blob: 4f846dbf5907b7fd9f54a883bead1e4142d0c9f5 [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <memory>
#include <numeric>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.2/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <cutils/properties.h>
#include <ui/DisplayStatInfo.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include "DispSync.h"
#include "DispSyncSource.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "IdleTimer.h"
#include "InjectVSyncSource.h"
#include "SchedulerUtils.h"
#include "SurfaceFlingerProperties.h"
namespace android {
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
using namespace android::sysprop;
#define RETURN_VALUE_IF_INVALID(value) \
if (handle == nullptr || mConnections.count(handle->id) == 0) return value
#define RETURN_IF_INVALID() \
if (handle == nullptr || mConnections.count(handle->id) == 0) return
std::atomic<int64_t> Scheduler::sNextId = 0;
Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function)
: mHasSyncFramework(running_without_sync_framework(true)),
mDispSyncPresentTimeOffset(present_time_offset_from_vsync_ns(0)),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false) {
// Note: We create a local temporary with the real DispSync implementation
// type temporarily so we can initialize it with the configured values,
// before storing it for more generic use using the interface type.
auto primaryDispSync = std::make_unique<impl::DispSync>("SchedulerDispSync");
primaryDispSync->init(mHasSyncFramework, mDispSyncPresentTimeOffset);
mPrimaryDispSync = std::move(primaryDispSync);
mEventControlThread = std::make_unique<impl::EventControlThread>(function);
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.set_idle_timer_ms", value, "0");
mSetIdleTimerMs = atoi(value);
if (mSetIdleTimerMs > 0) {
mIdleTimer =
std::make_unique<scheduler::IdleTimer>(std::chrono::milliseconds(mSetIdleTimerMs),
[this] { resetTimerCallback(); },
[this] { expiredTimerCallback(); });
mIdleTimer->start();
}
}
Scheduler::~Scheduler() {
// Ensure the IdleTimer thread is joined before we start destroying state.
mIdleTimer.reset();
}
sp<Scheduler::ConnectionHandle> Scheduler::createConnection(
const char* connectionName, int64_t phaseOffsetNs, ResyncCallback resyncCallback,
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
const int64_t id = sNextId++;
ALOGV("Creating a connection handle with ID: %" PRId64 "\n", id);
std::unique_ptr<EventThread> eventThread =
makeEventThread(connectionName, mPrimaryDispSync.get(), phaseOffsetNs,
std::move(interceptCallback));
auto eventThreadConnection =
createConnectionInternal(eventThread.get(), std::move(resyncCallback));
mConnections.emplace(id,
std::make_unique<Connection>(new ConnectionHandle(id),
eventThreadConnection,
std::move(eventThread)));
return mConnections[id]->handle;
}
std::unique_ptr<EventThread> Scheduler::makeEventThread(
const char* connectionName, DispSync* dispSync, int64_t phaseOffsetNs,
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
std::unique_ptr<VSyncSource> eventThreadSource =
std::make_unique<DispSyncSource>(dispSync, phaseOffsetNs, true, connectionName);
return std::make_unique<impl::EventThread>(std::move(eventThreadSource),
std::move(interceptCallback), connectionName);
}
sp<EventThreadConnection> Scheduler::createConnectionInternal(EventThread* eventThread,
ResyncCallback&& resyncCallback) {
return eventThread->createEventConnection(std::move(resyncCallback),
[this] { resetIdleTimer(); });
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
const sp<Scheduler::ConnectionHandle>& handle, ResyncCallback resyncCallback) {
RETURN_VALUE_IF_INVALID(nullptr);
return createConnectionInternal(mConnections[handle->id]->thread.get(),
std::move(resyncCallback));
}
EventThread* Scheduler::getEventThread(const sp<Scheduler::ConnectionHandle>& handle) {
RETURN_VALUE_IF_INVALID(nullptr);
return mConnections[handle->id]->thread.get();
}
sp<EventThreadConnection> Scheduler::getEventConnection(const sp<ConnectionHandle>& handle) {
RETURN_VALUE_IF_INVALID(nullptr);
return mConnections[handle->id]->eventConnection;
}
void Scheduler::hotplugReceived(const sp<Scheduler::ConnectionHandle>& handle,
PhysicalDisplayId displayId, bool connected) {
RETURN_IF_INVALID();
mConnections[handle->id]->thread->onHotplugReceived(displayId, connected);
}
void Scheduler::onScreenAcquired(const sp<Scheduler::ConnectionHandle>& handle) {
RETURN_IF_INVALID();
mConnections[handle->id]->thread->onScreenAcquired();
}
void Scheduler::onScreenReleased(const sp<Scheduler::ConnectionHandle>& handle) {
RETURN_IF_INVALID();
mConnections[handle->id]->thread->onScreenReleased();
}
void Scheduler::dump(const sp<Scheduler::ConnectionHandle>& handle, std::string& result) const {
RETURN_IF_INVALID();
mConnections.at(handle->id)->thread->dump(result);
}
void Scheduler::setPhaseOffset(const sp<Scheduler::ConnectionHandle>& handle, nsecs_t phaseOffset) {
RETURN_IF_INVALID();
mConnections[handle->id]->thread->setPhaseOffset(phaseOffset);
}
void Scheduler::pauseVsyncCallback(const android::sp<android::Scheduler::ConnectionHandle>& handle,
bool pause) {
RETURN_IF_INVALID();
mConnections[handle->id]->thread->pauseVsyncCallback(pause);
}
void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) {
stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync->getPeriod();
}
void Scheduler::enableHardwareVsync() {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync->beginResync();
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::disableHardwareVsync(bool makeUnavailable) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync->endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
{
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = makeAvailable;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
}
if (period <= 0) {
return;
}
setVsyncPeriod(period);
}
ResyncCallback Scheduler::makeResyncCallback(GetVsyncPeriod&& getVsyncPeriod) {
std::weak_ptr<VsyncState> ptr = mPrimaryVsyncState;
return [ptr, getVsyncPeriod = std::move(getVsyncPeriod)]() {
if (const auto vsync = ptr.lock()) {
vsync->resync(getVsyncPeriod);
}
};
}
void Scheduler::VsyncState::resync(const GetVsyncPeriod& getVsyncPeriod) {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
const nsecs_t now = systemTime();
const nsecs_t last = lastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
scheduler.resyncToHardwareVsync(false, getVsyncPeriod());
}
}
void Scheduler::setRefreshSkipCount(int count) {
mPrimaryDispSync->setRefreshSkipCount(count);
}
void Scheduler::setVsyncPeriod(const nsecs_t period) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
mPrimaryDispSync->reset();
mPrimaryDispSync->setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync->beginResync();
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::addResyncSample(const nsecs_t timestamp) {
bool needsHwVsync = false;
{ // Scope for the lock
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync->addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
if (mPrimaryDispSync->addPresentFence(fenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::setIgnorePresentFences(bool ignore) {
mPrimaryDispSync->setIgnorePresentFences(ignore);
}
nsecs_t Scheduler::expectedPresentTime() {
return mPrimaryDispSync->expectedPresentTime();
}
void Scheduler::dumpPrimaryDispSync(std::string& result) const {
mPrimaryDispSync->dump(result);
}
void Scheduler::addFramePresentTimeForLayer(const nsecs_t framePresentTime, bool isAutoTimestamp,
const std::string layerName) {
// This is V1 logic. It calculates the average FPS based on the timestamp frequency
// regardless of which layer the timestamp came from.
// For now, the averages and FPS are recorded in the systrace.
determineTimestampAverage(isAutoTimestamp, framePresentTime);
// This is V2 logic. It calculates the average and median timestamp difference based on the
// individual layer history. The results are recorded in the systrace.
determineLayerTimestampStats(layerName, framePresentTime);
}
void Scheduler::incrementFrameCounter() {
std::lock_guard<std::mutex> lock(mLayerHistoryLock);
mLayerHistory.incrementCounter();
}
void Scheduler::setExpiredIdleTimerCallback(const ExpiredIdleTimerCallback& expiredTimerCallback) {
std::lock_guard<std::mutex> lock(mCallbackLock);
mExpiredTimerCallback = expiredTimerCallback;
}
void Scheduler::setResetIdleTimerCallback(const ResetIdleTimerCallback& resetTimerCallback) {
std::lock_guard<std::mutex> lock(mCallbackLock);
mResetTimerCallback = resetTimerCallback;
}
void Scheduler::updateFrameSkipping(const int64_t skipCount) {
ATRACE_INT("FrameSkipCount", skipCount);
if (mSkipCount != skipCount) {
// Only update DispSync if it hasn't been updated yet.
mPrimaryDispSync->setRefreshSkipCount(skipCount);
mSkipCount = skipCount;
}
}
void Scheduler::determineLayerTimestampStats(const std::string layerName,
const nsecs_t framePresentTime) {
std::vector<int64_t> differencesMs;
std::string differencesText = "";
{
std::lock_guard<std::mutex> lock(mLayerHistoryLock);
mLayerHistory.insert(layerName, framePresentTime);
// Traverse through the layer history, and determine the differences in present times.
nsecs_t newestPresentTime = framePresentTime;
for (int i = 1; i < mLayerHistory.getSize(); i++) {
std::unordered_map<std::string, nsecs_t> layers = mLayerHistory.get(i);
for (auto layer : layers) {
if (layer.first != layerName) {
continue;
}
int64_t differenceMs = (newestPresentTime - layer.second) / 1000000;
// Dismiss noise.
if (differenceMs > 10 && differenceMs < 60) {
differencesMs.push_back(differenceMs);
}
IF_ALOGV() { differencesText += (std::to_string(differenceMs) + " "); }
newestPresentTime = layer.second;
}
}
}
ALOGV("Layer %s timestamp intervals: %s", layerName.c_str(), differencesText.c_str());
if (!differencesMs.empty()) {
// Mean/Average is a good indicator for when 24fps videos are playing, because the frames
// come in 33, and 49 ms intervals with occasional 41ms.
const int64_t meanMs = scheduler::calculate_mean(differencesMs);
const auto tagMean = "TimestampMean_" + layerName;
ATRACE_INT(tagMean.c_str(), meanMs);
// Mode and median are good indicators for 30 and 60 fps videos, because the majority of
// frames come in 16, or 33 ms intervals.
const auto tagMedian = "TimestampMedian_" + layerName;
ATRACE_INT(tagMedian.c_str(), scheduler::calculate_median(&differencesMs));
const auto tagMode = "TimestampMode_" + layerName;
ATRACE_INT(tagMode.c_str(), scheduler::calculate_mode(differencesMs));
}
}
void Scheduler::determineTimestampAverage(bool isAutoTimestamp, const nsecs_t framePresentTime) {
ATRACE_INT("AutoTimestamp", isAutoTimestamp);
// Video does not have timestamp automatically set, so we discard timestamps that are
// coming in from other sources for now.
if (isAutoTimestamp) {
return;
}
int64_t differenceMs = (framePresentTime - mPreviousFrameTimestamp) / 1000000;
mPreviousFrameTimestamp = framePresentTime;
if (differenceMs < 10 || differenceMs > 100) {
// Dismiss noise.
return;
}
ATRACE_INT("TimestampDiff", differenceMs);
mTimeDifferences[mCounter % scheduler::ARRAY_SIZE] = differenceMs;
mCounter++;
int64_t mean = scheduler::calculate_mean(mTimeDifferences);
ATRACE_INT("AutoTimestampMean", mean);
// TODO(b/113612090): This are current numbers from trial and error while running videos
// from YouTube at 24, 30, and 60 fps.
if (mean > 14 && mean < 18) {
ATRACE_INT("MediaFPS", 60);
} else if (mean > 31 && mean < 34) {
ATRACE_INT("MediaFPS", 30);
return;
} else if (mean > 39 && mean < 42) {
ATRACE_INT("MediaFPS", 24);
}
}
void Scheduler::resetIdleTimer() {
if (mIdleTimer) {
mIdleTimer->reset();
}
}
void Scheduler::resetTimerCallback() {
std::lock_guard<std::mutex> lock(mCallbackLock);
if (mResetTimerCallback) {
mResetTimerCallback();
ATRACE_INT("ExpiredIdleTimer", 0);
}
}
void Scheduler::expiredTimerCallback() {
std::lock_guard<std::mutex> lock(mCallbackLock);
if (mExpiredTimerCallback) {
mExpiredTimerCallback();
ATRACE_INT("ExpiredIdleTimer", 1);
}
}
std::string Scheduler::doDump() {
std::ostringstream stream;
stream << "+ Idle timer interval: " << mSetIdleTimerMs << " ms" << std::endl;
return stream.str();
}
} // namespace android