| /* |
| * Copyright 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "Scheduler.h" |
| |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <memory> |
| #include <numeric> |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.2/ISurfaceFlingerConfigs.h> |
| #include <configstore/Utils.h> |
| #include <cutils/properties.h> |
| #include <ui/DisplayStatInfo.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include "DispSync.h" |
| #include "DispSyncSource.h" |
| #include "EventControlThread.h" |
| #include "EventThread.h" |
| #include "IdleTimer.h" |
| #include "InjectVSyncSource.h" |
| #include "SchedulerUtils.h" |
| #include "SurfaceFlingerProperties.h" |
| |
| namespace android { |
| |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| using namespace android::sysprop; |
| |
| #define RETURN_VALUE_IF_INVALID(value) \ |
| if (handle == nullptr || mConnections.count(handle->id) == 0) return value |
| #define RETURN_IF_INVALID() \ |
| if (handle == nullptr || mConnections.count(handle->id) == 0) return |
| |
| std::atomic<int64_t> Scheduler::sNextId = 0; |
| |
| Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function) |
| : mHasSyncFramework(running_without_sync_framework(true)), |
| mDispSyncPresentTimeOffset(present_time_offset_from_vsync_ns(0)), |
| mPrimaryHWVsyncEnabled(false), |
| mHWVsyncAvailable(false) { |
| // Note: We create a local temporary with the real DispSync implementation |
| // type temporarily so we can initialize it with the configured values, |
| // before storing it for more generic use using the interface type. |
| auto primaryDispSync = std::make_unique<impl::DispSync>("SchedulerDispSync"); |
| primaryDispSync->init(mHasSyncFramework, mDispSyncPresentTimeOffset); |
| mPrimaryDispSync = std::move(primaryDispSync); |
| mEventControlThread = std::make_unique<impl::EventControlThread>(function); |
| |
| char value[PROPERTY_VALUE_MAX]; |
| property_get("debug.sf.set_idle_timer_ms", value, "0"); |
| mSetIdleTimerMs = atoi(value); |
| |
| if (mSetIdleTimerMs > 0) { |
| mIdleTimer = |
| std::make_unique<scheduler::IdleTimer>(std::chrono::milliseconds(mSetIdleTimerMs), |
| [this] { resetTimerCallback(); }, |
| [this] { expiredTimerCallback(); }); |
| mIdleTimer->start(); |
| } |
| } |
| |
| Scheduler::~Scheduler() { |
| // Ensure the IdleTimer thread is joined before we start destroying state. |
| mIdleTimer.reset(); |
| } |
| |
| sp<Scheduler::ConnectionHandle> Scheduler::createConnection( |
| const char* connectionName, int64_t phaseOffsetNs, ResyncCallback resyncCallback, |
| impl::EventThread::InterceptVSyncsCallback interceptCallback) { |
| const int64_t id = sNextId++; |
| ALOGV("Creating a connection handle with ID: %" PRId64 "\n", id); |
| |
| std::unique_ptr<EventThread> eventThread = |
| makeEventThread(connectionName, mPrimaryDispSync.get(), phaseOffsetNs, |
| std::move(interceptCallback)); |
| |
| auto eventThreadConnection = |
| createConnectionInternal(eventThread.get(), std::move(resyncCallback)); |
| mConnections.emplace(id, |
| std::make_unique<Connection>(new ConnectionHandle(id), |
| eventThreadConnection, |
| std::move(eventThread))); |
| return mConnections[id]->handle; |
| } |
| |
| std::unique_ptr<EventThread> Scheduler::makeEventThread( |
| const char* connectionName, DispSync* dispSync, int64_t phaseOffsetNs, |
| impl::EventThread::InterceptVSyncsCallback interceptCallback) { |
| std::unique_ptr<VSyncSource> eventThreadSource = |
| std::make_unique<DispSyncSource>(dispSync, phaseOffsetNs, true, connectionName); |
| return std::make_unique<impl::EventThread>(std::move(eventThreadSource), |
| std::move(interceptCallback), connectionName); |
| } |
| |
| sp<EventThreadConnection> Scheduler::createConnectionInternal(EventThread* eventThread, |
| ResyncCallback&& resyncCallback) { |
| return eventThread->createEventConnection(std::move(resyncCallback), |
| [this] { resetIdleTimer(); }); |
| } |
| |
| sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( |
| const sp<Scheduler::ConnectionHandle>& handle, ResyncCallback resyncCallback) { |
| RETURN_VALUE_IF_INVALID(nullptr); |
| return createConnectionInternal(mConnections[handle->id]->thread.get(), |
| std::move(resyncCallback)); |
| } |
| |
| EventThread* Scheduler::getEventThread(const sp<Scheduler::ConnectionHandle>& handle) { |
| RETURN_VALUE_IF_INVALID(nullptr); |
| return mConnections[handle->id]->thread.get(); |
| } |
| |
| sp<EventThreadConnection> Scheduler::getEventConnection(const sp<ConnectionHandle>& handle) { |
| RETURN_VALUE_IF_INVALID(nullptr); |
| return mConnections[handle->id]->eventConnection; |
| } |
| |
| void Scheduler::hotplugReceived(const sp<Scheduler::ConnectionHandle>& handle, |
| PhysicalDisplayId displayId, bool connected) { |
| RETURN_IF_INVALID(); |
| mConnections[handle->id]->thread->onHotplugReceived(displayId, connected); |
| } |
| |
| void Scheduler::onScreenAcquired(const sp<Scheduler::ConnectionHandle>& handle) { |
| RETURN_IF_INVALID(); |
| mConnections[handle->id]->thread->onScreenAcquired(); |
| } |
| |
| void Scheduler::onScreenReleased(const sp<Scheduler::ConnectionHandle>& handle) { |
| RETURN_IF_INVALID(); |
| mConnections[handle->id]->thread->onScreenReleased(); |
| } |
| |
| void Scheduler::dump(const sp<Scheduler::ConnectionHandle>& handle, std::string& result) const { |
| RETURN_IF_INVALID(); |
| mConnections.at(handle->id)->thread->dump(result); |
| } |
| |
| void Scheduler::setPhaseOffset(const sp<Scheduler::ConnectionHandle>& handle, nsecs_t phaseOffset) { |
| RETURN_IF_INVALID(); |
| mConnections[handle->id]->thread->setPhaseOffset(phaseOffset); |
| } |
| |
| void Scheduler::pauseVsyncCallback(const android::sp<android::Scheduler::ConnectionHandle>& handle, |
| bool pause) { |
| RETURN_IF_INVALID(); |
| mConnections[handle->id]->thread->pauseVsyncCallback(pause); |
| } |
| |
| void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) { |
| stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0); |
| stats->vsyncPeriod = mPrimaryDispSync->getPeriod(); |
| } |
| |
| void Scheduler::enableHardwareVsync() { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mPrimaryDispSync->beginResync(); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::disableHardwareVsync(bool makeUnavailable) { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| mEventControlThread->setVsyncEnabled(false); |
| mPrimaryDispSync->endResync(); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { |
| { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (makeAvailable) { |
| mHWVsyncAvailable = makeAvailable; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| } |
| |
| if (period <= 0) { |
| return; |
| } |
| |
| setVsyncPeriod(period); |
| } |
| |
| ResyncCallback Scheduler::makeResyncCallback(GetVsyncPeriod&& getVsyncPeriod) { |
| std::weak_ptr<VsyncState> ptr = mPrimaryVsyncState; |
| return [ptr, getVsyncPeriod = std::move(getVsyncPeriod)]() { |
| if (const auto vsync = ptr.lock()) { |
| vsync->resync(getVsyncPeriod); |
| } |
| }; |
| } |
| |
| void Scheduler::VsyncState::resync(const GetVsyncPeriod& getVsyncPeriod) { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(500); |
| |
| const nsecs_t now = systemTime(); |
| const nsecs_t last = lastResyncTime.exchange(now); |
| |
| if (now - last > kIgnoreDelay) { |
| scheduler.resyncToHardwareVsync(false, getVsyncPeriod()); |
| } |
| } |
| |
| void Scheduler::setRefreshSkipCount(int count) { |
| mPrimaryDispSync->setRefreshSkipCount(count); |
| } |
| |
| void Scheduler::setVsyncPeriod(const nsecs_t period) { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| mPrimaryDispSync->reset(); |
| mPrimaryDispSync->setPeriod(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mPrimaryDispSync->beginResync(); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::addResyncSample(const nsecs_t timestamp) { |
| bool needsHwVsync = false; |
| { // Scope for the lock |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| needsHwVsync = mPrimaryDispSync->addResyncSample(timestamp); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) { |
| if (mPrimaryDispSync->addPresentFence(fenceTime)) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::setIgnorePresentFences(bool ignore) { |
| mPrimaryDispSync->setIgnorePresentFences(ignore); |
| } |
| |
| nsecs_t Scheduler::expectedPresentTime() { |
| return mPrimaryDispSync->expectedPresentTime(); |
| } |
| |
| void Scheduler::dumpPrimaryDispSync(std::string& result) const { |
| mPrimaryDispSync->dump(result); |
| } |
| |
| void Scheduler::addFramePresentTimeForLayer(const nsecs_t framePresentTime, bool isAutoTimestamp, |
| const std::string layerName) { |
| // This is V1 logic. It calculates the average FPS based on the timestamp frequency |
| // regardless of which layer the timestamp came from. |
| // For now, the averages and FPS are recorded in the systrace. |
| determineTimestampAverage(isAutoTimestamp, framePresentTime); |
| |
| // This is V2 logic. It calculates the average and median timestamp difference based on the |
| // individual layer history. The results are recorded in the systrace. |
| determineLayerTimestampStats(layerName, framePresentTime); |
| } |
| |
| void Scheduler::incrementFrameCounter() { |
| std::lock_guard<std::mutex> lock(mLayerHistoryLock); |
| mLayerHistory.incrementCounter(); |
| } |
| |
| void Scheduler::setExpiredIdleTimerCallback(const ExpiredIdleTimerCallback& expiredTimerCallback) { |
| std::lock_guard<std::mutex> lock(mCallbackLock); |
| mExpiredTimerCallback = expiredTimerCallback; |
| } |
| |
| void Scheduler::setResetIdleTimerCallback(const ResetIdleTimerCallback& resetTimerCallback) { |
| std::lock_guard<std::mutex> lock(mCallbackLock); |
| mResetTimerCallback = resetTimerCallback; |
| } |
| |
| void Scheduler::updateFrameSkipping(const int64_t skipCount) { |
| ATRACE_INT("FrameSkipCount", skipCount); |
| if (mSkipCount != skipCount) { |
| // Only update DispSync if it hasn't been updated yet. |
| mPrimaryDispSync->setRefreshSkipCount(skipCount); |
| mSkipCount = skipCount; |
| } |
| } |
| |
| void Scheduler::determineLayerTimestampStats(const std::string layerName, |
| const nsecs_t framePresentTime) { |
| std::vector<int64_t> differencesMs; |
| std::string differencesText = ""; |
| { |
| std::lock_guard<std::mutex> lock(mLayerHistoryLock); |
| mLayerHistory.insert(layerName, framePresentTime); |
| |
| // Traverse through the layer history, and determine the differences in present times. |
| nsecs_t newestPresentTime = framePresentTime; |
| for (int i = 1; i < mLayerHistory.getSize(); i++) { |
| std::unordered_map<std::string, nsecs_t> layers = mLayerHistory.get(i); |
| for (auto layer : layers) { |
| if (layer.first != layerName) { |
| continue; |
| } |
| int64_t differenceMs = (newestPresentTime - layer.second) / 1000000; |
| // Dismiss noise. |
| if (differenceMs > 10 && differenceMs < 60) { |
| differencesMs.push_back(differenceMs); |
| } |
| IF_ALOGV() { differencesText += (std::to_string(differenceMs) + " "); } |
| newestPresentTime = layer.second; |
| } |
| } |
| } |
| ALOGV("Layer %s timestamp intervals: %s", layerName.c_str(), differencesText.c_str()); |
| |
| if (!differencesMs.empty()) { |
| // Mean/Average is a good indicator for when 24fps videos are playing, because the frames |
| // come in 33, and 49 ms intervals with occasional 41ms. |
| const int64_t meanMs = scheduler::calculate_mean(differencesMs); |
| const auto tagMean = "TimestampMean_" + layerName; |
| ATRACE_INT(tagMean.c_str(), meanMs); |
| |
| // Mode and median are good indicators for 30 and 60 fps videos, because the majority of |
| // frames come in 16, or 33 ms intervals. |
| const auto tagMedian = "TimestampMedian_" + layerName; |
| ATRACE_INT(tagMedian.c_str(), scheduler::calculate_median(&differencesMs)); |
| |
| const auto tagMode = "TimestampMode_" + layerName; |
| ATRACE_INT(tagMode.c_str(), scheduler::calculate_mode(differencesMs)); |
| } |
| } |
| |
| void Scheduler::determineTimestampAverage(bool isAutoTimestamp, const nsecs_t framePresentTime) { |
| ATRACE_INT("AutoTimestamp", isAutoTimestamp); |
| |
| // Video does not have timestamp automatically set, so we discard timestamps that are |
| // coming in from other sources for now. |
| if (isAutoTimestamp) { |
| return; |
| } |
| int64_t differenceMs = (framePresentTime - mPreviousFrameTimestamp) / 1000000; |
| mPreviousFrameTimestamp = framePresentTime; |
| |
| if (differenceMs < 10 || differenceMs > 100) { |
| // Dismiss noise. |
| return; |
| } |
| ATRACE_INT("TimestampDiff", differenceMs); |
| |
| mTimeDifferences[mCounter % scheduler::ARRAY_SIZE] = differenceMs; |
| mCounter++; |
| int64_t mean = scheduler::calculate_mean(mTimeDifferences); |
| ATRACE_INT("AutoTimestampMean", mean); |
| |
| // TODO(b/113612090): This are current numbers from trial and error while running videos |
| // from YouTube at 24, 30, and 60 fps. |
| if (mean > 14 && mean < 18) { |
| ATRACE_INT("MediaFPS", 60); |
| } else if (mean > 31 && mean < 34) { |
| ATRACE_INT("MediaFPS", 30); |
| return; |
| } else if (mean > 39 && mean < 42) { |
| ATRACE_INT("MediaFPS", 24); |
| } |
| } |
| |
| void Scheduler::resetIdleTimer() { |
| if (mIdleTimer) { |
| mIdleTimer->reset(); |
| } |
| } |
| |
| void Scheduler::resetTimerCallback() { |
| std::lock_guard<std::mutex> lock(mCallbackLock); |
| if (mResetTimerCallback) { |
| mResetTimerCallback(); |
| ATRACE_INT("ExpiredIdleTimer", 0); |
| } |
| } |
| |
| void Scheduler::expiredTimerCallback() { |
| std::lock_guard<std::mutex> lock(mCallbackLock); |
| if (mExpiredTimerCallback) { |
| mExpiredTimerCallback(); |
| ATRACE_INT("ExpiredIdleTimer", 1); |
| } |
| } |
| |
| std::string Scheduler::doDump() { |
| std::ostringstream stream; |
| stream << "+ Idle timer interval: " << mSetIdleTimerMs << " ms" << std::endl; |
| return stream.str(); |
| } |
| |
| } // namespace android |