TRAIT(T, reference); |
| FTL_ARRAY_TRAIT(T, iterator); |
| FTL_ARRAY_TRAIT(T, reverse_iterator); |
| |
| FTL_ARRAY_TRAIT(T, const_pointer); |
| FTL_ARRAY_TRAIT(T, const_reference); |
| FTL_ARRAY_TRAIT(T, const_iterator); |
| FTL_ARRAY_TRAIT(T, const_reverse_iterator); |
| |
| // Creates an empty vector. |
| StaticVector() = default; |
| |
| // Copies and moves a vector, respectively. |
| StaticVector(const StaticVector& other) |
| : StaticVector(kIteratorRange, other.begin(), other.end()) {} |
| |
| StaticVector(StaticVector&& other) { swap<true>(other); } |
| |
| // Copies at most N elements from a smaller convertible vector. |
| template <typename U, std::size_t M> |
| StaticVector(const StaticVector<U, M>& other) |
| : StaticVector(kIteratorRange, other.begin(), other.end()) { |
| static_assert(N >= M, "Insufficient capacity"); |
| } |
| |
| // Copies at most N elements from a smaller convertible array. |
| template <typename U, std::size_t M> |
| explicit StaticVector(U (&array)[M]) |
| : StaticVector(kIteratorRange, std::begin(array), std::end(array)) { |
| static_assert(N >= M, "Insufficient capacity"); |
| } |
| |
| // Copies at most N elements from the range [first, last). |
| // |
| // IteratorRangeTag disambiguates with initialization from two iterator-like elements. |
| // |
| template <typename Iterator, typename = std::enable_if_t<is_input_iterator<Iterator>{}>> |
| StaticVector(Iterator first, Iterator last) : StaticVector(kIteratorRange, first, last) { |
| using V = typename std::iterator_traits<Iterator>::value_type; |
| static_assert(std::is_constructible_v<value_type, V>, "Incompatible iterator range"); |
| } |
| |
| template <typename Iterator> |
| StaticVector(IteratorRangeTag, Iterator first, Iterator last) |
| : size_(std::min(max_size(), static_cast<size_type>(std::distance(first, last)))) { |
| uninitialized_copy(first, first + size_, begin()); |
| } |
| |
| // Moves at most N elements from a smaller convertible vector. |
| template <typename U, std::size_t M> |
| StaticVector(StaticVector<U, M>&& other) { |
| static_assert(N >= M, "Insufficient capacity"); |
| |
| // Same logic as swap<true>, though M need not be equal to N. |
| std::uninitialized_move(other.begin(), other.end(), begin()); |
| std::destroy(other.begin(), other.end()); |
| std::swap(size_, other.size_); |
| } |
| |
| // Constructs at most N elements. The template arguments T and N are inferred using the |
| // deduction guide defined below. Note that T is determined from the first element, and |
| // subsequent elements must have convertible types: |
| // |
| // ftl::StaticVector vector = {1, 2, 3}; |
| // static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<int, 3>>); |
| // |
| // const auto copy = "quince"s; |
| // auto move = "tart"s; |
| // ftl::StaticVector vector = {copy, std::move(move)}; |
| // |
| // static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 2>>); |
| // |
| template <typename E, typename... Es, |
| typename = std::enable_if_t<std::is_constructible_v<value_type, E>>> |
| StaticVector(E&& element, Es&&... elements) |
| : StaticVector(std::index_sequence<0>{}, std::forward<E>(element), |
| std::forward<Es>(elements)...) { |
| static_assert(sizeof...(elements) < N, "Too many elements"); |
| } |
| |
| // Constructs at most N elements in place by forwarding per-element constructor arguments. The |
| // template arguments T and N are inferred using the deduction guide defined below. The syntax |
| // for listing arguments is as follows: |
| // |
| // ftl::StaticVector vector = ftl::init::list<std::string>("abc")()(3u, '?'); |
| // |
| // static_assert(std::is_same_v<decltype(vector), ftl::StaticVector<std::string, 3>>); |
| // assert(vector.full()); |
| // assert(vector[0] == "abc"); |
| // assert(vector[1].empty()); |
| // assert(vector[2] == "???"); |
| // |
| template <typename U, std::size_t Size, std::size_t... Sizes, typename... Types> |
| StaticVector(InitializerList<U, std::index_sequence<Size, Sizes...>, Types...>&& list) |
| : StaticVector(std::index_sequence<0, 0, Size>{}, std::make_index_sequence<Size>{}, |
| std::index_sequence<Sizes...>{}, list.tuple) { |
| static_assert(sizeof...(Sizes) < N, "Too many elements"); |
| } |
| |
| ~StaticVector() { std::destroy(begin(), end()); } |
| |
| StaticVector& operator=(const StaticVector& other) { |
| StaticVector copy(other); |
| swap(copy); |
| return *this; |
| } |
| |
| StaticVector& operator=(StaticVector&& other) { |
| clear(); |
| swap<true>(other); |
| return *this; |
| } |
| |
| // IsEmpty enables a fast path when the vector is known to be empty at compile time. |
| template <bool IsEmpty = false> |
| void swap(StaticVector&); |
| |
| static constexpr size_type max_size() { return N; } |
| size_type size() const { return size_; } |
| |
| bool empty() const { return size() == 0; } |
| bool full() const { return size() == max_size(); } |
| |
| iterator begin() { return std::launder(reinterpret_cast<pointer>(data_)); } |
| iterator end() { return begin() + size(); } |
| |
| using Iter::begin; |
| using Iter::end; |
| |
| using Iter::cbegin; |
| using Iter::cend; |
| |
| using Iter::rbegin; |
| using Iter::rend; |
| |
| using Iter::crbegin; |
| using Iter::crend; |
| |
| using Iter::last; |
| |
| using Iter::back; |
| using Iter::front; |
| |
| using Iter::operator[]; |
| |
| // Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so |
| // replacing at end() is erroneous. |
| // |
| // The element is emplaced via move constructor, so type T does not need to define copy/move |
| // assignment, e.g. its data members may be const. |
| // |
| // The arguments may directly or indirectly refer to the element being replaced. |
| // |
| // Iterators to the replaced element point to its replacement, and others remain valid. |
| // |
| template <typename... Args> |
| reference replace(const_iterator it, Args&&... args) { |
| return replace_at(it, std::forward<Args>(args)...); |
| } |
| |
| // Appends an element, and returns an iterator to it. If the vector is full, the element is not |
| // inserted, and the end() iterator is returned. |
| // |
| // On success, the end() iterator is invalidated. |
| // |
| template <typename... Args> |
| iterator emplace_back(Args&&... args) { |
| if (full()) return end(); |
| const iterator it = construct_at(end(), std::forward<Args>(args)...); |
| ++size_; |
| return it; |
| } |
| |
| // Appends an element unless the vector is full, and returns whether the element was inserted. |
| // |
| // On success, the end() iterator is invalidated. |
| // |
| bool push_back(const value_type& v) { |
| // Two statements for sequence point. |
| const iterator it = emplace_back(v); |
| return it != end(); |
| } |
| |
| bool push_back(value_type&& v) { |
| // Two statements for sequence point. |
| const iterator it = emplace_back(std::move(v)); |
| return it != end(); |
| } |
| |
| // Removes the last element. The vector must not be empty, or the call is erroneous. |
| // |
| // The last() and end() iterators are invalidated. |
| // |
| void pop_back() { unstable_erase(last()); } |
| |
| // Removes all elements. |
| // |
| // All iterators are invalidated. |
| // |
| void clear() { |
| std::destroy(begin(), end()); |
| size_ = 0; |
| } |
| |
| // Erases an element, but does not preserve order. Rather than shifting subsequent elements, |
| // this moves the last element to the slot of the erased element. |
| // |
| // The last() and end() iterators, as well as those to the erased element, are invalidated. |
| // |
| void unstable_erase(const_iterator it) { |
| std::destroy_at(it); |
| if (it != last()) { |
| // Move last element and destroy its source for destructor side effects. This is only |
| // safe because exceptions are disabled. |
| construct_at(it, std::move(back())); |
| std::destroy_at(last()); |
| } |
| --size_; |
| } |
| |
| private: |
| // Recursion for variadic constructor. |
| template <std::size_t I, typename E, typename... Es> |
| StaticVector(std::index_sequence<I>, E&& element, Es&&... elements) |
| : StaticVector(std::index_sequence<I + 1>{}, std::forward<Es>(elements)...) { |
| construct_at(begin() + I, std::forward<E>(element)); |
| } |
| |
| // Base case for variadic constructor. |
| template <std::size_t I> |
| explicit StaticVector(std::index_sequence<I>) : size_(I) {} |
| |
| // Recursion for in-place constructor. |
| // |
| // Construct element I by extracting its arguments from the InitializerList tuple. ArgIndex |
| // is the position of its first argument in Args, and ArgCount is the number of arguments. |
| // The Indices sequence corresponds to [0, ArgCount). |
| // |
| // The Sizes sequence lists the argument counts for elements after I, so Size is the ArgCount |
| // for the next element. The recursion stops when Sizes is empty for the last element. |
| // |
| template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices, |
| std::size_t Size, std::size_t... Sizes, typename... Args> |
| StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>, |
| std::index_sequence<Size, Sizes...>, std::tuple<Args...>& tuple) |
| : StaticVector(std::index_sequence<I + 1, ArgIndex + ArgCount, Size>{}, |
| std::make_index_sequence<Size>{}, std::index_sequence<Sizes...>{}, tuple) { |
| construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...); |
| } |
| |
| // Base case for in-place constructor. |
| template <std::size_t I, std::size_t ArgIndex, std::size_t ArgCount, std::size_t... Indices, |
| typename... Args> |
| StaticVector(std::index_sequence<I, ArgIndex, ArgCount>, std::index_sequence<Indices...>, |
| std::index_sequence<>, std::tuple<Args...>& tuple) |
| : size_(I + 1) { |
| construct_at(begin() + I, std::move(std::get<ArgIndex + Indices>(tuple))...); |
| } |
| |
| size_type size_ = 0; |
| std::aligned_storage_t<sizeof(value_type), alignof(value_type)> data_[N]; |
| }; |
| |
| // Deduction guide for array constructor. |
| template <typename T, std::size_t N> |
| StaticVector(T (&)[N]) -> StaticVector<std::remove_cv_t<T>, N>; |
| |
| // Deduction guide for variadic constructor. |
| template <typename T, typename... Us, typename V = std::decay_t<T>, |
| typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>> |
| StaticVector(T&&, Us&&...) -> StaticVector<V, 1 + sizeof...(Us)>; |
| |
| // Deduction guide for in-place constructor. |
| template <typename T, std::size_t... Sizes, typename... Types> |
| StaticVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&) |
| -> StaticVector<T, sizeof...(Sizes)>; |
| |
| template <typename T, std::size_t N> |
| template <bool IsEmpty> |
| void StaticVector<T, N>::swap(StaticVector& other) { |
| auto [to, from] = std::make_pair(this, &other); |
| if (from == this) return; |
| |
| // Assume this vector has fewer elements, so the excess of the other vector will be moved to it. |
| auto [min, max] = std::make_pair(size(), other.size()); |
| |
| // No elements to swap if moving into an empty vector. |
| if constexpr (IsEmpty) { |
| assert(min == 0); |
| } else { |
| if (min > max) { |
| std::swap(from, to); |
| std::swap(min, max); |
| } |
| |
| // Swap elements [0, min). |
| in_place_swap_ranges(begin(), begin() + min, other.begin()); |
| |
| // No elements to move if sizes are equal. |
| if (min == max) return; |
| } |
| |
| // Move elements [min, max) and destroy their source for destructor side effects. |
| const auto [first, last] = std::make_pair(from->begin() + min, from->begin() + max); |
| std::uninitialized_move(first, last, to->begin() + min); |
| std::destroy(first, last); |
| |
| std::swap(size_, other.size_); |
| } |
| |
| template <typename T, std::size_t N> |
| inline void swap(StaticVector<T, N>& lhs, StaticVector<T, N>& rhs) { |
| lhs.swap(rhs); |
| } |
| |
| } // namespace android::ftl |