blob: 84956d0cd3f7b8da3080d61759a01a134729100b [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wextra"
//#define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "SurfaceFlinger.h"
#include <aidl/android/hardware/power/Boost.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android/configuration.h>
#include <android/gui/IDisplayEventConnection.h>
#include <android/gui/StaticDisplayInfo.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <android/native_window.h>
#include <android/os/IInputFlinger.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/Display.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/DisplayColorProfileCreationArgs.h>
#include <compositionengine/DisplayCreationArgs.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/OutputLayer.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/DisplayColorProfile.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <configstore/Utils.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <ftl/algorithm.h>
#include <ftl/concat.h>
#include <ftl/fake_guard.h>
#include <ftl/future.h>
#include <ftl/unit.h>
#include <gui/AidlStatusUtil.h>
#include <gui/BufferQueue.h>
#include <gui/DebugEGLImageTracker.h>
#include <gui/IProducerListener.h>
#include <gui/LayerDebugInfo.h>
#include <gui/LayerMetadata.h>
#include <gui/LayerState.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>
#include <gui/TraceUtils.h>
#include <hidl/ServiceManagement.h>
#include <layerproto/LayerProtoParser.h>
#include <log/log.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include <processgroup/processgroup.h>
#include <renderengine/RenderEngine.h>
#include <renderengine/impl/ExternalTexture.h>
#include <scheduler/FrameTargeter.h>
#include <sys/types.h>
#include <ui/ColorSpace.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayId.h>
#include <ui/DisplayMode.h>
#include <ui/DisplayStatInfo.h>
#include <ui/DisplayState.h>
#include <ui/DynamicDisplayInfo.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/HdrRenderTypeUtils.h>
#include <ui/LayerStack.h>
#include <ui/PixelFormat.h>
#include <ui/StaticDisplayInfo.h>
#include <unistd.h>
#include <utils/StopWatch.h>
#include <utils/String16.h>
#include <utils/String8.h>
#include <utils/Timers.h>
#include <utils/misc.h>
#include <algorithm>
#include <cerrno>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <filesystem>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include <common/FlagManager.h>
#include <gui/LayerStatePermissions.h>
#include <gui/SchedulingPolicy.h>
#include <gui/SyncScreenCaptureListener.h>
#include <ui/DisplayIdentification.h>
#include "BackgroundExecutor.h"
#include "Client.h"
#include "ClientCache.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/Hal.h"
#include "DisplayHardware/PowerAdvisor.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "DisplayRenderArea.h"
#include "Effects/Daltonizer.h"
#include "FpsReporter.h"
#include "FrameTimeline/FrameTimeline.h"
#include "FrameTracer/FrameTracer.h"
#include "FrontEnd/LayerCreationArgs.h"
#include "FrontEnd/LayerHandle.h"
#include "FrontEnd/LayerLifecycleManager.h"
#include "FrontEnd/LayerLog.h"
#include "FrontEnd/LayerSnapshot.h"
#include "HdrLayerInfoReporter.h"
#include "Layer.h"
#include "LayerProtoHelper.h"
#include "LayerRenderArea.h"
#include "LayerVector.h"
#include "MutexUtils.h"
#include "NativeWindowSurface.h"
#include "RegionSamplingThread.h"
#include "Scheduler/EventThread.h"
#include "Scheduler/LayerHistory.h"
#include "Scheduler/Scheduler.h"
#include "Scheduler/VsyncConfiguration.h"
#include "Scheduler/VsyncModulator.h"
#include "ScreenCaptureOutput.h"
#include "StartPropertySetThread.h"
#include "SurfaceFlingerProperties.h"
#include "TimeStats/TimeStats.h"
#include "TunnelModeEnabledReporter.h"
#include "Utils/Dumper.h"
#include "WindowInfosListenerInvoker.h"
#include <aidl/android/hardware/graphics/common/DisplayDecorationSupport.h>
#include <aidl/android/hardware/graphics/composer3/DisplayCapability.h>
#include <aidl/android/hardware/graphics/composer3/RenderIntent.h>
#undef NO_THREAD_SAFETY_ANALYSIS
#define NO_THREAD_SAFETY_ANALYSIS \
_Pragma("GCC error \"Prefer <ftl/fake_guard.h> or MutexUtils.h helpers.\"")
// To enable layer borders in the system, change the below flag to true.
#undef DOES_CONTAIN_BORDER
#define DOES_CONTAIN_BORDER false
namespace android {
using namespace std::chrono_literals;
using namespace std::string_literals;
using namespace std::string_view_literals;
using namespace hardware::configstore;
using namespace hardware::configstore::V1_0;
using namespace sysprop;
using ftl::Flags;
using namespace ftl::flag_operators;
using aidl::android::hardware::graphics::common::DisplayDecorationSupport;
using aidl::android::hardware::graphics::composer3::Capability;
using aidl::android::hardware::graphics::composer3::DisplayCapability;
using CompositionStrategyPredictionState = android::compositionengine::impl::
OutputCompositionState::CompositionStrategyPredictionState;
using base::StringAppendF;
using display::PhysicalDisplay;
using display::PhysicalDisplays;
using frontend::TransactionHandler;
using gui::DisplayInfo;
using gui::GameMode;
using gui::IDisplayEventConnection;
using gui::IWindowInfosListener;
using gui::LayerMetadata;
using gui::WindowInfo;
using gui::aidl_utils::binderStatusFromStatusT;
using scheduler::VsyncModulator;
using ui::Dataspace;
using ui::DisplayPrimaries;
using ui::RenderIntent;
using KernelIdleTimerController = scheduler::RefreshRateSelector::KernelIdleTimerController;
namespace hal = android::hardware::graphics::composer::hal;
namespace {
static constexpr int FOUR_K_WIDTH = 3840;
static constexpr int FOUR_K_HEIGHT = 2160;
// TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity.
constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV;
float getDensityFromProperty(const char* property, bool required) {
char value[PROPERTY_VALUE_MAX];
const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f;
if (!density && required) {
ALOGE("%s must be defined as a build property", property);
return FALLBACK_DENSITY;
}
return density;
}
// Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
bool validateCompositionDataspace(Dataspace dataspace) {
return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
}
std::chrono::milliseconds getIdleTimerTimeout(DisplayId displayId) {
const auto displayIdleTimerMsKey = [displayId] {
std::stringstream ss;
ss << "debug.sf.set_idle_timer_ms_" << displayId.value;
return ss.str();
}();
const int32_t displayIdleTimerMs = base::GetIntProperty(displayIdleTimerMsKey, 0);
if (displayIdleTimerMs > 0) {
return std::chrono::milliseconds(displayIdleTimerMs);
}
const int32_t setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms", 0);
const int32_t millis = setIdleTimerMs ? setIdleTimerMs : sysprop::set_idle_timer_ms(0);
return std::chrono::milliseconds(millis);
}
bool getKernelIdleTimerSyspropConfig(DisplayId displayId) {
const auto displaySupportKernelIdleTimerKey = [displayId] {
std::stringstream ss;
ss << "debug.sf.support_kernel_idle_timer_" << displayId.value;
return ss.str();
}();
const auto displaySupportKernelIdleTimer =
base::GetBoolProperty(displaySupportKernelIdleTimerKey, false);
return displaySupportKernelIdleTimer || sysprop::support_kernel_idle_timer(false);
}
bool isAbove4k30(const ui::DisplayMode& outMode) {
using fps_approx_ops::operator>;
Fps refreshRate = Fps::fromValue(outMode.peakRefreshRate);
return outMode.resolution.getWidth() >= FOUR_K_WIDTH &&
outMode.resolution.getHeight() >= FOUR_K_HEIGHT && refreshRate > 30_Hz;
}
void excludeDolbyVisionIf4k30Present(const std::vector<ui::Hdr>& displayHdrTypes,
ui::DisplayMode& outMode) {
if (isAbove4k30(outMode) &&
std::any_of(displayHdrTypes.begin(), displayHdrTypes.end(),
[](ui::Hdr type) { return type == ui::Hdr::DOLBY_VISION_4K30; })) {
for (ui::Hdr type : displayHdrTypes) {
if (type != ui::Hdr::DOLBY_VISION_4K30 && type != ui::Hdr::DOLBY_VISION) {
outMode.supportedHdrTypes.push_back(type);
}
}
} else {
for (ui::Hdr type : displayHdrTypes) {
if (type != ui::Hdr::DOLBY_VISION_4K30) {
outMode.supportedHdrTypes.push_back(type);
}
}
}
}
HdrCapabilities filterOut4k30(const HdrCapabilities& displayHdrCapabilities) {
std::vector<ui::Hdr> hdrTypes;
for (ui::Hdr type : displayHdrCapabilities.getSupportedHdrTypes()) {
if (type != ui::Hdr::DOLBY_VISION_4K30) {
hdrTypes.push_back(type);
}
}
return {hdrTypes, displayHdrCapabilities.getDesiredMaxLuminance(),
displayHdrCapabilities.getDesiredMaxAverageLuminance(),
displayHdrCapabilities.getDesiredMinLuminance()};
}
uint32_t getLayerIdFromSurfaceControl(sp<SurfaceControl> surfaceControl) {
if (!surfaceControl) {
return UNASSIGNED_LAYER_ID;
}
return LayerHandle::getLayerId(surfaceControl->getHandle());
}
/**
* Returns true if the file at path exists and is newer than duration.
*/
bool fileNewerThan(const std::string& path, std::chrono::minutes duration) {
using Clock = std::filesystem::file_time_type::clock;
std::error_code error;
std::filesystem::file_time_type updateTime = std::filesystem::last_write_time(path, error);
if (error) {
return false;
}
return duration > (Clock::now() - updateTime);
}
bool isFrameIntervalOnCadence(TimePoint expectedPresentTime, TimePoint lastExpectedPresentTimestamp,
Fps lastFrameInterval, Period timeout, Duration threshold) {
if (lastFrameInterval.getPeriodNsecs() == 0) {
return false;
}
const auto expectedPresentTimeDeltaNs =
expectedPresentTime.ns() - lastExpectedPresentTimestamp.ns();
if (expectedPresentTimeDeltaNs > timeout.ns()) {
return false;
}
const auto expectedPresentPeriods = static_cast<nsecs_t>(
std::round(static_cast<float>(expectedPresentTimeDeltaNs) /
static_cast<float>(lastFrameInterval.getPeriodNsecs())));
const auto calculatedPeriodsOutNs = lastFrameInterval.getPeriodNsecs() * expectedPresentPeriods;
const auto calculatedExpectedPresentTimeNs =
lastExpectedPresentTimestamp.ns() + calculatedPeriodsOutNs;
const auto presentTimeDelta =
std::abs(expectedPresentTime.ns() - calculatedExpectedPresentTimeNs);
return presentTimeDelta < threshold.ns();
}
bool isExpectedPresentWithinTimeout(TimePoint expectedPresentTime,
TimePoint lastExpectedPresentTimestamp,
std::optional<Period> timeoutOpt, Duration threshold) {
if (!timeoutOpt) {
// Always within timeout if timeoutOpt is absent and don't send hint
// for the timeout
return true;
}
if (timeoutOpt->ns() == 0) {
// Always outside timeout if timeoutOpt is 0 and always send
// the hint for the timeout.
return false;
}
if (expectedPresentTime.ns() < lastExpectedPresentTimestamp.ns() + timeoutOpt->ns()) {
return true;
}
// Check if within the threshold as it can be just outside the timeout
return std::abs(expectedPresentTime.ns() -
(lastExpectedPresentTimestamp.ns() + timeoutOpt->ns())) < threshold.ns();
}
} // namespace anonymous
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS");
const String16 sDump("android.permission.DUMP");
const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT");
const String16 sInternalSystemWindow("android.permission.INTERNAL_SYSTEM_WINDOW");
const String16 sWakeupSurfaceFlinger("android.permission.WAKEUP_SURFACE_FLINGER");
const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled";
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
bool SurfaceFlinger::hasSyncFramework;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
int64_t SurfaceFlinger::minAcquiredBuffers = 1;
uint32_t SurfaceFlinger::maxGraphicsWidth;
uint32_t SurfaceFlinger::maxGraphicsHeight;
bool SurfaceFlinger::useContextPriority;
Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
LatchUnsignaledConfig SurfaceFlinger::enableLatchUnsignaledConfig;
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::kManaged:
return std::string("Managed");
case DisplayColorSetting::kUnmanaged:
return std::string("Unmanaged");
case DisplayColorSetting::kEnhanced:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
bool callingThreadHasPermission(const String16& permission) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(permission, pid, uid);
}
ui::Transform::RotationFlags SurfaceFlinger::sActiveDisplayRotationFlags = ui::Transform::ROT_0;
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
: mFactory(factory),
mPid(getpid()),
mTimeStats(std::make_shared<impl::TimeStats>()),
mFrameTracer(mFactory.createFrameTracer()),
mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, mPid)),
mCompositionEngine(mFactory.createCompositionEngine()),
mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)),
mTunnelModeEnabledReporter(sp<TunnelModeEnabledReporter>::make()),
mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)),
mInternalDisplayDensity(
getDensityFromProperty("ro.sf.lcd_density", !mEmulatedDisplayDensity)),
mPowerAdvisor(std::make_unique<Hwc2::impl::PowerAdvisor>(*this)),
mWindowInfosListenerInvoker(sp<WindowInfosListenerInvoker>::make()) {
ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str());
}
SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
ATRACE_CALL();
ALOGI("SurfaceFlinger is starting");
hasSyncFramework = running_without_sync_framework(true);
dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
minAcquiredBuffers =
SurfaceFlingerProperties::min_acquired_buffers().value_or(minAcquiredBuffers);
maxGraphicsWidth = std::max(max_graphics_width(0), 0);
maxGraphicsHeight = std::max(max_graphics_height(0), 0);
mSupportsWideColor = has_wide_color_display(false);
mDefaultCompositionDataspace =
static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
mSupportsWideColor ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
defaultCompositionDataspace = mDefaultCompositionDataspace;
wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
wideColorGamutCompositionPixelFormat =
static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
mLayerCachingEnabled = [] {
const bool enable =
android::sysprop::SurfaceFlingerProperties::enable_layer_caching().value_or(false);
return base::GetBoolProperty(std::string("debug.sf.enable_layer_caching"), enable);
}();
useContextPriority = use_context_priority(true);
mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.build.type", value, "user");
mIsUserBuild = strcmp(value, "user") == 0;
mDebugFlashDelay = base::GetUintProperty("debug.sf.showupdates"s, 0u);
mBackpressureGpuComposition = base::GetBoolProperty("debug.sf.enable_gl_backpressure"s, true);
ALOGI_IF(mBackpressureGpuComposition, "Enabling backpressure for GPU composition");
property_get("ro.surface_flinger.supports_background_blur", value, "0");
bool supportsBlurs = atoi(value);
mSupportsBlur = supportsBlurs;
ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported.");
property_get("debug.sf.luma_sampling", value, "1");
mLumaSampling = atoi(value);
property_get("debug.sf.disable_client_composition_cache", value, "0");
mDisableClientCompositionCache = atoi(value);
property_get("debug.sf.predict_hwc_composition_strategy", value, "1");
mPredictCompositionStrategy = atoi(value);
property_get("debug.sf.treat_170m_as_sRGB", value, "0");
mTreat170mAsSrgb = atoi(value);
property_get("debug.sf.dim_in_gamma_in_enhanced_screenshots", value, 0);
mDimInGammaSpaceForEnhancedScreenshots = atoi(value);
mIgnoreHwcPhysicalDisplayOrientation =
base::GetBoolProperty("debug.sf.ignore_hwc_physical_display_orientation"s, false);
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
ALOGI("Enabling Treble testing override");
android::hardware::details::setTrebleTestingOverride(true);
}
// TODO (b/270966065) Update the HWC based refresh rate overlay to support spinner
mRefreshRateOverlaySpinner = property_get_bool("debug.sf.show_refresh_rate_overlay_spinner", 0);
mRefreshRateOverlayRenderRate =
property_get_bool("debug.sf.show_refresh_rate_overlay_render_rate", 0);
mRefreshRateOverlayShowInMiddle =
property_get_bool("debug.sf.show_refresh_rate_overlay_in_middle", 0);
if (!mIsUserBuild && base::GetBoolProperty("debug.sf.enable_transaction_tracing"s, true)) {
mTransactionTracing.emplace();
mLayerTracing.setTransactionTracing(*mTransactionTracing);
}
mIgnoreHdrCameraLayers = ignore_hdr_camera_layers(false);
mLayerLifecycleManagerEnabled =
base::GetBoolProperty("persist.debug.sf.enable_layer_lifecycle_manager"s, true);
mLegacyFrontEndEnabled = !mLayerLifecycleManagerEnabled ||
base::GetBoolProperty("persist.debug.sf.enable_legacy_frontend"s, false);
// These are set by the HWC implementation to indicate that they will use the workarounds.
mIsHotplugErrViaNegVsync =
base::GetBoolProperty("debug.sf.hwc_hotplug_error_via_neg_vsync"s, false);
mIsHdcpViaNegVsync = base::GetBoolProperty("debug.sf.hwc_hdcp_via_neg_vsync"s, false);
}
LatchUnsignaledConfig SurfaceFlinger::getLatchUnsignaledConfig() {
if (base::GetBoolProperty("debug.sf.auto_latch_unsignaled"s, true)) {
return LatchUnsignaledConfig::AutoSingleLayer;
}
return LatchUnsignaledConfig::Disabled;
}
SurfaceFlinger::~SurfaceFlinger() = default;
void SurfaceFlinger::binderDied(const wp<IBinder>&) {
// the window manager died on us. prepare its eulogy.
mBootFinished = false;
static_cast<void>(mScheduler->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) {
// Sever the link to inputflinger since it's gone as well.
mInputFlinger.clear();
initializeDisplays();
}));
startBootAnim();
}
void SurfaceFlinger::run() {
mScheduler->run();
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, bool secure,
float requestedRefreshRate) {
// onTransact already checks for some permissions, but adding an additional check here.
// This is to ensure that only system and graphics can request to create a secure
// display. Secure displays can show secure content so we add an additional restriction on it.
const int uid = IPCThreadState::self()->getCallingUid();
if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) {
ALOGE("Only privileged processes can create a secure display");
return nullptr;
}
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(wp<IBinder>::fromExisting(this));
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = sp<DisplayToken>::make(sp<SurfaceFlinger>::fromExisting(this));
Mutex::Autolock _l(mStateLock);
// Display ID is assigned when virtual display is allocated by HWC.
DisplayDeviceState state;
state.isSecure = secure;
// Set display as protected when marked as secure to ensure no behavior change
// TODO (b/314820005): separate as a different arg when creating the display.
state.isProtected = secure;
state.displayName = displayName;
state.requestedRefreshRate = Fps::fromValue(requestedRefreshRate);
mCurrentState.displays.add(token, state);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
Mutex::Autolock lock(mStateLock);
const ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
if (index < 0) {
ALOGE("%s: Invalid display token %p", __func__, displayToken.get());
return;
}
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
if (state.physical) {
ALOGE("%s: Invalid operation on physical display", __func__);
return;
}
mCurrentState.displays.removeItemsAt(index);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::enableHalVirtualDisplays(bool enable) {
auto& generator = mVirtualDisplayIdGenerators.hal;
if (!generator && enable) {
ALOGI("Enabling HAL virtual displays");
generator.emplace(getHwComposer().getMaxVirtualDisplayCount());
} else if (generator && !enable) {
ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use");
generator.reset();
}
}
VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution,
ui::PixelFormat format) {
if (auto& generator = mVirtualDisplayIdGenerators.hal) {
if (const auto id = generator->generateId()) {
if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format)) {
return *id;
}
generator->releaseId(*id);
} else {
ALOGW("%s: Exhausted HAL virtual displays", __func__);
}
ALOGW("%s: Falling back to GPU virtual display", __func__);
}
const auto id = mVirtualDisplayIdGenerators.gpu.generateId();
LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display");
return *id;
}
void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) {
if (const auto id = HalVirtualDisplayId::tryCast(displayId)) {
if (auto& generator = mVirtualDisplayIdGenerators.hal) {
generator->releaseId(*id);
}
return;
}
const auto id = GpuVirtualDisplayId::tryCast(displayId);
LOG_ALWAYS_FATAL_IF(!id);
mVirtualDisplayIdGenerators.gpu.releaseId(*id);
}
std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIdsLocked() const {
std::vector<PhysicalDisplayId> displayIds;
displayIds.reserve(mPhysicalDisplays.size());
const auto defaultDisplayId = getDefaultDisplayDeviceLocked()->getPhysicalId();
displayIds.push_back(defaultDisplayId);
for (const auto& [id, display] : mPhysicalDisplays) {
if (id != defaultDisplayId) {
displayIds.push_back(id);
}
}
return displayIds;
}
std::optional<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIdLocked(
const sp<display::DisplayToken>& displayToken) const {
return ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_key<PhysicalDisplays>);
}
sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
Mutex::Autolock lock(mStateLock);
return getPhysicalDisplayTokenLocked(displayId);
}
HWComposer& SurfaceFlinger::getHwComposer() const {
return mCompositionEngine->getHwComposer();
}
renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
return *mRenderEngine;
}
compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
return *mCompositionEngine.get();
}
void SurfaceFlinger::bootFinished() {
if (mBootFinished == true) {
ALOGE("Extra call to bootFinished");
return;
}
mBootFinished = true;
FlagManager::getMutableInstance().markBootCompleted();
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
if (mRenderEnginePrimeCacheFuture.valid()) {
mRenderEnginePrimeCacheFuture.get();
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mFrameTracer->initialize();
mFrameTimeline->onBootFinished();
getRenderEngine().setEnableTracing(FlagManager::getInstance().use_skia_tracing());
// wait patiently for the window manager death
const String16 name("window");
mWindowManager = defaultServiceManager()->waitForService(name);
if (mWindowManager != 0) {
mWindowManager->linkToDeath(sp<IBinder::DeathRecipient>::fromExisting(this));
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
sp<IBinder> input(defaultServiceManager()->waitForService(String16("inputflinger")));
static_cast<void>(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) {
if (input == nullptr) {
ALOGE("Failed to link to input service");
} else {
mInputFlinger = interface_cast<os::IInputFlinger>(input);
}
readPersistentProperties();
const bool hintSessionEnabled = FlagManager::getInstance().use_adpf_cpu_hint();
mPowerAdvisor->enablePowerHintSession(hintSessionEnabled);
const bool hintSessionUsed = mPowerAdvisor->usePowerHintSession();
// Ordering is important here, as onBootFinished signals to PowerAdvisor that concurrency
// is safe because its variables are initialized.
mPowerAdvisor->onBootFinished();
ALOGD("Power hint is %s",
hintSessionUsed ? "supported" : (hintSessionEnabled ? "unsupported" : "disabled"));
if (hintSessionUsed) {
std::optional<pid_t> renderEngineTid = getRenderEngine().getRenderEngineTid();
std::vector<int32_t> tidList;
tidList.emplace_back(gettid());
if (renderEngineTid.has_value()) {
tidList.emplace_back(*renderEngineTid);
}
if (!mPowerAdvisor->startPowerHintSession(std::move(tidList))) {
ALOGW("Cannot start power hint session");
}
}
mBootStage = BootStage::FINISHED;
if (base::GetBoolProperty("sf.debug.show_refresh_rate_overlay"s, false)) {
ftl::FakeGuard guard(mStateLock);
enableRefreshRateOverlay(true);
}
}));
}
void chooseRenderEngineType(renderengine::RenderEngineCreationArgs::Builder& builder) {
char prop[PROPERTY_VALUE_MAX];
property_get(PROPERTY_DEBUG_RENDERENGINE_BACKEND, prop, "");
if (strcmp(prop, "skiagl") == 0) {
builder.setThreaded(renderengine::RenderEngine::Threaded::NO)
.setGraphicsApi(renderengine::RenderEngine::GraphicsApi::GL);
} else if (strcmp(prop, "skiaglthreaded") == 0) {
builder.setThreaded(renderengine::RenderEngine::Threaded::YES)
.setGraphicsApi(renderengine::RenderEngine::GraphicsApi::GL);
} else if (strcmp(prop, "skiavk") == 0) {
builder.setThreaded(renderengine::RenderEngine::Threaded::NO)
.setGraphicsApi(renderengine::RenderEngine::GraphicsApi::VK);
} else if (strcmp(prop, "skiavkthreaded") == 0) {
builder.setThreaded(renderengine::RenderEngine::Threaded::YES)
.setGraphicsApi(renderengine::RenderEngine::GraphicsApi::VK);
} else {
const auto kVulkan = renderengine::RenderEngine::GraphicsApi::VK;
const bool useVulkan = FlagManager::getInstance().vulkan_renderengine() &&
renderengine::RenderEngine::canSupport(kVulkan);
builder.setGraphicsApi(useVulkan ? kVulkan : renderengine::RenderEngine::GraphicsApi::GL);
}
}
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() FTL_FAKE_GUARD(kMainThreadContext) {
ATRACE_CALL();
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
addTransactionReadyFilters();
Mutex::Autolock lock(mStateLock);
// Get a RenderEngine for the given display / config (can't fail)
// TODO(b/77156734): We need to stop casting and use HAL types when possible.
// Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
auto builder = renderengine::RenderEngineCreationArgs::Builder()
.setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
.setImageCacheSize(maxFrameBufferAcquiredBuffers)
.setEnableProtectedContext(enable_protected_contents(false))
.setPrecacheToneMapperShaderOnly(false)
.setSupportsBackgroundBlur(mSupportsBlur)
.setContextPriority(
useContextPriority
? renderengine::RenderEngine::ContextPriority::REALTIME
: renderengine::RenderEngine::ContextPriority::MEDIUM);
chooseRenderEngineType(builder);
mRenderEngine = renderengine::RenderEngine::create(builder.build());
mCompositionEngine->setRenderEngine(mRenderEngine.get());
mMaxRenderTargetSize =
std::min(getRenderEngine().getMaxTextureSize(), getRenderEngine().getMaxViewportDims());
// Set SF main policy after initializing RenderEngine which has its own policy.
if (!SetTaskProfiles(0, {"SFMainPolicy"})) {
ALOGW("Failed to set main task profile");
}
mCompositionEngine->setTimeStats(mTimeStats);
mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName));
mCompositionEngine->getHwComposer().setCallback(*this);
ClientCache::getInstance().setRenderEngine(&getRenderEngine());
enableLatchUnsignaledConfig = getLatchUnsignaledConfig();
if (base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false)) {
enableHalVirtualDisplays(true);
}
// Process hotplug for displays connected at boot.
LOG_ALWAYS_FATAL_IF(!configureLocked(),
"Initial display configuration failed: HWC did not hotplug");
// Commit primary display.
sp<const DisplayDevice> display;
if (const auto indexOpt = mCurrentState.getDisplayIndex(getPrimaryDisplayIdLocked())) {
const auto& displays = mCurrentState.displays;
const auto& token = displays.keyAt(*indexOpt);
const auto& state = displays.valueAt(*indexOpt);
processDisplayAdded(token, state);
mDrawingState.displays.add(token, state);
display = getDefaultDisplayDeviceLocked();
}
LOG_ALWAYS_FATAL_IF(!display, "Failed to configure the primary display");
LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(display->getPhysicalId()),
"Primary display is disconnected");
// TODO(b/241285876): The Scheduler needlessly depends on creating the CompositionEngine part of
// the DisplayDevice, hence the above commit of the primary display. Remove that special case by
// initializing the Scheduler after configureLocked, once decoupled from DisplayDevice.
initScheduler(display);
dispatchDisplayHotplugEvent(display->getPhysicalId(), true);
mLayerTracing.setTakeLayersSnapshotProtoFunction([&](uint32_t traceFlags) {
auto snapshot = perfetto::protos::LayersSnapshotProto{};
mScheduler
->schedule([&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) {
snapshot = takeLayersSnapshotProto(traceFlags, TimePoint::now(),
mLastCommittedVsyncId, true);
})
.wait();
return snapshot;
});
// Commit secondary display(s).
processDisplayChangesLocked();
// initialize our drawing state
mDrawingState = mCurrentState;
onActiveDisplayChangedLocked(nullptr, *display);
static_cast<void>(mScheduler->schedule(
[this]() FTL_FAKE_GUARD(kMainThreadContext) { initializeDisplays(); }));
mPowerAdvisor->init();
if (base::GetBoolProperty("service.sf.prime_shader_cache"s, true)) {
if (setSchedFifo(false) != NO_ERROR) {
ALOGW("Can't set SCHED_OTHER for primeCache");
}
bool shouldPrimeUltraHDR =
base::GetBoolProperty("ro.surface_flinger.prime_shader_cache.ultrahdr"s, false);
mRenderEnginePrimeCacheFuture = getRenderEngine().primeCache(shouldPrimeUltraHDR);
if (setSchedFifo(true) != NO_ERROR) {
ALOGW("Can't set SCHED_FIFO after primeCache");
}
}
// Inform native graphics APIs whether the present timestamp is supported:
const bool presentFenceReliable =
!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE);
mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
initTransactionTraceWriter();
ALOGV("Done initializing");
}
void SurfaceFlinger::initTransactionTraceWriter() {
if (!mTransactionTracing) {
return;
}
TransactionTraceWriter::getInstance().setWriterFunction(
[&](const std::string& filename, bool overwrite) {
auto writeFn = [&]() {
if (!overwrite && fileNewerThan(filename, std::chrono::minutes{10})) {
ALOGD("TransactionTraceWriter: file=%s already exists", filename.c_str());
return;
}
mTransactionTracing->flush();
mTransactionTracing->writeToFile(filename);
};
if (std::this_thread::get_id() == mMainThreadId) {
writeFn();
} else {
mScheduler->schedule(writeFn).get();
}
});
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
mForceColorMode =
static_cast<ui::ColorMode>(base::GetIntProperty("persist.sys.sf.color_mode"s, 0));
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
// ----------------------------------------------------------------------------
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState* state) {
if (!displayToken || !state) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
state->layerStack = display->getLayerStack();
state->orientation = display->getOrientation();
const Rect layerStackRect = display->getLayerStackSpaceRect();
state->layerStackSpaceRect =
layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize();
return NO_ERROR;
}
status_t SurfaceFlinger::getStaticDisplayInfo(int64_t displayId, ui::StaticDisplayInfo* info) {
if (!info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto id = DisplayId::fromValue<PhysicalDisplayId>(static_cast<uint64_t>(displayId));
const auto displayOpt = mPhysicalDisplays.get(*id).and_then(getDisplayDeviceAndSnapshot());
if (!displayOpt) {
return NAME_NOT_FOUND;
}
const auto& [display, snapshotRef] = *displayOpt;
const auto& snapshot = snapshotRef.get();
info->connectionType = snapshot.connectionType();
info->deviceProductInfo = snapshot.deviceProductInfo();
if (mEmulatedDisplayDensity) {
info->density = mEmulatedDisplayDensity;
} else {
info->density = info->connectionType == ui::DisplayConnectionType::Internal
? mInternalDisplayDensity
: FALLBACK_DENSITY;
}
info->density /= ACONFIGURATION_DENSITY_MEDIUM;
info->secure = display->isSecure();
info->installOrientation = display->getPhysicalOrientation();
return NO_ERROR;
}
void SurfaceFlinger::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo*& info,
const sp<DisplayDevice>& display,
const display::DisplaySnapshot& snapshot) {
const auto& displayModes = snapshot.displayModes();
info->supportedDisplayModes.clear();
info->supportedDisplayModes.reserve(displayModes.size());
for (const auto& [id, mode] : displayModes) {
ui::DisplayMode outMode;
outMode.id = ftl::to_underlying(id);
auto [width, height] = mode->getResolution();
auto [xDpi, yDpi] = mode->getDpi();
if (const auto physicalOrientation = display->getPhysicalOrientation();
physicalOrientation == ui::ROTATION_90 || physicalOrientation == ui::ROTATION_270) {
std::swap(width, height);
std::swap(xDpi, yDpi);
}
outMode.resolution = ui::Size(width, height);
outMode.xDpi = xDpi;
outMode.yDpi = yDpi;
const auto peakFps = mode->getPeakFps();
outMode.peakRefreshRate = peakFps.getValue();
outMode.vsyncRate = mode->getVsyncRate().getValue();
const auto vsyncConfigSet = mScheduler->getVsyncConfiguration().getConfigsForRefreshRate(
Fps::fromValue(outMode.peakRefreshRate));
outMode.appVsyncOffset = vsyncConfigSet.late.appOffset;
outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset;
outMode.group = mode->getGroup();
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// VsyncController offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
outMode.presentationDeadline = peakFps.getPeriodNsecs() - outMode.sfVsyncOffset + 1000000;
excludeDolbyVisionIf4k30Present(display->getHdrCapabilities().getSupportedHdrTypes(),
outMode);
info->supportedDisplayModes.push_back(outMode);
}
info->supportedColorModes = snapshot.filterColorModes(mSupportsWideColor);
const PhysicalDisplayId displayId = snapshot.displayId();
const auto mode = display->refreshRateSelector().getActiveMode();
info->activeDisplayModeId = ftl::to_underlying(mode.modePtr->getId());
info->renderFrameRate = mode.fps.getValue();
info->activeColorMode = display->getCompositionDisplay()->getState().colorMode;
info->hdrCapabilities = filterOut4k30(display->getHdrCapabilities());
info->autoLowLatencyModeSupported =
getHwComposer().hasDisplayCapability(displayId,
DisplayCapability::AUTO_LOW_LATENCY_MODE);
info->gameContentTypeSupported =
getHwComposer().supportsContentType(displayId, hal::ContentType::GAME);
info->preferredBootDisplayMode = static_cast<ui::DisplayModeId>(-1);
if (getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG)) {
if (const auto hwcId = getHwComposer().getPreferredBootDisplayMode(displayId)) {
if (const auto modeId = snapshot.translateModeId(*hwcId)) {
info->preferredBootDisplayMode = ftl::to_underlying(*modeId);
}
}
}
}
status_t SurfaceFlinger::getDynamicDisplayInfoFromId(int64_t physicalDisplayId,
ui::DynamicDisplayInfo* info) {
if (!info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto id_ =
DisplayId::fromValue<PhysicalDisplayId>(static_cast<uint64_t>(physicalDisplayId));
const auto displayOpt = mPhysicalDisplays.get(*id_).and_then(getDisplayDeviceAndSnapshot());
if (!displayOpt) {
return NAME_NOT_FOUND;
}
const auto& [display, snapshotRef] = *displayOpt;
getDynamicDisplayInfoInternal(info, display, snapshotRef.get());
return NO_ERROR;
}
status_t SurfaceFlinger::getDynamicDisplayInfoFromToken(const sp<IBinder>& displayToken,
ui::DynamicDisplayInfo* info) {
if (!displayToken || !info) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayOpt = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_mapped_ref<PhysicalDisplays>)
.and_then(getDisplayDeviceAndSnapshot());
if (!displayOpt) {
return NAME_NOT_FOUND;
}
const auto& [display, snapshotRef] = *displayOpt;
getDynamicDisplayInfoInternal(info, display, snapshotRef.get());
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& displayToken,
DisplayStatInfo* outStats) {
if (!outStats) {
return BAD_VALUE;
}
std::optional<PhysicalDisplayId> displayIdOpt;
{
Mutex::Autolock lock(mStateLock);
if (displayToken) {
displayIdOpt = getPhysicalDisplayIdLocked(displayToken);
if (!displayIdOpt) {
ALOGW("%s: Invalid physical display token %p", __func__, displayToken.get());
return NAME_NOT_FOUND;
}
} else {
// TODO (b/277364366): Clients should be updated to pass in the display they
// want, rather than us picking an arbitrary one (the active display, in this
// case).
displayIdOpt = mActiveDisplayId;
}
}
const auto schedule = mScheduler->getVsyncSchedule(displayIdOpt);
if (!schedule) {
ALOGE("%s: Missing VSYNC schedule for display %s!", __func__,
to_string(*displayIdOpt).c_str());
return NAME_NOT_FOUND;
}
outStats->vsyncTime = schedule->vsyncDeadlineAfter(TimePoint::now()).ns();
outStats->vsyncPeriod = schedule->period().ns();
return NO_ERROR;
}
void SurfaceFlinger::setDesiredMode(display::DisplayModeRequest&& desiredMode) {
const auto mode = desiredMode.mode;
const auto displayId = mode.modePtr->getPhysicalDisplayId();
ATRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str());
const auto display = getDisplayDeviceLocked(displayId);
if (!display) {
ALOGW("%s: display is no longer valid", __func__);
return;
}
const bool emitEvent = desiredMode.emitEvent;
switch (display->setDesiredMode(std::move(desiredMode))) {
case DisplayDevice::DesiredModeAction::InitiateDisplayModeSwitch:
// DisplayDevice::setDesiredMode updated the render rate, so inform Scheduler.
mScheduler->setRenderRate(displayId,
display->refreshRateSelector().getActiveMode().fps);
// Schedule a new frame to initiate the display mode switch.
scheduleComposite(FrameHint::kNone);
// Start receiving vsync samples now, so that we can detect a period
// switch.
mScheduler->resyncToHardwareVsync(displayId, true /* allowToEnable */,
mode.modePtr.get());
// As we called to set period, we will call to onRefreshRateChangeCompleted once
// VsyncController model is locked.
mScheduler->modulateVsync(displayId, &VsyncModulator::onRefreshRateChangeInitiated);
if (displayId == mActiveDisplayId) {
mScheduler->updatePhaseConfiguration(mode.fps);
}
mScheduler->setModeChangePending(true);
break;
case DisplayDevice::DesiredModeAction::InitiateRenderRateSwitch:
mScheduler->setRenderRate(displayId, mode.fps);
if (displayId == mActiveDisplayId) {
mScheduler->updatePhaseConfiguration(mode.fps);
}
if (emitEvent) {
dispatchDisplayModeChangeEvent(displayId, mode);
}
break;
case DisplayDevice::DesiredModeAction::None:
break;
}
}
status_t SurfaceFlinger::setActiveModeFromBackdoor(const sp<display::DisplayToken>& displayToken,
DisplayModeId modeId, Fps minFps, Fps maxFps) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t {
const auto displayOpt =
FTL_FAKE_GUARD(mStateLock,
ftl::find_if(mPhysicalDisplays,
PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_mapped_ref<PhysicalDisplays>)
.and_then(getDisplayDeviceAndSnapshot()));
if (!displayOpt) {
ALOGE("%s: Invalid physical display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
const auto& [display, snapshotRef] = *displayOpt;
const auto& snapshot = snapshotRef.get();
const auto fpsOpt = snapshot.displayModes().get(modeId).transform(
[](const DisplayModePtr& mode) { return mode->getPeakFps(); });
if (!fpsOpt) {
ALOGE("%s: Invalid mode %d for display %s", whence, ftl::to_underlying(modeId),
to_string(snapshot.displayId()).c_str());
return BAD_VALUE;
}
const Fps fps = *fpsOpt;
const FpsRange physical = {fps, fps};
const FpsRange render = {minFps.isValid() ? minFps : fps, maxFps.isValid() ? maxFps : fps};
const FpsRanges ranges = {physical, render};
// Keep the old switching type.
const bool allowGroupSwitching =
display->refreshRateSelector().getCurrentPolicy().allowGroupSwitching;
const scheduler::RefreshRateSelector::DisplayManagerPolicy policy{modeId, ranges, ranges,
allowGroupSwitching};
return setDesiredDisplayModeSpecsInternal(display, policy);
});
return future.get();
}
void SurfaceFlinger::finalizeDisplayModeChange(DisplayDevice& display) {
const auto displayId = display.getPhysicalId();
ATRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str());
const auto pendingModeOpt = display.getPendingMode();
if (!pendingModeOpt) {
// There is no pending mode change. This can happen if the active
// display changed and the mode change happened on a different display.
return;
}
const auto& activeMode = pendingModeOpt->mode;
if (display.getActiveMode().modePtr->getResolution() != activeMode.modePtr->getResolution()) {
auto& state = mCurrentState.displays.editValueFor(display.getDisplayToken());
// We need to generate new sequenceId in order to recreate the display (and this
// way the framebuffer).
state.sequenceId = DisplayDeviceState{}.sequenceId;
state.physical->activeMode = activeMode.modePtr.get();
processDisplayChangesLocked();
// processDisplayChangesLocked will update all necessary components so we're done here.
return;
}
display.finalizeModeChange(activeMode.modePtr->getId(), activeMode.modePtr->getVsyncRate(),
activeMode.fps);
if (displayId == mActiveDisplayId) {
mScheduler->updatePhaseConfiguration(activeMode.fps);
}
if (pendingModeOpt->emitEvent) {
dispatchDisplayModeChangeEvent(displayId, activeMode);
}
}
void SurfaceFlinger::dropModeRequest(const sp<DisplayDevice>& display) {
display->clearDesiredMode();
if (display->getPhysicalId() == mActiveDisplayId) {
// TODO(b/255635711): Check for pending mode changes on other displays.
mScheduler->setModeChangePending(false);
}
}
void SurfaceFlinger::applyActiveMode(const sp<DisplayDevice>& display) {
const auto activeModeOpt = display->getDesiredMode();
auto activeModePtr = activeModeOpt->mode.modePtr;
const auto displayId = activeModePtr->getPhysicalDisplayId();
const auto renderFps = activeModeOpt->mode.fps;
dropModeRequest(display);
constexpr bool kAllowToEnable = true;
mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, std::move(activeModePtr).take());
mScheduler->setRenderRate(displayId, renderFps);
if (displayId == mActiveDisplayId) {
mScheduler->updatePhaseConfiguration(renderFps);
}
}
void SurfaceFlinger::initiateDisplayModeChanges() {
ATRACE_CALL();
std::optional<PhysicalDisplayId> displayToUpdateImmediately;
for (const auto& [id, physical] : mPhysicalDisplays) {
const auto display = getDisplayDeviceLocked(id);
if (!display) continue;
auto desiredModeOpt = display->getDesiredMode();
if (!desiredModeOpt) {
continue;
}
if (!shouldApplyRefreshRateSelectorPolicy(*display)) {
dropModeRequest(display);
continue;
}
const auto desiredModeId = desiredModeOpt->mode.modePtr->getId();
const auto displayModePtrOpt = physical.snapshot().displayModes().get(desiredModeId);
if (!displayModePtrOpt) {
ALOGW("Desired display mode is no longer supported. Mode ID = %d",
ftl::to_underlying(desiredModeId));
continue;
}
ALOGV("%s changing active mode to %d(%s) for display %s", __func__,
ftl::to_underlying(desiredModeId),
to_string(displayModePtrOpt->get()->getVsyncRate()).c_str(),
to_string(display->getId()).c_str());
if ((!FlagManager::getInstance().connected_display() || !desiredModeOpt->force) &&
display->getActiveMode() == desiredModeOpt->mode) {
applyActiveMode(display);
continue;
}
// Desired active mode was set, it is different than the mode currently in use, however
// allowed modes might have changed by the time we process the refresh.
// Make sure the desired mode is still allowed
if (!display->refreshRateSelector().isModeAllowed(desiredModeOpt->mode)) {
dropModeRequest(display);
continue;
}
// TODO(b/142753666) use constrains
hal::VsyncPeriodChangeConstraints constraints;
constraints.desiredTimeNanos = systemTime();
constraints.seamlessRequired = false;
hal::VsyncPeriodChangeTimeline outTimeline;
if (!display->initiateModeChange(std::move(*desiredModeOpt), constraints, outTimeline)) {
continue;
}
display->refreshRateSelector().onModeChangeInitiated();
mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline);
if (outTimeline.refreshRequired) {
scheduleComposite(FrameHint::kNone);
} else {
// TODO(b/255635711): Remove `displayToUpdateImmediately` to `finalizeDisplayModeChange`
// for all displays. This was only needed when the loop iterated over `mDisplays` rather
// than `mPhysicalDisplays`.
displayToUpdateImmediately = display->getPhysicalId();
}
}
if (displayToUpdateImmediately) {
const auto display = getDisplayDeviceLocked(*displayToUpdateImmediately);
finalizeDisplayModeChange(*display);
const auto desiredModeOpt = display->getDesiredMode();
if (desiredModeOpt && display->getActiveMode() == desiredModeOpt->mode) {
applyActiveMode(display);
}
}
}
void SurfaceFlinger::disableExpensiveRendering() {
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) {
ATRACE_NAME(whence);
if (mPowerAdvisor->isUsingExpensiveRendering()) {
for (const auto& [_, display] : mDisplays) {
constexpr bool kDisable = false;
mPowerAdvisor->setExpensiveRenderingExpected(display->getId(), kDisable);
}
}
});
future.wait();
}
status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
ui::DisplayPrimaries& primaries) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_mapped_ref<PhysicalDisplays>);
if (!display) {
return NAME_NOT_FOUND;
}
if (!display.transform(&PhysicalDisplay::isInternal).value()) {
return INVALID_OPERATION;
}
// TODO(b/229846990): For now, assume that all internal displays have the same primaries.
primaries = mInternalDisplayPrimaries;
return NO_ERROR;
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ui::ColorMode mode) {
if (!displayToken) {
return BAD_VALUE;
}
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t {
const auto displayOpt =
ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_mapped_ref<PhysicalDisplays>)
.and_then(getDisplayDeviceAndSnapshot());
if (!displayOpt) {
ALOGE("%s: Invalid physical display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
const auto& [display, snapshotRef] = *displayOpt;
const auto& snapshot = snapshotRef.get();
const auto modes = snapshot.filterColorModes(mSupportsWideColor);
const bool exists = std::find(modes.begin(), modes.end(), mode) != modes.end();
if (mode < ui::ColorMode::NATIVE || !exists) {
ALOGE("%s: Invalid color mode %s (%d) for display %s", whence,
decodeColorMode(mode).c_str(), mode, to_string(snapshot.displayId()).c_str());
return BAD_VALUE;
}
display->getCompositionDisplay()->setColorProfile(
{mode, Dataspace::UNKNOWN, RenderIntent::COLORIMETRIC});
return NO_ERROR;
});
// TODO(b/195698395): Propagate error.
future.wait();
return NO_ERROR;
}
status_t SurfaceFlinger::getBootDisplayModeSupport(bool* outSupport) const {
auto future = mScheduler->schedule(
[this] { return getHwComposer().hasCapability(Capability::BOOT_DISPLAY_CONFIG); });
*outSupport = future.get();
return NO_ERROR;
}
status_t SurfaceFlinger::getOverlaySupport(gui::OverlayProperties* outProperties) const {
const auto& aidlProperties = getHwComposer().getOverlaySupport();
// convert aidl OverlayProperties to gui::OverlayProperties
outProperties->combinations.reserve(aidlProperties.combinations.size());
for (const auto& combination : aidlProperties.combinations) {
std::vector<int32_t> pixelFormats;
pixelFormats.reserve(combination.pixelFormats.size());
std::transform(combination.pixelFormats.cbegin(), combination.pixelFormats.cend(),
std::back_inserter(pixelFormats),
[](const auto& val) { return static_cast<int32_t>(val); });
std::vector<int32_t> standards;
standards.reserve(combination.standards.size());
std::transform(combination.standards.cbegin(), combination.standards.cend(),
std::back_inserter(standards),
[](const auto& val) { return static_cast<int32_t>(val); });
std::vector<int32_t> transfers;
transfers.reserve(combination.transfers.size());
std::transform(combination.transfers.cbegin(), combination.transfers.cend(),
std::back_inserter(transfers),
[](const auto& val) { return static_cast<int32_t>(val); });
std::vector<int32_t> ranges;
ranges.reserve(combination.ranges.size());
std::transform(combination.ranges.cbegin(), combination.ranges.cend(),
std::back_inserter(ranges),
[](const auto& val) { return static_cast<int32_t>(val); });
gui::OverlayProperties::SupportedBufferCombinations outCombination;
outCombination.pixelFormats = std::move(pixelFormats);
outCombination.standards = std::move(standards);
outCombination.transfers = std::move(transfers);
outCombination.ranges = std::move(ranges);
outProperties->combinations.emplace_back(outCombination);
}
outProperties->supportMixedColorSpaces = aidlProperties.supportMixedColorSpaces;
return NO_ERROR;
}
status_t SurfaceFlinger::setBootDisplayMode(const sp<display::DisplayToken>& displayToken,
DisplayModeId modeId) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t {
const auto snapshotOpt =
ftl::find_if(mPhysicalDisplays, PhysicalDisplay::hasToken(displayToken))
.transform(&ftl::to_mapped_ref<PhysicalDisplays>)
.transform(&PhysicalDisplay::snapshotRef);
if (!snapshotOpt) {
ALOGE("%s: Invalid physical display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
const auto& snapshot = snapshotOpt->get();
const auto hwcIdOpt = snapshot.displayModes().get(modeId).transform(
[](const DisplayModePtr& mode) { return mode->getHwcId(); });
if (!hwcIdOpt) {
ALOGE("%s: Invalid mode %d for display %s", whence, ftl::to_underlying(modeId),
to_string(snapshot.displayId()).c_str());
return BAD_VALUE;
}
return getHwComposer().setBootDisplayMode(snapshot.displayId(), *hwcIdOpt);
});
return future.get();
}
status_t SurfaceFlinger::clearBootDisplayMode(const sp<IBinder>& displayToken) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().clearBootDisplayMode(*displayId);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return BAD_VALUE;
}
});
return future.get();
}
status_t SurfaceFlinger::getHdrConversionCapabilities(
std::vector<gui::HdrConversionCapability>* hdrConversionCapabilities) const {
bool hdrOutputConversionSupport;
getHdrOutputConversionSupport(&hdrOutputConversionSupport);
if (hdrOutputConversionSupport == false) {
ALOGE("hdrOutputConversion is not supported by this device.");
return INVALID_OPERATION;
}
const auto aidlConversionCapability = getHwComposer().getHdrConversionCapabilities();
for (auto capability : aidlConversionCapability) {
gui::HdrConversionCapability tempCapability;
tempCapability.sourceType = static_cast<int>(capability.sourceType);
tempCapability.outputType = static_cast<int>(capability.outputType);
tempCapability.addsLatency = capability.addsLatency;
hdrConversionCapabilities->push_back(tempCapability);
}
return NO_ERROR;
}
status_t SurfaceFlinger::setHdrConversionStrategy(
const gui::HdrConversionStrategy& hdrConversionStrategy,
int32_t* outPreferredHdrOutputType) {
bool hdrOutputConversionSupport;
getHdrOutputConversionSupport(&hdrOutputConversionSupport);
if (hdrOutputConversionSupport == false) {
ALOGE("hdrOutputConversion is not supported by this device.");
return INVALID_OPERATION;
}
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) mutable -> status_t {
using AidlHdrConversionStrategy =
aidl::android::hardware::graphics::common::HdrConversionStrategy;
using GuiHdrConversionStrategyTag = gui::HdrConversionStrategy::Tag;
AidlHdrConversionStrategy aidlConversionStrategy;
status_t status;
aidl::android::hardware::graphics::common::Hdr aidlPreferredHdrOutputType;
switch (hdrConversionStrategy.getTag()) {
case GuiHdrConversionStrategyTag::passthrough: {
aidlConversionStrategy.set<AidlHdrConversionStrategy::Tag::passthrough>(
hdrConversionStrategy.get<GuiHdrConversionStrategyTag::passthrough>());
status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy,
&aidlPreferredHdrOutputType);
*outPreferredHdrOutputType = static_cast<int32_t>(aidlPreferredHdrOutputType);
return status;
}
case GuiHdrConversionStrategyTag::autoAllowedHdrTypes: {
auto autoHdrTypes =
hdrConversionStrategy
.get<GuiHdrConversionStrategyTag::autoAllowedHdrTypes>();
std::vector<aidl::android::hardware::graphics::common::Hdr> aidlAutoHdrTypes;
for (auto type : autoHdrTypes) {
aidlAutoHdrTypes.push_back(
static_cast<aidl::android::hardware::graphics::common::Hdr>(type));
}
aidlConversionStrategy.set<AidlHdrConversionStrategy::Tag::autoAllowedHdrTypes>(
aidlAutoHdrTypes);
status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy,
&aidlPreferredHdrOutputType);
*outPreferredHdrOutputType = static_cast<int32_t>(aidlPreferredHdrOutputType);
return status;
}
case GuiHdrConversionStrategyTag::forceHdrConversion: {
auto forceHdrConversion =
hdrConversionStrategy
.get<GuiHdrConversionStrategyTag::forceHdrConversion>();
aidlConversionStrategy.set<AidlHdrConversionStrategy::Tag::forceHdrConversion>(
static_cast<aidl::android::hardware::graphics::common::Hdr>(
forceHdrConversion));
status = getHwComposer().setHdrConversionStrategy(aidlConversionStrategy,
&aidlPreferredHdrOutputType);
*outPreferredHdrOutputType = static_cast<int32_t>(aidlPreferredHdrOutputType);
return status;
}
}
});
return future.get();
}
status_t SurfaceFlinger::getHdrOutputConversionSupport(bool* outSupport) const {
auto future = mScheduler->schedule([this] {
return getHwComposer().hasCapability(Capability::HDR_OUTPUT_CONVERSION_CONFIG);
});
*outSupport = future.get();
return NO_ERROR;
}
void SurfaceFlinger::setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) {
const char* const whence = __func__;
static_cast<void>(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
getHwComposer().setAutoLowLatencyMode(*displayId, on);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
}
}));
}
void SurfaceFlinger::setGameContentType(const sp<IBinder>& displayToken, bool on) {
const char* const whence = __func__;
static_cast<void>(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE;
getHwComposer().setContentType(*displayId, type);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
}
}));
}
status_t SurfaceFlinger::overrideHdrTypes(const sp<IBinder>& displayToken,
const std::vector<ui::Hdr>& hdrTypes) {
Mutex::Autolock lock(mStateLock);
auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("%s: Invalid display token %p", __func__, displayToken.get());
return NAME_NOT_FOUND;
}
display->overrideHdrTypes(hdrTypes);
dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */);
return NO_ERROR;
}
status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::vector<uint8_t>* pulledData,
bool* success) {
*success = mTimeStats->onPullAtom(atomId, pulledData);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
ui::PixelFormat* outFormat,
ui::Dataspace* outDataspace,
uint8_t* outComponentMask) const {
if (!outFormat || !outDataspace || !outComponentMask) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat,
outDataspace, outComponentMask);
}
status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
bool enable, uint8_t componentMask,
uint64_t maxFrames) {
const char* const whence = __func__;
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) -> status_t {
if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable,
componentMask, maxFrames);
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return NAME_NOT_FOUND;
}
});
return future.get();
}
status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
uint64_t maxFrames, uint64_t timestamp,
DisplayedFrameStats* outStats) const {
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats);
}
status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
if (!outSupported) {
return BAD_VALUE;
}
*outSupported = getRenderEngine().supportsProtectedContent();
return NO_ERROR;
}
status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
bool* outIsWideColorDisplay) const {
if (!displayToken || !outIsWideColorDisplay) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
*outIsWideColorDisplay =
display->isPrimary() ? mSupportsWideColor : display->hasWideColorGamut();
return NO_ERROR;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<gui::LayerDebugInfo>* outLayers) {
outLayers->clear();
auto future = mScheduler->schedule([=, this] {
const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
mDrawingState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo(display.get()));
});
});
future.wait();
return NO_ERROR;
}
status_t SurfaceFlinger::getCompositionPreference(
Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
Dataspace* outWideColorGamutDataspace,
ui::PixelFormat* outWideColorGamutPixelFormat) const {
*outDataspace = mDefaultCompositionDataspace;
*outPixelFormat = defaultCompositionPixelFormat;
*outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
*outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
return NO_ERROR;
}
status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
const sp<IBinder>& stopLayerHandle,
const sp<IRegionSamplingListener>& listener) {
if (!listener || samplingArea == Rect::INVALID_RECT || samplingArea.isEmpty()) {
return BAD_VALUE;
}
// LayerHandle::getLayer promotes the layer object in a binder thread but we will not destroy
// the layer here since the caller has a strong ref to the layer's handle.
const sp<Layer> stopLayer = LayerHandle::getLayer(stopLayerHandle);
mRegionSamplingThread->addListener(samplingArea,
stopLayer ? stopLayer->getSequence() : UNASSIGNED_LAYER_ID,
listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mRegionSamplingThread->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->addListener(listener, taskId);
return NO_ERROR;
}
status_t SurfaceFlinger::removeFpsListener(const sp<gui::IFpsListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mFpsReporter->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::addTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mTunnelModeEnabledReporter->addListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::removeTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
if (!listener) {
return BAD_VALUE;
}
mTunnelModeEnabledReporter->removeListener(listener);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
*outSupport = getHwComposer().hasDisplayCapability(*displayId, DisplayCapability::BRIGHTNESS);
return NO_ERROR;
}
status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) {
if (!displayToken) {
return BAD_VALUE;
}
const char* const whence = __func__;
return ftl::Future(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) {
// TODO(b/241285876): Validate that the display is physical instead of failing later.
if (const auto display = getDisplayDeviceLocked(displayToken)) {
const bool supportsDisplayBrightnessCommand =
getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand);
// If we support applying display brightness as a command, then we also support
// dimming SDR layers.
if (supportsDisplayBrightnessCommand) {
auto compositionDisplay = display->getCompositionDisplay();
float currentDimmingRatio =
compositionDisplay->editState().sdrWhitePointNits /
compositionDisplay->editState().displayBrightnessNits;
static constexpr float kDimmingThreshold = 0.02f;
if (brightness.sdrWhitePointNits == 0.f ||
abs(brightness.sdrWhitePointNits - brightness.displayBrightnessNits) /
brightness.sdrWhitePointNits >=
kDimmingThreshold) {
// to optimize, skip brightness setter if the brightness difference ratio
// is lower than threshold
compositionDisplay
->setDisplayBrightness(brightness.sdrWhitePointNits,
brightness.displayBrightnessNits);
} else {
compositionDisplay->setDisplayBrightness(brightness.sdrWhitePointNits,
brightness.sdrWhitePointNits);
}
FTL_FAKE_GUARD(kMainThreadContext,
display->stageBrightness(brightness.displayBrightness));
float currentHdrSdrRatio =
compositionDisplay->editState().displayBrightnessNits /
compositionDisplay->editState().sdrWhitePointNits;
FTL_FAKE_GUARD(kMainThreadContext,
display->updateHdrSdrRatioOverlayRatio(currentHdrSdrRatio));
if (brightness.sdrWhitePointNits / brightness.displayBrightnessNits !=
currentDimmingRatio) {
scheduleComposite(FrameHint::kNone);
} else {
scheduleCommit(FrameHint::kNone);
}
return ftl::yield<status_t>(OK);
} else {
return getHwComposer()
.setDisplayBrightness(display->getPhysicalId(),
brightness.displayBrightness,
brightness.displayBrightnessNits,
Hwc2::Composer::DisplayBrightnessOptions{
.applyImmediately = true});
}
} else {
ALOGE("%s: Invalid display token %p", whence, displayToken.get());
return ftl::yield<status_t>(NAME_NOT_FOUND);
}
}))
.then([](ftl::Future<status_t> task) { return task; })
.get();
}
status_t SurfaceFlinger::addHdrLayerInfoListener(const sp<IBinder>& displayToken,
const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (!hdrInfoReporter) {
hdrInfoReporter = sp<HdrLayerInfoReporter>::make();
}
hdrInfoReporter->addListener(listener);
mAddingHDRLayerInfoListener = true;
return OK;
}
status_t SurfaceFlinger::removeHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
if (!displayToken) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
const auto displayId = display->getId();
sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
if (hdrInfoReporter) {
hdrInfoReporter->removeListener(listener);
}
return OK;
}
status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) {
using aidl::android::hardware::power::Boost;
Boost powerBoost = static_cast<Boost>(boostId);
if (powerBoost == Boost::INTERACTION) {
mScheduler->onTouchHint();
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayDecorationSupport(
const sp<IBinder>& displayToken,
std::optional<DisplayDecorationSupport>* outSupport) const {
if (!displayToken || !outSupport) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
if (!displayId) {
return NAME_NOT_FOUND;
}
getHwComposer().getDisplayDecorationSupport(*displayId, outSupport);
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
gui::ISurfaceComposer::VsyncSource vsyncSource, EventRegistrationFlags eventRegistration,
const sp<IBinder>& layerHandle) {
const auto& handle =
vsyncSource == gui::ISurfaceComposer::VsyncSource::eVsyncSourceSurfaceFlinger
? mSfConnectionHandle
: mAppConnectionHandle;
return mScheduler->createDisplayEventConnection(handle, eventRegistration, layerHandle);
}
void SurfaceFlinger::scheduleCommit(FrameHint hint) {
if (hint == FrameHint::kActive) {
mScheduler->resetIdleTimer();
}
mPowerAdvisor->notifyDisplayUpdateImminentAndCpuReset();
mScheduler->scheduleFrame();
}
void SurfaceFlinger::scheduleComposite(FrameHint hint) {
mMustComposite = true;
scheduleCommit(hint);
}
void SurfaceFlinger::scheduleRepaint() {
mGeometryDirty = true;
scheduleComposite(FrameHint::kActive);
}
void SurfaceFlinger::scheduleSample() {
static_cast<void>(mScheduler->schedule([this] { sample(); }));
}
nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const {
if (const auto display = getDefaultDisplayDeviceLocked()) {
return display->getVsyncPeriodFromHWC();
}
return 0;
}
void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp,
std::optional<hal::VsyncPeriodNanos> vsyncPeriod) {
if (FlagManager::getInstance().connected_display() && timestamp < 0 &&
vsyncPeriod.has_value()) {
// use ~0 instead of -1 as AidlComposerHal.cpp passes the param as unsigned int32
if (mIsHotplugErrViaNegVsync && vsyncPeriod.value() == ~0) {
const int32_t hotplugErrorCode = static_cast<int32_t>(-timestamp);
ALOGD("SurfaceFlinger got hotplugErrorCode=%d for display %" PRIu64, hotplugErrorCode,
hwcDisplayId);
mScheduler->onHotplugConnectionError(mAppConnectionHandle, hotplugErrorCode);
return;
}
if (mIsHdcpViaNegVsync && vsyncPeriod.value() == ~1) {
const int32_t value = static_cast<int32_t>(-timestamp);
// one byte is good enough to encode android.hardware.drm.HdcpLevel
const int32_t maxLevel = (value >> 8) & 0xFF;
const int32_t connectedLevel = value & 0xFF;
ALOGD("SurfaceFlinger got HDCP level changed: connected=%d, max=%d for "
"display=%" PRIu64,
connectedLevel, maxLevel, hwcDisplayId);
updateHdcpLevels(hwcDisplayId, connectedLevel, maxLevel);
return;
}
}
ATRACE_NAME(vsyncPeriod
? ftl::Concat(__func__, ' ', hwcDisplayId, ' ', *vsyncPeriod, "ns").c_str()
: ftl::Concat(__func__, ' ', hwcDisplayId).c_str());
Mutex::Autolock lock(mStateLock);
if (const auto displayIdOpt = getHwComposer().onVsync(hwcDisplayId, timestamp)) {
if (mScheduler->addResyncSample(*displayIdOpt, timestamp, vsyncPeriod)) {
// period flushed
mScheduler->modulateVsync(displayIdOpt, &VsyncModulator::onRefreshRateChangeCompleted);
}
}
}
void SurfaceFlinger::onComposerHalHotplugEvent(hal::HWDisplayId hwcDisplayId,
DisplayHotplugEvent event) {
if (event == DisplayHotplugEvent::CONNECTED || event == DisplayHotplugEvent::DISCONNECTED) {
hal::Connection connection = (event == DisplayHotplugEvent::CONNECTED)
? hal::Connection::CONNECTED
: hal::Connection::DISCONNECTED;
{
std::lock_guard<std::mutex> lock(mHotplugMutex);
mPendingHotplugEvents.push_back(HotplugEvent{hwcDisplayId, connection});
}
if (mScheduler) {
mScheduler->scheduleConfigure();
}
return;
}
if (FlagManager::getInstance().hotplug2()) {
ALOGD("SurfaceFlinger got hotplug event=%d", static_cast<int32_t>(event));
// TODO(b/311403559): use enum type instead of int
mScheduler->onHotplugConnectionError(mAppConnectionHandle, static_cast<int32_t>(event));
}
}
void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged(
hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) {
Mutex::Autolock lock(mStateLock);
mScheduler->onNewVsyncPeriodChangeTimeline(timeline);
if (timeline.refreshRequired) {
scheduleComposite(FrameHint::kNone);
}
}
void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) {
// TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and
// use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE.
}
void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) {
Mutex::Autolock lock(mStateLock);
scheduleComposite(FrameHint::kNone);
}
void SurfaceFlinger::onComposerHalVsyncIdle(hal::HWDisplayId) {
ATRACE_CALL();
mScheduler->forceNextResync();
}
void SurfaceFlinger::onRefreshRateChangedDebug(const RefreshRateChangedDebugData& data) {
ATRACE_CALL();
if (const auto displayId = getHwComposer().toPhysicalDisplayId(data.display); displayId) {
const char* const whence = __func__;
static_cast<void>(mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) {
const Fps fps = Fps::fromPeriodNsecs(getHwComposer().getComposer()->isVrrSupported()
? data.refreshPeriodNanos
: data.vsyncPeriodNanos);
ATRACE_FORMAT("%s Fps %d", whence, fps.getIntValue());
const auto display = getDisplayDeviceLocked(*displayId);
FTL_FAKE_GUARD(kMainThreadContext,
display->updateRefreshRateOverlayRate(fps, display->getActiveMode().fps,
/* setByHwc */ true));
}));
}
}
void SurfaceFlinger::configure() {
Mutex::Autolock lock(mStateLock);
if (configureLocked()) {
setTransactionFlags(eDisplayTransactionNeeded);
}
}
bool SurfaceFlinger::updateLayerSnapshotsLegacy(VsyncId vsyncId, nsecs_t frameTimeNs,
bool flushTransactions,
bool& outTransactionsAreEmpty) {
ATRACE_CALL();
frontend::Update update;
if (flushTransactions) {
update = flushLifecycleUpdates();
if (mTransactionTracing) {
mTransactionTracing->addCommittedTransactions(ftl::to_underlying(vsyncId), frameTimeNs,
update, mFrontEndDisplayInfos,
mFrontEndDisplayInfosChanged);
}
}
bool needsTraversal = false;
if (flushTransactions) {
needsTraversal |= commitMirrorDisplays(vsyncId);
needsTraversal |= commitCreatedLayers(vsyncId, update.layerCreatedStates);
needsTraversal |= applyTransactions(update.transactions, vsyncId);
}
outTransactionsAreEmpty = !needsTraversal;
const bool shouldCommit = (getTransactionFlags() & ~eTransactionFlushNeeded) || needsTraversal;
if (shouldCommit) {
commitTransactions();
}
bool mustComposite = latchBuffers() || shouldCommit;
updateLayerGeometry();
return mustComposite;
}
void SurfaceFlinger::updateLayerHistory(nsecs_t now) {
for (const auto& snapshot : mLayerSnapshotBuilder.getSnapshots()) {
using Changes = frontend::RequestedLayerState::Changes;
if (snapshot->path.isClone()) {
continue;
}
const bool updateSmallDirty = FlagManager::getInstance().enable_small_area_detection() &&
((snapshot->clientChanges & layer_state_t::eSurfaceDamageRegionChanged) ||
snapshot->changes.any(Changes::Geometry));
const bool hasChanges =
snapshot->changes.any(Changes::FrameRate | Changes::Buffer | Changes::Animation |
Changes::Geometry | Changes::Visibility) ||
(snapshot->clientChanges & layer_state_t::eDefaultFrameRateCompatibilityChanged) !=
0;
if (!updateSmallDirty && !hasChanges) {
continue;
}
auto it = mLegacyLayers.find(snapshot->sequence);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldn't find layer object for %s",
snapshot->getDebugString().c_str());
if (updateSmallDirty) {
// Update small dirty flag while surface damage region or geometry changed
it->second->setIsSmallDirty(snapshot.get());
}
if (!hasChanges) {
continue;
}
const auto layerProps = scheduler::LayerProps{
.visible = snapshot->isVisible,
.bounds = snapshot->geomLayerBounds,
.transform = snapshot->geomLayerTransform,
.setFrameRateVote = snapshot->frameRate,
.frameRateSelectionPriority = snapshot->frameRateSelectionPriority,
.isSmallDirty = snapshot->isSmallDirty,
.isFrontBuffered = snapshot->isFrontBuffered(),
};
if (snapshot->changes.any(Changes::Geometry | Changes::Visibility)) {
mScheduler->setLayerProperties(snapshot->sequence, layerProps);
}
if (snapshot->clientChanges & layer_state_t::eDefaultFrameRateCompatibilityChanged) {
mScheduler->setDefaultFrameRateCompatibility(snapshot->sequence,
snapshot->defaultFrameRateCompatibility);
}
if (snapshot->changes.test(Changes::Animation)) {
it->second->recordLayerHistoryAnimationTx(layerProps, now);
}
if (snapshot->changes.test(Changes::FrameRate)) {
it->second->setFrameRateForLayerTree(snapshot->frameRate, layerProps, now);
}
if (snapshot->changes.test(Changes::Buffer)) {
it->second->recordLayerHistoryBufferUpdate(layerProps, now);
}
}
}
bool SurfaceFlinger::updateLayerSnapshots(VsyncId vsyncId, nsecs_t frameTimeNs,
bool flushTransactions, bool& outTransactionsAreEmpty) {
using Changes = frontend::RequestedLayerState::Changes;
ATRACE_CALL();
frontend::Update update;
if (flushTransactions) {
ATRACE_NAME("TransactionHandler:flushTransactions");
// Locking:
// 1. to prevent onHandleDestroyed from being called while the state lock is held,
// we must keep a copy of the transactions (specifically the composer
// states) around outside the scope of the lock.
// 2. Transactions and created layers do not share a lock. To prevent applying
// transactions with layers still in the createdLayer queue, collect the transactions
// before committing the created layers.
// 3. Transactions can only be flushed after adding layers, since the layer can be a newly
// created one
mTransactionHandler.collectTransactions();
{
// TODO(b/238781169) lockless queue this and keep order.
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
update.layerCreatedStates = std::move(mCreatedLayers);
mCreatedLayers.clear();
update.newLayers = std::move(mNewLayers);
mNewLayers.clear();
update.layerCreationArgs = std::move(mNewLayerArgs);
mNewLayerArgs.clear();
update.destroyedHandles = std::move(mDestroyedHandles);
mDestroyedHandles.clear();
}
mLayerLifecycleManager.addLayers(std::move(update.newLayers));
update.transactions = mTransactionHandler.flushTransactions();
if (mTransactionTracing) {
mTransactionTracing->addCommittedTransactions(ftl::to_underlying(vsyncId), frameTimeNs,
update, mFrontEndDisplayInfos,
mFrontEndDisplayInfosChanged);
}
mLayerLifecycleManager.applyTransactions(update.transactions);
mLayerLifecycleManager.onHandlesDestroyed(update.destroyedHandles);
for (auto& legacyLayer : update.layerCreatedStates) {
sp<Layer> layer = legacyLayer.layer.promote();
if (layer) {
mLegacyLayers[layer->sequence] = layer;
}
}
mLayerHierarchyBuilder.update(mLayerLifecycleManager);
}
bool mustComposite = false;
mustComposite |= applyAndCommitDisplayTransactionStates(update.transactions);
{
ATRACE_NAME("LayerSnapshotBuilder:update");
frontend::LayerSnapshotBuilder::Args
args{.root = mLayerHierarchyBuilder.getHierarchy(),
.layerLifecycleManager = mLayerLifecycleManager,
.displays = mFrontEndDisplayInfos,
.displayChanges = mFrontEndDisplayInfosChanged,
.globalShadowSettings = mDrawingState.globalShadowSettings,
.supportsBlur = mSupportsBlur,
.forceFullDamage = mForceFullDamage,
.supportedLayerGenericMetadata =
getHwComposer().getSupportedLayerGenericMetadata(),
.genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(),
.skipRoundCornersWhenProtected =
!getRenderEngine().supportsProtectedContent()};
mLayerSnapshotBuilder.update(args);
}
if (mLayerLifecycleManager.getGlobalChanges().any(Changes::Geometry | Changes::Input |
Changes::Hierarchy | Changes::Visibility)) {
mUpdateInputInfo = true;
}
if (mLayerLifecycleManager.getGlobalChanges().any(Changes::VisibleRegion | Changes::Hierarchy |
Changes::Visibility | Changes::Geometry)) {
mVisibleRegionsDirty = true;
}
if (mLayerLifecycleManager.getGlobalChanges().any(Changes::Hierarchy | Changes::FrameRate)) {
// The frame rate of attached choreographers can only change as a result of a
// FrameRate change (including when Hierarchy changes).
mUpdateAttachedChoreographer = true;
}
outTransactionsAreEmpty = mLayerLifecycleManager.getGlobalChanges().get() == 0;
mustComposite |= mLayerLifecycleManager.getGlobalChanges().get() != 0;
bool newDataLatched = false;
if (!mLegacyFrontEndEnabled) {
ATRACE_NAME("DisplayCallbackAndStatsUpdates");
mustComposite |= applyTransactions(update.transactions, vsyncId);
traverseLegacyLayers([&](Layer* layer) { layer->commitTransaction(); });
const nsecs_t latchTime = systemTime();
bool unused = false;
for (auto& layer : mLayerLifecycleManager.getLayers()) {
if (layer->changes.test(frontend::RequestedLayerState::Changes::Created) &&
layer->bgColorLayer) {
sp<Layer> bgColorLayer = getFactory().createEffectLayer(
LayerCreationArgs(this, nullptr, layer->name,
ISurfaceComposerClient::eFXSurfaceEffect, LayerMetadata(),
std::make_optional(layer->id), true));
mLegacyLayers[bgColorLayer->sequence] = bgColorLayer;
}
const bool willReleaseBufferOnLatch = layer->willReleaseBufferOnLatch();
auto it = mLegacyLayers.find(layer->id);
if (it == mLegacyLayers.end() &&
layer->changes.test(frontend::RequestedLayerState::Changes::Destroyed)) {
// Layer handle was created and immediately destroyed. It was destroyed before it
// was added to the map.
continue;
}
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldnt find layer object for %s",
layer->getDebugString().c_str());
if (!layer->hasReadyFrame() && !willReleaseBufferOnLatch) {
if (!it->second->hasBuffer()) {
// The last latch time is used to classify a missed frame as buffer stuffing
// instead of a missed frame. This is used to identify scenarios where we
// could not latch a buffer or apply a transaction due to backpressure.
// We only update the latch time for buffer less layers here, the latch time
// is updated for buffer layers when the buffer is latched.
it->second->updateLastLatchTime(latchTime);
}
continue;
}
const bool bgColorOnly =
!layer->externalTexture && (layer->bgColorLayerId != UNASSIGNED_LAYER_ID);
if (willReleaseBufferOnLatch) {
mLayersWithBuffersRemoved.emplace(it->second);
}
it->second->latchBufferImpl(unused, latchTime, bgColorOnly);
newDataLatched = true;
mLayersWithQueuedFrames.emplace(it->second);
mLayersIdsWithQueuedFrames.emplace(it->second->sequence);
}
updateLayerHistory(latchTime);
mLayerSnapshotBuilder.forEachVisibleSnapshot([&](const frontend::LayerSnapshot& snapshot) {
if (mLayersIdsWithQueuedFrames.find(snapshot.path.id) ==
mLayersIdsWithQueuedFrames.end())
return;
Region visibleReg;
visibleReg.set(snapshot.transformedBoundsWithoutTransparentRegion);
invalidateLayerStack(snapshot.outputFilter, visibleReg);
});
for (auto& destroyedLayer : mLayerLifecycleManager.getDestroyedLayers()) {
mLegacyLayers.erase(destroyedLayer->id);
}
{
ATRACE_NAME("LLM:commitChanges");
mLayerLifecycleManager.commitChanges();
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
}
mustComposite |= (getTransactionFlags() & ~eTransactionFlushNeeded) || newDataLatched;
if (mustComposite && !mLegacyFrontEndEnabled) {
commitTransactions();
}
return mustComposite;
}
bool SurfaceFlinger::commit(PhysicalDisplayId pacesetterId,
const scheduler::FrameTargets& frameTargets) {
const scheduler::FrameTarget& pacesetterFrameTarget = *frameTargets.get(pacesetterId)->get();
const VsyncId vsyncId = pacesetterFrameTarget.vsyncId();
ATRACE_NAME(ftl::Concat(__func__, ' ', ftl::to_underlying(vsyncId)).c_str());
if (pacesetterFrameTarget.didMissFrame()) {
mTimeStats->incrementMissedFrames();
}
// If a mode set is pending and the fence hasn't fired yet, wait for the next commit.
if (std::any_of(frameTargets.begin(), frameTargets.end(),
[this](const auto& pair) FTL_FAKE_GUARD(mStateLock)
FTL_FAKE_GUARD(kMainThreadContext) {
if (!pair.second->isFramePending()) return false;
if (const auto display = getDisplayDeviceLocked(pair.first)) {
return display->isModeSetPending();
}
return false;
})) {
mScheduler->scheduleFrame();
return false;
}
{
Mutex::Autolock lock(mStateLock);
for (const auto [id, target] : frameTargets) {
// TODO(b/241285876): This is `nullptr` when the DisplayDevice is about to be removed in
// this commit, since the PhysicalDisplay has already been removed. Rather than checking
// for `nullptr` below, change Scheduler::onFrameSignal to filter out the FrameTarget of
// the removed display.
const auto display = getDisplayDeviceLocked(id);
if (display && display->isModeSetPending()) {
finalizeDisplayModeChange(*display);
}
}
}
if (pacesetterFrameTarget.isFramePending()) {
if (mBackpressureGpuComposition || pacesetterFrameTarget.didMissHwcFrame()) {
if (FlagManager::getInstance().vrr_config()) {
mScheduler->getVsyncSchedule()->getTracker().onFrameMissed(
pacesetterFrameTarget.expectedPresentTime());
}
scheduleCommit(FrameHint::kNone);
return false;
}
}
const Period vsyncPeriod = mScheduler->getVsyncSchedule()->period();
// Save this once per commit + composite to ensure consistency
// TODO (b/240619471): consider removing active display check once AOD is fixed
const auto activeDisplay = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(mActiveDisplayId));
mPowerHintSessionEnabled = mPowerAdvisor->usePowerHintSession() && activeDisplay &&
activeDisplay->getPowerMode() == hal::PowerMode::ON;
if (mPowerHintSessionEnabled) {
mPowerAdvisor->setCommitStart(pacesetterFrameTarget.frameBeginTime());
mPowerAdvisor->setExpectedPresentTime(pacesetterFrameTarget.expectedPresentTime());
// Frame delay is how long we should have minus how long we actually have.
const Duration idealSfWorkDuration =
mScheduler->vsyncModulator().getVsyncConfig().sfWorkDuration;
const Duration frameDelay =
idealSfWorkDuration - pacesetterFrameTarget.expectedFrameDuration();
mPowerAdvisor->setFrameDelay(frameDelay);
mPowerAdvisor->setTotalFrameTargetWorkDuration(idealSfWorkDuration);
const auto& display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked()).get();
const Period idealVsyncPeriod = display->getActiveMode().fps.getPeriod();
mPowerAdvisor->updateTargetWorkDuration(idealVsyncPeriod);
}
if (mRefreshRateOverlaySpinner || mHdrSdrRatioOverlay) {
Mutex::Autolock lock(mStateLock);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->animateOverlay();
}
}
// Composite if transactions were committed, or if requested by HWC.
bool mustComposite = mMustComposite.exchange(false);
{
mFrameTimeline->setSfWakeUp(ftl::to_underlying(vsyncId),
pacesetterFrameTarget.frameBeginTime().ns(),
Fps::fromPeriodNsecs(vsyncPeriod.ns()),
mScheduler->getPacesetterRefreshRate());
const bool flushTransactions = clearTransactionFlags(eTransactionFlushNeeded);
bool transactionsAreEmpty;
if (mLegacyFrontEndEnabled) {
mustComposite |=
updateLayerSnapshotsLegacy(vsyncId, pacesetterFrameTarget.frameBeginTime().ns(),
flushTransactions, transactionsAreEmpty);
}
if (mLayerLifecycleManagerEnabled) {
mustComposite |=
updateLayerSnapshots(vsyncId, pacesetterFrameTarget.frameBeginTime().ns(),
flushTransactions, transactionsAreEmpty);
}
if (transactionFlushNeeded()) {
setTransactionFlags(eTransactionFlushNeeded);
}
// This has to be called after latchBuffers because we want to include the layers that have
// been latched in the commit callback
if (transactionsAreEmpty) {
// Invoke empty transaction callbacks early.
mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */);
} else {
// Invoke OnCommit callbacks.
mTransactionCallbackInvoker.sendCallbacks(true /* onCommitOnly */);
}
}
// Layers need to get updated (in the previous line) before we can use them for
// choosing the refresh rate.
// Hold mStateLock as chooseRefreshRateForContent promotes wp<Layer> to sp<Layer>
// and may eventually call to ~Layer() if it holds the last reference
{
bool updateAttachedChoreographer = mUpdateAttachedChoreographer;
mUpdateAttachedChoreographer = false;
Mutex::Autolock lock(mStateLock);
mScheduler->chooseRefreshRateForContent(mLayerLifecycleManagerEnabled
? &mLayerHierarchyBuilder.getHierarchy()
: nullptr,
updateAttachedChoreographer);
initiateDisplayModeChanges();
}
updateCursorAsync();
if (!mustComposite) {
updateInputFlinger(vsyncId, pacesetterFrameTarget.frameBeginTime());
}
doActiveLayersTracingIfNeeded(false, mVisibleRegionsDirty,
pacesetterFrameTarget.frameBeginTime(), vsyncId);
mLastCommittedVsyncId = vsyncId;
persistDisplayBrightness(mustComposite);
return mustComposite && CC_LIKELY(mBootStage != BootStage::BOOTLOADER);
}
CompositeResultsPerDisplay SurfaceFlinger::composite(
PhysicalDisplayId pacesetterId, const scheduler::FrameTargeters& frameTargeters) {
const scheduler::FrameTarget& pacesetterTarget =
frameTargeters.get(pacesetterId)->get()->target();
const VsyncId vsyncId = pacesetterTarget.vsyncId();
ATRACE_NAME(ftl::Concat(__func__, ' ', ftl::to_underlying(vsyncId)).c_str());
compositionengine::CompositionRefreshArgs refreshArgs;
refreshArgs.powerCallback = this;
const auto& displays = FTL_FAKE_GUARD(mStateLock, mDisplays);
refreshArgs.outputs.reserve(displays.size());
// Add outputs for physical displays.
for (const auto& [id, targeter] : frameTargeters) {
ftl::FakeGuard guard(mStateLock);
if (const auto display = getCompositionDisplayLocked(id)) {
refreshArgs.outputs.push_back(display);
}
refreshArgs.frameTargets.try_emplace(id, &targeter->target());
}
std::vector<DisplayId> displayIds;
for (const auto& [_, display] : displays) {
displayIds.push_back(display->getId());
display->tracePowerMode();
// Add outputs for virtual displays.
if (display->isVirtual()) {
const Fps refreshRate = display->getAdjustedRefreshRate();
if (!refreshRate.isValid() ||
mScheduler->isVsyncInPhase(pacesetterTarget.frameBeginTime(), refreshRate)) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
}
}
}
mPowerAdvisor->setDisplays(displayIds);
const bool updateTaskMetadata = mCompositionEngine->getFeatureFlags().test(
compositionengine::Feature::kSnapshotLayerMetadata);
if (updateTaskMetadata && (mVisibleRegionsDirty || mLayerMetadataSnapshotNeeded)) {
updateLayerMetadataSnapshot();
mLayerMetadataSnapshotNeeded = false;
}
if (DOES_CONTAIN_BORDER) {
refreshArgs.borderInfoList.clear();
mDrawingState.traverse([&refreshArgs](Layer* layer) {
if (layer->isBorderEnabled()) {
compositionengine::BorderRenderInfo info;
info.width = layer->getBorderWidth();
info.color = layer->getBorderColor();
layer->traverse(LayerVector::StateSet::Drawing, [&info](Layer* ilayer) {
info.layerIds.push_back(ilayer->getSequence());
});
refreshArgs.borderInfoList.emplace_back(std::move(info));
}
});
}
refreshArgs.bufferIdsToUncache = std::move(mBufferIdsToUncache);
refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size());
for (auto layer : mLayersWithQueuedFrames) {
if (auto layerFE = layer->getCompositionEngineLayerFE())
refreshArgs.layersWithQueuedFrames.push_back(layerFE);
}
refreshArgs.outputColorSetting = mDisplayColorSetting;
refreshArgs.forceOutputColorMode = mForceColorMode;
refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
refreshArgs.updatingGeometryThisFrame = mGeometryDirty.exchange(false) || mVisibleRegionsDirty;
refreshArgs.internalDisplayRotationFlags = getActiveDisplayRotationFlags();
if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) {
refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix;
mDrawingState.colorMatrixChanged = false;
}
refreshArgs.devOptForceClientComposition = mDebugDisableHWC;
if (mDebugFlashDelay != 0) {
refreshArgs.devOptForceClientComposition = true;
refreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::milliseconds(mDebugFlashDelay);
}
// TODO(b/255601557) Update frameInterval per display
refreshArgs.frameInterval =
mScheduler->getNextFrameInterval(pacesetterId, pacesetterTarget.expectedPresentTime());
refreshArgs.scheduledFrameTime = mScheduler->getScheduledFrameTime();
refreshArgs.hasTrustedPresentationListener = mNumTrustedPresentationListeners > 0;
// Store the present time just before calling to the composition engine so we could notify
// the scheduler.
const auto presentTime = systemTime();
constexpr bool kCursorOnly = false;
const auto layers = moveSnapshotsToCompositionArgs(refreshArgs, kCursorOnly);
if (mLayerLifecycleManagerEnabled && !mVisibleRegionsDirty) {
for (const auto& [token, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
auto compositionDisplay = display->getCompositionDisplay();
if (!compositionDisplay->getState().isEnabled) continue;
for (auto outputLayer : compositionDisplay->getOutputLayersOrderedByZ()) {
if (outputLayer->getLayerFE().getCompositionState() == nullptr) {
// This is unexpected but instead of crashing, capture traces to disk
// and recover gracefully by forcing CE to rebuild layer stack.
ALOGE("Output layer %s for display %s %" PRIu64 " has a null "
"snapshot. Forcing mVisibleRegionsDirty",
outputLayer->getLayerFE().getDebugName(),
compositionDisplay->getName().c_str(), compositionDisplay->getId().value);
TransactionTraceWriter::getInstance().invoke(__func__, /* overwrite= */ false);
mVisibleRegionsDirty = true;
refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
refreshArgs.updatingGeometryThisFrame = mVisibleRegionsDirty;
}
}
}
}
mCompositionEngine->present(refreshArgs);
moveSnapshotsFromCompositionArgs(refreshArgs, layers);
for (auto [layer, layerFE] : layers) {
CompositionResult compositionResult{layerFE->stealCompositionResult()};
layer->onPreComposition(compositionResult.refreshStartTime);
for (auto& [releaseFence, layerStack] : compositionResult.releaseFences) {
Layer* clonedFrom = layer->getClonedFrom().get();
auto owningLayer = clonedFrom ? clonedFrom : layer;
owningLayer->onLayerDisplayed(std::move(releaseFence), layerStack);
}
if (compositionResult.lastClientCompositionFence) {
layer->setWasClientComposed(compositionResult.lastClientCompositionFence);
}
}
mTimeStats->recordFrameDuration(pacesetterTarget.frameBeginTime().ns(), systemTime());
// Send a power hint after presentation is finished.
if (mPowerHintSessionEnabled) {
// Now that the current frame has been presented above, PowerAdvisor needs the present time
// of the previous frame (whose fence is signaled by now) to determine how long the HWC had
// waited on that fence to retire before presenting.
const auto& previousPresentFence = pacesetterTarget.presentFenceForPreviousFrame();
mPowerAdvisor->setSfPresentTiming(TimePoint::fromNs(previousPresentFence->getSignalTime()),
TimePoint::now());
mPowerAdvisor->reportActualWorkDuration();
}
if (mScheduler->onCompositionPresented(presentTime)) {
scheduleComposite(FrameHint::kNone);
}
mNotifyExpectedPresentMap[pacesetterId].hintStatus = NotifyExpectedPresentHintStatus::Start;
onCompositionPresented(pacesetterId, frameTargeters, presentTime);
const bool hadGpuComposited =
multiDisplayUnion(mCompositionCoverage).test(CompositionCoverage::Gpu);
mCompositionCoverage.clear();
TimeStats::ClientCompositionRecord clientCompositionRecord;
for (const auto& [_, display] : displays) {
const auto& state = display->getCompositionDisplay()->getState();
CompositionCoverageFlags& flags =
mCompositionCoverage.try_emplace(display->getId()).first->second;
if (state.usesDeviceComposition) {
flags |= CompositionCoverage::Hwc;
}
if (state.reusedClientComposition) {
flags |= CompositionCoverage::GpuReuse;
} else if (state.usesClientComposition) {
flags |= CompositionCoverage::Gpu;
}
clientCompositionRecord.predicted |=
(state.strategyPrediction != CompositionStrategyPredictionState::DISABLED);
clientCompositionRecord.predictionSucceeded |=
(state.strategyPrediction == CompositionStrategyPredictionState::SUCCESS);
}
const auto coverage = multiDisplayUnion(mCompositionCoverage);
const bool hasGpuComposited = coverage.test(CompositionCoverage::Gpu);
clientCompositionRecord.hadClientComposition = hasGpuComposited;
clientCompositionRecord.reused = coverage.test(CompositionCoverage::GpuReuse);
clientCompositionRecord.changed = hadGpuComposited != hasGpuComposited;
mTimeStats->pushCompositionStrategyState(clientCompositionRecord);
using namespace ftl::flag_operators;
// TODO(b/160583065): Enable skip validation when SF caches all client composition layers.
const bool hasGpuUseOrReuse =
coverage.any(CompositionCoverage::Gpu | CompositionCoverage::GpuReuse);
mScheduler->modulateVsync({}, &VsyncModulator::onDisplayRefresh, hasGpuUseOrReuse);
mLayersWithQueuedFrames.clear();
mLayersIdsWithQueuedFrames.clear();
doActiveLayersTracingIfNeeded(true, mVisibleRegionsDirty, pacesetterTarget.frameBeginTime(),
vsyncId);
updateInputFlinger(vsyncId, pacesetterTarget.frameBeginTime());
if (mVisibleRegionsDirty) mHdrLayerInfoChanged = true;
mVisibleRegionsDirty = false;
if (mCompositionEngine->needsAnotherUpdate()) {
scheduleCommit(FrameHint::kNone);
}
if (mPowerHintSessionEnabled) {
mPowerAdvisor->setCompositeEnd(TimePoint::now());
}
CompositeResultsPerDisplay resultsPerDisplay;
// Filter out virtual displays.
for (const auto& [id, coverage] : mCompositionCoverage) {
if (const auto idOpt = PhysicalDisplayId::tryCast(id)) {
resultsPerDisplay.try_emplace(*idOpt, CompositeResult{coverage});
}
}
return resultsPerDisplay;
}
void SurfaceFlinger::updateLayerGeometry() {
ATRACE_CALL();
if (mVisibleRegionsDirty) {
computeLayerBounds();
}
for (auto& layer : mLayersPendingRefresh) {
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer->getOutputFilter(), visibleReg);
}
mLayersPendingRefresh.clear();
}
bool SurfaceFlinger::isHdrLayer(const frontend::LayerSnapshot& snapshot) const {
// Even though the camera layer may be using an HDR transfer function or otherwise be "HDR"
// the device may need to avoid boosting the brightness as a result of these layers to
// reduce power consumption during camera recording
if (mIgnoreHdrCameraLayers) {
if (snapshot.externalTexture &&
(snapshot.externalTexture->getUsage() & GRALLOC_USAGE_HW_CAMERA_WRITE) != 0) {
return false;
}
}
// RANGE_EXTENDED layer may identify themselves as being "HDR"
// via a desired hdr/sdr ratio
auto pixelFormat = snapshot.buffer
? std::make_optional(static_cast<ui::PixelFormat>(snapshot.buffer->getPixelFormat()))
: std::nullopt;
if (getHdrRenderType(snapshot.dataspace, pixelFormat, snapshot.desiredHdrSdrRatio) !=
HdrRenderType::SDR) {
return true;
}
// If the layer is not allowed to be dimmed, treat it as HDR. WindowManager may disable
// dimming in order to keep animations invoking SDR screenshots of HDR layers seamless.
// Treat such tagged layers as HDR so that DisplayManagerService does not try to change
// the screen brightness
if (!snapshot.dimmingEnabled) {
return true;
}
return false;
}
ui::Rotation SurfaceFlinger::getPhysicalDisplayOrientation(DisplayId displayId,
bool isPrimary) const {
const auto id = PhysicalDisplayId::tryCast(displayId);
if (!id) {
return ui::ROTATION_0;
}
if (!mIgnoreHwcPhysicalDisplayOrientation &&
getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::PhysicalDisplayOrientation)) {
switch (getHwComposer().getPhysicalDisplayOrientation(*id)) {
case Hwc2::AidlTransform::ROT_90:
return ui::ROTATION_90;
case Hwc2::AidlTransform::ROT_180:
return ui::ROTATION_180;
case Hwc2::AidlTransform::ROT_270:
return ui::ROTATION_270;
default:
return ui::ROTATION_0;
}
}
if (isPrimary) {
using Values = SurfaceFlingerProperties::primary_display_orientation_values;
switch (primary_display_orientation(Values::ORIENTATION_0)) {
case Values::ORIENTATION_90:
return ui::ROTATION_90;
case Values::ORIENTATION_180:
return ui::ROTATION_180;
case Values::ORIENTATION_270:
return ui::ROTATION_270;
default:
break;
}
}
return ui::ROTATION_0;
}
void SurfaceFlinger::onCompositionPresented(PhysicalDisplayId pacesetterId,
const scheduler::FrameTargeters& frameTargeters,
nsecs_t presentStartTime) {
ATRACE_CALL();
ui::PhysicalDisplayMap<PhysicalDisplayId, std::shared_ptr<FenceTime>> presentFences;
ui::PhysicalDisplayMap<PhysicalDisplayId, const sp<Fence>> gpuCompositionDoneFences;
for (const auto& [id, targeter] : frameTargeters) {
auto presentFence = getHwComposer().getPresentFence(id);
if (id == pacesetterId) {
mTransactionCallbackInvoker.addPresentFence(presentFence);
}
if (auto fenceTime = targeter->setPresentFence(std::move(presentFence));
fenceTime->isValid()) {
presentFences.try_emplace(id, std::move(fenceTime));
}
ftl::FakeGuard guard(mStateLock);
if (const auto display = getCompositionDisplayLocked(id);
display && display->getState().usesClientComposition) {
gpuCompositionDoneFences
.try_emplace(id, display->getRenderSurface()->getClientTargetAcquireFence());
}
}
const auto pacesetterDisplay = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(pacesetterId));
std::shared_ptr<FenceTime> pacesetterPresentFenceTime =
presentFences.get(pacesetterId)
.transform([](const FenceTimePtr& ptr) { return ptr; })
.value_or(FenceTime::NO_FENCE);
std::shared_ptr<FenceTime> pacesetterGpuCompositionDoneFenceTime =
gpuCompositionDoneFences.get(pacesetterId)
.transform([](sp<Fence> fence) {
return std::make_shared<FenceTime>(std::move(fence));
})
.value_or(FenceTime::NO_FENCE);
const TimePoint presentTime = TimePoint::now();
// Set presentation information before calling Layer::releasePendingBuffer, such that jank
// information from previous' frame classification is already available when sending jank info
// to clients, so they get jank classification as early as possible.
mFrameTimeline->setSfPresent(presentTime.ns(), pacesetterPresentFenceTime,
pacesetterGpuCompositionDoneFenceTime);
// We use the CompositionEngine::getLastFrameRefreshTimestamp() which might
// be sampled a little later than when we started doing work for this frame,
// but that should be okay since CompositorTiming has snapping logic.
const TimePoint compositeTime =
TimePoint::fromNs(mCompositionEngine->getLastFrameRefreshTimestamp());
const Duration presentLatency =
getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)
? Duration::zero()
: mPresentLatencyTracker.trackPendingFrame(compositeTime, pacesetterPresentFenceTime);
const auto schedule = mScheduler->getVsyncSchedule();
const TimePoint vsyncDeadline = schedule->vsyncDeadlineAfter(presentTime);
const Period vsyncPeriod = schedule->period();
const nsecs_t vsyncPhase =
mScheduler->getVsyncConfiguration().getCurrentConfigs().late.sfOffset;
const CompositorTiming compositorTiming(vsyncDeadline.ns(), vsyncPeriod.ns(), vsyncPhase,
presentLatency.ns());
ui::DisplayMap<ui::LayerStack, const DisplayDevice*> layerStackToDisplay;
{
if (!mLayersWithBuffersRemoved.empty() || mNumTrustedPresentationListeners > 0) {
Mutex::Autolock lock(mStateLock);
for (const auto& [token, display] : mDisplays) {
layerStackToDisplay.emplace_or_replace(display->getLayerStack(), display.get());
}
}
}
for (auto layer : mLayersWithBuffersRemoved) {
std::vector<ui::LayerStack> previouslyPresentedLayerStacks =
std::move(layer->mPreviouslyPresentedLayerStacks);
layer->mPreviouslyPresentedLayerStacks.clear();
for (auto layerStack : previouslyPresentedLayerStacks) {
auto optDisplay = layerStackToDisplay.get(layerStack);
if (optDisplay && !optDisplay->get()->isVirtual()) {
auto fence = getHwComposer().getPresentFence(optDisplay->get()->getPhysicalId());
layer->onLayerDisplayed(ftl::yield<FenceResult>(fence).share(),
ui::INVALID_LAYER_STACK);
}
}
layer->releasePendingBuffer(presentTime.ns());
}
mLayersWithBuffersRemoved.clear();
for (const auto& layer: mLayersWithQueuedFrames) {
layer->onCompositionPresented(pacesetterDisplay.get(),
pacesetterGpuCompositionDoneFenceTime,
pacesetterPresentFenceTime, compositorTiming);
layer->releasePendingBuffer(presentTime.ns());
}
std::vector<std::pair<std::shared_ptr<compositionengine::Display>, sp<HdrLayerInfoReporter>>>
hdrInfoListeners;
bool haveNewListeners = false;
{
Mutex::Autolock lock(mStateLock);
if (mFpsReporter) {
mFpsReporter->dispatchLayerFps(mLayerHierarchyBuilder.getHierarchy());
}
if (mTunnelModeEnabledReporter) {
mTunnelModeEnabledReporter->updateTunnelModeStatus();
}
hdrInfoListeners.reserve(mHdrLayerInfoListeners.size());
for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) {
if (reporter && reporter->hasListeners()) {
if (const auto display = getDisplayDeviceLocked(displayId)) {
hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter);
}
}
}
haveNewListeners = mAddingHDRLayerInfoListener; // grab this with state lock
mAddingHDRLayerInfoListener = false;
}
if (haveNewListeners || mHdrLayerInfoChanged) {
for (auto& [compositionDisplay, listener] : hdrInfoListeners) {
HdrLayerInfoReporter::HdrLayerInfo info;
int32_t maxArea = 0;
auto updateInfoFn =
[&](const std::shared_ptr<compositionengine::Display>& compositionDisplay,
const frontend::LayerSnapshot& snapshot, const sp<LayerFE>& layerFe) {
if (snapshot.isVisible &&
compositionDisplay->includesLayer(snapshot.outputFilter)) {
if (isHdrLayer(snapshot)) {
const auto* outputLayer =
compositionDisplay->getOutputLayerForLayer(layerFe);
if (outputLayer) {
const float desiredHdrSdrRatio =
snapshot.desiredHdrSdrRatio < 1.f
? std::numeric_limits<float>::infinity()
: snapshot.desiredHdrSdrRatio;
info.mergeDesiredRatio(desiredHdrSdrRatio);
info.numberOfHdrLayers++;
const auto displayFrame = outputLayer->getState().displayFrame;
const int32_t area =
displayFrame.width() * displayFrame.height();
if (area > maxArea) {
maxArea = area;
info.maxW = displayFrame.width();
info.maxH = displayFrame.height();
}
}
}
}
};
if (mLayerLifecycleManagerEnabled) {
mLayerSnapshotBuilder.forEachVisibleSnapshot(
[&, compositionDisplay = compositionDisplay](
std::unique_ptr<frontend::LayerSnapshot>& snapshot) {
auto it = mLegacyLayers.find(snapshot->sequence);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldnt find layer object for %s",
snapshot->getDebugString().c_str());
auto& legacyLayer = it->second;
sp<LayerFE> layerFe =
legacyLayer->getCompositionEngineLayerFE(snapshot->path);
updateInfoFn(compositionDisplay, *snapshot, layerFe);
});
} else {
mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) {
const auto layerFe = layer->getCompositionEngineLayerFE();
const frontend::LayerSnapshot& snapshot = *layer->getLayerSnapshot();
updateInfoFn(compositionDisplay, snapshot, layerFe);
});
}
listener->dispatchHdrLayerInfo(info);
}
}
mHdrLayerInfoChanged = false;
mTransactionCallbackInvoker.sendCallbacks(false /* onCommitOnly */);
mTransactionCallbackInvoker.clearCompletedTransactions();
mTimeStats->incrementTotalFrames();
mTimeStats->setPresentFenceGlobal(pacesetterPresentFenceTime);
for (auto&& [id, presentFence] : presentFences) {
ftl::FakeGuard guard(mStateLock);
const bool isInternalDisplay =
mPhysicalDisplays.get(id).transform(&PhysicalDisplay::isInternal).value_or(false);
if (isInternalDisplay) {
mScheduler->addPresentFence(id, std::move(presentFence));
}
}
const bool hasPacesetterDisplay =
pacesetterDisplay && getHwComposer().isConnected(pacesetterId);
if (!hasSyncFramework) {
if (hasPacesetterDisplay && pacesetterDisplay->isPoweredOn()) {
mScheduler->enableHardwareVsync(pacesetterId);
}
}
if (hasPacesetterDisplay && !pacesetterDisplay->isPoweredOn()) {
getRenderEngine().cleanupPostRender();
return;
}
// Cleanup any outstanding resources due to rendering a prior frame.
getRenderEngine().cleanupPostRender();
if (mNumTrustedPresentationListeners > 0) {
// We avoid any reverse traversal upwards so this shouldn't be too expensive
traverseLegacyLayers([&](Layer* layer) {
if (!layer->hasTrustedPresentationListener()) {
return;
}
const frontend::LayerSnapshot* snapshot = mLayerLifecycleManagerEnabled
? mLayerSnapshotBuilder.getSnapshot(layer->sequence)
: layer->getLayerSnapshot();
std::optional<const DisplayDevice*> displayOpt = std::nullopt;
if (snapshot) {
displayOpt = layerStackToDisplay.get(snapshot->outputFilter.layerStack);
}
const DisplayDevice* display = displayOpt.value_or(nullptr);
layer->updateTrustedPresentationState(display, snapshot,
nanoseconds_to_milliseconds(presentStartTime),
false);
});
}
// Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
// side-effect of getTotalSize(), so we check that again here
if (ATRACE_ENABLED()) {
// getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger
ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
}
logFrameStats(presentTime);
}
FloatRect SurfaceFlinger::getMaxDisplayBounds() {
const ui::Size maxSize = [this] {
ftl::FakeGuard guard(mStateLock);
// The LayerTraceGenerator tool runs without displays.
if (mDisplays.empty()) return ui::Size{5000, 5000};
return std::accumulate(mDisplays.begin(), mDisplays.end(), ui::kEmptySize,
[](ui::Size size, const auto& pair) -> ui::Size {
const auto& display = pair.second;
return {std::max(size.getWidth(), display->getWidth()),
std::max(size.getHeight(), display->getHeight())};
});
}();
// Ignore display bounds for now since they will be computed later. Use a large Rect bound
// to ensure it's bigger than an actual display will be.
const float xMax = maxSize.getWidth() * 10.f;
const float yMax = maxSize.getHeight() * 10.f;
return {-xMax, -yMax, xMax, yMax};
}
void SurfaceFlinger::computeLayerBounds() {
const FloatRect maxBounds = getMaxDisplayBounds();
for (const auto& layer : mDrawingState.layersSortedByZ) {
layer->computeBounds(maxBounds, ui::Transform(), 0.f /* shadowRadius */);
}
}
void SurfaceFlinger::commitTransactions() {
ATRACE_CALL();
// Keep a copy of the drawing state (that is going to be overwritten
// by commitTransactionsLocked) outside of mStateLock so that the side
// effects of the State assignment don't happen with mStateLock held,
// which can cause deadlocks.
State drawingState(mDrawingState);
Mutex::Autolock lock(mStateLock);
mDebugInTransaction = systemTime();
// Here we're guaranteed that some transaction flags are set
// so we can call commitTransactionsLocked unconditionally.
// We clear the flags with mStateLock held to guarantee that
// mCurrentState won't change until the transaction is committed.
mScheduler->modulateVsync({}, &VsyncModulator::onTransactionCommit);
commitTransactionsLocked(clearTransactionFlags(eTransactionMask));
mDebugInTransaction = 0;
}
std::pair<DisplayModes, DisplayModePtr> SurfaceFlinger::loadDisplayModes(
PhysicalDisplayId displayId) const {
std::vector<HWComposer::HWCDisplayMode> hwcModes;
std::optional<hal::HWConfigId> activeModeHwcIdOpt;
const bool isExternalDisplay = FlagManager::getInstance().connected_display() &&
getHwComposer().getDisplayConnectionType(displayId) ==
ui::DisplayConnectionType::External;
int attempt = 0;
constexpr int kMaxAttempts = 3;
do {
hwcModes = getHwComposer().getModes(displayId,
scheduler::RefreshRateSelector::kMinSupportedFrameRate
.getPeriodNsecs());
const auto activeModeHwcIdExp = getHwComposer().getActiveMode(displayId);
activeModeHwcIdOpt = activeModeHwcIdExp.value_opt();
if (isExternalDisplay &&
activeModeHwcIdExp.has_error([](status_t error) { return error == NO_INIT; })) {
constexpr nsecs_t k59HzVsyncPeriod = 16949153;
constexpr nsecs_t k60HzVsyncPeriod = 16666667;
// DM sets the initial mode for an external display to 1080p@60, but
// this comes after SF creates its own state (including the
// DisplayDevice). For now, pick the same mode in order to avoid
// inconsistent state and unnecessary mode switching.
// TODO (b/318534874): Let DM decide the initial mode.
//
// Try to find 1920x1080 @ 60 Hz
if (const auto iter = std::find_if(hwcModes.begin(), hwcModes.end(),
[](const auto& mode) {
return mode.width == 1920 &&
mode.height == 1080 &&
mode.vsyncPeriod == k60HzVsyncPeriod;
});
iter != hwcModes.end()) {
activeModeHwcIdOpt = iter->hwcId;
break;
}
// Try to find 1920x1080 @ 59-60 Hz
if (const auto iter = std::find_if(hwcModes.begin(), hwcModes.end(),
[](const auto& mode) {
return mode.width == 1920 &&
mode.height == 1080 &&
mode.vsyncPeriod >= k60HzVsyncPeriod &&
mode.vsyncPeriod <= k59HzVsyncPeriod;
});
iter != hwcModes.end()) {
activeModeHwcIdOpt = iter->hwcId;
break;
}
// The display does not support 1080p@60, and this is the last attempt to pick a display
// mode. Prefer 60 Hz if available, with the closest resolution to 1080p.
if (attempt + 1 == kMaxAttempts) {
std::vector<HWComposer::HWCDisplayMode> hwcModeOpts;
for (const auto& mode : hwcModes) {
if (mode.width <= 1920 && mode.height <= 1080 &&
mode.vsyncPeriod >= k60HzVsyncPeriod &&
mode.vsyncPeriod <= k59HzVsyncPeriod) {
hwcModeOpts.push_back(mode);
}
}
if (const auto iter = std::max_element(hwcModeOpts.begin(), hwcModeOpts.end(),
[](const auto& a, const auto& b) {
const auto aSize = a.width * a.height;
const auto bSize = b.width * b.height;
if (aSize < bSize)
return true;
else if (aSize == bSize)
return a.vsyncPeriod > b.vsyncPeriod;
else
return false;
});
iter != hwcModeOpts.end()) {
activeModeHwcIdOpt = iter->hwcId;
break;
}
// hwcModeOpts was empty, use hwcModes[0] as the last resort
activeModeHwcIdOpt = hwcModes[0].hwcId;
}
}
const auto isActiveMode = [activeModeHwcIdOpt](const HWComposer::HWCDisplayMode& mode) {
return mode.hwcId == activeModeHwcIdOpt;
};
if (std::any_of(hwcModes.begin(), hwcModes.end(), isActiveMode)) {
break;
}
} while (++attempt < kMaxAttempts);
if (attempt == kMaxAttempts) {
const std::string activeMode =
activeModeHwcIdOpt ? std::to_string(*activeModeHwcIdOpt) : "unknown"s;
ALOGE("HWC failed to report an active mode that is supported: activeModeHwcId=%s, "
"hwcModes={%s}",
activeMode.c_str(), base::Join(hwcModes, ", ").c_str());
return {};
}
const DisplayModes oldModes = mPhysicalDisplays.get(displayId)
.transform([](const PhysicalDisplay& display) {
return display.snapshot().displayModes();
})
.value_or(DisplayModes{});
DisplayModeId nextModeId = std::accumulate(oldModes.begin(), oldModes.end(), DisplayModeId(-1),
[](DisplayModeId max, const auto& pair) {
return std::max(max, pair.first);
});
++nextModeId;
DisplayModes newModes;
for (const auto& hwcMode : hwcModes) {
const auto id = nextModeId++;
newModes.try_emplace(id,
DisplayMode::Builder(hwcMode.hwcId)
.setId(id)
.setPhysicalDisplayId(displayId)
.setResolution({hwcMode.width, hwcMode.height})
.setVsyncPeriod(hwcMode.vsyncPeriod)
.setVrrConfig(hwcMode.vrrConfig)
.setDpiX(hwcMode.dpiX)
.setDpiY(hwcMode.dpiY)
.setGroup(hwcMode.configGroup)
.build());
}
const bool sameModes =
std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(),
[](const auto& lhs, const auto& rhs) {
return equalsExceptDisplayModeId(*lhs.second, *rhs.second);
});
// Keep IDs if modes have not changed.
const auto& modes = sameModes ? oldModes : newModes;
const DisplayModePtr activeMode =
std::find_if(modes.begin(), modes.end(), [activeModeHwcIdOpt](const auto& pair) {
return pair.second->getHwcId() == activeModeHwcIdOpt;
})->second;
if (isExternalDisplay) {
ALOGI("External display %s initial mode: {%s}", to_string(displayId).c_str(),
to_string(*activeMode).c_str());
}
return {modes, activeMode};
}
bool SurfaceFlinger::configureLocked() {
std::vector<HotplugEvent> events;
{
std::lock_guard<std::mutex> lock(mHotplugMutex);
events = std::move(mPendingHotplugEvents);
}
for (const auto [hwcDisplayId, connection] : events) {
if (auto info = getHwComposer().onHotplug(hwcDisplayId, connection)) {
const auto displayId = info->id;
const bool connected = connection == hal::Connection::CONNECTED;
if (const char* const log =
processHotplug(displayId, hwcDisplayId, connected, std::move(*info))) {
ALOGI("%s display %s (HAL ID %" PRIu64 ")", log, to_string(displayId).c_str(),
hwcDisplayId);
}
}
}
return !events.empty();
}
const char* SurfaceFlinger::processHotplug(PhysicalDisplayId displayId,
hal::HWDisplayId hwcDisplayId, bool connected,
DisplayIdentificationInfo&& info) {
const auto displayOpt = mPhysicalDisplays.get(displayId);
if (!connected) {
LOG_ALWAYS_FATAL_IF(!displayOpt);
const auto& display = displayOpt->get();
if (const ssize_t index = mCurrentState.displays.indexOfKey(display.token()); index >= 0) {
mCurrentState.displays.removeItemsAt(index);
}
mPhysicalDisplays.erase(displayId);
return "Disconnecting";
}
auto [displayModes, activeMode] = loadDisplayModes(displayId);
if (!activeMode) {
ALOGE("Failed to hotplug display %s", to_string(displayId).c_str());
if (FlagManager::getInstance().hotplug2()) {
mScheduler->onHotplugConnectionError(mAppConnectionHandle,
static_cast<int32_t>(
DisplayHotplugEvent::ERROR_UNKNOWN));
}
getHwComposer().disconnectDisplay(displayId);
return nullptr;
}
ui::ColorModes colorModes = getHwComposer().getColorModes(displayId);
if (displayOpt) {
const auto& display = displayOpt->get();
const auto& snapshot = display.snapshot();
std::optional<DeviceProductInfo> deviceProductInfo;
if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) {
deviceProductInfo = std::move(info.deviceProductInfo);
} else {
deviceProductInfo = snapshot.deviceProductInfo();
}
const auto it =
mPhysicalDisplays.try_replace(displayId, display.token(), displayId,
snapshot.connectionType(), std::move(displayModes),
std::move(colorModes), std::move(deviceProductInfo));
auto& state = mCurrentState.displays.editValueFor(it->second.token());
state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId.
state.physical->activeMode = std::move(activeMode);
return "Reconnecting";
}
const sp<IBinder> token = sp<BBinder>::make();
const ui::DisplayConnectionType connectionType =
getHwComposer().getDisplayConnectionType(displayId);
mPhysicalDisplays.try_emplace(displayId, token, displayId, connectionType,
std::move(displayModes), std::move(colorModes),
std::move(info.deviceProductInfo));
DisplayDeviceState state;
state.physical = {.id = displayId,
.hwcDisplayId = hwcDisplayId,
.activeMode = std::move(activeMode)};
state.isSecure = connectionType == ui::DisplayConnectionType::Internal;
state.isProtected = true;
state.displayName = std::move(info.name);
mCurrentState.displays.add(token, state);
return "Connecting";
}
void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected);
mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected);
}
void SurfaceFlinger::dispatchDisplayModeChangeEvent(PhysicalDisplayId displayId,
const scheduler::FrameRateMode& mode) {
// TODO(b/255635821): Merge code paths and move to Scheduler.
const auto onDisplayModeChanged = displayId == mActiveDisplayId
? &scheduler::Scheduler::onPrimaryDisplayModeChanged
: &scheduler::Scheduler::onNonPrimaryDisplayModeChanged;
((*mScheduler).*onDisplayModeChanged)(mAppConnectionHandle, mode);
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& displayToken,
std::shared_ptr<compositionengine::Display> compositionDisplay,
const DisplayDeviceState& state,
const sp<compositionengine::DisplaySurface>& displaySurface,
const sp<IGraphicBufferProducer>& producer) {
DisplayDeviceCreationArgs creationArgs(sp<SurfaceFlinger>::fromExisting(this), getHwComposer(),
displayToken, compositionDisplay);
creationArgs.sequenceId = state.sequenceId;
creationArgs.isSecure = state.isSecure;
creationArgs.isProtected = state.isProtected;
creationArgs.displaySurface = displaySurface;
creationArgs.hasWideColorGamut = false;
creationArgs.supportedPerFrameMetadata = 0;
if (const auto& physical = state.physical) {
creationArgs.activeModeId = physical->activeMode->getId();
const auto [kernelIdleTimerController, idleTimerTimeoutMs] =
getKernelIdleTimerProperties(compositionDisplay->getId());
using Config = scheduler::RefreshRateSelector::Config;
const auto enableFrameRateOverride = sysprop::enable_frame_rate_override(true)
? Config::FrameRateOverride::Enabled
: Config::FrameRateOverride::Disabled;
Config config =
{.enableFrameRateOverride = enableFrameRateOverride,
.frameRateMultipleThreshold =
base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0),
.idleTimerTimeout = idleTimerTimeoutMs,
.kernelIdleTimerController = kernelIdleTimerController};
creationArgs.refreshRateSelector =
mPhysicalDisplays.get(physical->id)
.transform(&PhysicalDisplay::snapshotRef)
.transform([&](const display::DisplaySnapshot& snapshot) {
return std::make_shared<
scheduler::RefreshRateSelector>(snapshot.displayModes(),
creationArgs.activeModeId,
config);
})
.value_or(nullptr);
creationArgs.isPrimary = physical->id == getPrimaryDisplayIdLocked();
mPhysicalDisplays.get(physical->id)
.transform(&PhysicalDisplay::snapshotRef)
.transform(ftl::unit_fn([&](const display::DisplaySnapshot& snapshot) {
for (const auto mode : snapshot.colorModes()) {
creationArgs.hasWideColorGamut |= ui::isWideColorMode(mode);
creationArgs.hwcColorModes
.emplace(mode,
getHwComposer().getRenderIntents(physical->id, mode));
}
}));
}
if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) {
getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities);
creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id);
}
auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
creationArgs.nativeWindow = nativeWindow;
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// here, in case the display is composed entirely by HWC.
if (state.isVirtual()) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
creationArgs.physicalOrientation =
getPhysicalDisplayOrientation(compositionDisplay->getId(), creationArgs.isPrimary);
ALOGV("Display Orientation: %s", toCString(creationArgs.physicalOrientation));
creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF;
creationArgs.requestedRefreshRate = state.requestedRefreshRate;
sp<DisplayDevice> display = getFactory().createDisplayDevice(creationArgs);
nativeWindowSurface->preallocateBuffers();
ui::ColorMode defaultColorMode = ui::ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (display->hasWideColorGamut()) {
defaultColorMode = ui::ColorMode::SRGB;
defaultDataSpace = Dataspace::V0_SRGB;
}
display->getCompositionDisplay()->setColorProfile(
compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC});
if (const auto& physical = state.physical) {
const auto& mode = *physical->activeMode;
display->setActiveMode(mode.getId(), mode.getVsyncRate(), mode.getVsyncRate());
}
display->setLayerFilter(makeLayerFilterForDisplay(display->getId(), state.layerStack));
display->setProjection(state.orientation, state.layerStackSpaceRect,
state.orientedDisplaySpaceRect);
display->setDisplayName(state.displayName);
display->setFlags(state.flags);
return display;
}
void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
const DisplayDeviceState& state) {
ui::Size resolution(0, 0);
ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_UNKNOWN);
if (state.physical) {
resolution = state.physical->activeMode->getResolution();
pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_RGBA_8888);
} else if (state.surface != nullptr) {
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int format;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &format);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
pixelFormat = static_cast<ui::PixelFormat>(format);
} else {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
return;
}
compositionengine::DisplayCreationArgsBuilder builder;
if (const auto& physical = state.physical) {
builder.setId(physical->id);
} else {
builder.setId(acquireVirtualDisplay(resolution, pixelFormat));
}
builder.setPixels(resolution);
builder.setIsSecure(state.isSecure);
builder.setIsProtected(state.isProtected);
builder.setPowerAdvisor(mPowerAdvisor.get());
builder.setName(state.displayName);
auto compositionDisplay = getCompositionEngine().createDisplay(builder.build());
compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled);
sp<compositionengine::DisplaySurface> displaySurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);
if (state.isVirtual()) {
const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId());
LOG_FATAL_IF(!displayId);
auto surface = sp<VirtualDisplaySurface>::make(getHwComposer(), *displayId, state.surface,
bqProducer, bqConsumer, state.displayName);
displaySurface = surface;
producer = std::move(surface);
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId());
LOG_FATAL_IF(!displayId);
displaySurface =
sp<FramebufferSurface>::make(getHwComposer(), *displayId, bqConsumer,
state.physical->activeMode->getResolution(),
ui::Size(maxGraphicsWidth, maxGraphicsHeight));
producer = bqProducer;
}
LOG_FATAL_IF(!displaySurface);
auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay), state,
displaySurface, producer);
if (mScheduler && !display->isVirtual()) {
const auto displayId = display->getPhysicalId();
{
// TODO(b/241285876): Annotate `processDisplayAdded` instead.
ftl::FakeGuard guard(kMainThreadContext);
// For hotplug reconnect, renew the registration since display modes have been reloaded.
mScheduler->registerDisplay(displayId, display->holdRefreshRateSelector());
}
dispatchDisplayHotplugEvent(displayId, true);
}
if (display->isVirtual()) {
display->adjustRefreshRate(mScheduler->getPacesetterRefreshRate());
}
mDisplays.try_emplace(displayToken, std::move(display));
// For an external display, loadDisplayModes already attempted to select the same mode
// as DM, but SF still needs to be updated to match.
// TODO (b/318534874): Let DM decide the initial mode.
if (const auto& physical = state.physical;
mScheduler && physical && FlagManager::getInstance().connected_display()) {
const bool isInternalDisplay = mPhysicalDisplays.get(physical->id)
.transform(&PhysicalDisplay::isInternal)
.value_or(false);
if (!isInternalDisplay) {
auto activeModePtr = physical->activeMode;
const auto fps = activeModePtr->getPeakFps();
setDesiredMode(
{.mode = scheduler::FrameRateMode{fps,
ftl::as_non_null(std::move(activeModePtr))},
.emitEvent = false,
.force = true});
}
}
}
void SurfaceFlinger::processDisplayRemoved(const wp<IBinder>& displayToken) {
auto display = getDisplayDeviceLocked(displayToken);
if (display) {
display->disconnect();
if (display->isVirtual()) {
releaseVirtualDisplay(display->getVirtualId());
} else {
dispatchDisplayHotplugEvent(display->getPhysicalId(), false);
mScheduler->unregisterDisplay(display->getPhysicalId());
}
}
mDisplays.erase(displayToken);
if (display && display->isVirtual()) {
static_cast<void>(mScheduler->schedule([display = std::move(display)] {
// Destroy the display without holding the mStateLock.
// This is a temporary solution until we can manage transaction queues without
// holding the mStateLock.
// With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the
// client. When the IGBP is disconnected, its buffer cache in SF will be cleared
// via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client
// ends up running on the main thread causing a deadlock since setTransactionstate
// will try to acquire the mStateLock. Instead we extend the lifetime of
// DisplayDevice and destroy it in the main thread without holding the mStateLock.
// The display will be disconnected and removed from the mDisplays list so it will
// not be accessible.
}));
}
}
void SurfaceFlinger::processDisplayChanged(const wp<IBinder>& displayToken,
const DisplayDeviceState& currentState,
const DisplayDeviceState& drawingState) {
const sp<IBinder> currentBinder = IInterface::asBinder(currentState.surface);
const sp<IBinder> drawingBinder = IInterface::asBinder(drawingState.surface);
// Recreate the DisplayDevice if the surface or sequence ID changed.
if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) {
if (const auto display = getDisplayDeviceLocked(displayToken)) {
display->disconnect();
if (display->isVirtual()) {
releaseVirtualDisplay(display->getVirtualId());
}
}
mDisplays.erase(displayToken);
if (const auto& physical = currentState.physical) {
getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id);
}
processDisplayAdded(displayToken, currentState);
if (currentState.physical) {
const auto display = getDisplayDeviceLocked(displayToken);
setPowerModeInternal(display, hal::PowerMode::ON);
// TODO(b/175678251) Call a listener instead.
if (currentState.physical->hwcDisplayId == getHwComposer().getPrimaryHwcDisplayId()) {
mScheduler->resetPhaseConfiguration(display->getActiveMode().fps);
}
}
return;
}
if (const auto display = getDisplayDeviceLocked(displayToken)) {
if (currentState.layerStack != drawingState.layerStack) {
display->setLayerFilter(
makeLayerFilterForDisplay(display->getId(), currentState.layerStack));
}
if (currentState.flags != drawingState.flags) {
display->setFlags(currentState.flags);
}
if ((currentState.orientation != drawingState.orientation) ||
(currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) ||
(currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) {
display->setProjection(currentState.orientation, currentState.layerStackSpaceRect,
currentState.orientedDisplaySpaceRect);
if (display->getId() == mActiveDisplayId) {
mActiveDisplayTransformHint = display->getTransformHint();
sActiveDisplayRotationFlags =
ui::Transform::toRotationFlags(display->getOrientation());
}
}
if (currentState.width != drawingState.width ||
currentState.height != drawingState.height) {
display->setDisplaySize(currentState.width, currentState.height);
if (display->getId() == mActiveDisplayId) {
onActiveDisplaySizeChanged(*display);
}
}
}
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
mUpdateInputInfo = true;
// Apply the current color matrix to any added or changed display.
mCurrentState.colorMatrixChanged = true;
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < draw.size(); i++) {
const wp<IBinder>& displayToken = draw.keyAt(i);
const ssize_t j = curr.indexOfKey(displayToken);
if (j < 0) {
// in drawing state but not in current state
processDisplayRemoved(displayToken);
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& currentState = curr[j];
const DisplayDeviceState& drawingState = draw[i];
processDisplayChanged(displayToken, currentState, drawingState);
}
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < curr.size(); i++) {
const wp<IBinder>& displayToken = curr.keyAt(i);
if (draw.indexOfKey(displayToken) < 0) {
processDisplayAdded(displayToken, curr[i]);
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::commitTransactionsLocked(uint32_t transactionFlags) {
// Commit display transactions.
const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded;
mFrontEndDisplayInfosChanged = displayTransactionNeeded;
if (displayTransactionNeeded && !mLayerLifecycleManagerEnabled) {
processDisplayChangesLocked();
mFrontEndDisplayInfos.clear();
for (const auto& [_, display] : mDisplays) {
mFrontEndDisplayInfos.try_emplace(display->getLayerStack(), display->getFrontEndInfo());
}
}
mForceTransactionDisplayChange = displayTransactionNeeded;
if (mSomeChildrenChanged) {
mVisibleRegionsDirty = true;
mSomeChildrenChanged = false;
mUpdateInputInfo = true;
}
// Update transform hint.
if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) {
// Layers and/or displays have changed, so update the transform hint for each layer.
//
// NOTE: we do this here, rather than when presenting the display so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> hintDisplay;
ui::LayerStack layerStack;
mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
if (const auto filter = layer->getOutputFilter(); layerStack != filter.layerStack) {
layerStack = filter.layerStack;
hintDisplay = nullptr;
// Find the display that includes the layer.
for (const auto& [token, display] : mDisplays) {
if (!display->getCompositionDisplay()->includesLayer(filter)) {
continue;
}
// Pick the primary display if another display mirrors the layer.
if (hintDisplay) {
hintDisplay = nullptr;
break;
}
hintDisplay = display;
}
}
if (!hintDisplay) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
// U Update: Don't provide stale hints to the clients. For
// special cases where we want the app to draw its
// first frame before the display is available, we rely
// on WMS and DMS to provide the right information
// so the client can calculate the hint.
layer->skipReportingTransformHint();
} else {
layer->updateTransformHint(hintDisplay->getTransformHint());
}
});
}
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
mUpdateInputInfo = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mUpdateInputInfo = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(sp<Layer>::fromExisting(layer)) >= 0) {
// this layer is not visible anymore
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer->getOutputFilter(), visibleReg);
}
});
}
if (transactionFlags & eInputInfoUpdateNeeded) {
mUpdateInputInfo = true;
}
doCommitTransactions();
}
void SurfaceFlinger::updateInputFlinger(VsyncId vsyncId, TimePoint frameTime) {
if (!mInputFlinger || (!mUpdateInputInfo && mInputWindowCommands.empty())) {
return;
}
ATRACE_CALL();
std::vector<WindowInfo> windowInfos;
std::vector<DisplayInfo> displayInfos;
bool updateWindowInfo = false;
if (mUpdateInputInfo) {
mUpdateInputInfo = false;
updateWindowInfo = true;
buildWindowInfos(windowInfos, displayInfos);
}
std::unordered_set<int32_t> visibleWindowIds;
for (WindowInfo& windowInfo : windowInfos) {
if (!windowInfo.inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) {
visibleWindowIds.insert(windowInfo.id);
}
}
bool visibleWindowsChanged = false;
if (visibleWindowIds != mVisibleWindowIds) {
visibleWindowsChanged = true;
mVisibleWindowIds = std::move(visibleWindowIds);
}
BackgroundExecutor::getInstance().sendCallbacks({[updateWindowInfo,
windowInfos = std::move(windowInfos),
displayInfos = std::move(displayInfos),
inputWindowCommands =
std::move(mInputWindowCommands),
inputFlinger = mInputFlinger, this,
visibleWindowsChanged, vsyncId, frameTime]() {
ATRACE_NAME("BackgroundExecutor::updateInputFlinger");
if (updateWindowInfo) {
mWindowInfosListenerInvoker
->windowInfosChanged(gui::WindowInfosUpdate{std::move(windowInfos),
std::move(displayInfos),
ftl::to_underlying(vsyncId),
frameTime.ns()},
std::move(
inputWindowCommands.windowInfosReportedListeners),
/* forceImmediateCall= */ visibleWindowsChanged ||
!inputWindowCommands.focusRequests.empty());
} else {
// If there are listeners but no changes to input windows, call the listeners
// immediately.
for (const auto& listener : inputWindowCommands.windowInfosReportedListeners) {
if (IInterface::asBinder(listener)->isBinderAlive()) {
listener->onWindowInfosReported();
}
}
}
for (const auto& focusRequest : inputWindowCommands.focusRequests) {
inputFlinger->setFocusedWindow(focusRequest);
}
}});
mInputWindowCommands.clear();
}
void SurfaceFlinger::persistDisplayBrightness(bool needsComposite) {
const bool supportsDisplayBrightnessCommand = getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::DisplayBrightnessCommand);
if (!supportsDisplayBrightnessCommand) {
return;
}
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
if (const auto brightness = display->getStagedBrightness(); brightness) {
if (!needsComposite) {
const status_t error =
getHwComposer()
.setDisplayBrightness(display->getPhysicalId(), *brightness,
display->getCompositionDisplay()
->getState()
.displayBrightnessNits,
Hwc2::Composer::DisplayBrightnessOptions{
.applyImmediately = true})
.get();
ALOGE_IF(error != NO_ERROR,
"Error setting display brightness for display %s: %d (%s)",
to_string(display->getId()).c_str(), error, strerror(error));
}
display->persistBrightness(needsComposite);
}
}
}
void SurfaceFlinger::buildWindowInfos(std::vector<WindowInfo>& outWindowInfos,
std::vector<DisplayInfo>& outDisplayInfos) {
static size_t sNumWindowInfos = 0;
outWindowInfos.reserve(sNumWindowInfos);
sNumWindowInfos = 0;
if (mLayerLifecycleManagerEnabled) {
mLayerSnapshotBuilder.forEachInputSnapshot(
[&outWindowInfos](const frontend::LayerSnapshot& snapshot) {
outWindowInfos.push_back(snapshot.inputInfo);
});
} else {
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
if (!layer->needsInputInfo()) return;
const auto opt =
mFrontEndDisplayInfos.get(layer->getLayerStack())
.transform([](const frontend::DisplayInfo& info) {
return Layer::InputDisplayArgs{&info.transform, info.isSecure};
});
outWindowInfos.push_back(layer->fillInputInfo(opt.value_or(Layer::InputDisplayArgs{})));
});
}
sNumWindowInfos = outWindowInfos.size();
outDisplayInfos.reserve(mFrontEndDisplayInfos.size());
for (const auto& [_, info] : mFrontEndDisplayInfos) {
outDisplayInfos.push_back(info.info);
}
}
void SurfaceFlinger::updateCursorAsync() {
compositionengine::CompositionRefreshArgs refreshArgs;
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
if (HalDisplayId::tryCast(display->getId())) {
refreshArgs.outputs.push_back(display->getCompositionDisplay());
}
}
constexpr bool kCursorOnly = true;
const auto layers = moveSnapshotsToCompositionArgs(refreshArgs, kCursorOnly);
mCompositionEngine->updateCursorAsync(refreshArgs);
moveSnapshotsFromCompositionArgs(refreshArgs, layers);
}
void SurfaceFlinger::requestHardwareVsync(PhysicalDisplayId displayId, bool enable) {
getHwComposer().setVsyncEnabled(displayId, enable ? hal::Vsync::ENABLE : hal::Vsync::DISABLE);
}
void SurfaceFlinger::requestDisplayModes(std::vector<display::DisplayModeRequest> modeRequests) {
if (mBootStage != BootStage::FINISHED) {
ALOGV("Currently in the boot stage, skipping display mode changes");
return;
}
ATRACE_CALL();
// If this is called from the main thread mStateLock must be locked before
// Currently the only way to call this function from the main thread is from
// Scheduler::chooseRefreshRateForContent
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
for (auto& request : modeRequests) {
const auto& modePtr = request.mode.modePtr;
const auto displayId = modePtr->getPhysicalDisplayId();
const auto display = getDisplayDeviceLocked(displayId);
if (!display) continue;
if (ftl::FakeGuard guard(kMainThreadContext);
!shouldApplyRefreshRateSelectorPolicy(*display)) {
ALOGV("%s(%s): Skipped applying policy", __func__, to_string(displayId).c_str());
continue;
}
if (display->refreshRateSelector().isModeAllowed(request.mode)) {
setDesiredMode(std::move(request));
} else {
ALOGV("%s: Mode %d is disallowed for display %s", __func__,
ftl::to_underlying(modePtr->getId()), to_string(displayId).c_str());
}
}
}
void SurfaceFlinger::triggerOnFrameRateOverridesChanged() {
PhysicalDisplayId displayId = [&]() {
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
}
void SurfaceFlinger::notifyCpuLoadUp() {
mPowerAdvisor->notifyCpuLoadUp();
}
void SurfaceFlinger::onChoreographerAttached() {
ATRACE_CALL();
if (mLayerLifecycleManagerEnabled) {
mUpdateAttachedChoreographer = true;
scheduleCommit(FrameHint::kNone);
}
}
void SurfaceFlinger::onExpectedPresentTimePosted(TimePoint expectedPresentTime,
ftl::NonNull<DisplayModePtr> modePtr,
Fps renderRate) {
const auto vsyncPeriod = modePtr->getVsyncRate().getPeriod();
const auto timeoutOpt = [&]() -> std::optional<Period> {
const auto vrrConfig = modePtr->getVrrConfig();
if (!vrrConfig) return std::nullopt;
const auto notifyExpectedPresentConfig =
modePtr->getVrrConfig()->notifyExpectedPresentConfig;
if (!notifyExpectedPresentConfig) return std::nullopt;
return Period::fromNs(notifyExpectedPresentConfig->timeoutNs);
}();
notifyExpectedPresentIfRequired(modePtr->getPhysicalDisplayId(), vsyncPeriod,
expectedPresentTime, renderRate, timeoutOpt);
}
void SurfaceFlinger::notifyExpectedPresentIfRequired(PhysicalDisplayId displayId,
Period vsyncPeriod,
TimePoint expectedPresentTime,
Fps frameInterval,
std::optional<Period> timeoutOpt) {
auto& data = mNotifyExpectedPresentMap[displayId];
const auto lastExpectedPresentTimestamp = data.lastExpectedPresentTimestamp;
const auto lastFrameInterval = data.lastFrameInterval;
data.lastFrameInterval = frameInterval;
data.lastExpectedPresentTimestamp = expectedPresentTime;
const auto threshold = Duration::fromNs(vsyncPeriod.ns() / 2);
const constexpr nsecs_t kOneSecondNs =
std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
const auto timeout =
Period::fromNs(timeoutOpt && timeoutOpt->ns() > 0 ? timeoutOpt->ns() : kOneSecondNs);
const bool frameIntervalIsOnCadence =
isFrameIntervalOnCadence(expectedPresentTime, lastExpectedPresentTimestamp,
lastFrameInterval, timeout, threshold);
const bool expectedPresentWithinTimeout =
isExpectedPresentWithinTimeout(expectedPresentTime, lastExpectedPresentTimestamp,
timeoutOpt, threshold);
if (expectedPresentWithinTimeout && frameIntervalIsOnCadence) {
return;
}
auto hintStatus = data.hintStatus.load();
if (!expectedPresentWithinTimeout) {
if (hintStatus != NotifyExpectedPresentHintStatus::Sent ||
(timeoutOpt && timeoutOpt->ns() == 0)) {
// Send the hint immediately if timeout, as the hint gets
// delayed otherwise, as the frame is scheduled close
// to the actual present.
if (data.hintStatus
.compare_exchange_strong(hintStatus,
NotifyExpectedPresentHintStatus::ScheduleOnTx)) {
scheduleNotifyExpectedPresentHint(displayId);
}
return;
}
}
if (hintStatus != NotifyExpectedPresentHintStatus::Start) {
return;
}
data.hintStatus.store(NotifyExpectedPresentHintStatus::ScheduleOnPresent);
mScheduler->scheduleFrame();
}
void SurfaceFlinger::scheduleNotifyExpectedPresentHint(PhysicalDisplayId displayId) {
auto itr = mNotifyExpectedPresentMap.find(displayId);
if (itr == mNotifyExpectedPresentMap.end()) {
return;
}
const char* const whence = __func__;
const auto sendHint = [=, this]() {
auto& data = mNotifyExpectedPresentMap.at(displayId);
data.hintStatus.store(NotifyExpectedPresentHintStatus::Sent);
const auto status =
getHwComposer().notifyExpectedPresent(displayId, data.lastExpectedPresentTimestamp,
data.lastFrameInterval);
if (status != NO_ERROR) {
ALOGE("%s failed to notifyExpectedPresentHint for display %" PRId64, whence,
displayId.value);
}
};
if (itr->second.hintStatus == NotifyExpectedPresentHintStatus::ScheduleOnTx) {
return static_cast<void>(mScheduler->schedule([=,
this]() FTL_FAKE_GUARD(kMainThreadContext) {
auto& data = mNotifyExpectedPresentMap.at(displayId);
auto scheduleHintOnTx = NotifyExpectedPresentHintStatus::ScheduleOnTx;
if (data.hintStatus.compare_exchange_strong(scheduleHintOnTx,
NotifyExpectedPresentHintStatus::Sent)) {
sendHint();
}
}));
}
sendHint();
}
void SurfaceFlinger::sendNotifyExpectedPresentHint(PhysicalDisplayId displayId) {
if (auto itr = mNotifyExpectedPresentMap.find(displayId);
itr == mNotifyExpectedPresentMap.end() ||
itr->second.hintStatus != NotifyExpectedPresentHintStatus::ScheduleOnPresent) {
return;
}
scheduleNotifyExpectedPresentHint(displayId);
}
void SurfaceFlinger::initScheduler(const sp<const DisplayDevice>& display) {
using namespace scheduler;
LOG_ALWAYS_FATAL_IF(mScheduler);
const auto activeMode = display->refreshRateSelector().getActiveMode();
const Fps activeRefreshRate = activeMode.fps;
FeatureFlags features;
const auto defaultContentDetectionValue =
FlagManager::getInstance().enable_fro_dependent_features() &&
sysprop::enable_frame_rate_override(true);
if (sysprop::use_content_detection_for_refresh_rate(defaultContentDetectionValue)) {
features |= Feature::kContentDetection;
if (FlagManager::getInstance().enable_small_area_detection()) {
features |= Feature::kSmallDirtyContentDetection;
}
}
if (base::GetBoolProperty("debug.sf.show_predicted_vsync"s, false)) {
features |= Feature::kTracePredictedVsync;
}
if (!base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false) &&
!getHwComposer().hasCapability(Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
features |= Feature::kPresentFences;
}
if (display->refreshRateSelector().kernelIdleTimerController()) {
features |= Feature::kKernelIdleTimer;
}
if (mBackpressureGpuComposition) {
features |= Feature::kBackpressureGpuComposition;
}
if (getHwComposer().getComposer()->isSupported(
Hwc2::Composer::OptionalFeature::ExpectedPresentTime)) {
features |= Feature::kExpectedPresentTime;
}
mScheduler = std::make_unique<Scheduler>(static_cast<ICompositor&>(*this),
static_cast<ISchedulerCallback&>(*this), features,
getFactory(), activeRefreshRate, *mTimeStats);
mScheduler->registerDisplay(display->getPhysicalId(), display->holdRefreshRateSelector());
if (FlagManager::getInstance().vrr_config()) {
mScheduler->setRenderRate(display->getPhysicalId(), activeMode.fps);
}
mScheduler->startTimers();
const auto configs = mScheduler->getVsyncConfiguration().getCurrentConfigs();
mAppConnectionHandle =
mScheduler->createEventThread(Scheduler::Cycle::Render,
mFrameTimeline->getTokenManager(),
/* workDuration */ configs.late.appWorkDuration,
/* readyDuration */ configs.late.sfWorkDuration);
mSfConnectionHandle =
mScheduler->createEventThread(Scheduler::Cycle::LastComposite,
mFrameTimeline->getTokenManager(),
/* workDuration */ activeRefreshRate.getPeriod(),
/* readyDuration */ configs.late.sfWorkDuration);
mScheduler->initVsync(*mFrameTimeline->getTokenManager(), configs.late.sfWorkDuration);
mRegionSamplingThread =
sp<RegionSamplingThread>::make(*this,
RegionSamplingThread::EnvironmentTimingTunables());
mFpsReporter = sp<FpsReporter>::make(*mFrameTimeline);
}
void SurfaceFlinger::doCommitTransactions() {
ATRACE_CALL();
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
// Ensure any buffers set to display on any children are released.
if (l->isRemovedFromCurrentState()) {
l->latchAndReleaseBuffer();
}
// If a layer has a parent, we allow it to out-live it's handle
// with the idea that the parent holds a reference and will eventually
// be cleaned up. However no one cleans up the top-level so we do so
// here.
if (l->isAtRoot()) {
l->setIsAtRoot(false);
mCurrentState.layersSortedByZ.remove(l);
}
// If the layer has been removed and has no parent, then it will not be reachable
// when traversing layers on screen. Add the layer to the offscreenLayers set to
// ensure we can copy its current to drawing state.
if (!l->getParent()) {
mOffscreenLayers.emplace(l.get());
}
}
mLayersPendingRemoval.clear();
}
mDrawingState = mCurrentState;
mCurrentState.colorMatrixChanged = false;
if (mVisibleRegionsDirty) {
for (const auto& rootLayer : mDrawingState.layersSortedByZ) {
rootLayer->commitChildList();
}
}
commitOffscreenLayers();
if (mLayerMirrorRoots.size() > 0) {
std::deque<Layer*> pendingUpdates;
pendingUpdates.insert(pendingUpdates.end(), mLayerMirrorRoots.begin(),
mLayerMirrorRoots.end());
std::vector<Layer*> needsUpdating;
for (Layer* cloneRoot : mLayerMirrorRoots) {
pendingUpdates.pop_front();
if (cloneRoot->isRemovedFromCurrentState()) {
continue;
}
if (cloneRoot->updateMirrorInfo(pendingUpdates)) {
} else {
needsUpdating.push_back(cloneRoot);
}
}
for (Layer* cloneRoot : needsUpdating) {
cloneRoot->updateMirrorInfo({});
}
}
}
void SurfaceFlinger::commitOffscreenLayers() {
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) {
if (layer->clearTransactionFlags(eTransactionNeeded)) {
layer->doTransaction(0);
layer->commitChildList();
}
});
}
}
void SurfaceFlinger::invalidateLayerStack(const ui::LayerFilter& layerFilter, const Region& dirty) {
for (const auto& [token, displayDevice] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
auto display = displayDevice->getCompositionDisplay();
if (display->includesLayer(layerFilter)) {
display->editState().dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::latchBuffers() {
ATRACE_CALL();
const nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverse([&](Layer* layer) {
if (layer->clearTransactionFlags(eTransactionNeeded) || mForceTransactionDisplayChange) {
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion) {
mVisibleRegionsDirty = true;
}
}
if (layer->hasReadyFrame() || layer->willReleaseBufferOnLatch()) {
frameQueued = true;
mLayersWithQueuedFrames.emplace(sp<Layer>::fromExisting(layer));
} else {
layer->useEmptyDamage();
if (!layer->hasBuffer()) {
// The last latch time is used to classify a missed frame as buffer stuffing
// instead of a missed frame. This is used to identify scenarios where we
// could not latch a buffer or apply a transaction due to backpressure.
// We only update the latch time for buffer less layers here, the latch time
// is updated for buffer layers when the buffer is latched.
layer->updateLastLatchTime(latchTime);
}
}
});
mForceTransactionDisplayChange = false;
// The client can continue submitting buffers for offscreen layers, but they will not
// be shown on screen. Therefore, we need to latch and release buffers of offscreen
// layers to ensure dequeueBuffer doesn't block indefinitely.
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* l) { l->latchAndReleaseBuffer(); });
}
if (!mLayersWithQueuedFrames.empty()) {
// mStateLock is needed for latchBuffer as LayerRejecter::reject()
// writes to Layer current state. See also b/119481871
Mutex::Autolock lock(mStateLock);
for (const auto& layer : mLayersWithQueuedFrames) {
if (layer->willReleaseBufferOnLatch()) {
mLayersWithBuffersRemoved.emplace(layer);
}
if (layer->latchBuffer(visibleRegions, latchTime)) {
mLayersPendingRefresh.push_back(layer);
newDataLatched = true;
}
layer->useSurfaceDamage();
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
scheduleCommit(FrameHint::kNone);
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
if (mLayerMirrorRoots.size() > 0) {
mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); });
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
status_t SurfaceFlinger::addClientLayer(LayerCreationArgs& args, const sp<IBinder>& handle,
const sp<Layer>& layer, const wp<Layer>& parent,
uint32_t* outTransformHint) {
if (mNumLayers >= MAX_LAYERS) {
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(),
MAX_LAYERS);
static_cast<void>(mScheduler->schedule([=, this] {
ALOGE("Dumping layer keeping > 20 children alive:");
bool leakingParentLayerFound = false;
mDrawingState.traverse([&](Layer* layer) {
if (leakingParentLayerFound) {
return;
}
if (layer->getChildrenCount() > 20) {
leakingParentLayerFound = true;
sp<Layer> parent = sp<Layer>::fromExisting(layer);
while (parent) {
ALOGE("Parent Layer: %s%s", parent->getName().c_str(),
(parent->isHandleAlive() ? "handleAlive" : ""));
parent = parent->getParent();
}
// Sample up to 100 layers
ALOGE("Dumping random sampling of child layers total(%zu): ",
layer->getChildrenCount());
int sampleSize = (layer->getChildrenCount() / 100) + 1;
layer->traverseChildren([&](Layer* layer) {
if (rand() % sampleSize == 0) {
ALOGE("Child Layer: %s%s", layer->getName().c_str(),
(layer->isHandleAlive() ? "handleAlive" : ""));
}
});
}
});
int numLayers = 0;
mDrawingState.traverse([&](Layer* layer) { numLayers++; });
ALOGE("Dumping random sampling of on-screen layers total(%u):", numLayers);
mDrawingState.traverse([&](Layer* layer) {
// Aim to dump about 200 layers to avoid totally trashing
// logcat. On the other hand, if there really are 4096 layers
// something has gone totally wrong its probably the most
// useful information in logcat.
if (rand() % 20 == 13) {
ALOGE("Layer: %s%s", layer->getName().c_str(),
(layer->isHandleAlive() ? "handleAlive" : ""));
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
});
ALOGE("Dumping random sampling of off-screen layers total(%zu): ",
mOffscreenLayers.size());
for (Layer* offscreenLayer : mOffscreenLayers) {
if (rand() % 20 == 13) {
ALOGE("Offscreen-layer: %s%s", offscreenLayer->getName().c_str(),
(offscreenLayer->isHandleAlive() ? "handleAlive" : ""));
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
}
}));
return NO_MEMORY;
}
layer->updateTransformHint(mActiveDisplayTransformHint);
if (outTransformHint) {
*outTransformHint = mActiveDisplayTransformHint;
}
args.parentId = LayerHandle::getLayerId(args.parentHandle.promote());
args.layerIdToMirror = LayerHandle::getLayerId(args.mirrorLayerHandle.promote());
{
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
mCreatedLayers.emplace_back(layer, parent, args.addToRoot);
mNewLayers.emplace_back(std::make_unique<frontend::RequestedLayerState>(args));
args.mirrorLayerHandle.clear();
args.parentHandle.clear();
mNewLayerArgs.emplace_back(std::move(args));
}
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::getTransactionFlags() const {
return mTransactionFlags;
}
uint32_t SurfaceFlinger::clearTransactionFlags(uint32_t mask) {
uint32_t transactionFlags = mTransactionFlags.fetch_and(~mask);
ATRACE_INT("mTransactionFlags", transactionFlags);
return transactionFlags & mask;
}
void SurfaceFlinger::setTransactionFlags(uint32_t mask, TransactionSchedule schedule,
const sp<IBinder>& applyToken, FrameHint frameHint) {
mScheduler->modulateVsync({}, &VsyncModulator::setTransactionSchedule, schedule, applyToken);
uint32_t transactionFlags = mTransactionFlags.fetch_or(mask);
ATRACE_INT("mTransactionFlags", transactionFlags);
if (const bool scheduled = transactionFlags & mask; !scheduled) {
scheduleCommit(frameHint);
} else if (frameHint == FrameHint::kActive) {
// Even if the next frame is already scheduled, we should reset the idle timer
// as a new activity just happened.
mScheduler->resetIdleTimer();
}
}
TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyTimelineCheck(
const TransactionHandler::TransactionFlushState& flushState) {
const auto& transaction = *flushState.transaction;
const TimePoint desiredPresentTime = TimePoint::fromNs(transaction.desiredPresentTime);
const TimePoint expectedPresentTime = mScheduler->expectedPresentTimeForPacesetter();
using TransactionReadiness = TransactionHandler::TransactionReadiness;
// Do not present if the desiredPresentTime has not passed unless it is more than
// one second in the future. We ignore timestamps more than 1 second in the future
// for stability reasons.
if (!transaction.isAutoTimestamp && desiredPresentTime >= expectedPresentTime &&
desiredPresentTime < expectedPresentTime + 1s) {
ATRACE_FORMAT("not current desiredPresentTime: %" PRId64 " expectedPresentTime: %" PRId64,
desiredPresentTime, expectedPresentTime);
return TransactionReadiness::NotReady;
}
if (!mScheduler->isVsyncValid(expectedPresentTime, transaction.originUid)) {
ATRACE_FORMAT("!isVsyncValid expectedPresentTime: %" PRId64 " uid: %d", expectedPresentTime,
transaction.originUid);
return TransactionReadiness::NotReady;
}
// If the client didn't specify desiredPresentTime, use the vsyncId to determine the
// expected present time of this transaction.
if (transaction.isAutoTimestamp &&
frameIsEarly(expectedPresentTime, VsyncId{transaction.frameTimelineInfo.vsyncId})) {
ATRACE_FORMAT("frameIsEarly vsyncId: %" PRId64 " expectedPresentTime: %" PRId64,
transaction.frameTimelineInfo.vsyncId, expectedPresentTime);
return TransactionReadiness::NotReady;
}
return TransactionReadiness::Ready;
}
TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyBufferCheckLegacy(
const TransactionHandler::TransactionFlushState& flushState) {
using TransactionReadiness = TransactionHandler::TransactionReadiness;
auto ready = TransactionReadiness::Ready;
flushState.transaction->traverseStatesWithBuffersWhileTrue([&](const ResolvedComposerState&
resolvedState) -> bool {
sp<Layer> layer = LayerHandle::getLayer(resolvedState.state.surface);
const auto& transaction = *flushState.transaction;
const auto& s = resolvedState.state;
// check for barrier frames
if (s.bufferData->hasBarrier) {
// The current producerId is already a newer producer than the buffer that has a
// barrier. This means the incoming buffer is older and we can release it here. We
// don't wait on the barrier since we know that's stale information.
if (layer->getDrawingState().barrierProducerId > s.bufferData->producerId) {
layer->callReleaseBufferCallback(s.bufferData->releaseBufferListener,
resolvedState.externalTexture->getBuffer(),
s.bufferData->frameNumber,
s.bufferData->acquireFence);
// Delete the entire state at this point and not just release the buffer because
// everything associated with the Layer in this Transaction is now out of date.
ATRACE_FORMAT("DeleteStaleBuffer %s barrierProducerId:%d > %d",
layer->getDebugName(), layer->getDrawingState().barrierProducerId,
s.bufferData->producerId);
return TraverseBuffersReturnValues::DELETE_AND_CONTINUE_TRAVERSAL;
}
if (layer->getDrawingState().barrierFrameNumber < s.bufferData->barrierFrameNumber) {
const bool willApplyBarrierFrame =
flushState.bufferLayersReadyToPresent.contains(s.surface.get()) &&
((flushState.bufferLayersReadyToPresent.get(s.surface.get()) >=
s.bufferData->barrierFrameNumber));
if (!willApplyBarrierFrame) {
ATRACE_FORMAT("NotReadyBarrier %s barrierFrameNumber:%" PRId64 " > %" PRId64,
layer->getDebugName(),
layer->getDrawingState().barrierFrameNumber,
s.bufferData->barrierFrameNumber);
ready = TransactionReadiness::NotReadyBarrier;
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
}
}
// If backpressure is enabled and we already have a buffer to commit, keep
// the transaction in the queue.
const bool hasPendingBuffer =
flushState.bufferLayersReadyToPresent.contains(s.surface.get());
if (layer->backpressureEnabled() && hasPendingBuffer && transaction.isAutoTimestamp) {
ATRACE_FORMAT("hasPendingBuffer %s", layer->getDebugName());
ready = TransactionReadiness::NotReady;
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
const bool acquireFenceAvailable = s.bufferData &&
s.bufferData->flags.test(BufferData::BufferDataChange::fenceChanged) &&
s.bufferData->acquireFence;
const bool fenceSignaled = !acquireFenceAvailable ||
s.bufferData->acquireFence->getStatus() != Fence::Status::Unsignaled;
if (!fenceSignaled) {
// check fence status
const bool allowLatchUnsignaled = shouldLatchUnsignaled(s, transaction.states.size(),
flushState.firstTransaction) &&
layer->isSimpleBufferUpdate(s);
if (allowLatchUnsignaled) {
ATRACE_FORMAT("fence unsignaled try allowLatchUnsignaled %s",
layer->getDebugName());
ready = TransactionReadiness::NotReadyUnsignaled;
} else {
ready = TransactionReadiness::NotReady;
auto& listener = s.bufferData->releaseBufferListener;
if (listener &&
(flushState.queueProcessTime - transaction.postTime) >
std::chrono::nanoseconds(4s).count()) {
mTransactionHandler
.onTransactionQueueStalled(transaction.id,
{.pid = layer->getOwnerPid(),
.layerId = static_cast<uint32_t>(
layer->getSequence()),
.layerName = layer->getDebugName(),
.bufferId = s.bufferData->getId(),
.frameNumber = s.bufferData->frameNumber});
}
ATRACE_FORMAT("fence unsignaled %s", layer->getDebugName());
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
}
return TraverseBuffersReturnValues::CONTINUE_TRAVERSAL;
});
return ready;
}
TransactionHandler::TransactionReadiness SurfaceFlinger::transactionReadyBufferCheck(
const TransactionHandler::TransactionFlushState& flushState) {
using TransactionReadiness = TransactionHandler::TransactionReadiness;
auto ready = TransactionReadiness::Ready;
flushState.transaction->traverseStatesWithBuffersWhileTrue([&](const ResolvedComposerState&
resolvedState) -> bool {
const frontend::RequestedLayerState* layer =
mLayerLifecycleManager.getLayerFromId(resolvedState.layerId);
const auto& transaction = *flushState.transaction;
const auto& s = resolvedState.state;
// check for barrier frames
if (s.bufferData->hasBarrier) {
// The current producerId is already a newer producer than the buffer that has a
// barrier. This means the incoming buffer is older and we can release it here. We
// don't wait on the barrier since we know that's stale information.
if (layer->barrierProducerId > s.bufferData->producerId) {
if (s.bufferData->releaseBufferListener) {
uint32_t currentMaxAcquiredBufferCount =
getMaxAcquiredBufferCountForCurrentRefreshRate(layer->ownerUid.val());
ATRACE_FORMAT_INSTANT("callReleaseBufferCallback %s - %" PRIu64,
layer->name.c_str(), s.bufferData->frameNumber);
s.bufferData->releaseBufferListener
->onReleaseBuffer({resolvedState.externalTexture->getBuffer()->getId(),
s.bufferData->frameNumber},
s.bufferData->acquireFence
? s.bufferData->acquireFence
: Fence::NO_FENCE,
currentMaxAcquiredBufferCount);
}
// Delete the entire state at this point and not just release the buffer because
// everything associated with the Layer in this Transaction is now out of date.
ATRACE_FORMAT("DeleteStaleBuffer %s barrierProducerId:%d > %d", layer->name.c_str(),
layer->barrierProducerId, s.bufferData->producerId);
return TraverseBuffersReturnValues::DELETE_AND_CONTINUE_TRAVERSAL;
}
if (layer->barrierFrameNumber < s.bufferData->barrierFrameNumber) {
const bool willApplyBarrierFrame =
flushState.bufferLayersReadyToPresent.contains(s.surface.get()) &&
((flushState.bufferLayersReadyToPresent.get(s.surface.get()) >=
s.bufferData->barrierFrameNumber));
if (!willApplyBarrierFrame) {
ATRACE_FORMAT("NotReadyBarrier %s barrierFrameNumber:%" PRId64 " > %" PRId64,
layer->name.c_str(), layer->barrierFrameNumber,
s.bufferData->barrierFrameNumber);
ready = TransactionReadiness::NotReadyBarrier;
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
}
}
// If backpressure is enabled and we already have a buffer to commit, keep
// the transaction in the queue.
const bool hasPendingBuffer =
flushState.bufferLayersReadyToPresent.contains(s.surface.get());
if (layer->backpressureEnabled() && hasPendingBuffer && transaction.isAutoTimestamp) {
ATRACE_FORMAT("hasPendingBuffer %s", layer->name.c_str());
ready = TransactionReadiness::NotReady;
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
const bool acquireFenceAvailable = s.bufferData &&
s.bufferData->flags.test(BufferData::BufferDataChange::fenceChanged) &&
s.bufferData->acquireFence;
const bool fenceSignaled = !acquireFenceAvailable ||
s.bufferData->acquireFence->getStatus() != Fence::Status::Unsignaled;
if (!fenceSignaled) {
// check fence status
const bool allowLatchUnsignaled = shouldLatchUnsignaled(s, transaction.states.size(),
flushState.firstTransaction) &&
layer->isSimpleBufferUpdate(s);
if (allowLatchUnsignaled) {
ATRACE_FORMAT("fence unsignaled try allowLatchUnsignaled %s", layer->name.c_str());
ready = TransactionReadiness::NotReadyUnsignaled;
} else {
ready = TransactionReadiness::NotReady;
auto& listener = s.bufferData->releaseBufferListener;
if (listener &&
(flushState.queueProcessTime - transaction.postTime) >
std::chrono::nanoseconds(4s).count()) {
mTransactionHandler
.onTransactionQueueStalled(transaction.id,
{.pid = layer->ownerPid.val(),
.layerId = layer->id,
.layerName = layer->name,
.bufferId = s.bufferData->getId(),
.frameNumber = s.bufferData->frameNumber});
}
ATRACE_FORMAT("fence unsignaled %s", layer->name.c_str());
return TraverseBuffersReturnValues::STOP_TRAVERSAL;
}
}
return TraverseBuffersReturnValues::CONTINUE_TRAVERSAL;
});
return ready;
}
void SurfaceFlinger::addTransactionReadyFilters() {
mTransactionHandler.addTransactionReadyFilter(
std::bind(&SurfaceFlinger::transactionReadyTimelineCheck, this, std::placeholders::_1));
if (mLayerLifecycleManagerEnabled) {
mTransactionHandler.addTransactionReadyFilter(
std::bind(&SurfaceFlinger::transactionReadyBufferCheck, this,
std::placeholders::_1));
} else {
mTransactionHandler.addTransactionReadyFilter(
std::bind(&SurfaceFlinger::transactionReadyBufferCheckLegacy, this,
std::placeholders::_1));
}
}
// For tests only
bool SurfaceFlinger::flushTransactionQueues(VsyncId vsyncId) {
mTransactionHandler.collectTransactions();
std::vector<TransactionState> transactions = mTransactionHandler.flushTransactions();
return applyTransactions(transactions, vsyncId);
}
bool SurfaceFlinger::applyTransactions(std::vector<TransactionState>& transactions,
VsyncId vsyncId) {
Mutex::Autolock lock(mStateLock);
return applyTransactionsLocked(transactions, vsyncId);
}
bool SurfaceFlinger::applyTransactionsLocked(std::vector<TransactionState>& transactions,
VsyncId vsyncId) {
bool needsTraversal = false;
// Now apply all transactions.
for (auto& transaction : transactions) {
needsTraversal |=
applyTransactionState(transaction.frameTimelineInfo, transaction.states,
transaction.displays, transaction.flags,
transaction.inputWindowCommands,
transaction.desiredPresentTime, transaction.isAutoTimestamp,
std::move(transaction.uncacheBufferIds), transaction.postTime,
transaction.hasListenerCallbacks,
transaction.listenerCallbacks, transaction.originPid,
transaction.originUid, transaction.id);
}
return needsTraversal;
}
bool SurfaceFlinger::transactionFlushNeeded() {
return mTransactionHandler.hasPendingTransactions();
}
bool SurfaceFlinger::frameIsEarly(TimePoint expectedPresentTime, VsyncId vsyncId) const {
const auto prediction =
mFrameTimeline->getTokenManager()->getPredictionsForToken(ftl::to_underlying(vsyncId));
if (!prediction) {
return false;
}
const auto predictedPresentTime = TimePoint::fromNs(prediction->presentTime);
if (std::chrono::abs(predictedPresentTime - expectedPresentTime) >=
scheduler::VsyncConfig::kEarlyLatchMaxThreshold) {
return false;
}
const Duration earlyLatchVsyncThreshold = mScheduler->getVsyncSchedule()->minFramePeriod() / 2;
return predictedPresentTime >= expectedPresentTime &&
predictedPresentTime - expectedPresentTime >= earlyLatchVsyncThreshold;
}
bool SurfaceFlinger::shouldLatchUnsignaled(const layer_state_t& state, size_t numStates,
bool firstTransaction) const {
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::Disabled) {
ATRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::Disabled)", __func__);
return false;
}
// We only want to latch unsignaled when a single layer is updated in this
// transaction (i.e. not a blast sync transaction).
if (numStates != 1) {
ATRACE_FORMAT_INSTANT("%s: false (numStates=%zu)", __func__, numStates);
return false;
}
if (enableLatchUnsignaledConfig == LatchUnsignaledConfig::AutoSingleLayer) {
if (!firstTransaction) {
ATRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::AutoSingleLayer; not first "
"transaction)",
__func__);
return false;
}
// We don't want to latch unsignaled if are in early / client composition
// as it leads to jank due to RenderEngine waiting for unsignaled buffer
// or window animations being slow.
if (mScheduler->vsyncModulator().isVsyncConfigEarly()) {
ATRACE_FORMAT_INSTANT("%s: false (LatchUnsignaledConfig::AutoSingleLayer; "
"isVsyncConfigEarly)",
__func__);
return false;
}
}
return true;
}
status_t SurfaceFlinger::setTransactionState(
const FrameTimelineInfo& frameTimelineInfo, Vector<ComposerState>& states,
const Vector<DisplayState>& displays, uint32_t flags, const sp<IBinder>& applyToken,
InputWindowCommands inputWindowCommands, int64_t desiredPresentTime, bool isAutoTimestamp,
const std::vector<client_cache_t>& uncacheBuffers, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks, uint64_t transactionId,
const std::vector<uint64_t>& mergedTransactionIds) {
ATRACE_CALL();
IPCThreadState* ipc = IPCThreadState::self();
const int originPid = ipc->getCallingPid();
const int originUid = ipc->getCallingUid();
uint32_t permissions = LayerStatePermissions::getTransactionPermissions(originPid, originUid);
for (auto composerState : states) {
composerState.state.sanitize(permissions);
}
for (DisplayState display : displays) {
display.sanitize(permissions);
}
if (!inputWindowCommands.empty() &&
(permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) == 0) {
ALOGE("Only privileged callers are allowed to send input commands.");
inputWindowCommands.clear();
}
if (flags & (eEarlyWakeupStart | eEarlyWakeupEnd)) {
const bool hasPermission =
(permissions & layer_state_t::Permission::ACCESS_SURFACE_FLINGER) ||
callingThreadHasPermission(sWakeupSurfaceFlinger);
if (!hasPermission) {
ALOGE("Caller needs permission android.permission.WAKEUP_SURFACE_FLINGER to use "
"eEarlyWakeup[Start|End] flags");
flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd);
}
}
const int64_t postTime = systemTime();
std::vector<uint64_t> uncacheBufferIds;
uncacheBufferIds.reserve(uncacheBuffers.size());
for (const auto& uncacheBuffer : uncacheBuffers) {
sp<GraphicBuffer> buffer = ClientCache::getInstance().erase(uncacheBuffer);
if (buffer != nullptr) {
uncacheBufferIds.push_back(buffer->getId());
}
}
std::vector<ResolvedComposerState> resolvedStates;
resolvedStates.reserve(states.size());
for (auto& state : states) {
resolvedStates.emplace_back(std::move(state));
auto& resolvedState = resolvedStates.back();
if (resolvedState.state.hasBufferChanges() && resolvedState.state.hasValidBuffer() &&
resolvedState.state.surface) {
sp<Layer> layer = LayerHandle::getLayer(resolvedState.state.surface);
std::string layerName = (layer) ?
layer->getDebugName() : std::to_string(resolvedState.state.layerId);
resolvedState.externalTexture =
getExternalTextureFromBufferData(*resolvedState.state.bufferData,
layerName.c_str(), transactionId);
if (resolvedState.externalTexture) {
resolvedState.state.bufferData->buffer = resolvedState.externalTexture->getBuffer();
}
mBufferCountTracker.increment(resolvedState.state.surface->localBinder());
}
resolvedState.layerId = LayerHandle::getLayerId(resolvedState.state.surface);
if (resolvedState.state.what & layer_state_t::eReparent) {
resolvedState.parentId =
getLayerIdFromSurfaceControl(resolvedState.state.parentSurfaceControlForChild);
}
if (resolvedState.state.what & layer_state_t::eRelativeLayerChanged) {
resolvedState.relativeParentId =
getLayerIdFromSurfaceControl(resolvedState.state.relativeLayerSurfaceControl);
}
if (resolvedState.state.what & layer_state_t::eInputInfoChanged) {
wp<IBinder>& touchableRegionCropHandle =
resolvedState.state.windowInfoHandle->editInfo()->touchableRegionCropHandle;
resolvedState.touchCropId =
LayerHandle::getLayerId(touchableRegionCropHandle.promote());
}
}
TransactionState state{frameTimelineInfo,
resolvedStates,
displays,
flags,
applyToken,
std::move(inputWindowCommands),
desiredPresentTime,
isAutoTimestamp,
std::move(uncacheBufferIds),
postTime,
hasListenerCallbacks,
listenerCallbacks,
originPid,
originUid,
transactionId,
mergedTransactionIds};
if (mTransactionTracing) {
mTransactionTracing->addQueuedTransaction(state);
}
const auto schedule = [](uint32_t flags) {
if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd;
if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart;
return TransactionSchedule::Late;
}(state.flags);
const auto frameHint = state.isFrameActive() ? FrameHint::kActive : FrameHint::kNone;
mTransactionHandler.queueTransaction(std::move(state));
setTransactionFlags(eTransactionFlushNeeded, schedule, applyToken, frameHint);
return NO_ERROR;
}
bool SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo,
std::vector<ResolvedComposerState>& states,
Vector<DisplayState>& displays, uint32_t flags,
const InputWindowCommands& inputWindowCommands,
const int64_t desiredPresentTime, bool isAutoTimestamp,
const std::vector<uint64_t>& uncacheBufferIds,
const int64_t postTime, bool hasListenerCallbacks,
const std::vector<ListenerCallbacks>& listenerCallbacks,
int originPid, int originUid, uint64_t transactionId) {
uint32_t transactionFlags = 0;
if (!mLayerLifecycleManagerEnabled) {
for (DisplayState& display : displays) {
transactionFlags |= setDisplayStateLocked(display);
}
}
// start and end registration for listeners w/ no surface so they can get their callback. Note
// that listeners with SurfaceControls will start registration during setClientStateLocked
// below.
for (const auto& listener : listenerCallbacks) {
mTransactionCallbackInvoker.addEmptyTransaction(listener);
}
nsecs_t now = systemTime();
uint32_t clientStateFlags = 0;
for (auto& resolvedState : states) {
if (mLegacyFrontEndEnabled) {
clientStateFlags |=
setClientStateLocked(frameTimelineInfo, resolvedState, desiredPresentTime,
isAutoTimestamp, postTime, transactionId);
} else /*mLayerLifecycleManagerEnabled*/ {
clientStateFlags |= updateLayerCallbacksAndStats(frameTimelineInfo, resolvedState,
desiredPresentTime, isAutoTimestamp,
postTime, transactionId);
}
if ((flags & eAnimation) && resolvedState.state.surface) {
if (const auto layer = LayerHandle::getLayer(resolvedState.state.surface)) {
const auto layerProps = scheduler::LayerProps{
.visible = layer->isVisible(),
.bounds = layer->getBounds(),
.transform = layer->getTransform(),
.setFrameRateVote = layer->getFrameRateForLayerTree(),
.frameRateSelectionPriority = layer->getFrameRateSelectionPriority(),
.isFrontBuffered = layer->isFrontBuffered(),
};
layer->recordLayerHistoryAnimationTx(layerProps, now);
}
}
}
transactionFlags |= clientStateFlags;
transactionFlags |= addInputWindowCommands(inputWindowCommands);
for (uint64_t uncacheBufferId : uncacheBufferIds) {
mBufferIdsToUncache.push_back(uncacheBufferId);
}
// If a synchronous transaction is explicitly requested without any changes, force a transaction
// anyway. This can be used as a flush mechanism for previous async transactions.
// Empty animation transaction can be used to simulate back-pressure, so also force a
// transaction for empty animation transactions.
if (transactionFlags == 0 && (flags & eAnimation)) {
transactionFlags = eTransactionNeeded;
}
bool needsTraversal = false;
if (transactionFlags) {
// We are on the main thread, we are about to perform a traversal. Clear the traversal bit
// so we don't have to wake up again next frame to perform an unnecessary traversal.
if (transactionFlags & eTraversalNeeded) {
transactionFlags = transactionFlags & (~eTraversalNeeded);
needsTraversal = true;
}
if (transactionFlags) {
setTransactionFlags(transactionFlags);
}
}
return needsTraversal;
}
bool SurfaceFlinger::applyAndCommitDisplayTransactionStates(
std::vector<TransactionState>& transactions) {
Mutex::Autolock lock(mStateLock);
bool needsTraversal = false;
uint32_t transactionFlags = 0;
for (auto& transaction : transactions) {
for (DisplayState& display : transaction.displays) {
transactionFlags |= setDisplayStateLocked(display);
}
}
if (transactionFlags) {
// We are on the main thread, we are about to perform a traversal. Clear the traversal bit
// so we don't have to wake up again next frame to perform an unnecessary traversal.
if (transactionFlags & eTraversalNeeded) {
transactionFlags = transactionFlags & (~eTraversalNeeded);
needsTraversal = true;
}
if (transactionFlags) {
setTransactionFlags(transactionFlags);
}
}
mFrontEndDisplayInfosChanged = mTransactionFlags & eDisplayTransactionNeeded;
if (mFrontEndDisplayInfosChanged && !mLegacyFrontEndEnabled) {
processDisplayChangesLocked();
mFrontEndDisplayInfos.clear();
for (const auto& [_, display] : mDisplays) {
mFrontEndDisplayInfos.try_emplace(display->getLayerStack(), display->getFrontEndInfo());
}
needsTraversal = true;
}
return needsTraversal;
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
if (index < 0) return 0;
uint32_t flags = 0;
DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
state.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (state.layerStack != s.layerStack) {
state.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eFlagsChanged) {
if (state.flags != s.flags) {
state.flags = s.flags;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (state.orientation != s.orientation) {
state.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) {
state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect;
flags |= eDisplayTransactionNeeded;
}
if (state.layerStackSpaceRect != s.layerStackSpaceRect) {
state.layerStackSpaceRect = s.layerStackSpaceRect;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (state.width != s.width) {
state.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (state.height != s.height) {
state.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
return flags;
}
bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
(usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)
: !checkPermission(sAccessSurfaceFlinger, pid, uid))) {
return false;
}
return true;
}
uint32_t SurfaceFlinger::setClientStateLocked(const FrameTimelineInfo& frameTimelineInfo,
ResolvedComposerState& composerState,
int64_t desiredPresentTime, bool isAutoTimestamp,
int64_t postTime, uint64_t transactionId) {
layer_state_t& s = composerState.state;
std::vector<ListenerCallbacks> filteredListeners;
for (auto& listener : s.listeners) {
// Starts a registration but separates the callback ids according to callback type. This
// allows the callback invoker to send on latch callbacks earlier.
// note that startRegistration will not re-register if the listener has
// already be registered for a prior surface control
ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT);
if (!onCommitCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCommitCallbacks);
}
ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE);
if (!onCompleteCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCompleteCallbacks);
}
}
const uint64_t what = s.what;
uint32_t flags = 0;
sp<Layer> layer = nullptr;
if (s.surface) {
layer = LayerHandle::getLayer(s.surface);
} else {
// The client may provide us a null handle. Treat it as if the layer was removed.
ALOGW("Attempt to set client state with a null layer handle");
}
if (layer == nullptr) {
for (auto& [listener, callbackIds] : s.listeners) {
mTransactionCallbackInvoker.addCallbackHandle(sp<CallbackHandle>::make(listener,
callbackIds,
s.surface),
std::vector<JankData>());
}
return 0;
}
MUTEX_ALIAS(mStateLock, layer->mFlinger->mStateLock);
ui::LayerStack oldLayerStack = layer->getLayerStack(LayerVector::StateSet::Current);
// Only set by BLAST adapter layers
if (what & layer_state_t::eProducerDisconnect) {
layer->onDisconnect();
}
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
const auto& relativeHandle = s.relativeLayerSurfaceControl ?
s.relativeLayerSurfaceControl->getHandle() : nullptr;
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setRelativeLayer(relativeHandle, s.z) &&
idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.color.a)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorChanged) {
if (layer->setColor(s.color.rgb)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorTransformChanged) {
if (layer->setColorTransform(s.colorTransform)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBackgroundColorChanged) {
if (layer->setBackgroundColor(s.bgColor.rgb, s.bgColor.a, s.bgColorDataspace)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eMatrixChanged) {
if (layer->setMatrix(s.matrix)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCornerRadiusChanged) {
if (layer->setCornerRadius(s.cornerRadius))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBackgroundBlurRadiusChanged && mSupportsBlur) {
if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eBlurRegionsChanged) {
if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eRenderBorderChanged) {
if (layer->enableBorder(s.borderEnabled, s.borderWidth, s.borderColor)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getDebugName());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.",
layer->getDebugName());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eBufferTransformChanged) {
if (layer->setTransform(s.bufferTransform)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDataspaceChanged) {
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSurfaceDamageRegionChanged) {
if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eApiChanged) {
if (layer->setApi(s.api)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSidebandStreamChanged) {
if (layer->setSidebandStream(s.sidebandStream, frameTimelineInfo, postTime))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eInputInfoChanged) {
layer->setInputInfo(*s.windowInfoHandle->getInfo());
flags |= eTraversalNeeded;
}
std::optional<nsecs_t> dequeueBufferTimestamp;
if (what & layer_state_t::eMetadataChanged) {
dequeueBufferTimestamp = s.metadata.getInt64(gui::METADATA_DEQUEUE_TIME);
if (const int32_t gameMode = s.metadata.getInt32(gui::METADATA_GAME_MODE, -1);
gameMode != -1) {
// The transaction will be received on the Task layer and needs to be applied to all
// child layers. Child layers that are added at a later point will obtain the game mode
// info through addChild().
layer->setGameModeForTree(static_cast<GameMode>(gameMode));
}
if (layer->setMetadata(s.metadata)) {
flags |= eTraversalNeeded;
mLayerMetadataSnapshotNeeded = true;
}
}
if (what & layer_state_t::eColorSpaceAgnosticChanged) {
if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eShadowRadiusChanged) {
if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDefaultFrameRateCompatibilityChanged) {
const auto compatibility =
Layer::FrameRate::convertCompatibility(s.defaultFrameRateCompatibility);
if (layer->setDefaultFrameRateCompatibility(compatibility)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateSelectionPriority) {
if (layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateChanged) {
const auto compatibility =
Layer::FrameRate::convertCompatibility(s.frameRateCompatibility);
const auto strategy =
Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy);
if (layer->setFrameRate(Layer::FrameRate::FrameRateVote(Fps::fromValue(s.frameRate),
compatibility, strategy))) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateCategoryChanged) {
const FrameRateCategory category = Layer::FrameRate::convertCategory(s.frameRateCategory);
if (layer->setFrameRateCategory(category, s.frameRateCategorySmoothSwitchOnly)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFrameRateSelectionStrategyChanged) {
const scheduler::LayerInfo::FrameRateSelectionStrategy strategy =
scheduler::LayerInfo::convertFrameRateSelectionStrategy(
s.frameRateSelectionStrategy);
if (layer->setFrameRateSelectionStrategy(strategy)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFixedTransformHintChanged) {
if (layer->setFixedTransformHint(s.fixedTransformHint)) {
flags |= eTraversalNeeded | eTransformHintUpdateNeeded;
}
}
if (what & layer_state_t::eAutoRefreshChanged) {
layer->setAutoRefresh(s.autoRefresh);
}
if (what & layer_state_t::eDimmingEnabledChanged) {
if (layer->setDimmingEnabled(s.dimmingEnabled)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eExtendedRangeBrightnessChanged) {
if (layer->setExtendedRangeBrightness(s.currentHdrSdrRatio, s.desiredHdrSdrRatio)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDesiredHdrHeadroomChanged) {
if (layer->setDesiredHdrHeadroom(s.desiredHdrSdrRatio)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eCachingHintChanged) {
if (layer->setCachingHint(s.cachingHint)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eHdrMetadataChanged) {
if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTrustedOverlayChanged) {
if (layer->setTrustedOverlay(s.isTrustedOverlay)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eStretchChanged) {
if (layer->setStretchEffect(s.stretchEffect)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBufferCropChanged) {
if (layer->setBufferCrop(s.bufferCrop)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDestinationFrameChanged) {
if (layer->setDestinationFrame(s.destinationFrame)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDropInputModeChanged) {
if (layer->setDropInputMode(s.dropInputMode)) {
flags |= eTraversalNeeded;
mUpdateInputInfo = true;
}
}
// This has to happen after we reparent children because when we reparent to null we remove
// child layers from current state and remove its relative z. If the children are reparented in
// the same transaction, then we have to make sure we reparent the children first so we do not
// lose its relative z order.
if (what & layer_state_t::eReparent) {
bool hadParent = layer->hasParent();
auto parentHandle = (s.parentSurfaceControlForChild)
? s.parentSurfaceControlForChild->getHandle()
: nullptr;
if (layer->reparent(parentHandle)) {
if (!hadParent) {
layer->setIsAtRoot(false);
mCurrentState.layersSortedByZ.remove(layer);
}
flags |= eTransactionNeeded | eTraversalNeeded;
}
}
std::vector<sp<CallbackHandle>> callbackHandles;
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) {
for (auto& [listener, callbackIds] : filteredListeners) {
callbackHandles.emplace_back(
sp<CallbackHandle>::make(listener, callbackIds, s.surface));
}
}
if (what & layer_state_t::eBufferChanged) {
if (layer->setBuffer(composerState.externalTexture, *s.bufferData, postTime,
desiredPresentTime, isAutoTimestamp, dequeueBufferTimestamp,
frameTimelineInfo)) {
flags |= eTraversalNeeded;
}
} else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) {
layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime);
}
if ((what & layer_state_t::eBufferChanged) == 0) {
layer->setDesiredPresentTime(desiredPresentTime, isAutoTimestamp);
}
if (what & layer_state_t::eTrustedPresentationInfoChanged) {
if (layer->setTrustedPresentationInfo(s.trustedPresentationThresholds,
s.trustedPresentationListener)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eFlushJankData) {
// Do nothing. Processing the transaction completed listeners currently cause the flush.
}
if (layer->setTransactionCompletedListeners(callbackHandles,
layer->willPresentCurrentTransaction() ||
layer->willReleaseBufferOnLatch())) {
flags |= eTraversalNeeded;
}
// Do not put anything that updates layer state or modifies flags after
// setTransactionCompletedListener
// if the layer has been parented on to a new display, update its transform hint.
if (((flags & eTransformHintUpdateNeeded) == 0) &&
oldLayerStack != layer->getLayerStack(LayerVector::StateSet::Current)) {
flags |= eTransformHintUpdateNeeded;
}
return flags;
}
uint32_t SurfaceFlinger::updateLayerCallbacksAndStats(const FrameTimelineInfo& frameTimelineInfo,
ResolvedComposerState& composerState,
int64_t desiredPresentTime,
bool isAutoTimestamp, int64_t postTime,
uint64_t transactionId) {
layer_state_t& s = composerState.state;
std::vector<ListenerCallbacks> filteredListeners;
for (auto& listener : s.listeners) {
// Starts a registration but separates the callback ids according to callback type. This
// allows the callback invoker to send on latch callbacks earlier.
// note that startRegistration will not re-register if the listener has
// already be registered for a prior surface control
ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT);
if (!onCommitCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCommitCallbacks);
}
ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE);
if (!onCompleteCallbacks.callbackIds.empty()) {
filteredListeners.push_back(onCompleteCallbacks);
}
}
const uint64_t what = s.what;
uint32_t flags = 0;
sp<Layer> layer = nullptr;
if (s.surface) {
layer = LayerHandle::getLayer(s.surface);
} else {
// The client may provide us a null handle. Treat it as if the layer was removed.
ALOGW("Attempt to set client state with a null layer handle");
}
if (layer == nullptr) {
for (auto& [listener, callbackIds] : s.listeners) {
mTransactionCallbackInvoker.addCallbackHandle(sp<CallbackHandle>::make(listener,
callbackIds,
s.surface),
std::vector<JankData>());
}
return 0;
}
if (what & layer_state_t::eProducerDisconnect) {
layer->onDisconnect();
}
std::optional<nsecs_t> dequeueBufferTimestamp;
if (what & layer_state_t::eMetadataChanged) {
dequeueBufferTimestamp = s.metadata.getInt64(gui::METADATA_DEQUEUE_TIME);
}
std::vector<sp<CallbackHandle>> callbackHandles;
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) {
for (auto& [listener, callbackIds] : filteredListeners) {
callbackHandles.emplace_back(
sp<CallbackHandle>::make(listener, callbackIds, s.surface));
}
}
// TODO(b/238781169) remove after screenshot refactor, currently screenshots
// requires to read drawing state from binder thread. So we need to fix that
// before removing this.
if (what & layer_state_t::eBufferTransformChanged) {
if (layer->setTransform(s.bufferTransform)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eSidebandStreamChanged) {
if (layer->setSidebandStream(s.sidebandStream, frameTimelineInfo, postTime))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eDataspaceChanged) {
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
}
if (what & layer_state_t::eExtendedRangeBrightnessChanged) {
if (layer->setExtendedRangeBrightness(s.currentHdrSdrRatio, s.desiredHdrSdrRatio)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eDesiredHdrHeadroomChanged) {
if (layer->setDesiredHdrHeadroom(s.desiredHdrSdrRatio)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eBufferChanged) {
std::optional<ui::Transform::RotationFlags> transformHint = std::nullopt;
frontend::LayerSnapshot* snapshot = mLayerSnapshotBuilder.getSnapshot(layer->sequence);
if (snapshot) {
transformHint = snapshot->transformHint;
}
layer->setTransformHint(transformHint);
if (layer->setBuffer(composerState.externalTexture, *s.bufferData, postTime,
desiredPresentTime, isAutoTimestamp, dequeueBufferTimestamp,
frameTimelineInfo)) {
flags |= eTraversalNeeded;
}
mLayersWithQueuedFrames.emplace(layer);
} else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) {
layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime);
}
if ((what & layer_state_t::eBufferChanged) == 0) {
layer->setDesiredPresentTime(desiredPresentTime, isAutoTimestamp);
}
if (what & layer_state_t::eTrustedPresentationInfoChanged) {
if (layer->setTrustedPresentationInfo(s.trustedPresentationThresholds,
s.trustedPresentationListener)) {
flags |= eTraversalNeeded;
}
}
const auto& requestedLayerState = mLayerLifecycleManager.getLayerFromId(layer->getSequence());
bool willPresentCurrentTransaction = requestedLayerState &&
(requestedLayerState->hasReadyFrame() ||
requestedLayerState->willReleaseBufferOnLatch());
if (layer->setTransactionCompletedListeners(callbackHandles, willPresentCurrentTransaction))
flags |= eTraversalNeeded;
return flags;
}
uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
bool hasChanges = mInputWindowCommands.merge(inputWindowCommands);
return hasChanges ? eTraversalNeeded : 0;
}
status_t SurfaceFlinger::mirrorLayer(const LayerCreationArgs& args,
const sp<IBinder>& mirrorFromHandle,
gui::CreateSurfaceResult& outResult) {
if (!mirrorFromHandle) {
return NAME_NOT_FOUND;
}
sp<Layer> mirrorLayer;
sp<Layer> mirrorFrom;
LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args);
{
Mutex::Autolock _l(mStateLock);
mirrorFrom = LayerHandle::getLayer(mirrorFromHandle);
if (!mirrorFrom) {
return NAME_NOT_FOUND;
}
mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill;
mirrorArgs.mirrorLayerHandle = mirrorFromHandle;
mirrorArgs.addToRoot = false;
status_t result = createEffectLayer(mirrorArgs, &outResult.handle, &mirrorLayer);
if (result != NO_ERROR) {
return result;
}
mirrorLayer->setClonedChild(mirrorFrom->createClone(mirrorLayer->getSequence()));
}
outResult.layerId = mirrorLayer->sequence;
outResult.layerName = String16(mirrorLayer->getDebugName());
return addClientLayer(mirrorArgs, outResult.handle, mirrorLayer /* layer */,
nullptr /* parent */, nullptr /* outTransformHint */);
}
status_t SurfaceFlinger::mirrorDisplay(DisplayId displayId, const LayerCreationArgs& args,
gui::CreateSurfaceResult& outResult) {
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid != AID_ROOT && uid != AID_GRAPHICS && uid != AID_SYSTEM && uid != AID_SHELL) {
ALOGE("Permission denied when trying to mirror display");
return PERMISSION_DENIED;
}
ui::LayerStack layerStack;
sp<Layer> rootMirrorLayer;
status_t result = 0;
{
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayId);
if (!display) {
return NAME_NOT_FOUND;
}
layerStack = display->getLayerStack();
LayerCreationArgs mirrorArgs = LayerCreationArgs::fromOtherArgs(args);
mirrorArgs.flags |= ISurfaceComposerClient::eNoColorFill;
mirrorArgs.addToRoot = true;
mirrorArgs.layerStackToMirror = layerStack;
result = createEffectLayer(mirrorArgs, &outResult.handle, &rootMirrorLayer);
outResult.layerId = rootMirrorLayer->sequence;
outResult.layerName = String16(rootMirrorLayer->getDebugName());
result |= addClientLayer(mirrorArgs, outResult.handle, rootMirrorLayer /* layer */,
nullptr /* parent */, nullptr /* outTransformHint */);
}
if (result != NO_ERROR) {
return result;
}
if (mLegacyFrontEndEnabled) {
std::scoped_lock<std::mutex> lock(mMirrorDisplayLock);
mMirrorDisplays.emplace_back(layerStack, outResult.handle, args.client);
}
setTransactionFlags(eTransactionFlushNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::createLayer(LayerCreationArgs& args, gui::CreateSurfaceResult& outResult) {
status_t result = NO_ERROR;
sp<Layer> layer;
switch (args.flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
case ISurfaceComposerClient::eFXSurfaceContainer:
case ISurfaceComposerClient::eFXSurfaceBufferState:
args.flags |= ISurfaceComposerClient::eNoColorFill;
[[fallthrough]];
case ISurfaceComposerClient::eFXSurfaceEffect: {
result = createBufferStateLayer(args, &outResult.handle, &layer);
std::atomic<int32_t>* pendingBufferCounter = layer->getPendingBufferCounter();
if (pendingBufferCounter) {
std::string counterName = layer->getPendingBufferCounterName();
mBufferCountTracker.add(outResult.handle->localBinder(), counterName,
pendingBufferCounter);
}
} break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
args.addToRoot = args.addToRoot && callingThreadHasUnscopedSurfaceFlingerAccess();
// We can safely promote the parent layer in binder thread because we have a strong reference
// to the layer's handle inside this scope.
sp<Layer> parent = LayerHandle::getLayer(args.parentHandle.promote());
if (args.parentHandle != nullptr && parent == nullptr) {
ALOGE("Invalid parent handle %p", args.parentHandle.promote().get());
args.addToRoot = false;
}
uint32_t outTransformHint;
result = addClientLayer(args, outResult.handle, layer, parent, &outTransformHint);
if (result != NO_ERROR) {
return result;
}
outResult.transformHint = static_cast<int32_t>(outTransformHint);
outResult.layerId = layer->sequence;
outResult.layerName = String16(layer->getDebugName());
return result;
}
status_t SurfaceFlinger::createBufferStateLayer(LayerCreationArgs& args, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createBufferStateLayer(args);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::createEffectLayer(const LayerCreationArgs& args, sp<IBinder>* handle,
sp<Layer>* outLayer) {
*outLayer = getFactory().createEffectLayer(args);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
setTransactionFlags(eTransactionNeeded);
}
void SurfaceFlinger::onHandleDestroyed(BBinder* handle, sp<Layer>& layer, uint32_t layerId) {
{
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
mDestroyedHandles.emplace_back(layerId, layer->getDebugName());
}
mTransactionHandler.onLayerDestroyed(layerId);
Mutex::Autolock lock(mStateLock);
markLayerPendingRemovalLocked(layer);
layer->onHandleDestroyed();
mBufferCountTracker.remove(handle);
layer.clear();
setTransactionFlags(eTransactionFlushNeeded);
}
void SurfaceFlinger::initializeDisplays() {
TransactionState state;
state.inputWindowCommands = mInputWindowCommands;
const nsecs_t now = systemTime();
state.desiredPresentTime = now;
state.postTime = now;
state.originPid = mPid;
state.originUid = static_cast<int>(getuid());
const uint64_t transactionId = (static_cast<uint64_t>(mPid) << 32) | mUniqueTransactionId++;
state.id = transactionId;
auto layerStack = ui::DEFAULT_LAYER_STACK.id;
for (const auto& [id, display] : FTL_FAKE_GUARD(mStateLock, mPhysicalDisplays)) {
state.displays.push(DisplayState(display.token(), ui::LayerStack::fromValue(layerStack++)));
}
std::vector<TransactionState> transactions;
transactions.emplace_back(state);
if (mLegacyFrontEndEnabled) {
applyTransactions(transactions, VsyncId{0});
} else {
applyAndCommitDisplayTransactionStates(transactions);
}
{
ftl::FakeGuard guard(mStateLock);
// In case of a restart, ensure all displays are off.
for (const auto& [id, display] : mPhysicalDisplays) {
setPowerModeInternal(getDisplayDeviceLocked(id), hal::PowerMode::OFF);
}
// Power on all displays. The primary display is first, so becomes the active display. Also,
// the DisplayCapability set of a display is populated on its first powering on. Do this now
// before responding to any Binder query from DisplayManager about display capabilities.
for (const auto& [id, display] : mPhysicalDisplays) {
setPowerModeInternal(getDisplayDeviceLocked(id), hal::PowerMode::ON);
}
}
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode) {
if (display->isVirtual()) {
// TODO(b/241285876): This code path should not be reachable, so enforce this at compile
// time.
ALOGE("%s: Invalid operation on virtual display", __func__);
return;
}
const auto displayId = display->getPhysicalId();
ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str());
const auto currentMode = display->getPowerMode();
if (currentMode == mode) {
return;
}
const bool isInternalDisplay = mPhysicalDisplays.get(displayId)
.transform(&PhysicalDisplay::isInternal)
.value_or(false);
const auto activeDisplay = getDisplayDeviceLocked(mActiveDisplayId);
ALOGW_IF(display != activeDisplay && isInternalDisplay && activeDisplay &&
activeDisplay->isPoweredOn(),
"Trying to change power mode on inactive display without powering off active display");
display->setPowerMode(mode);
const auto activeMode = display->refreshRateSelector().getActiveMode().modePtr;
if (currentMode == hal::PowerMode::OFF) {
// Turn on the display
// Activate the display (which involves a modeset to the active mode) when the inner or
// outer display of a foldable is powered on. This condition relies on the above
// DisplayDevice::setPowerMode. If `display` and `activeDisplay` are the same display,
// then the `activeDisplay->isPoweredOn()` below is true, such that the display is not
// activated every time it is powered on.
//
// TODO(b/255635821): Remove the concept of active display.
if (isInternalDisplay && (!activeDisplay || !activeDisplay->isPoweredOn())) {
onActiveDisplayChangedLocked(activeDisplay.get(), *display);
}
if (displayId == mActiveDisplayId) {
// TODO(b/281692563): Merge the syscalls. For now, keep uclamp in a separate syscall and
// set it before SCHED_FIFO due to b/190237315.
if (setSchedAttr(true) != NO_ERROR) {
ALOGW("Failed to set uclamp.min after powering on active display: %s",
strerror(errno));
}
if (setSchedFifo(true) != NO_ERROR) {
ALOGW("Failed to set SCHED_FIFO after powering on active display: %s",
strerror(errno));
}
}
getHwComposer().setPowerMode(displayId, mode);
if (mode != hal::PowerMode::DOZE_SUSPEND &&
(displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present())) {
const bool enable =
mScheduler->getVsyncSchedule(displayId)->getPendingHardwareVsyncState();
requestHardwareVsync(displayId, enable);
if (displayId == mActiveDisplayId) {
mScheduler->enableSyntheticVsync(false);
}
constexpr bool kAllowToEnable = true;
mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, activeMode.get());
}
mVisibleRegionsDirty = true;
scheduleComposite(FrameHint::kActive);
} else if (mode == hal::PowerMode::OFF) {
const bool currentModeNotDozeSuspend = (currentMode != hal::PowerMode::DOZE_SUSPEND);
// Turn off the display
if (displayId == mActiveDisplayId) {
if (const auto display = getActivatableDisplay()) {
onActiveDisplayChangedLocked(activeDisplay.get(), *display);
} else {
if (setSchedFifo(false) != NO_ERROR) {
ALOGW("Failed to set SCHED_OTHER after powering off active display: %s",
strerror(errno));
}
if (setSchedAttr(false) != NO_ERROR) {
ALOGW("Failed set uclamp.min after powering off active display: %s",
strerror(errno));
}
if (currentModeNotDozeSuspend) {
if (!FlagManager::getInstance().multithreaded_present()) {
mScheduler->disableHardwareVsync(displayId, true);
}
mScheduler->enableSyntheticVsync();
}
}
}
if (currentModeNotDozeSuspend && FlagManager::getInstance().multithreaded_present()) {
constexpr bool kDisallow = true;
mScheduler->disableHardwareVsync(displayId, kDisallow);
}
// We must disable VSYNC *before* turning off the display. The call to
// disableHardwareVsync, above, schedules a task to turn it off after
// this method returns. But by that point, the display is OFF, so the
// call just updates the pending state, without actually disabling
// VSYNC.
requestHardwareVsync(displayId, false);
getHwComposer().setPowerMode(displayId, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) {
// Update display while dozing
getHwComposer().setPowerMode(displayId, mode);
if (currentMode == hal::PowerMode::DOZE_SUSPEND &&
(displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present())) {
if (displayId == mActiveDisplayId) {
ALOGI("Force repainting for DOZE_SUSPEND -> DOZE or ON.");
mVisibleRegionsDirty = true;
scheduleRepaint();
mScheduler->enableSyntheticVsync(false);
}
constexpr bool kAllowToEnable = true;
mScheduler->resyncToHardwareVsync(displayId, kAllowToEnable, activeMode.get());
}
} else if (mode == hal::PowerMode::DOZE_SUSPEND) {
// Leave display going to doze
if (displayId == mActiveDisplayId || FlagManager::getInstance().multithreaded_present()) {
constexpr bool kDisallow = true;
mScheduler->disableHardwareVsync(displayId, kDisallow);
}
if (displayId == mActiveDisplayId) {
mScheduler->enableSyntheticVsync();
}
getHwComposer().setPowerMode(displayId, mode);
} else {
ALOGE("Attempting to set unknown power mode: %d\n", mode);
getHwComposer().setPowerMode(displayId, mode);
}
if (displayId == mActiveDisplayId) {
mTimeStats->setPowerMode(mode);
mScheduler->setActiveDisplayPowerModeForRefreshRateStats(mode);
}
mScheduler->setDisplayPowerMode(displayId, mode);
ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str());
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(
kMainThreadContext) {
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
displayToken.get());
} else if (display->isVirtual()) {
ALOGW("Attempt to set power mode %d for virtual display", mode);
} else {
setPowerModeInternal(display, static_cast<hal::PowerMode>(mode));
}
});
future.wait();
}
status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) {
std::string result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
pid, uid);
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
if (asProto && args.empty()) {
perfetto::protos::LayersTraceFileProto traceFileProto =
mLayerTracing.createTraceFileProto();
perfetto::protos::LayersSnapshotProto* layersTrace = traceFileProto.add_entry();
perfetto::protos::LayersProto layersProto = dumpProtoFromMainThread();
layersTrace->mutable_layers()->Swap(&layersProto);
auto displayProtos = dumpDisplayProto();
layersTrace->mutable_displays()->Swap(&displayProtos);
result.append(traceFileProto.SerializeAsString());
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
static const std::unordered_map<std::string, Dumper> dumpers = {
{"--comp-displays"s, dumper(&SurfaceFlinger::dumpCompositionDisplays)},
{"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
{"--displays"s, dumper(&SurfaceFlinger::dumpDisplays)},
{"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)},
{"--events"s, dumper(&SurfaceFlinger::dumpEvents)},
{"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)},
{"--frontend"s, mainThreadDumper(&SurfaceFlinger::dumpFrontEnd)},
{"--hdrinfo"s, dumper(&SurfaceFlinger::dumpHdrInfo)},
{"--hwclayers"s, mainThreadDumper(&SurfaceFlinger::dumpHwcLayersMinidump)},
{"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
{"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
{"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
{"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)},
{"--scheduler"s, dumper(&SurfaceFlinger::dumpScheduler)},
{"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
{"--vsync"s, dumper(&SurfaceFlinger::dumpVsync)},
{"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
};
const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
if (const auto it = dumpers.find(flag); it != dumpers.end()) {
(it->second)(args, asProto, result);
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
// Traversal of drawing state must happen on the main thread.
// Otherwise, SortedVector may have shared ownership during concurrent
// traversals, which can result in use-after-frees.
std::string compositionLayers;
mScheduler
->schedule([&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) {
dumpVisibleFrontEnd(compositionLayers);
})
.get();
dumpAll(args, compositionLayers, result);
write(fd, result.c_str(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
return doDump(fd, DumpArgs(), asProto);
}
void SurfaceFlinger::listLayersLocked(std::string& result) const {
mCurrentState.traverseInZOrder(
[&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); });
}
void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC());
if (args.size() < 2) return;
const auto name = String8(args[1]);
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == name.c_str()) {
layer->dumpFrameStats(result);
}
});
}
void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
const bool clearAll = args.size() < 2;
const auto name = clearAll ? String8() : String8(args[1]);
mCurrentState.traverse([&](Layer* layer) {
if (clearAll || layer->getName() == name.c_str()) {
layer->clearFrameStats();
}
});
}
void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
mTimeStats->parseArgs(asProto, args, result);
}
void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const {
mFrameTimeline->parseArgs(args, result);
}
void SurfaceFlinger::logFrameStats(TimePoint now) {
static TimePoint sTimestamp = now;
if (now - sTimestamp < 30min) return;
sTimestamp = now;
ATRACE_CALL();
mDrawingState.traverse([&](Layer* layer) { layer->logFrameStats(); });
}
void SurfaceFlinger::appendSfConfigString(std::string& result) const {
result.append(" [sf");
StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu",
getHwComposer().getMaxVirtualDisplayDimension());
StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpScheduler(std::string& result) const {
utils::Dumper dumper{result};
mScheduler->dump(dumper);
// TODO(b/241285876): Move to DisplayModeController.
dumper.dump("debugDisplayModeSetByBackdoor"sv, mDebugDisplayModeSetByBackdoor);
dumper.eol();
StringAppendF(&result,
" present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64
" ns\n\n",
dispSyncPresentTimeOffset, getVsyncPeriodFromHWC());
}
void SurfaceFlinger::dumpEvents(std::string& result) const {
mScheduler->dump(mAppConnectionHandle, result);
}
void SurfaceFlinger::dumpVsync(std::string& result) const {
mScheduler->dumpVsync(result);
}
void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto compositionDisplay = display->getCompositionDisplay();
compositionDisplay->dumpPlannerInfo(args, result);
}
}
void SurfaceFlinger::dumpCompositionDisplays(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
display->getCompositionDisplay()->dump(result);
result += '\n';
}
}
void SurfaceFlinger::dumpDisplays(std::string& result) const {
utils::Dumper dumper{result};
for (const auto& [id, display] : mPhysicalDisplays) {
utils::Dumper::Section section(dumper, ftl::Concat("Display ", id.value).str());
display.snapshot().dump(dumper);
if (const auto device = getDisplayDeviceLocked(id)) {
device->dump(dumper);
}
}
for (const auto& [token, display] : mDisplays) {
if (display->isVirtual()) {
const auto displayId = display->getId();
utils::Dumper::Section section(dumper,
ftl::Concat("Virtual Display ", displayId.value).str());
display->dump(dumper);
}
}
}
void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
for (const auto& [token, display] : mDisplays) {
const auto displayId = PhysicalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
if (!hwcDisplayId) {
continue;
}
StringAppendF(&result,
"Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
*hwcDisplayId);
uint8_t port;
DisplayIdentificationData data;
if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
result.append("no identification data\n");
continue;
}
if (!isEdid(data)) {
result.append("unknown identification data\n");
continue;
}
const auto edid = parseEdid(data);
if (!edid) {
result.append("invalid EDID\n");
continue;
}
StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
result.append(edid->displayName.data(), edid->displayName.length());
result.append("\"\n");
}
}
void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args,
std::string& result) const {
hal::HWDisplayId hwcDisplayId;
uint8_t port;
DisplayIdentificationData data;
if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) &&
getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) {
result.append(reinterpret_cast<const char*>(data.data()), data.size());
}
}
void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
StringAppendF(&result, "Device supports wide color: %d\n", mSupportsWideColor);
StringAppendF(&result, "DisplayColorSetting: %s\n",
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
// TODO: print out if wide-color mode is active or not
for (const auto& [id, display] : mPhysicalDisplays) {
StringAppendF(&result, "Display %s color modes:\n", to_string(id).c_str());
for (const auto mode : display.snapshot().colorModes()) {
StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
if (const auto display = getDisplayDeviceLocked(id)) {
ui::ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
StringAppendF(&result, " Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
}
result.append("\n");
}
void SurfaceFlinger::dumpHdrInfo(std::string& result) const {
for (const auto& [displayId, listener] : mHdrLayerInfoListeners) {
StringAppendF(&result, "HDR events for display %" PRIu64 "\n", displayId.value);
listener->dump(result);
result.append("\n");
}
}
void SurfaceFlinger::dumpFrontEnd(std::string& result) {
std::ostringstream out;
out << "\nComposition list\n";
ui::LayerStack lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK;
for (const auto& snapshot : mLayerSnapshotBuilder.getSnapshots()) {
if (lastPrintedLayerStackHeader != snapshot->outputFilter.layerStack) {
lastPrintedLayerStackHeader = snapshot->outputFilter.layerStack;
out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n";
}
out << " " << *snapshot << "\n";
}
out << "\nInput list\n";
lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK;
mLayerSnapshotBuilder.forEachInputSnapshot([&](const frontend::LayerSnapshot& snapshot) {
if (lastPrintedLayerStackHeader != snapshot.outputFilter.layerStack) {
lastPrintedLayerStackHeader = snapshot.outputFilter.layerStack;
out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n";
}
out << " " << snapshot << "\n";
});
out << "\nLayer Hierarchy\n"
<< mLayerHierarchyBuilder.getHierarchy().dump() << "\nOffscreen Hierarchy\n"
<< mLayerHierarchyBuilder.getOffscreenHierarchy().dump() << "\n\n";
result.append(out.str());
}
void SurfaceFlinger::dumpVisibleFrontEnd(std::string& result) {
if (!mLayerLifecycleManagerEnabled) {
StringAppendF(&result, "Composition layers\n");
mDrawingState.traverseInZOrder([&](Layer* layer) {
auto* compositionState = layer->getCompositionState();
if (!compositionState || !compositionState->isVisible) return;
android::base::StringAppendF(&result, "* Layer %p (%s)\n", layer,
layer->getDebugName() ? layer->getDebugName()
: "<unknown>");
compositionState->dump(result);
});
StringAppendF(&result, "Offscreen Layers\n");
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* layer) { layer->dumpOffscreenDebugInfo(result); });
}
} else {
std::ostringstream out;
out << "\nComposition list\n";
ui::LayerStack lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK;
mLayerSnapshotBuilder.forEachVisibleSnapshot(
[&](std::unique_ptr<frontend::LayerSnapshot>& snapshot) {
if (snapshot->hasSomethingToDraw()) {
if (lastPrintedLayerStackHeader != snapshot->outputFilter.layerStack) {
lastPrintedLayerStackHeader = snapshot->outputFilter.layerStack;
out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n";
}
out << " " << *snapshot << "\n";
}
});
out << "\nInput list\n";
lastPrintedLayerStackHeader = ui::INVALID_LAYER_STACK;
mLayerSnapshotBuilder.forEachInputSnapshot([&](const frontend::LayerSnapshot& snapshot) {
if (lastPrintedLayerStackHeader != snapshot.outputFilter.layerStack) {
lastPrintedLayerStackHeader = snapshot.outputFilter.layerStack;
out << "LayerStack=" << lastPrintedLayerStackHeader.id << "\n";
}
out << " " << snapshot << "\n";
});
out << "\nLayer Hierarchy\n"
<< mLayerHierarchyBuilder.getHierarchy() << "\nOffscreen Hierarchy\n"
<< mLayerHierarchyBuilder.getOffscreenHierarchy() << "\n\n";
result = out.str();
dumpHwcLayersMinidump(result);
}
}
perfetto::protos::LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const {
std::unordered_set<uint64_t> stackIdsToSkip;
// Determine if virtual layers display should be skipped
if ((traceFlags & LayerTracing::TRACE_VIRTUAL_DISPLAYS) == 0) {
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
if (display->isVirtual()) {
stackIdsToSkip.insert(display->getLayerStack().id);
}
}
}
if (mLegacyFrontEndEnabled) {
perfetto::protos::LayersProto layersProto;
for (const sp<Layer>& layer : mDrawingState.layersSortedByZ) {
if (stackIdsToSkip.find(layer->getLayerStack().id) != stackIdsToSkip.end()) {
continue;
}
layer->writeToProto(layersProto, traceFlags);
}
return layersProto;
}
return LayerProtoFromSnapshotGenerator(mLayerSnapshotBuilder, mFrontEndDisplayInfos,
mLegacyLayers, traceFlags)
.generate(mLayerHierarchyBuilder.getHierarchy());
}
google::protobuf::RepeatedPtrField<perfetto::protos::DisplayProto>
SurfaceFlinger::dumpDisplayProto() const {
google::protobuf::RepeatedPtrField<perfetto::protos::DisplayProto> displays;
for (const auto& [_, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
perfetto::protos::DisplayProto* displayProto = displays.Add();
displayProto->set_id(display->getId().value);
displayProto->set_name(display->getDisplayName());
displayProto->set_layer_stack(display->getLayerStack().id);
if (!display->isVirtual()) {
const auto dpi = display->refreshRateSelector().getActiveMode().modePtr->getDpi();
displayProto->set_dpi_x(dpi.x);
displayProto->set_dpi_y(dpi.y);
}
LayerProtoHelper::writeSizeToProto(display->getWidth(), display->getHeight(),
[&]() { return displayProto->mutable_size(); });
LayerProtoHelper::writeToProto(display->getLayerStackSpaceRect(), [&]() {
return displayProto->mutable_layer_stack_space_rect();
});
LayerProtoHelper::writeTransformToProto(display->getTransform(),
displayProto->mutable_transform());
displayProto->set_is_virtual(display->isVirtual());
}
return displays;
}
void SurfaceFlinger::dumpHwc(std::string& result) const {
getHwComposer().dump(result);
}
void SurfaceFlinger::dumpOffscreenLayersProto(perfetto::protos::LayersProto& layersProto,
uint32_t traceFlags) const {
// Add a fake invisible root layer to the proto output and parent all the offscreen layers to
// it.
perfetto::protos::LayerProto* rootProto = layersProto.add_layers();
const int32_t offscreenRootLayerId = INT32_MAX - 2;
rootProto->set_id(offscreenRootLayerId);
rootProto->set_name("Offscreen Root");
rootProto->set_parent(-1);
for (Layer* offscreenLayer : mOffscreenLayers) {
// Add layer as child of the fake root
rootProto->add_children(offscreenLayer->sequence);
// Add layer
auto* layerProto = offscreenLayer->writeToProto(layersProto, traceFlags);
layerProto->set_parent(offscreenRootLayerId);
}
}
perfetto::protos::LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) {
return mScheduler->schedule([=, this] { return dumpDrawingStateProto(traceFlags); }).get();
}
void SurfaceFlinger::dumpOffscreenLayers(std::string& result) {
auto future = mScheduler->schedule([this] {
std::string result;
for (Layer* offscreenLayer : mOffscreenLayers) {
offscreenLayer->traverse(LayerVector::StateSet::Drawing,
[&](Layer* layer) { layer->dumpOffscreenDebugInfo(result); });
}
return result;
});
result.append("Offscreen Layers:\n");
result.append(future.get());
}
void SurfaceFlinger::dumpHwcLayersMinidumpLockedLegacy(std::string& result) const {
for (const auto& [token, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
const auto displayId = HalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(),
displayId == mActiveDisplayId ? "active" : "inactive");
Layer::miniDumpHeader(result);
const DisplayDevice& ref = *display;
mDrawingState.traverseInZOrder([&](Layer* layer) { layer->miniDumpLegacy(result, ref); });
result.append("\n");
}
}
void SurfaceFlinger::dumpHwcLayersMinidump(std::string& result) const {
if (!mLayerLifecycleManagerEnabled) {
return dumpHwcLayersMinidumpLockedLegacy(result);
}
for (const auto& [token, display] : FTL_FAKE_GUARD(mStateLock, mDisplays)) {
const auto displayId = HalDisplayId::tryCast(display->getId());
if (!displayId) {
continue;
}
StringAppendF(&result, "Display %s (%s) HWC layers:\n", to_string(*displayId).c_str(),
displayId == mActiveDisplayId ? "active" : "inactive");
Layer::miniDumpHeader(result);
const DisplayDevice& ref = *display;
mLayerSnapshotBuilder.forEachVisibleSnapshot([&](const frontend::LayerSnapshot& snapshot) {
if (!snapshot.hasSomethingToDraw() ||
ref.getLayerStack() != snapshot.outputFilter.layerStack) {
return;
}
auto it = mLegacyLayers.find(snapshot.sequence);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldnt find layer object for %s",
snapshot.getDebugString().c_str());
it->second->miniDump(result, snapshot, ref);
});
result.append("\n");
}
}
void SurfaceFlinger::dumpAll(const DumpArgs& args, const std::string& compositionLayers,
std::string& result) const {
TimedLock lock(mStateLock, s2ns(1), __func__);
if (!lock.locked()) {
StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n",
strerror(-lock.status), lock.status);
}
const bool colorize = !args.empty() && args[0] == String16("--color");
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
result.append("\n");
result.append("\nDisplay identification data:\n");
dumpDisplayIdentificationData(result);
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
dumpHdrInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n\n");
colorizer.bold(result);
result.append("Scheduler:\n");
colorizer.reset(result);
dumpScheduler(result);
dumpEvents(result);
dumpVsync(result);
result.append("\n");
/*
* Dump the visible layer list
*/
colorizer.bold(result);
StringAppendF(&result, "SurfaceFlinger New Frontend Enabled:%s\n",
mLayerLifecycleManagerEnabled ? "true" : "false");
StringAppendF(&result, "Active Layers - layers with client handles (count = %zu)\n",
mNumLayers.load());
colorizer.reset(result);
result.append(compositionLayers);
colorizer.bold(result);
StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
dumpDisplays(result);
dumpCompositionDisplays(result);
result.push_back('\n');
mCompositionEngine->dump(result);
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
getRenderEngine().dump(result);
result.append("ClientCache state:\n");
ClientCache::getInstance().dump(result);
DebugEGLImageTracker::getInstance()->dump(result);
if (const auto display = getDefaultDisplayDeviceLocked()) {
display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
"undefinedRegion");
StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n",
toCString(display->getOrientation()), display->isPoweredOn());
}
StringAppendF(&result, " transaction-flags : %08x\n", mTransactionFlags.load());
if (const auto display = getDefaultDisplayDeviceLocked()) {
std::string fps, xDpi, yDpi;
if (const auto activeModePtr =
display->refreshRateSelector().getActiveMode().modePtr.get()) {
fps = to_string(activeModePtr->getVsyncRate());
const auto dpi = activeModePtr->getDpi();
xDpi = base::StringPrintf("%.2f", dpi.x);
yDpi = base::StringPrintf("%.2f", dpi.y);
} else {
fps = "unknown";
xDpi = "unknown";
yDpi = "unknown";
}
StringAppendF(&result,
" refresh-rate : %s\n"
" x-dpi : %s\n"
" y-dpi : %s\n",
fps.c_str(), xDpi.c_str(), yDpi.c_str());
}
StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
result.append("\nTransaction tracing: ");
if (mTransactionTracing) {
result.append("enabled\n");
mTransactionTracing->dump(result);
} else {
result.append("disabled\n");
}
result.push_back('\n');
if (mLegacyFrontEndEnabled) {
dumpHwcLayersMinidumpLockedLegacy(result);
}
{
DumpArgs plannerArgs;
plannerArgs.add(); // first argument is ignored
plannerArgs.add(String16("--layers"));
dumpPlannerInfo(plannerArgs, result);
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
const bool hwcDisabled = mDebugDisableHWC || mDebugFlashDelay;
StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
dumpHwc(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
/*
* Dump flag/property manager state
*/
FlagManager::getInstance().dump(result);
result.append(mTimeStats->miniDump());
result.append("\n");
result.append("Window Infos:\n");
auto windowInfosDebug = mWindowInfosListenerInvoker->getDebugInfo();
StringAppendF(&result, " max send vsync id: %" PRId64 "\n",
ftl::to_underlying(windowInfosDebug.maxSendDelayVsyncId));
StringAppendF(&result, " max send delay (ns): %" PRId64 " ns\n",
windowInfosDebug.maxSendDelayDuration);
StringAppendF(&result, " unsent messages: %zu\n", windowInfosDebug.pendingMessageCount);
result.append("\n");
}
mat4 SurfaceFlinger::calculateColorMatrix(float saturation) {
if (saturation == 1) {
return mat4();
}
float3 luminance{0.213f, 0.715f, 0.072f};
luminance *= 1.0f - saturation;
mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f},
vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f},
vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f},
vec4{0.0f, 0.0f, 0.0f, 1.0f});
return saturationMatrix;
}
void SurfaceFlinger::updateColorMatrixLocked() {
mat4 colorMatrix =
mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer();
if (mCurrentState.colorMatrix != colorMatrix) {
mCurrentState.colorMatrix = colorMatrix;
mCurrentState.colorMatrixChanged = true;
setTransactionFlags(eTransactionNeeded);
}
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
#pragma clang diagnostic push
#pragma clang diagnostic error "-Wswitch-enum"
switch (static_cast<ISurfaceComposerTag>(code)) {
// These methods should at minimum make sure that the client requested
// access to SF.
case GET_HDR_CAPABILITIES:
case GET_AUTO_LOW_LATENCY_MODE_SUPPORT:
case GET_GAME_CONTENT_TYPE_SUPPORT:
case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: {
// OVERRIDE_HDR_TYPES is used by CTS tests, which acquire the necessary
// permission dynamically. Don't use the permission cache for this check.
bool usePermissionCache = code != OVERRIDE_HDR_TYPES;
if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
ipc->getCallingPid(), ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
// The following calls are currently used by clients that do not
// request necessary permissions. However, they do not expose any secret
// information, so it is OK to pass them.
case GET_ACTIVE_COLOR_MODE:
case GET_ACTIVE_DISPLAY_MODE:
case GET_DISPLAY_COLOR_MODES:
case GET_DISPLAY_MODES:
case GET_SCHEDULING_POLICY:
// Calling setTransactionState is safe, because you need to have been
// granted a reference to Client* and Handle* to do anything with it.
case SET_TRANSACTION_STATE: {
// This is not sensitive information, so should not require permission control.
return OK;
}
case BOOT_FINISHED:
// Used by apps to hook Choreographer to SurfaceFlinger.
case CREATE_DISPLAY_EVENT_CONNECTION:
case CREATE_CONNECTION:
case CREATE_DISPLAY:
case DESTROY_DISPLAY:
case GET_PRIMARY_PHYSICAL_DISPLAY_ID:
case GET_PHYSICAL_DISPLAY_IDS:
case GET_PHYSICAL_DISPLAY_TOKEN:
case AUTHENTICATE_SURFACE:
case SET_POWER_MODE:
case GET_SUPPORTED_FRAME_TIMESTAMPS:
case GET_DISPLAY_STATE:
case GET_DISPLAY_STATS:
case GET_STATIC_DISPLAY_INFO:
case GET_DYNAMIC_DISPLAY_INFO:
case GET_DISPLAY_NATIVE_PRIMARIES:
case SET_ACTIVE_COLOR_MODE:
case SET_BOOT_DISPLAY_MODE:
case CLEAR_BOOT_DISPLAY_MODE:
case GET_BOOT_DISPLAY_MODE_SUPPORT:
case SET_AUTO_LOW_LATENCY_MODE:
case SET_GAME_CONTENT_TYPE:
case CAPTURE_LAYERS:
case CAPTURE_DISPLAY:
case CAPTURE_DISPLAY_BY_ID:
case CLEAR_ANIMATION_FRAME_STATS:
case GET_ANIMATION_FRAME_STATS:
case OVERRIDE_HDR_TYPES:
case ON_PULL_ATOM:
case ENABLE_VSYNC_INJECTIONS:
case INJECT_VSYNC:
case GET_LAYER_DEBUG_INFO:
case GET_COLOR_MANAGEMENT:
case GET_COMPOSITION_PREFERENCE:
case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
case GET_DISPLAYED_CONTENT_SAMPLE:
case GET_PROTECTED_CONTENT_SUPPORT:
case IS_WIDE_COLOR_DISPLAY:
case ADD_REGION_SAMPLING_LISTENER:
case REMOVE_REGION_SAMPLING_LISTENER:
case ADD_FPS_LISTENER:
case REMOVE_FPS_LISTENER:
case ADD_TUNNEL_MODE_ENABLED_LISTENER:
case REMOVE_TUNNEL_MODE_ENABLED_LISTENER:
case ADD_WINDOW_INFOS_LISTENER:
case REMOVE_WINDOW_INFOS_LISTENER:
case SET_DESIRED_DISPLAY_MODE_SPECS:
case GET_DESIRED_DISPLAY_MODE_SPECS:
case GET_DISPLAY_BRIGHTNESS_SUPPORT:
case SET_DISPLAY_BRIGHTNESS:
case ADD_HDR_LAYER_INFO_LISTENER:
case REMOVE_HDR_LAYER_INFO_LISTENER:
case NOTIFY_POWER_BOOST:
case SET_GLOBAL_SHADOW_SETTINGS:
case GET_DISPLAY_DECORATION_SUPPORT:
case SET_FRAME_RATE:
case SET_OVERRIDE_FRAME_RATE:
case SET_FRAME_TIMELINE_INFO:
case ADD_TRANSACTION_TRACE_LISTENER:
case GET_GPU_CONTEXT_PRIORITY:
case GET_MAX_ACQUIRED_BUFFER_COUNT:
LOG_FATAL("Deprecated opcode: %d, migrated to AIDL", code);
return PERMISSION_DENIED;
}
// These codes are used for the IBinder protocol to either interrogate the recipient
// side of the transaction for its canonical interface descriptor or to dump its state.
// We let them pass by default.
if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
code == IBinder::SYSPROPS_TRANSACTION) {
return OK;
}
// Numbers from 1000 to 1045 are currently used for backdoors. The code
// in onTransact verifies that the user is root, and has access to use SF.
if (code >= 1000 && code <= 1045) {
ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
return OK;
}
ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
return PERMISSION_DENIED;
#pragma clang diagnostic pop
}
status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
uint32_t flags) {
if (const status_t error = CheckTransactCodeCredentials(code); error != OK) {
return error;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (CC_UNLIKELY(uid != AID_SYSTEM
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
const int pid = ipc->getCallingPid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // Unused.
case 1001:
return NAME_NOT_FOUND;
case 1002: // Toggle flashing on surface damage.
sfdo_setDebugFlash(data.readInt32());
return NO_ERROR;
case 1004: // Force composite ahead of next VSYNC.
case 1006:
sfdo_scheduleComposite();
return NO_ERROR;
case 1005: { // Force commit ahead of next VSYNC.
sfdo_scheduleCommit();
return NO_ERROR;
}
case 1007: // Unused.
return NAME_NOT_FOUND;
case 1008: // Toggle forced GPU composition.
sfdo_forceClientComposition(data.readInt32() != 0);
return NO_ERROR;
case 1009: // Toggle use of transform hint.
mDebugDisableTransformHint = data.readInt32() != 0;
scheduleRepaint();
return NO_ERROR;
case 1010: // Interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugFlashDelay);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: // Unused.
return NAME_NOT_FOUND;
case 1014: {
Mutex::Autolock _l(mStateLock);
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1015: {
Mutex::Autolock _l(mStateLock);
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as a column-major mat4 matrix
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mClientColorMatrix[i][j] = data.readFloat();
}
}
} else {
mClientColorMatrix = mat4();
}
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
// the division by w in the fragment shader
float4 lastRow(transpose(mClientColorMatrix)[3]);
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1016: { // Unused.
return NAME_NOT_FOUND;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = n != 0;
return NO_ERROR;
}
case 1018: { // Modify Choreographer's duration
n = data.readInt32();
mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's duration
n = data.readInt32();
mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns);
return NO_ERROR;
}
case 1020: { // Unused
return NAME_NOT_FOUND;
}
case 1021: { // Disable HWC virtual displays
const bool enable = data.readInt32() != 0;
static_cast<void>(
mScheduler->schedule([this, enable] { enableHalVirtualDisplays(enable); }));
return NO_ERROR;
}
case 1022: { // Set saturation boost
Mutex::Autolock _l(mStateLock);
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
updateColorMatrixLocked();
return NO_ERROR;
}
case 1023: { // Set color mode.
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
if (int32_t colorMode; data.readInt32(&colorMode) == NO_ERROR) {
mForceColorMode = static_cast<ui::ColorMode>(colorMode);
}
scheduleRepaint();
return NO_ERROR;
}
// Deprecate, use 1030 to check whether the device is color managed.
case 1024: {
return NAME_NOT_FOUND;
}
// Deprecated, use perfetto to start/stop the layer tracing
case 1025: {
return NAME_NOT_FOUND;
}
// Deprecated, execute "adb shell perfetto --query" to see the ongoing tracing sessions
case 1026: {
return NAME_NOT_FOUND;
}
// Is a DisplayColorSetting supported?
case 1027: {
const auto display = getDefaultDisplayDevice();
if (!display) {
return NAME_NOT_FOUND;
}
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
switch (setting) {
case DisplayColorSetting::kManaged:
case DisplayColorSetting::kUnmanaged:
reply->writeBool(true);
break;
case DisplayColorSetting::kEnhanced:
reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
break;
default: // vendor display color setting
reply->writeBool(
display->hasRenderIntent(static_cast<RenderIntent>(setting)));
break;
}
return NO_ERROR;
}
case 1028: { // Unused.
return NAME_NOT_FOUND;
}
// Deprecated, use perfetto to set the active layer tracing buffer size
case 1029: {
return NAME_NOT_FOUND;
}
// Is device color managed?
case 1030: {
// ColorDisplayManager stil calls this
reply->writeBool(true);
return NO_ERROR;
}
// Override default composition data space
// adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
// && adb shell stop zygote && adb shell start zygote
// to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
// adb shell stop zygote && adb shell start zygote
case 1031: {
Mutex::Autolock _l(mStateLock);
n = data.readInt32();
if (n) {
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mDefaultCompositionDataspace = dataspace;
}
n = data.readInt32();
if (n) {
Dataspace dataspace = static_cast<Dataspace>(n);
if (!validateCompositionDataspace(dataspace)) {
return BAD_VALUE;
}
mWideColorGamutCompositionDataspace = dataspace;
}
} else {
// restore composition data space.
mDefaultCompositionDataspace = defaultCompositionDataspace;
mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
}
return NO_ERROR;
}
// Deprecated, use perfetto to set layer trace flags
case 1033: {
return NAME_NOT_FOUND;
}
case 1034: {
n = data.readInt32();
if (n == 0 || n == 1) {
sfdo_enableRefreshRateOverlay(static_cast<bool>(n));
} else {
Mutex::Autolock lock(mStateLock);
reply->writeBool(isRefreshRateOverlayEnabled());
}
return NO_ERROR;
}
case 1035: {
// Parameters:
// - (required) i32 mode id.
// - (optional) i64 display id. Using default display if not provided.
// - (optional) f min render rate. Using mode's fps is not provided.
// - (optional) f max render rate. Using mode's fps is not provided.
const int modeId = data.readInt32();
const auto display = [&]() -> sp<IBinder> {
uint64_t value;
if (data.readUint64(&value) != NO_ERROR) {
return getDefaultDisplayDevice()->getDisplayToken().promote();
}
if (const auto id = DisplayId::fromValue<PhysicalDisplayId>(value)) {
return getPhysicalDisplayToken(*id);
}
ALOGE("Invalid physical display ID");
return nullptr;
}();
const auto getFps = [&] {
float value;
if (data.readFloat(&value) == NO_ERROR) {
return Fps::fromValue(value);
}
return Fps();
};
const auto minFps = getFps();
const auto maxFps = getFps();
mDebugDisplayModeSetByBackdoor = false;
const status_t result =
setActiveModeFromBackdoor(display, DisplayModeId{modeId}, minFps, maxFps);
mDebugDisplayModeSetByBackdoor = result == NO_ERROR;
return result;
}
// Turn on/off frame rate flexibility mode. When turned on it overrides the display
// manager frame rate policy a new policy which allows switching between all refresh
// rates.
case 1036: {
if (data.readInt32() > 0) { // turn on
return mScheduler
->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) {
const auto display =
FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
// This is a little racy, but not in a way that hurts anything. As
// we grab the defaultMode from the display manager policy, we could
// be setting a new display manager policy, leaving us using a stale
// defaultMode. The defaultMode doesn't matter for the override
// policy though, since we set allowGroupSwitching to true, so it's
// not a problem.
scheduler::RefreshRateSelector::OverridePolicy overridePolicy;
overridePolicy.defaultMode = display->refreshRateSelector()
.getDisplayManagerPolicy()
.defaultMode;
overridePolicy.allowGroupSwitching = true;
return setDesiredDisplayModeSpecsInternal(display, overridePolicy);
})
.get();
} else { // turn off
return mScheduler
->schedule([this]() FTL_FAKE_GUARD(kMainThreadContext) {
const auto display =
FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
return setDesiredDisplayModeSpecsInternal(
display,
scheduler::RefreshRateSelector::NoOverridePolicy{});
})
.get();
}
}
// Inject a hotplug connected event for the primary display. This will deallocate and
// reallocate the display state including framebuffers.
case 1037: {
const hal::HWDisplayId hwcId =
(Mutex::Autolock(mStateLock), getHwComposer().getPrimaryHwcDisplayId());
onComposerHalHotplugEvent(hwcId, DisplayHotplugEvent::CONNECTED);
return NO_ERROR;
}
// Modify the max number of display frames stored within FrameTimeline
case 1038: {
n = data.readInt32();
if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) {
ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES);
return BAD_VALUE;
}
if (n == 0) {
// restore to default
mFrameTimeline->reset();
return NO_ERROR;
}
mFrameTimeline->setMaxDisplayFrames(n);
return NO_ERROR;
}
case 1039: {
PhysicalDisplayId displayId = [&]() {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
auto inUid = static_cast<uid_t>(data.readInt32());
const auto refreshRate = data.readFloat();
mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate});
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
return NO_ERROR;
}
// Toggle caching feature
// First argument is an int32 - nonzero enables caching and zero disables caching
// Second argument is an optional uint64 - if present, then limits enabling/disabling
// caching to a particular physical display
case 1040: {
auto future = mScheduler->schedule([&] {
n = data.readInt32();
std::optional<PhysicalDisplayId> inputId = std::nullopt;
if (uint64_t inputDisplayId; data.readUint64(&inputDisplayId) == NO_ERROR) {
inputId = DisplayId::fromValue<PhysicalDisplayId>(inputDisplayId);
if (!inputId || getPhysicalDisplayToken(*inputId)) {
ALOGE("No display with id: %" PRIu64, inputDisplayId);
return NAME_NOT_FOUND;
}
}
{
Mutex::Autolock lock(mStateLock);
mLayerCachingEnabled = n != 0;
for (const auto& [_, display] : mDisplays) {
if (!inputId || *inputId == display->getPhysicalId()) {
display->enableLayerCaching(mLayerCachingEnabled);
}
}
}
return OK;
});
if (const status_t error = future.get(); error != OK) {
return error;
}
scheduleRepaint();
return NO_ERROR;
}
case 1041: { // Transaction tracing
if (mTransactionTracing) {
int arg = data.readInt32();
if (arg == -1) {
mScheduler->schedule([&]() { mTransactionTracing.reset(); }).get();
} else if (arg > 0) {
// Transaction tracing is always running but allow the user to temporarily
// increase the buffer when actively debugging.
mTransactionTracing->setBufferSize(
TransactionTracing::LEGACY_ACTIVE_TRACING_BUFFER_SIZE);
} else {
TransactionTraceWriter::getInstance().invoke("", /* overwrite= */ true);
mTransactionTracing->setBufferSize(
TransactionTracing::CONTINUOUS_TRACING_BUFFER_SIZE);
}
}
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
case 1042: { // Write transaction trace to file
if (mTransactionTracing) {
mTransactionTracing->writeToFile();
}
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
// hdr sdr ratio overlay
case 1043: {
auto future = mScheduler->schedule(
[&]() FTL_FAKE_GUARD(mStateLock) FTL_FAKE_GUARD(kMainThreadContext) {
n = data.readInt32();
mHdrSdrRatioOverlay = n != 0;
switch (n) {
case 0:
case 1:
enableHdrSdrRatioOverlay(mHdrSdrRatioOverlay);
break;
default:
reply->writeBool(isHdrSdrRatioOverlayEnabled());
}
});
future.wait();
return NO_ERROR;
}
case 1044: { // Enable/Disable mirroring from one display to another
/*
* Mirror one display onto another.
* Ensure the source and destination displays are on.
* Commands:
* 0: Mirror one display to another
* 1: Disable mirroring to a previously mirrored display
* 2: Disable mirroring on previously mirrored displays
*
* Ex:
* Get the display ids:
* adb shell dumpsys SurfaceFlinger --display-id
* Mirror first display to the second:
* adb shell service call SurfaceFlinger 1044 i64 0 i64 4619827677550801152 i64
* 4619827677550801153
* Stop mirroring:
* adb shell service call SurfaceFlinger 1044 i64 1
*/
int64_t arg0 = data.readInt64();
switch (arg0) {
case 0: {
// Mirror arg1 to arg2
int64_t arg1 = data.readInt64();
int64_t arg2 = data.readInt64();
// Enable mirroring for one display
const auto display1id = DisplayId::fromValue(arg1);
auto mirrorRoot = SurfaceComposerClient::getDefault()->mirrorDisplay(
display1id.value());
auto id2 = DisplayId::fromValue<PhysicalDisplayId>(arg2);
const auto token2 = getPhysicalDisplayToken(*id2);
ui::LayerStack layerStack;
{
Mutex::Autolock lock(mStateLock);
sp<DisplayDevice> display = getDisplayDeviceLocked(token2);
layerStack = display->getLayerStack();
}
SurfaceComposerClient::Transaction t;
t.setDisplayLayerStack(token2, layerStack);
t.setLayer(mirrorRoot, INT_MAX); // Top-most layer
t.setLayerStack(mirrorRoot, layerStack);
t.apply();
mMirrorMapForDebug.emplace_or_replace(arg2, mirrorRoot);
break;
}
case 1: {
// Disable mirroring for arg1
int64_t arg1 = data.readInt64();
mMirrorMapForDebug.erase(arg1);
break;
}
case 2: {
// Disable mirroring for all displays
mMirrorMapForDebug.clear();
break;
}
default:
return BAD_VALUE;
}
return NO_ERROR;
}
// Inject jank
// First argument is a float that describes the fraction of frame duration to jank by.
// Second argument is a delay in ms for triggering the jank. This is useful for working
// with tools that steal the adb connection. This argument is optional.
case 1045: {
if (FlagManager::getInstance().vrr_config()) {
float jankAmount = data.readFloat();
int32_t jankDelayMs = 0;
if (data.readInt32(&jankDelayMs) != NO_ERROR) {
jankDelayMs = 0;
}
const auto jankDelayDuration = Duration(std::chrono::milliseconds(jankDelayMs));
const bool jankAmountValid = jankAmount > 0.0 && jankAmount < 100.0;
if (!jankAmountValid) {
ALOGD("Ignoring invalid jank amount: %f", jankAmount);
reply->writeInt32(BAD_VALUE);
return BAD_VALUE;
}
(void)mScheduler->scheduleDelayed(
[&, jankAmount]() FTL_FAKE_GUARD(kMainThreadContext) {
mScheduler->injectPacesetterDelay(jankAmount);
scheduleComposite(FrameHint::kActive);
},
jankDelayDuration.ns());
reply->writeInt32(NO_ERROR);
return NO_ERROR;
}
return err;
}
}
}
return err;
}
void SurfaceFlinger::kernelTimerChanged(bool expired) {
static bool updateOverlay =
property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true);
if (!updateOverlay) return;
// Update the overlay on the main thread to avoid race conditions with
// RefreshRateSelector::getActiveMode
static_cast<void>(mScheduler->schedule([=, this] {
const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked());
if (!display) {
ALOGW("%s: default display is null", __func__);
return;
}
if (!display->isRefreshRateOverlayEnabled()) return;
const auto desiredModeIdOpt =
display->getDesiredMode().transform([](const display::DisplayModeRequest& request) {
return request.mode.modePtr->getId();
});
const bool timerExpired = mKernelIdleTimerEnabled && expired;
if (display->onKernelTimerChanged(desiredModeIdOpt, timerExpired)) {
mScheduler->scheduleFrame();
}
}));
}
std::pair<std::optional<KernelIdleTimerController>, std::chrono::milliseconds>
SurfaceFlinger::getKernelIdleTimerProperties(DisplayId displayId) {
const bool isKernelIdleTimerHwcSupported = getHwComposer().getComposer()->isSupported(
android::Hwc2::Composer::OptionalFeature::KernelIdleTimer);
const auto timeout = getIdleTimerTimeout(displayId);
if (isKernelIdleTimerHwcSupported) {
if (const auto id = PhysicalDisplayId::tryCast(displayId);
getHwComposer().hasDisplayIdleTimerCapability(*id)) {
// In order to decide if we can use the HWC api for idle timer
// we query DisplayCapability::DISPLAY_IDLE_TIMER directly on the composer
// without relying on hasDisplayCapability.
// hasDisplayCapability relies on DisplayCapabilities
// which are updated after we set the PowerMode::ON.
// DISPLAY_IDLE_TIMER is a display driver property
// and is available before the PowerMode::ON
return {KernelIdleTimerController::HwcApi, timeout};
}
return {std::nullopt, timeout};
}
if (getKernelIdleTimerSyspropConfig(displayId)) {
return {KernelIdleTimerController::Sysprop, timeout};
}
return {std::nullopt, timeout};
}
void SurfaceFlinger::updateKernelIdleTimer(std::chrono::milliseconds timeout,
KernelIdleTimerController controller,
PhysicalDisplayId displayId) {
switch (controller) {
case KernelIdleTimerController::HwcApi: {
getHwComposer().setIdleTimerEnabled(displayId, timeout);
break;
}
case KernelIdleTimerController::Sysprop: {
base::SetProperty(KERNEL_IDLE_TIMER_PROP, timeout > 0ms ? "true" : "false");
break;
}
}
}
void SurfaceFlinger::toggleKernelIdleTimer() {
using KernelIdleTimerAction = scheduler::RefreshRateSelector::KernelIdleTimerAction;
const auto display = getDefaultDisplayDeviceLocked();
if (!display) {
ALOGW("%s: default display is null", __func__);
return;
}
// If the support for kernel idle timer is disabled for the active display,
// don't do anything.
const std::optional<KernelIdleTimerController> kernelIdleTimerController =
display->refreshRateSelector().kernelIdleTimerController();
if (!kernelIdleTimerController.has_value()) {
return;
}
const KernelIdleTimerAction action = display->refreshRateSelector().getIdleTimerAction();
switch (action) {
case KernelIdleTimerAction::TurnOff:
if (mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 0);
std::chrono::milliseconds constexpr kTimerDisabledTimeout = 0ms;
updateKernelIdleTimer(kTimerDisabledTimeout, kernelIdleTimerController.value(),
display->getPhysicalId());
mKernelIdleTimerEnabled = false;
}
break;
case KernelIdleTimerAction::TurnOn:
if (!mKernelIdleTimerEnabled) {
ATRACE_INT("KernelIdleTimer", 1);
const std::chrono::milliseconds timeout =
display->refreshRateSelector().getIdleTimerTimeout();
updateKernelIdleTimer(timeout, kernelIdleTimerController.value(),
display->getPhysicalId());
mKernelIdleTimerEnabled = true;
}
break;
}
}
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
class WindowDisconnector {
public:
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector() {
native_window_api_disconnect(mWindow, mApi);
}
private:
ANativeWindow* mWindow;
const int mApi;
};
static bool hasCaptureBlackoutContentPermission() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid);
}
static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
return OK;
}
// If the caller doesn't have the correct permissions but is only attempting to screenshot
// itself, we allow it to continue.
if (captureArgs.uid == uid) {
return OK;
}
ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
status_t SurfaceFlinger::setSchedFifo(bool enabled) {
static constexpr int kFifoPriority = 2;
static constexpr int kOtherPriority = 0;
struct sched_param param = {0};
int sched_policy;
if (enabled) {
sched_policy = SCHED_FIFO;
param.sched_priority = kFifoPriority;
} else {
sched_policy = SCHED_OTHER;
param.sched_priority = kOtherPriority;
}
if (sched_setscheduler(0, sched_policy, &param) != 0) {
return -errno;
}
return NO_ERROR;
}
status_t SurfaceFlinger::setSchedAttr(bool enabled) {
static const unsigned int kUclampMin =
base::GetUintProperty<unsigned int>("ro.surface_flinger.uclamp.min", 0U);
if (!kUclampMin) {
// uclamp.min set to 0 (default), skip setting
return NO_ERROR;
}
// Currently, there is no wrapper in bionic: b/183240349.
struct sched_attr {
uint32_t size;
uint32_t sched_policy;
uint64_t sched_flags;
int32_t sched_nice;
uint32_t sched_priority;
uint64_t sched_runtime;
uint64_t sched_deadline;
uint64_t sched_period;
uint32_t sched_util_min;
uint32_t sched_util_max;
};
sched_attr attr = {};
attr.size = sizeof(attr);
attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP);
attr.sched_util_min = enabled ? kUclampMin : 0;
attr.sched_util_max = 1024;
if (syscall(__NR_sched_setattr, 0, &attr, 0)) {
return -errno;
}
return NO_ERROR;
}
namespace {
ui::Dataspace pickBestDataspace(ui::Dataspace requestedDataspace, const DisplayDevice* display,
bool capturingHdrLayers, bool hintForSeamlessTransition) {
if (requestedDataspace != ui::Dataspace::UNKNOWN || display == nullptr) {
return requestedDataspace;
}
const auto& state = display->getCompositionDisplay()->getState();
const auto dataspaceForColorMode = ui::pickDataspaceFor(state.colorMode);
// TODO: Enable once HDR screenshots are ready.
if constexpr (/* DISABLES CODE */ (false)) {
// For now since we only support 8-bit screenshots, just use HLG and
// assume that 1.0 >= display max luminance. This isn't quite as future
// proof as PQ is, but is good enough.
// Consider using PQ once we support 16-bit screenshots and we're able
// to consistently supply metadata to image encoders.
return ui::Dataspace::BT2020_HLG;
}
return dataspaceForColorMode;
}
} // namespace
static void invokeScreenCaptureError(const status_t status,
const sp<IScreenCaptureListener>& captureListener) {
ScreenCaptureResults captureResults;
captureResults.fenceResult = base::unexpected(status);
captureListener->onScreenCaptureCompleted(captureResults);
}
void SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
invokeScreenCaptureError(validate, captureListener);
return;
}
if (!args.displayToken) {
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
if (args.captureSecureLayers && !hasCaptureBlackoutContentPermission()) {
ALOGE("Attempting to capture secure layers without CAPTURE_BLACKOUT_CONTENT");
invokeScreenCaptureError(PERMISSION_DENIED, captureListener);
return;
}
wp<const DisplayDevice> displayWeak;
ui::LayerStack layerStack;
ui::Size reqSize(args.width, args.height);
std::unordered_set<uint32_t> excludeLayerIds;
{
Mutex::Autolock lock(mStateLock);
sp<DisplayDevice> display = getDisplayDeviceLocked(args.displayToken);
if (!display) {
invokeScreenCaptureError(NAME_NOT_FOUND, captureListener);
return;
}
displayWeak = display;
layerStack = display->getLayerStack();
// set the requested width/height to the logical display layer stack rect size by default
if (args.width == 0 || args.height == 0) {
reqSize = display->getLayerStackSpaceRect().getSize();
}
for (const auto& handle : args.excludeHandles) {
uint32_t excludeLayer = LayerHandle::getLayerId(handle);
if (excludeLayer != UNASSIGNED_LAYER_ID) {
excludeLayerIds.emplace(excludeLayer);
} else {
ALOGW("Invalid layer handle passed as excludeLayer to captureDisplay");
invokeScreenCaptureError(NAME_NOT_FOUND, captureListener);
return;
}
}
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, args.dataspace,
args.hintForSeamlessTransition, args.captureSecureLayers);
});
GetLayerSnapshotsFunction getLayerSnapshots;
if (mLayerLifecycleManagerEnabled) {
getLayerSnapshots =
getLayerSnapshotsForScreenshots(layerStack, args.uid, std::move(excludeLayerIds));
} else {
auto traverseLayers = [this, args, excludeLayerIds,
layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, args.uid, std::move(excludeLayerIds), visitor);
};
getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers);
}
captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, reqSize, args.pixelFormat,
args.allowProtected, args.grayscale, captureListener);
}
void SurfaceFlinger::captureDisplay(DisplayId displayId, const CaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ui::LayerStack layerStack;
wp<const DisplayDevice> displayWeak;
ui::Size size;
{
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayId);
if (!display) {
invokeScreenCaptureError(NAME_NOT_FOUND, captureListener);
return;
}
displayWeak = display;
layerStack = display->getLayerStack();
size = display->getLayerStackSpaceRect().getSize();
}
size.width *= args.frameScaleX;
size.height *= args.frameScaleY;
// We could query a real value for this but it'll be a long, long time until we support
// displays that need upwards of 1GB per buffer so...
constexpr auto kMaxTextureSize = 16384;
if (size.width <= 0 || size.height <= 0 || size.width >= kMaxTextureSize ||
size.height >= kMaxTextureSize) {
ALOGE("capture display resolved to invalid size %d x %d", size.width, size.height);
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
RenderAreaFuture renderAreaFuture = ftl::defer([=] {
return DisplayRenderArea::create(displayWeak, Rect(), size, args.dataspace,
args.hintForSeamlessTransition,
false /* captureSecureLayers */);
});
GetLayerSnapshotsFunction getLayerSnapshots;
if (mLayerLifecycleManagerEnabled) {
getLayerSnapshots = getLayerSnapshotsForScreenshots(layerStack, CaptureArgs::UNSET_UID,
/*snapshotFilterFn=*/nullptr);
} else {
auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) {
traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, {}, visitor);
};
getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers);
}
if (captureListener == nullptr) {
ALOGE("capture screen must provide a capture listener callback");
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
constexpr bool kAllowProtected = false;
constexpr bool kGrayscale = false;
captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, size, args.pixelFormat,
kAllowProtected, kGrayscale, captureListener);
}
ScreenCaptureResults SurfaceFlinger::captureLayersSync(const LayerCaptureArgs& args) {
sp<SyncScreenCaptureListener> captureListener = sp<SyncScreenCaptureListener>::make();
captureLayers(args, captureListener);
return captureListener->waitForResults();
}
void SurfaceFlinger::captureLayers(const LayerCaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
status_t validate = validateScreenshotPermissions(args);
if (validate != OK) {
invokeScreenCaptureError(validate, captureListener);
return;
}
ui::Size reqSize;
sp<Layer> parent;
Rect crop(args.sourceCrop);
std::unordered_set<uint32_t> excludeLayerIds;
ui::Dataspace dataspace = args.dataspace;
if (args.captureSecureLayers && !hasCaptureBlackoutContentPermission()) {
ALOGE("Attempting to capture secure layers without CAPTURE_BLACKOUT_CONTENT");
invokeScreenCaptureError(PERMISSION_DENIED, captureListener);
return;
}
{
Mutex::Autolock lock(mStateLock);
parent = LayerHandle::getLayer(args.layerHandle);
if (parent == nullptr) {
ALOGE("captureLayers called with an invalid or removed parent");
invokeScreenCaptureError(NAME_NOT_FOUND, captureListener);
return;
}
Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState());
if (args.sourceCrop.width() <= 0) {
crop.left = 0;
crop.right = parentSourceBounds.getWidth();
}
if (args.sourceCrop.height() <= 0) {
crop.top = 0;
crop.bottom = parentSourceBounds.getHeight();
}
if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) {
// Error out if the layer has no source bounds (i.e. they are boundless) and a source
// crop was not specified, or an invalid frame scale was provided.
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY);
for (const auto& handle : args.excludeHandles) {
uint32_t excludeLayer = LayerHandle::getLayerId(handle);
if (excludeLayer != UNASSIGNED_LAYER_ID) {
excludeLayerIds.emplace(excludeLayer);
} else {
ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
invokeScreenCaptureError(NAME_NOT_FOUND, captureListener);
return;
}
}
} // mStateLock
// really small crop or frameScale
if (reqSize.width <= 0 || reqSize.height <= 0) {
ALOGW("Failed to captureLayes: crop or scale too small");
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
bool childrenOnly = args.childrenOnly;
RenderAreaFuture renderAreaFuture = ftl::defer([=, this]() -> std::unique_ptr<RenderArea> {
ui::Transform layerTransform;
Rect layerBufferSize;
if (mLayerLifecycleManagerEnabled) {
frontend::LayerSnapshot* snapshot =
mLayerSnapshotBuilder.getSnapshot(parent->getSequence());
if (!snapshot) {
ALOGW("Couldn't find layer snapshot for %d", parent->getSequence());
} else {
layerTransform = snapshot->localTransform;
layerBufferSize = snapshot->bufferSize;
}
} else {
layerTransform = parent->getTransform();
layerBufferSize = parent->getBufferSize(parent->getDrawingState());
}
return std::make_unique<LayerRenderArea>(*this, parent, crop, reqSize, dataspace,
childrenOnly, args.captureSecureLayers,
layerTransform, layerBufferSize,
args.hintForSeamlessTransition);
});
GetLayerSnapshotsFunction getLayerSnapshots;
if (mLayerLifecycleManagerEnabled) {
std::optional<FloatRect> parentCrop = std::nullopt;
if (args.childrenOnly) {
parentCrop = crop.isEmpty() ? FloatRect(0, 0, reqSize.width, reqSize.height)
: crop.toFloatRect();
}
getLayerSnapshots = getLayerSnapshotsForScreenshots(parent->sequence, args.uid,
std::move(excludeLayerIds),
args.childrenOnly, parentCrop);
} else {
auto traverseLayers = [parent, args, excludeLayerIds](const LayerVector::Visitor& visitor) {
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
} else if (args.childrenOnly && layer == parent.get()) {
return;
} else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) {
return;
}
auto p = sp<Layer>::fromExisting(layer);
while (p != nullptr) {
if (excludeLayerIds.count(p->sequence) != 0) {
return;
}
p = p->getParent();
}
visitor(layer);
});
};
getLayerSnapshots = RenderArea::fromTraverseLayersLambda(traverseLayers);
}
if (captureListener == nullptr) {
ALOGE("capture screen must provide a capture listener callback");
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
captureScreenCommon(std::move(renderAreaFuture), getLayerSnapshots, reqSize, args.pixelFormat,
args.allowProtected, args.grayscale, captureListener);
}
bool SurfaceFlinger::layersHasProtectedLayer(
const std::vector<std::pair<Layer*, sp<LayerFE>>>& layers) const {
bool protectedLayerFound = false;
for (auto& [_, layerFe] : layers) {
protectedLayerFound |=
(layerFe->mSnapshot->isVisible && layerFe->mSnapshot->hasProtectedContent);
if (protectedLayerFound) {
break;
}
}
return protectedLayerFound;
}
void SurfaceFlinger::captureScreenCommon(RenderAreaFuture renderAreaFuture,
GetLayerSnapshotsFunction getLayerSnapshots,
ui::Size bufferSize, ui::PixelFormat reqPixelFormat,
bool allowProtected, bool grayscale,
const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
if (exceedsMaxRenderTargetSize(bufferSize.getWidth(), bufferSize.getHeight())) {
ALOGE("Attempted to capture screen with size (%" PRId32 ", %" PRId32
") that exceeds render target size limit.",
bufferSize.getWidth(), bufferSize.getHeight());
invokeScreenCaptureError(BAD_VALUE, captureListener);
return;
}
// Snapshots must be taken from the main thread.
auto layers = mScheduler->schedule([=]() { return getLayerSnapshots(); }).get();
// Loop over all visible layers to see whether there's any protected layer. A protected layer is
// typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer.
// A protected layer has no implication on whether it's secure, which is explicitly set by
// application to avoid being screenshot or drawn via unsecure display.
const bool supportsProtected = getRenderEngine().supportsProtectedContent();
bool hasProtectedLayer = false;
if (allowProtected && supportsProtected) {
hasProtectedLayer = layersHasProtectedLayer(layers);
}
const bool isProtected = hasProtectedLayer && allowProtected && supportsProtected;
const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER |
GRALLOC_USAGE_HW_TEXTURE |
(isProtected ? GRALLOC_USAGE_PROTECTED
: GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
sp<GraphicBuffer> buffer =
getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(),
static_cast<android_pixel_format>(reqPixelFormat),
1 /* layerCount */, usage, "screenshot");
const status_t bufferStatus = buffer->initCheck();
if (bufferStatus != OK) {
// Animations may end up being really janky, but don't crash here.
// Otherwise an irreponsible process may cause an SF crash by allocating
// too much.
ALOGE("%s: Buffer failed to allocate: %d", __func__, bufferStatus);
invokeScreenCaptureError(bufferStatus, captureListener);
return;
}
const std::shared_ptr<renderengine::ExternalTexture> texture = std::make_shared<
renderengine::impl::ExternalTexture>(buffer, getRenderEngine(),
renderengine::impl::ExternalTexture::Usage::
WRITEABLE);
auto futureFence =
captureScreenshot(std::move(renderAreaFuture), getLayerSnapshots, texture,
false /* regionSampling */, grayscale, isProtected, captureListener);
futureFence.get();
}
ftl::SharedFuture<FenceResult> SurfaceFlinger::captureScreenshot(
RenderAreaFuture renderAreaFuture, GetLayerSnapshotsFunction getLayerSnapshots,
const std::shared_ptr<renderengine::ExternalTexture>& buffer, bool regionSampling,
bool grayscale, bool isProtected, const sp<IScreenCaptureListener>& captureListener) {
ATRACE_CALL();
auto takeScreenshotFn = [=, this, renderAreaFuture = std::move(renderAreaFuture)]() REQUIRES(
kMainThreadContext) mutable -> ftl::SharedFuture<FenceResult> {
ScreenCaptureResults captureResults;
std::shared_ptr<RenderArea> renderArea = renderAreaFuture.get();
if (!renderArea) {
ALOGW("Skipping screen capture because of invalid render area.");
if (captureListener) {
captureResults.fenceResult = base::unexpected(NO_MEMORY);
captureListener->onScreenCaptureCompleted(captureResults);
}
return ftl::yield<FenceResult>(base::unexpected(NO_ERROR)).share();
}
ftl::SharedFuture<FenceResult> renderFuture;
renderArea->render([&]() FTL_FAKE_GUARD(kMainThreadContext) {
renderFuture = renderScreenImpl(renderArea, getLayerSnapshots, buffer, regionSampling,
grayscale, isProtected, captureResults);
});
if (captureListener) {
// Defer blocking on renderFuture back to the Binder thread.
return ftl::Future(std::move(renderFuture))
.then([captureListener, captureResults = std::move(captureResults)](
FenceResult fenceResult) mutable -> FenceResult {
captureResults.fenceResult = std::move(fenceResult);
captureListener->onScreenCaptureCompleted(captureResults);
return base::unexpected(NO_ERROR);
})
.share();
}
return renderFuture;
};
auto future =
mScheduler->schedule(FTL_FAKE_GUARD(kMainThreadContext, std::move(takeScreenshotFn)));
// Flatten nested futures.
auto chain = ftl::Future(std::move(future)).then([](ftl::SharedFuture<FenceResult> future) {
return future;
});
return chain.share();
}
ftl::SharedFuture<FenceResult> SurfaceFlinger::renderScreenImpl(
std::shared_ptr<const RenderArea> renderArea, GetLayerSnapshotsFunction getLayerSnapshots,
const std::shared_ptr<renderengine::ExternalTexture>& buffer, bool regionSampling,
bool grayscale, bool isProtected, ScreenCaptureResults& captureResults) {
ATRACE_CALL();
auto layers = getLayerSnapshots();
for (auto& [_, layerFE] : layers) {
frontend::LayerSnapshot* snapshot = layerFE->mSnapshot.get();
captureResults.capturedSecureLayers |= (snapshot->isVisible && snapshot->isSecure);
captureResults.capturedHdrLayers |= isHdrLayer(*snapshot);
layerFE->mSnapshot->geomLayerTransform =
renderArea->getTransform() * layerFE->mSnapshot->geomLayerTransform;
layerFE->mSnapshot->geomInverseLayerTransform =
layerFE->mSnapshot->geomLayerTransform.inverse();
}
auto capturedBuffer = buffer;
auto requestedDataspace = renderArea->getReqDataSpace();
auto parent = renderArea->getParentLayer();
auto renderIntent = RenderIntent::TONE_MAP_COLORIMETRIC;
auto sdrWhitePointNits = DisplayDevice::sDefaultMaxLumiance;
auto displayBrightnessNits = DisplayDevice::sDefaultMaxLumiance;
captureResults.capturedDataspace = requestedDataspace;
{
Mutex::Autolock lock(mStateLock);
const DisplayDevice* display = nullptr;
if (parent) {
display = findDisplay([layerStack = parent->getLayerStack()](const auto& display) {
return display.getLayerStack() == layerStack;
}).get();
}
if (display == nullptr) {
display = renderArea->getDisplayDevice().get();
}
if (display == nullptr) {
display = getDefaultDisplayDeviceLocked().get();
}
if (display != nullptr) {
const auto& state = display->getCompositionDisplay()->getState();
captureResults.capturedDataspace =
pickBestDataspace(requestedDataspace, display, captureResults.capturedHdrLayers,
renderArea->getHintForSeamlessTransition());
sdrWhitePointNits = state.sdrWhitePointNits;
// TODO(b/298219334): Clean this up once we verify this doesn't break anything
static constexpr bool kScreenshotsDontDim = true;
if (kScreenshotsDontDim && !captureResults.capturedHdrLayers) {
displayBrightnessNits = sdrWhitePointNits;
} else {
displayBrightnessNits = state.displayBrightnessNits;
// Only clamp the display brightness if this is not a seamless transition. Otherwise
// for seamless transitions it's important to match the current display state as the
// buffer will be shown under these same conditions, and we want to avoid any
// flickers
if (sdrWhitePointNits > 1.0f && !renderArea->getHintForSeamlessTransition()) {
// Restrict the amount of HDR "headroom" in the screenshot to avoid over-dimming
// the SDR portion. 2.0 chosen by experimentation
constexpr float kMaxScreenshotHeadroom = 2.0f;
displayBrightnessNits = std::min(sdrWhitePointNits * kMaxScreenshotHeadroom,
displayBrightnessNits);
}
}
// Screenshots leaving the device should be colorimetric
if (requestedDataspace == ui::Dataspace::UNKNOWN &&
renderArea->getHintForSeamlessTransition()) {
renderIntent = state.renderIntent;
}
}
}
captureResults.buffer = capturedBuffer->getBuffer();
ui::LayerStack layerStack{ui::DEFAULT_LAYER_STACK};
if (!layers.empty()) {
const sp<LayerFE>& layerFE = layers.back().second;
layerStack = layerFE->getCompositionState()->outputFilter.layerStack;
}
auto copyLayerFEs = [&layers]() {
std::vector<sp<compositionengine::LayerFE>> layerFEs;
layerFEs.reserve(layers.size());
for (const auto& [_, layerFE] : layers) {
layerFEs.push_back(layerFE);
}
return layerFEs;
};
auto present = [this, buffer = capturedBuffer, dataspace = captureResults.capturedDataspace,
sdrWhitePointNits, displayBrightnessNits, grayscale, isProtected,
layerFEs = copyLayerFEs(), layerStack, regionSampling,
renderArea = std::move(renderArea), renderIntent]() -> FenceResult {
std::unique_ptr<compositionengine::CompositionEngine> compositionEngine =
mFactory.createCompositionEngine();
compositionEngine->setRenderEngine(mRenderEngine.get());
compositionengine::Output::ColorProfile colorProfile{.dataspace = dataspace,
.renderIntent = renderIntent};
float targetBrightness = 1.0f;
if (dataspace == ui::Dataspace::BT2020_HLG) {
const float maxBrightnessNits = displayBrightnessNits / sdrWhitePointNits * 203;
// With a low dimming ratio, don't fit the entire curve. Otherwise mixed content
// will appear way too bright.
if (maxBrightnessNits < 1000.f) {
targetBrightness = 1000.f / maxBrightnessNits;
}
}
// Screenshots leaving the device must not dim in gamma space.
const bool dimInGammaSpaceForEnhancedScreenshots = mDimInGammaSpaceForEnhancedScreenshots &&
renderArea->getHintForSeamlessTransition();
std::shared_ptr<ScreenCaptureOutput> output = createScreenCaptureOutput(
ScreenCaptureOutputArgs{.compositionEngine = *compositionEngine,
.colorProfile = colorProfile,
.renderArea = *renderArea,
.layerStack = layerStack,
.buffer = std::move(buffer),
.sdrWhitePointNits = sdrWhitePointNits,
.displayBrightnessNits = displayBrightnessNits,
.targetBrightness = targetBrightness,
.regionSampling = regionSampling,
.treat170mAsSrgb = mTreat170mAsSrgb,
.dimInGammaSpaceForEnhancedScreenshots =
dimInGammaSpaceForEnhancedScreenshots,
.isProtected = isProtected});
const float colorSaturation = grayscale ? 0 : 1;
compositionengine::CompositionRefreshArgs refreshArgs{
.outputs = {output},
.layers = std::move(layerFEs),
.updatingOutputGeometryThisFrame = true,
.updatingGeometryThisFrame = true,
.colorTransformMatrix = calculateColorMatrix(colorSaturation),
};
compositionEngine->present(refreshArgs);
return output->getRenderSurface()->getClientTargetAcquireFence();
};
// If RenderEngine is threaded, we can safely call CompositionEngine::present off the main
// thread as the RenderEngine::drawLayers call will run on RenderEngine's thread. Otherwise,
// we need RenderEngine to run on the main thread so we call CompositionEngine::present
// immediately.
//
// TODO(b/196334700) Once we use RenderEngineThreaded everywhere we can always defer the call
// to CompositionEngine::present.
auto presentFuture = mRenderEngine->isThreaded() ? ftl::defer(std::move(present)).share()
: ftl::yield(present()).share();
for (auto& [layer, layerFE] : layers) {
layer->onLayerDisplayed(presentFuture, ui::INVALID_LAYER_STACK,
[layerFE = std::move(layerFE)](FenceResult) {
if (FlagManager::getInstance()
.screenshot_fence_preservation()) {
const auto compositionResult =
layerFE->stealCompositionResult();
const auto& fences = compositionResult.releaseFences;
// CompositionEngine may choose to cull layers that
// aren't visible, so pass a non-fence.
return fences.empty() ? Fence::NO_FENCE
: fences.back().first.get();
} else {
return layerFE->stealCompositionResult()
.releaseFences.back()
.first.get();
}
});
}
return presentFuture;
}
void SurfaceFlinger::traverseLegacyLayers(const LayerVector::Visitor& visitor) const {
if (mLayerLifecycleManagerEnabled) {
for (auto& layer : mLegacyLayers) {
visitor(layer.second.get());
}
} else {
mDrawingState.traverse(visitor);
}
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverse(visitor);
}
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid,
std::unordered_set<uint32_t> excludeLayerIds,
const LayerVector::Visitor& visitor) {
// We loop through the first level of layers without traversing,
// as we need to determine which layers belong to the requested display.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (layer->getLayerStack() != layerStack) {
continue;
}
// relative layers are traversed in Layer::traverseInZOrder
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (layer->isInternalDisplayOverlay()) {
return;
}
if (!layer->isVisible()) {
return;
}
if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) {
return;
}
if (!excludeLayerIds.empty()) {
auto p = sp<Layer>::fromExisting(layer);
while (p != nullptr) {
if (excludeLayerIds.count(p->sequence) != 0) {
return;
}
p = p->getParent();
}
}
visitor(layer);
});
}
}
ftl::Optional<scheduler::FrameRateMode> SurfaceFlinger::getPreferredDisplayMode(
PhysicalDisplayId displayId, DisplayModeId defaultModeId) const {
if (const auto schedulerMode = mScheduler->getPreferredDisplayMode();
schedulerMode.modePtr->getPhysicalDisplayId() == displayId) {
return schedulerMode;
}
return mPhysicalDisplays.get(displayId)
.transform(&PhysicalDisplay::snapshotRef)
.and_then([&](const display::DisplaySnapshot& snapshot) {
return snapshot.displayModes().get(defaultModeId);
})
.transform([](const DisplayModePtr& modePtr) {
return scheduler::FrameRateMode{modePtr->getPeakFps(), ftl::as_non_null(modePtr)};
});
}
status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal(
const sp<DisplayDevice>& display,
const scheduler::RefreshRateSelector::PolicyVariant& policy) {
const auto displayId = display->getPhysicalId();
ATRACE_NAME(ftl::Concat(__func__, ' ', displayId.value).c_str());
Mutex::Autolock lock(mStateLock);
if (mDebugDisplayModeSetByBackdoor) {
// ignore this request as mode is overridden by backdoor
return NO_ERROR;
}
auto& selector = display->refreshRateSelector();
using SetPolicyResult = scheduler::RefreshRateSelector::SetPolicyResult;
switch (selector.setPolicy(policy)) {
case SetPolicyResult::Invalid:
return BAD_VALUE;
case SetPolicyResult::Unchanged:
return NO_ERROR;
case SetPolicyResult::Changed:
break;
}
if (!shouldApplyRefreshRateSelectorPolicy(*display)) {
ALOGV("%s(%s): Skipped applying policy", __func__, to_string(displayId).c_str());
return NO_ERROR;
}
return applyRefreshRateSelectorPolicy(displayId, selector);
}
bool SurfaceFlinger::shouldApplyRefreshRateSelectorPolicy(const DisplayDevice& display) const {
if (display.isPoweredOn() || mPhysicalDisplays.size() == 1) return true;
LOG_ALWAYS_FATAL_IF(display.isVirtual());
const auto displayId = display.getPhysicalId();
// The display is powered off, and this is a multi-display device. If the display is the
// inactive internal display of a dual-display foldable, then the policy will be applied
// when it becomes active upon powering on.
//
// TODO(b/255635711): Remove this function (i.e. returning `false` as a special case) once
// concurrent mode setting across multiple (potentially powered off) displays is supported.
//
return displayId == mActiveDisplayId ||
!mPhysicalDisplays.get(displayId)
.transform(&PhysicalDisplay::isInternal)
.value_or(false);
}
status_t SurfaceFlinger::applyRefreshRateSelectorPolicy(
PhysicalDisplayId displayId, const scheduler::RefreshRateSelector& selector, bool force) {
const scheduler::RefreshRateSelector::Policy currentPolicy = selector.getCurrentPolicy();
ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str());
// TODO(b/140204874): Leave the event in until we do proper testing with all apps that might
// be depending in this callback.
if (const auto activeMode = selector.getActiveMode(); displayId == mActiveDisplayId) {
mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode);
toggleKernelIdleTimer();
} else {
mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, activeMode);
}
auto preferredModeOpt = getPreferredDisplayMode(displayId, currentPolicy.defaultMode);
if (!preferredModeOpt) {
ALOGE("%s: Preferred mode is unknown", __func__);
return NAME_NOT_FOUND;
}
auto preferredMode = std::move(*preferredModeOpt);
const auto preferredModeId = preferredMode.modePtr->getId();
const Fps preferredFps = preferredMode.fps;
ALOGV("Switching to Scheduler preferred mode %d (%s)", ftl::to_underlying(preferredModeId),
to_string(preferredFps).c_str());
if (!selector.isModeAllowed(preferredMode)) {
ALOGE("%s: Preferred mode %d is disallowed", __func__, ftl::to_underlying(preferredModeId));
return INVALID_OPERATION;
}
setDesiredMode({std::move(preferredMode), .emitEvent = true, .force = force});
// Update the frameRateOverride list as the display render rate might have changed
if (mScheduler->updateFrameRateOverrides(scheduler::GlobalSignals{}, preferredFps)) {
triggerOnFrameRateOverridesChanged();
}
return NO_ERROR;
}
namespace {
FpsRange translate(const gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange& aidlRange) {
return FpsRange{Fps::fromValue(aidlRange.min), Fps::fromValue(aidlRange.max)};
}
FpsRanges translate(const gui::DisplayModeSpecs::RefreshRateRanges& aidlRanges) {
return FpsRanges{translate(aidlRanges.physical), translate(aidlRanges.render)};
}
gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange translate(const FpsRange& range) {
gui::DisplayModeSpecs::RefreshRateRanges::RefreshRateRange aidlRange;
aidlRange.min = range.min.getValue();
aidlRange.max = range.max.getValue();
return aidlRange;
}
gui::DisplayModeSpecs::RefreshRateRanges translate(const FpsRanges& ranges) {
gui::DisplayModeSpecs::RefreshRateRanges aidlRanges;
aidlRanges.physical = translate(ranges.physical);
aidlRanges.render = translate(ranges.render);
return aidlRanges;
}
} // namespace
status_t SurfaceFlinger::setDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
const gui::DisplayModeSpecs& specs) {
ATRACE_CALL();
if (!displayToken) {
return BAD_VALUE;
}
auto future = mScheduler->schedule([=, this]() FTL_FAKE_GUARD(kMainThreadContext) -> status_t {
const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayToken));
if (!display) {
ALOGE("Attempt to set desired display modes for invalid display token %p",
displayToken.get());
return NAME_NOT_FOUND;
} else if (display->isVirtual()) {
ALOGW("Attempt to set desired display modes for virtual display");
return INVALID_OPERATION;
} else {
using Policy = scheduler::RefreshRateSelector::DisplayManagerPolicy;
const Policy policy{DisplayModeId(specs.defaultMode), translate(specs.primaryRanges),
translate(specs.appRequestRanges), specs.allowGroupSwitching};
return setDesiredDisplayModeSpecsInternal(display, policy);
}
});
return future.get();
}
status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
gui::DisplayModeSpecs* outSpecs) {
ATRACE_CALL();
if (!displayToken || !outSpecs) {
return BAD_VALUE;
}
Mutex::Autolock lock(mStateLock);
const auto display = getDisplayDeviceLocked(displayToken);
if (!display) {
return NAME_NOT_FOUND;
}
if (display->isVirtual()) {
return INVALID_OPERATION;
}
scheduler::RefreshRateSelector::Policy policy =
display->refreshRateSelector().getDisplayManagerPolicy();
outSpecs->defaultMode = ftl::to_underlying(policy.defaultMode);
outSpecs->allowGroupSwitching = policy.allowGroupSwitching;
outSpecs->primaryRanges = translate(policy.primaryRanges);
outSpecs->appRequestRanges = translate(policy.appRequestRanges);
return NO_ERROR;
}
void SurfaceFlinger::onLayerFirstRef(Layer* layer) {
mNumLayers++;
if (!layer->isRemovedFromCurrentState()) {
mScheduler->registerLayer(layer);
}
}
void SurfaceFlinger::onLayerDestroyed(Layer* layer) {
mNumLayers--;
removeHierarchyFromOffscreenLayers(layer);
if (!layer->isRemovedFromCurrentState()) {
mScheduler->deregisterLayer(layer);
}
if (mTransactionTracing) {
mTransactionTracing->onLayerRemoved(layer->getSequence());
}
mScheduler->onLayerDestroyed(layer);
}
void SurfaceFlinger::onLayerUpdate() {
scheduleCommit(FrameHint::kActive);
}
// WARNING: ONLY CALL THIS FROM LAYER DTOR
// Here we add children in the current state to offscreen layers and remove the
// layer itself from the offscreen layer list. Since
// this is the dtor, it is safe to access the current state. This keeps us
// from dangling children layers such that they are not reachable from the
// Drawing state nor the offscreen layer list
// See b/141111965
void SurfaceFlinger::removeHierarchyFromOffscreenLayers(Layer* layer) {
for (auto& child : layer->getCurrentChildren()) {
mOffscreenLayers.emplace(child.get());
}
mOffscreenLayers.erase(layer);
}
void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) {
mOffscreenLayers.erase(layer);
}
status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
float lightPosY, float lightPosZ,
float lightRadius) {
Mutex::Autolock _l(mStateLock);
mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor);
mCurrentState.globalShadowSettings.spotColor = vec4(spotColor);
mCurrentState.globalShadowSettings.lightPos.y = lightPosY;
mCurrentState.globalShadowSettings.lightPos.z = lightPosZ;
mCurrentState.globalShadowSettings.lightRadius = lightRadius;
// these values are overridden when calculating the shadow settings for a layer.
mCurrentState.globalShadowSettings.lightPos.x = 0.f;
mCurrentState.globalShadowSettings.length = 0.f;
return NO_ERROR;
}
const std::unordered_map<std::string, uint32_t>& SurfaceFlinger::getGenericLayerMetadataKeyMap()
const {
// TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking
// on the work to remove the table in that bug rather than adding more to
// it.
static const std::unordered_map<std::string, uint32_t> genericLayerMetadataKeyMap{
{"org.chromium.arc.V1_0.TaskId", gui::METADATA_TASK_ID},
{"org.chromium.arc.V1_0.CursorInfo", gui::METADATA_MOUSE_CURSOR},
};
return genericLayerMetadataKeyMap;
}
status_t SurfaceFlinger::setGameModeFrameRateOverride(uid_t uid, float frameRate) {
PhysicalDisplayId displayId = [&]() {
Mutex::Autolock lock(mStateLock);
return getDefaultDisplayDeviceLocked()->getPhysicalId();
}();
mScheduler->setGameModeFrameRateForUid(FrameRateOverride{static_cast<uid_t>(uid), frameRate});
mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
return NO_ERROR;
}
status_t SurfaceFlinger::setGameDefaultFrameRateOverride(uid_t uid, float frameRate) {
if (FlagManager::getInstance().game_default_frame_rate()) {
mScheduler->setGameDefaultFrameRateForUid(
FrameRateOverride{static_cast<uid_t>(uid), frameRate});
}
return NO_ERROR;
}
status_t SurfaceFlinger::updateSmallAreaDetection(
std::vector<std::pair<int32_t, float>>& appIdThresholdMappings) {
mScheduler->updateSmallAreaDetection(appIdThresholdMappings);
return NO_ERROR;
}
status_t SurfaceFlinger::setSmallAreaDetectionThreshold(int32_t appId, float threshold) {
mScheduler->setSmallAreaDetectionThreshold(appId, threshold);
return NO_ERROR;
}
void SurfaceFlinger::enableRefreshRateOverlay(bool enable) {
bool setByHwc = getHwComposer().hasCapability(Capability::REFRESH_RATE_CHANGED_CALLBACK_DEBUG);
for (const auto& [id, display] : mPhysicalDisplays) {
if (display.snapshot().connectionType() == ui::DisplayConnectionType::Internal ||
FlagManager::getInstance().refresh_rate_overlay_on_external_display()) {
if (const auto device = getDisplayDeviceLocked(id)) {
const auto enableOverlay = [&](const bool setByHwc) FTL_FAKE_GUARD(
kMainThreadContext) {
device->enableRefreshRateOverlay(enable, setByHwc, mRefreshRateOverlaySpinner,
mRefreshRateOverlayRenderRate,
mRefreshRateOverlayShowInMiddle);
};
enableOverlay(setByHwc);
if (setByHwc) {
const auto status =
getHwComposer().setRefreshRateChangedCallbackDebugEnabled(id, enable);
if (status != NO_ERROR) {
ALOGE("Error updating the refresh rate changed callback debug enabled");
enableOverlay(/*setByHwc*/ false);
}
}
}
}
}
}
void SurfaceFlinger::enableHdrSdrRatioOverlay(bool enable) {
for (const auto& [id, display] : mPhysicalDisplays) {
if (display.snapshot().connectionType() == ui::DisplayConnectionType::Internal) {
if (const auto device = getDisplayDeviceLocked(id)) {
device->enableHdrSdrRatioOverlay(enable);
}
}
}
}
int SurfaceFlinger::getGpuContextPriority() {
return getRenderEngine().getContextPriority();
}
int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate,
std::chrono::nanoseconds presentLatency) {
auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs();
if (presentLatency.count() % refreshRate.getPeriodNsecs()) {
pipelineDepth++;
}
return std::max(minAcquiredBuffers, static_cast<int64_t>(pipelineDepth - 1));
}
status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const {
Fps maxRefreshRate = 60_Hz;
if (!getHwComposer().isHeadless()) {
if (const auto display = getDefaultDisplayDevice()) {
maxRefreshRate = display->refreshRateSelector().getSupportedRefreshRateRange().max;
}
}
*buffers = getMaxAcquiredBufferCountForRefreshRate(maxRefreshRate);
return NO_ERROR;
}
uint32_t SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const {
Fps refreshRate = 60_Hz;
if (const auto frameRateOverride = mScheduler->getFrameRateOverride(uid)) {
refreshRate = *frameRateOverride;
} else if (!getHwComposer().isHeadless()) {
if (const auto display = FTL_FAKE_GUARD(mStateLock, getDefaultDisplayDeviceLocked())) {
refreshRate = display->refreshRateSelector().getActiveMode().fps;
}
}
return getMaxAcquiredBufferCountForRefreshRate(refreshRate);
}
int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const {
const auto vsyncConfig =
mScheduler->getVsyncConfiguration().getConfigsForRefreshRate(refreshRate).late;
const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration;
return calculateMaxAcquiredBufferCount(refreshRate, presentLatency);
}
void SurfaceFlinger::handleLayerCreatedLocked(const LayerCreatedState& state, VsyncId vsyncId) {
sp<Layer> layer = state.layer.promote();
if (!layer) {
ALOGD("Layer was destroyed soon after creation %p", state.layer.unsafe_get());
return;
}
MUTEX_ALIAS(mStateLock, layer->mFlinger->mStateLock);
sp<Layer> parent;
bool addToRoot = state.addToRoot;
if (state.initialParent != nullptr) {
parent = state.initialParent.promote();
if (parent == nullptr) {
ALOGD("Parent was destroyed soon after creation %p", state.initialParent.unsafe_get());
addToRoot = false;
}
}
if (parent == nullptr && addToRoot) {
layer->setIsAtRoot(true);
mCurrentState.layersSortedByZ.add(layer);
} else if (parent == nullptr) {
layer->onRemovedFromCurrentState();
} else if (parent->isRemovedFromCurrentState()) {
parent->addChild(layer);
layer->onRemovedFromCurrentState();
} else {
parent->addChild(layer);
}
ui::LayerStack layerStack = layer->getLayerStack(LayerVector::StateSet::Current);
sp<const DisplayDevice> hintDisplay;
// Find the display that includes the layer.
for (const auto& [token, display] : mDisplays) {
if (display->getLayerStack() == layerStack) {
hintDisplay = display;
break;
}
}
if (hintDisplay) {
layer->updateTransformHint(hintDisplay->getTransformHint());
}
}
void SurfaceFlinger::sample() {
if (!mLumaSampling || !mRegionSamplingThread) {
return;
}
mRegionSamplingThread->onCompositionComplete(mScheduler->getScheduledFrameTime());
}
void SurfaceFlinger::onActiveDisplaySizeChanged(const DisplayDevice& activeDisplay) {
mScheduler->onActiveDisplayAreaChanged(activeDisplay.getWidth() * activeDisplay.getHeight());
getRenderEngine().onActiveDisplaySizeChanged(activeDisplay.getSize());
}
sp<DisplayDevice> SurfaceFlinger::getActivatableDisplay() const {
if (mPhysicalDisplays.size() == 1) return nullptr;
// TODO(b/255635821): Choose the pacesetter display, considering both internal and external
// displays. For now, pick the other internal display, assuming a dual-display foldable.
return findDisplay([this](const DisplayDevice& display) REQUIRES(mStateLock) {
const auto idOpt = PhysicalDisplayId::tryCast(display.getId());
return idOpt && *idOpt != mActiveDisplayId && display.isPoweredOn() &&
mPhysicalDisplays.get(*idOpt)
.transform(&PhysicalDisplay::isInternal)
.value_or(false);
});
}
void SurfaceFlinger::onActiveDisplayChangedLocked(const DisplayDevice* inactiveDisplayPtr,
const DisplayDevice& activeDisplay) {
ATRACE_CALL();
// For the first display activated during boot, there is no need to force setDesiredMode,
// because DM is about to send its policy via setDesiredDisplayModeSpecs.
bool forceApplyPolicy = false;
if (inactiveDisplayPtr) {
inactiveDisplayPtr->getCompositionDisplay()->setLayerCachingTexturePoolEnabled(false);
forceApplyPolicy = true;
}
mActiveDisplayId = activeDisplay.getPhysicalId();
activeDisplay.getCompositionDisplay()->setLayerCachingTexturePoolEnabled(true);
mScheduler->resetPhaseConfiguration(activeDisplay.getActiveMode().fps);
// TODO(b/255635711): Check for pending mode changes on other displays.
mScheduler->setModeChangePending(false);
mScheduler->setPacesetterDisplay(mActiveDisplayId);
onActiveDisplaySizeChanged(activeDisplay);
mActiveDisplayTransformHint = activeDisplay.getTransformHint();
sActiveDisplayRotationFlags = ui::Transform::toRotationFlags(activeDisplay.getOrientation());
// The policy of the new active/pacesetter display may have changed while it was inactive. In
// that case, its preferred mode has not been propagated to HWC (via setDesiredMode). In either
// case, the Scheduler's cachedModeChangedParams must be initialized to the newly active mode,
// and the kernel idle timer of the newly active display must be toggled.
applyRefreshRateSelectorPolicy(mActiveDisplayId, activeDisplay.refreshRateSelector(),
forceApplyPolicy);
}
status_t SurfaceFlinger::addWindowInfosListener(const sp<IWindowInfosListener>& windowInfosListener,
gui::WindowInfosListenerInfo* outInfo) {
mWindowInfosListenerInvoker->addWindowInfosListener(windowInfosListener, outInfo);
setTransactionFlags(eInputInfoUpdateNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::removeWindowInfosListener(
const sp<IWindowInfosListener>& windowInfosListener) const {
mWindowInfosListenerInvoker->removeWindowInfosListener(windowInfosListener);
return NO_ERROR;
}
status_t SurfaceFlinger::getStalledTransactionInfo(
int pid, std::optional<TransactionHandler::StalledTransactionInfo>& result) {
result = mTransactionHandler.getStalledTransactionInfo(pid);
return NO_ERROR;
}
void SurfaceFlinger::updateHdcpLevels(hal::HWDisplayId hwcDisplayId, int32_t connectedLevel,
int32_t maxLevel) {
if (!FlagManager::getInstance().connected_display()) {
return;
}
Mutex::Autolock lock(mStateLock);
const auto idOpt = getHwComposer().toPhysicalDisplayId(hwcDisplayId);
if (!idOpt) {
ALOGE("No display found for HDCP level changed event: connected=%d, max=%d for "
"display=%" PRIu64,
connectedLevel, maxLevel, hwcDisplayId);
return;
}
const bool isInternalDisplay =
mPhysicalDisplays.get(*idOpt).transform(&PhysicalDisplay::isInternal).value_or(false);
if (isInternalDisplay) {
ALOGW("Unexpected HDCP level changed for internal display: connected=%d, max=%d for "
"display=%" PRIu64,
connectedLevel, maxLevel, hwcDisplayId);
return;
}
static_cast<void>(mScheduler->schedule([this, displayId = *idOpt, connectedLevel, maxLevel]() {
if (const auto display = FTL_FAKE_GUARD(mStateLock, getDisplayDeviceLocked(displayId))) {
Mutex::Autolock lock(mStateLock);
display->setSecure(connectedLevel >= 2 /* HDCP_V1 */);
}
mScheduler->onHdcpLevelsChanged(mAppConnectionHandle, displayId, connectedLevel, maxLevel);
}));
}
std::shared_ptr<renderengine::ExternalTexture> SurfaceFlinger::getExternalTextureFromBufferData(
BufferData& bufferData, const char* layerName, uint64_t transactionId) {
if (bufferData.buffer &&
exceedsMaxRenderTargetSize(bufferData.buffer->getWidth(), bufferData.buffer->getHeight())) {
std::string errorMessage =
base::StringPrintf("Attempted to create an ExternalTexture with size (%u, %u) for "
"layer %s that exceeds render target size limit of %u.",
bufferData.buffer->getWidth(), bufferData.buffer->getHeight(),
layerName, static_cast<uint32_t>(mMaxRenderTargetSize));
ALOGD("%s", errorMessage.c_str());
if (bufferData.releaseBufferListener) {
bufferData.releaseBufferListener->onTransactionQueueStalled(
String8(errorMessage.c_str()));
}
return nullptr;
}
bool cachedBufferChanged =
bufferData.flags.test(BufferData::BufferDataChange::cachedBufferChanged);
if (cachedBufferChanged && bufferData.buffer) {
auto result = ClientCache::getInstance().add(bufferData.cachedBuffer, bufferData.buffer);
if (result.ok()) {
return result.value();
}
if (result.error() == ClientCache::AddError::CacheFull) {
ALOGE("Attempted to create an ExternalTexture for layer %s but CacheFull", layerName);
if (bufferData.releaseBufferListener) {
bufferData.releaseBufferListener->onTransactionQueueStalled(
String8("Buffer processing hung due to full buffer cache"));
}
}
return nullptr;
}
if (cachedBufferChanged) {
return ClientCache::getInstance().get(bufferData.cachedBuffer);
}
if (bufferData.buffer) {
return std::make_shared<
renderengine::impl::ExternalTexture>(bufferData.buffer, getRenderEngine(),
renderengine::impl::ExternalTexture::Usage::
READABLE);
}
return nullptr;
}
bool SurfaceFlinger::commitMirrorDisplays(VsyncId vsyncId) {
std::vector<MirrorDisplayState> mirrorDisplays;
{
std::scoped_lock<std::mutex> lock(mMirrorDisplayLock);
mirrorDisplays = std::move(mMirrorDisplays);
mMirrorDisplays.clear();
if (mirrorDisplays.size() == 0) {
return false;
}
}
sp<IBinder> unused;
for (const auto& mirrorDisplay : mirrorDisplays) {
// Set mirror layer's default layer stack to -1 so it doesn't end up rendered on a display
// accidentally.
sp<Layer> rootMirrorLayer = LayerHandle::getLayer(mirrorDisplay.rootHandle);
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(rootMirrorLayer);
bool ret = rootMirrorLayer->setLayerStack(ui::LayerStack::fromValue(-1));
if (idx >= 0 && ret) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(rootMirrorLayer);
}
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (layer->getLayerStack() != mirrorDisplay.layerStack ||
layer->isInternalDisplayOverlay()) {
continue;
}
LayerCreationArgs mirrorArgs(this, mirrorDisplay.client, "MirrorLayerParent",
ISurfaceComposerClient::eNoColorFill,
gui::LayerMetadata());
sp<Layer> childMirror;
{
Mutex::Autolock lock(mStateLock);
createEffectLayer(mirrorArgs, &unused, &childMirror);
MUTEX_ALIAS(mStateLock, childMirror->mFlinger->mStateLock);
childMirror->setClonedChild(layer->createClone(childMirror->getSequence()));
childMirror->reparent(mirrorDisplay.rootHandle);
}
// lock on mStateLock needs to be released before binder handle gets destroyed
unused.clear();
}
}
return true;
}
bool SurfaceFlinger::commitCreatedLayers(VsyncId vsyncId,
std::vector<LayerCreatedState>& createdLayers) {
if (createdLayers.size() == 0) {
return false;
}
Mutex::Autolock _l(mStateLock);
for (const auto& createdLayer : createdLayers) {
handleLayerCreatedLocked(createdLayer, vsyncId);
}
mLayersAdded = true;
return mLayersAdded;
}
void SurfaceFlinger::updateLayerMetadataSnapshot() {
LayerMetadata parentMetadata;
for (const auto& layer : mDrawingState.layersSortedByZ) {
layer->updateMetadataSnapshot(parentMetadata);
}
std::unordered_set<Layer*> visited;
mDrawingState.traverse([&visited](Layer* layer) {
if (visited.find(layer) != visited.end()) {
return;
}
// If the layer isRelativeOf, then either it's relative metadata will be set
// recursively when updateRelativeMetadataSnapshot is called on its relative parent or
// it's relative parent has been deleted. Clear the layer's relativeLayerMetadata to ensure
// that layers with deleted relative parents don't hold stale relativeLayerMetadata.
if (layer->getDrawingState().isRelativeOf) {
layer->editLayerSnapshot()->relativeLayerMetadata = {};
return;
}
layer->updateRelativeMetadataSnapshot({}, visited);
});
}
void SurfaceFlinger::moveSnapshotsFromCompositionArgs(
compositionengine::CompositionRefreshArgs& refreshArgs,
const std::vector<std::pair<Layer*, LayerFE*>>& layers) {
if (mLayerLifecycleManagerEnabled) {
std::vector<std::unique_ptr<frontend::LayerSnapshot>>& snapshots =
mLayerSnapshotBuilder.getSnapshots();
for (auto [_, layerFE] : layers) {
auto i = layerFE->mSnapshot->globalZ;
snapshots[i] = std::move(layerFE->mSnapshot);
}
}
if (mLegacyFrontEndEnabled && !mLayerLifecycleManagerEnabled) {
for (auto [layer, layerFE] : layers) {
layer->updateLayerSnapshot(std::move(layerFE->mSnapshot));
}
}
}
std::vector<std::pair<Layer*, LayerFE*>> SurfaceFlinger::moveSnapshotsToCompositionArgs(
compositionengine::CompositionRefreshArgs& refreshArgs, bool cursorOnly) {
std::vector<std::pair<Layer*, LayerFE*>> layers;
if (mLayerLifecycleManagerEnabled) {
nsecs_t currentTime = systemTime();
mLayerSnapshotBuilder.forEachVisibleSnapshot(
[&](std::unique_ptr<frontend::LayerSnapshot>& snapshot) {
if (cursorOnly &&
snapshot->compositionType !=
aidl::android::hardware::graphics::composer3::Composition::CURSOR) {
return;
}
if (!snapshot->hasSomethingToDraw()) {
return;
}
auto it = mLegacyLayers.find(snapshot->sequence);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldnt find layer object for %s",
snapshot->getDebugString().c_str());
auto& legacyLayer = it->second;
sp<LayerFE> layerFE = legacyLayer->getCompositionEngineLayerFE(snapshot->path);
snapshot->fps = getLayerFramerate(currentTime, snapshot->sequence);
layerFE->mSnapshot = std::move(snapshot);
refreshArgs.layers.push_back(layerFE);
layers.emplace_back(legacyLayer.get(), layerFE.get());
});
}
if (mLegacyFrontEndEnabled && !mLayerLifecycleManagerEnabled) {
auto moveSnapshots = [&layers, &refreshArgs, cursorOnly](Layer* layer) {
if (const auto& layerFE = layer->getCompositionEngineLayerFE()) {
if (cursorOnly &&
layer->getLayerSnapshot()->compositionType !=
aidl::android::hardware::graphics::composer3::Composition::CURSOR)
return;
layer->updateSnapshot(refreshArgs.updatingGeometryThisFrame);
layerFE->mSnapshot = layer->stealLayerSnapshot();
refreshArgs.layers.push_back(layerFE);
layers.emplace_back(layer, layerFE.get());
}
};
if (cursorOnly || !mVisibleRegionsDirty) {
// for hot path avoid traversals by walking though the previous composition list
for (sp<Layer> layer : mPreviouslyComposedLayers) {
moveSnapshots(layer.get());
}
} else {
mPreviouslyComposedLayers.clear();
mDrawingState.traverseInZOrder(
[&moveSnapshots](Layer* layer) { moveSnapshots(layer); });
mPreviouslyComposedLayers.reserve(layers.size());
for (auto [layer, _] : layers) {
mPreviouslyComposedLayers.push_back(sp<Layer>::fromExisting(layer));
}
}
}
return layers;
}
std::function<std::vector<std::pair<Layer*, sp<LayerFE>>>()>
SurfaceFlinger::getLayerSnapshotsForScreenshots(
std::optional<ui::LayerStack> layerStack, uint32_t uid,
std::function<bool(const frontend::LayerSnapshot&, bool& outStopTraversal)>
snapshotFilterFn) {
return [&, layerStack, uid]() {
std::vector<std::pair<Layer*, sp<LayerFE>>> layers;
bool stopTraversal = false;
mLayerSnapshotBuilder.forEachVisibleSnapshot(
[&](std::unique_ptr<frontend::LayerSnapshot>& snapshot) {
if (stopTraversal) {
return;
}
if (layerStack && snapshot->outputFilter.layerStack != *layerStack) {
return;
}
if (uid != CaptureArgs::UNSET_UID && snapshot->uid != gui::Uid(uid)) {
return;
}
if (!snapshot->hasSomethingToDraw()) {
return;
}
if (snapshotFilterFn && !snapshotFilterFn(*snapshot, stopTraversal)) {
return;
}
auto it = mLegacyLayers.find(snapshot->sequence);
LLOG_ALWAYS_FATAL_WITH_TRACE_IF(it == mLegacyLayers.end(),
"Couldnt find layer object for %s",
snapshot->getDebugString().c_str());
Layer* legacyLayer = (it == mLegacyLayers.end()) ? nullptr : it->second.get();
sp<LayerFE> layerFE = getFactory().createLayerFE(snapshot->name);
layerFE->mSnapshot = std::make_unique<frontend::LayerSnapshot>(*snapshot);
layers.emplace_back(legacyLayer, std::move(layerFE));
});
return layers;
};
}
std::function<std::vector<std::pair<Layer*, sp<LayerFE>>>()>
SurfaceFlinger::getLayerSnapshotsForScreenshots(std::optional<ui::LayerStack> layerStack,
uint32_t uid,
std::unordered_set<uint32_t> excludeLayerIds) {
return [&, layerStack, uid, excludeLayerIds = std::move(excludeLayerIds)]() {
if (excludeLayerIds.empty()) {
auto getLayerSnapshotsFn =
getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr);
std::vector<std::pair<Layer*, sp<LayerFE>>> layers = getLayerSnapshotsFn();
return layers;
}
frontend::LayerSnapshotBuilder::Args
args{.root = mLayerHierarchyBuilder.getHierarchy(),
.layerLifecycleManager = mLayerLifecycleManager,
.forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY,
.displays = mFrontEndDisplayInfos,
.displayChanges = true,
.globalShadowSettings = mDrawingState.globalShadowSettings,
.supportsBlur = mSupportsBlur,
.forceFullDamage = mForceFullDamage,
.excludeLayerIds = std::move(excludeLayerIds),
.supportedLayerGenericMetadata =
getHwComposer().getSupportedLayerGenericMetadata(),
.genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(),
.skipRoundCornersWhenProtected =
!getRenderEngine().supportsProtectedContent()};
mLayerSnapshotBuilder.update(args);
auto getLayerSnapshotsFn =
getLayerSnapshotsForScreenshots(layerStack, uid, /*snapshotFilterFn=*/nullptr);
std::vector<std::pair<Layer*, sp<LayerFE>>> layers = getLayerSnapshotsFn();
args.excludeLayerIds.clear();
mLayerSnapshotBuilder.update(args);
return layers;
};
}
std::function<std::vector<std::pair<Layer*, sp<LayerFE>>>()>
SurfaceFlinger::getLayerSnapshotsForScreenshots(uint32_t rootLayerId, uint32_t uid,
std::unordered_set<uint32_t> excludeLayerIds,
bool childrenOnly,
const std::optional<FloatRect>& parentCrop) {
return [&, rootLayerId, uid, excludeLayerIds = std::move(excludeLayerIds), childrenOnly,
parentCrop]() {
auto root = mLayerHierarchyBuilder.getPartialHierarchy(rootLayerId, childrenOnly);
frontend::LayerSnapshotBuilder::Args
args{.root = root,
.layerLifecycleManager = mLayerLifecycleManager,
.forceUpdate = frontend::LayerSnapshotBuilder::ForceUpdateFlags::HIERARCHY,
.displays = mFrontEndDisplayInfos,
.displayChanges = true,
.globalShadowSettings = mDrawingState.globalShadowSettings,
.supportsBlur = mSupportsBlur,
.forceFullDamage = mForceFullDamage,
.parentCrop = parentCrop,
.excludeLayerIds = std::move(excludeLayerIds),
.supportedLayerGenericMetadata =
getHwComposer().getSupportedLayerGenericMetadata(),
.genericLayerMetadataKeyMap = getGenericLayerMetadataKeyMap(),
.skipRoundCornersWhenProtected =
!getRenderEngine().supportsProtectedContent()};
// The layer may not exist if it was just created and a screenshot was requested immediately
// after. In this case, the hierarchy will be empty so we will not render any layers.
args.rootSnapshot.isSecure = mLayerLifecycleManager.getLayerFromId(rootLayerId) &&
mLayerLifecycleManager.isLayerSecure(rootLayerId);
mLayerSnapshotBuilder.update(args);
auto getLayerSnapshotsFn =
getLayerSnapshotsForScreenshots({}, uid, /*snapshotFilterFn=*/nullptr);
std::vector<std::pair<Layer*, sp<LayerFE>>> layers = getLayerSnapshotsFn();
args.root = mLayerHierarchyBuilder.getHierarchy();
args.parentCrop.reset();
args.excludeLayerIds.clear();
mLayerSnapshotBuilder.update(args);
return layers;
};
}
frontend::Update SurfaceFlinger::flushLifecycleUpdates() {
frontend::Update update;
ATRACE_NAME("TransactionHandler:flushTransactions");
// Locking:
// 1. to prevent onHandleDestroyed from being called while the state lock is held,
// we must keep a copy of the transactions (specifically the composer
// states) around outside the scope of the lock.
// 2. Transactions and created layers do not share a lock. To prevent applying
// transactions with layers still in the createdLayer queue, flush the transactions
// before committing the created layers.
mTransactionHandler.collectTransactions();
update.transactions = mTransactionHandler.flushTransactions();
{
// TODO(b/238781169) lockless queue this and keep order.
std::scoped_lock<std::mutex> lock(mCreatedLayersLock);
update.layerCreatedStates = std::move(mCreatedLayers);
mCreatedLayers.clear();
update.newLayers = std::move(mNewLayers);
mNewLayers.clear();
update.layerCreationArgs = std::move(mNewLayerArgs);
mNewLayerArgs.clear();
update.destroyedHandles = std::move(mDestroyedHandles);
mDestroyedHandles.clear();
}
return update;
}
void SurfaceFlinger::doActiveLayersTracingIfNeeded(bool isCompositionComputed,
bool visibleRegionDirty, TimePoint time,
VsyncId vsyncId) {
if (!mLayerTracing.isActiveTracingStarted()) {
return;
}
if (isCompositionComputed !=
mLayerTracing.isActiveTracingFlagSet(LayerTracing::Flag::TRACE_COMPOSITION)) {
return;
}
if (!visibleRegionDirty &&
!mLayerTracing.isActiveTracingFlagSet(LayerTracing::Flag::TRACE_BUFFERS)) {
return;
}
auto snapshot = takeLayersSnapshotProto(mLayerTracing.getActiveTracingFlags(), time, vsyncId,
visibleRegionDirty);
mLayerTracing.addProtoSnapshotToOstream(std::move(snapshot), LayerTracing::Mode::MODE_ACTIVE);
}
perfetto::protos::LayersSnapshotProto SurfaceFlinger::takeLayersSnapshotProto(
uint32_t traceFlags, TimePoint time, VsyncId vsyncId, bool visibleRegionDirty) {
ATRACE_CALL();
perfetto::protos::LayersSnapshotProto snapshot;
snapshot.set_elapsed_realtime_nanos(time.ns());
snapshot.set_vsync_id(ftl::to_underlying(vsyncId));
snapshot.set_where(visibleRegionDirty ? "visibleRegionsDirty" : "bufferLatched");
snapshot.set_excludes_composition_state((traceFlags & LayerTracing::Flag::TRACE_COMPOSITION) ==
0);
auto layers = dumpDrawingStateProto(traceFlags);
if (traceFlags & LayerTracing::Flag::TRACE_EXTRA) {
dumpOffscreenLayersProto(layers);
}
*snapshot.mutable_layers() = std::move(layers);
if (traceFlags & LayerTracing::Flag::TRACE_HWC) {
std::string hwcDump;
dumpHwc(hwcDump);
snapshot.set_hwc_blob(std::move(hwcDump));
}
*snapshot.mutable_displays() = dumpDisplayProto();
return snapshot;
}
// sfdo functions
void SurfaceFlinger::sfdo_enableRefreshRateOverlay(bool active) {
auto future = mScheduler->schedule(
[&]() FTL_FAKE_GUARD(mStateLock)
FTL_FAKE_GUARD(kMainThreadContext) { enableRefreshRateOverlay(active); });
future.wait();
}
void SurfaceFlinger::sfdo_setDebugFlash(int delay) {
if (delay > 0) {
mDebugFlashDelay = delay;
} else {
mDebugFlashDelay = mDebugFlashDelay ? 0 : 1;
}
scheduleRepaint();
}
void SurfaceFlinger::sfdo_scheduleComposite() {
scheduleComposite(SurfaceFlinger::FrameHint::kActive);
}
void SurfaceFlinger::sfdo_scheduleCommit() {
Mutex::Autolock lock(mStateLock);
setTransactionFlags(eTransactionNeeded | eDisplayTransactionNeeded | eTraversalNeeded);
}
void SurfaceFlinger::sfdo_forceClientComposition(bool enabled) {
mDebugDisableHWC = enabled;
scheduleRepaint();
}
// gui::ISurfaceComposer
binder::Status SurfaceComposerAIDL::bootFinished() {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
mFlinger->bootFinished();
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::createDisplayEventConnection(
VsyncSource vsyncSource, EventRegistration eventRegistration,
const sp<IBinder>& layerHandle, sp<IDisplayEventConnection>* outConnection) {
sp<IDisplayEventConnection> conn =
mFlinger->createDisplayEventConnection(vsyncSource, eventRegistration, layerHandle);
if (conn == nullptr) {
*outConnection = nullptr;
return binderStatusFromStatusT(BAD_VALUE);
} else {
*outConnection = conn;
return binder::Status::ok();
}
}
binder::Status SurfaceComposerAIDL::createConnection(sp<gui::ISurfaceComposerClient>* outClient) {
const sp<Client> client = sp<Client>::make(mFlinger);
if (client->initCheck() == NO_ERROR) {
*outClient = client;
if (FlagManager::getInstance().misc1()) {
const int policy = SCHED_FIFO;
client->setMinSchedulerPolicy(policy, sched_get_priority_min(policy));
}
return binder::Status::ok();
} else {
*outClient = nullptr;
return binderStatusFromStatusT(BAD_VALUE);
}
}
binder::Status SurfaceComposerAIDL::createDisplay(const std::string& displayName, bool secure,
float requestedRefreshRate,
sp<IBinder>* outDisplay) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
String8 displayName8 = String8::format("%s", displayName.c_str());
*outDisplay = mFlinger->createDisplay(displayName8, secure, requestedRefreshRate);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::destroyDisplay(const sp<IBinder>& display) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
mFlinger->destroyDisplay(display);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getPhysicalDisplayIds(std::vector<int64_t>* outDisplayIds) {
std::vector<PhysicalDisplayId> physicalDisplayIds = mFlinger->getPhysicalDisplayIds();
std::vector<int64_t> displayIds;
displayIds.reserve(physicalDisplayIds.size());
for (auto item : physicalDisplayIds) {
displayIds.push_back(static_cast<int64_t>(item.value));
}
*outDisplayIds = displayIds;
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getPhysicalDisplayToken(int64_t displayId,
sp<IBinder>* outDisplay) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
const auto id = DisplayId::fromValue<PhysicalDisplayId>(static_cast<uint64_t>(displayId));
*outDisplay = mFlinger->getPhysicalDisplayToken(*id);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setPowerMode(const sp<IBinder>& display, int mode) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
mFlinger->setPowerMode(display, mode);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) {
status_t status;
if (!outSupported) {
status = UNEXPECTED_NULL;
} else {
outSupported->clear();
status = mFlinger->getSupportedFrameTimestamps(outSupported);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayStats(const sp<IBinder>& display,
gui::DisplayStatInfo* outStatInfo) {
DisplayStatInfo statInfo;
status_t status = mFlinger->getDisplayStats(display, &statInfo);
if (status == NO_ERROR) {
outStatInfo->vsyncTime = static_cast<long>(statInfo.vsyncTime);
outStatInfo->vsyncPeriod = static_cast<long>(statInfo.vsyncPeriod);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayState(const sp<IBinder>& display,
gui::DisplayState* outState) {
ui::DisplayState state;
status_t status = mFlinger->getDisplayState(display, &state);
if (status == NO_ERROR) {
outState->layerStack = state.layerStack.id;
outState->orientation = static_cast<gui::Rotation>(state.orientation);
outState->layerStackSpaceRect.width = state.layerStackSpaceRect.width;
outState->layerStackSpaceRect.height = state.layerStackSpaceRect.height;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getStaticDisplayInfo(int64_t displayId,
gui::StaticDisplayInfo* outInfo) {
using Tag = gui::DeviceProductInfo::ManufactureOrModelDate::Tag;
ui::StaticDisplayInfo info;
status_t status = mFlinger->getStaticDisplayInfo(displayId, &info);
if (status == NO_ERROR) {
// convert ui::StaticDisplayInfo to gui::StaticDisplayInfo
outInfo->connectionType = static_cast<gui::DisplayConnectionType>(info.connectionType);
outInfo->density = info.density;
outInfo->secure = info.secure;
outInfo->installOrientation = static_cast<gui::Rotation>(info.installOrientation);
if (const std::optional<DeviceProductInfo> dpi = info.deviceProductInfo) {
gui::DeviceProductInfo dinfo;
dinfo.name = std::move(dpi->name);
dinfo.manufacturerPnpId = std::vector<uint8_t>(dpi->manufacturerPnpId.begin(),
dpi->manufacturerPnpId.end());
dinfo.productId = dpi->productId;
dinfo.relativeAddress =
std::vector<uint8_t>(dpi->relativeAddress.begin(), dpi->relativeAddress.end());
if (const auto* model =
std::get_if<DeviceProductInfo::ModelYear>(&dpi->manufactureOrModelDate)) {
gui::DeviceProductInfo::ModelYear modelYear;
modelYear.year = model->year;
dinfo.manufactureOrModelDate.set<Tag::modelYear>(modelYear);
} else if (const auto* manufacture = std::get_if<DeviceProductInfo::ManufactureYear>(
&dpi->manufactureOrModelDate)) {
gui::DeviceProductInfo::ManufactureYear date;
date.modelYear.year = manufacture->year;
dinfo.manufactureOrModelDate.set<Tag::manufactureYear>(date);
} else if (const auto* manufacture =
std::get_if<DeviceProductInfo::ManufactureWeekAndYear>(
&dpi->manufactureOrModelDate)) {
gui::DeviceProductInfo::ManufactureWeekAndYear date;
date.manufactureYear.modelYear.year = manufacture->year;
date.week = manufacture->week;
dinfo.manufactureOrModelDate.set<Tag::manufactureWeekAndYear>(date);
}
outInfo->deviceProductInfo = dinfo;
}
}
return binderStatusFromStatusT(status);
}
void SurfaceComposerAIDL::getDynamicDisplayInfoInternal(ui::DynamicDisplayInfo& info,
gui::DynamicDisplayInfo*& outInfo) {
// convert ui::DynamicDisplayInfo to gui::DynamicDisplayInfo
outInfo->supportedDisplayModes.clear();
outInfo->supportedDisplayModes.reserve(info.supportedDisplayModes.size());
for (const auto& mode : info.supportedDisplayModes) {
gui::DisplayMode outMode;
outMode.id = mode.id;
outMode.resolution.width = mode.resolution.width;
outMode.resolution.height = mode.resolution.height;
outMode.xDpi = mode.xDpi;
outMode.yDpi = mode.yDpi;
outMode.peakRefreshRate = mode.peakRefreshRate;
outMode.vsyncRate = mode.vsyncRate;
outMode.appVsyncOffset = mode.appVsyncOffset;
outMode.sfVsyncOffset = mode.sfVsyncOffset;
outMode.presentationDeadline = mode.presentationDeadline;
outMode.group = mode.group;
std::transform(mode.supportedHdrTypes.begin(), mode.supportedHdrTypes.end(),
std::back_inserter(outMode.supportedHdrTypes),
[](const ui::Hdr& value) { return static_cast<int32_t>(value); });
outInfo->supportedDisplayModes.push_back(outMode);
}
outInfo->activeDisplayModeId = info.activeDisplayModeId;
outInfo->renderFrameRate = info.renderFrameRate;
outInfo->supportedColorModes.clear();
outInfo->supportedColorModes.reserve(info.supportedColorModes.size());
for (const auto& cmode : info.supportedColorModes) {
outInfo->supportedColorModes.push_back(static_cast<int32_t>(cmode));
}
outInfo->activeColorMode = static_cast<int32_t>(info.activeColorMode);
gui::HdrCapabilities& hdrCapabilities = outInfo->hdrCapabilities;
hdrCapabilities.supportedHdrTypes.clear();
hdrCapabilities.supportedHdrTypes.reserve(info.hdrCapabilities.getSupportedHdrTypes().size());
for (const auto& hdr : info.hdrCapabilities.getSupportedHdrTypes()) {
hdrCapabilities.supportedHdrTypes.push_back(static_cast<int32_t>(hdr));
}
hdrCapabilities.maxLuminance = info.hdrCapabilities.getDesiredMaxLuminance();
hdrCapabilities.maxAverageLuminance = info.hdrCapabilities.getDesiredMaxAverageLuminance();
hdrCapabilities.minLuminance = info.hdrCapabilities.getDesiredMinLuminance();
outInfo->autoLowLatencyModeSupported = info.autoLowLatencyModeSupported;
outInfo->gameContentTypeSupported = info.gameContentTypeSupported;
outInfo->preferredBootDisplayMode = info.preferredBootDisplayMode;
}
binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromToken(
const sp<IBinder>& display, gui::DynamicDisplayInfo* outInfo) {
ui::DynamicDisplayInfo info;
status_t status = mFlinger->getDynamicDisplayInfoFromToken(display, &info);
if (status == NO_ERROR) {
getDynamicDisplayInfoInternal(info, outInfo);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDynamicDisplayInfoFromId(int64_t displayId,
gui::DynamicDisplayInfo* outInfo) {
ui::DynamicDisplayInfo info;
status_t status = mFlinger->getDynamicDisplayInfoFromId(displayId, &info);
if (status == NO_ERROR) {
getDynamicDisplayInfoInternal(info, outInfo);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayNativePrimaries(const sp<IBinder>& display,
gui::DisplayPrimaries* outPrimaries) {
ui::DisplayPrimaries primaries;
status_t status = mFlinger->getDisplayNativePrimaries(display, primaries);
if (status == NO_ERROR) {
outPrimaries->red.X = primaries.red.X;
outPrimaries->red.Y = primaries.red.Y;
outPrimaries->red.Z = primaries.red.Z;
outPrimaries->green.X = primaries.green.X;
outPrimaries->green.Y = primaries.green.Y;
outPrimaries->green.Z = primaries.green.Z;
outPrimaries->blue.X = primaries.blue.X;
outPrimaries->blue.Y = primaries.blue.Y;
outPrimaries->blue.Z = primaries.blue.Z;
outPrimaries->white.X = primaries.white.X;
outPrimaries->white.Y = primaries.white.Y;
outPrimaries->white.Z = primaries.white.Z;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setActiveColorMode(const sp<IBinder>& display, int colorMode) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->setActiveColorMode(display, static_cast<ui::ColorMode>(colorMode));
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setBootDisplayMode(const sp<IBinder>& display,
int displayModeId) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->setBootDisplayMode(display, DisplayModeId{displayModeId});
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::clearBootDisplayMode(const sp<IBinder>& display) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->clearBootDisplayMode(display);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getOverlaySupport(gui::OverlayProperties* outProperties) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->getOverlaySupport(outProperties);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getBootDisplayModeSupport(bool* outMode) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->getBootDisplayModeSupport(outMode);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getHdrConversionCapabilities(
std::vector<gui::HdrConversionCapability>* hdrConversionCapabilities) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->getHdrConversionCapabilities(hdrConversionCapabilities);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setHdrConversionStrategy(
const gui::HdrConversionStrategy& hdrConversionStrategy,
int32_t* outPreferredHdrOutputType) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->setHdrConversionStrategy(hdrConversionStrategy,
outPreferredHdrOutputType);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getHdrOutputConversionSupport(bool* outMode) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->getHdrOutputConversionSupport(outMode);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setAutoLowLatencyMode(const sp<IBinder>& display, bool on) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
mFlinger->setAutoLowLatencyMode(display, on);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setGameContentType(const sp<IBinder>& display, bool on) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
mFlinger->setGameContentType(display, on);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::captureDisplay(
const DisplayCaptureArgs& args, const sp<IScreenCaptureListener>& captureListener) {
mFlinger->captureDisplay(args, captureListener);
return binderStatusFromStatusT(NO_ERROR);
}
binder::Status SurfaceComposerAIDL::captureDisplayById(
int64_t displayId, const CaptureArgs& args,
const sp<IScreenCaptureListener>& captureListener) {
// status_t status;
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
std::optional<DisplayId> id = DisplayId::fromValue(static_cast<uint64_t>(displayId));
mFlinger->captureDisplay(*id, args, captureListener);
} else {
invokeScreenCaptureError(PERMISSION_DENIED, captureListener);
}
return binderStatusFromStatusT(NO_ERROR);
}
binder::Status SurfaceComposerAIDL::captureLayersSync(const LayerCaptureArgs& args,
ScreenCaptureResults* outResults) {
*outResults = mFlinger->captureLayersSync(args);
return binderStatusFromStatusT(NO_ERROR);
}
binder::Status SurfaceComposerAIDL::captureLayers(
const LayerCaptureArgs& args, const sp<IScreenCaptureListener>& captureListener) {
mFlinger->captureLayers(args, captureListener);
return binderStatusFromStatusT(NO_ERROR);
}
binder::Status SurfaceComposerAIDL::overrideHdrTypes(const sp<IBinder>& display,
const std::vector<int32_t>& hdrTypes) {
// overrideHdrTypes is used by CTS tests, which acquire the necessary
// permission dynamically. Don't use the permission cache for this check.
status_t status = checkAccessPermission(false);
if (status != OK) {
return binderStatusFromStatusT(status);
}
std::vector<ui::Hdr> hdrTypesVector;
for (int32_t i : hdrTypes) {
hdrTypesVector.push_back(static_cast<ui::Hdr>(i));
}
status = mFlinger->overrideHdrTypes(display, hdrTypesVector);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::onPullAtom(int32_t atomId, gui::PullAtomData* outPullData) {
status_t status;
const int uid = IPCThreadState::self()->getCallingUid();
if (uid != AID_SYSTEM) {
status = PERMISSION_DENIED;
} else {
status = mFlinger->onPullAtom(atomId, &outPullData->data, &outPullData->success);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getLayerDebugInfo(std::vector<gui::LayerDebugInfo>* outLayers) {
if (!outLayers) {
return binderStatusFromStatusT(UNEXPECTED_NULL);
}
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return binderStatusFromStatusT(PERMISSION_DENIED);
}
status_t status = mFlinger->getLayerDebugInfo(outLayers);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getCompositionPreference(gui::CompositionPreference* outPref) {
ui::Dataspace dataspace;
ui::PixelFormat pixelFormat;
ui::Dataspace wideColorGamutDataspace;
ui::PixelFormat wideColorGamutPixelFormat;
status_t status =
mFlinger->getCompositionPreference(&dataspace, &pixelFormat, &wideColorGamutDataspace,
&wideColorGamutPixelFormat);
if (status == NO_ERROR) {
outPref->defaultDataspace = static_cast<int32_t>(dataspace);
outPref->defaultPixelFormat = static_cast<int32_t>(pixelFormat);
outPref->wideColorGamutDataspace = static_cast<int32_t>(wideColorGamutDataspace);
outPref->wideColorGamutPixelFormat = static_cast<int32_t>(wideColorGamutPixelFormat);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayedContentSamplingAttributes(
const sp<IBinder>& display, gui::ContentSamplingAttributes* outAttrs) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
ui::PixelFormat format;
ui::Dataspace dataspace;
uint8_t componentMask;
status = mFlinger->getDisplayedContentSamplingAttributes(display, &format, &dataspace,
&componentMask);
if (status == NO_ERROR) {
outAttrs->format = static_cast<int32_t>(format);
outAttrs->dataspace = static_cast<int32_t>(dataspace);
outAttrs->componentMask = static_cast<int8_t>(componentMask);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setDisplayContentSamplingEnabled(const sp<IBinder>& display,
bool enable,
int8_t componentMask,
int64_t maxFrames) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->setDisplayContentSamplingEnabled(display, enable,
static_cast<uint8_t>(componentMask),
static_cast<uint64_t>(maxFrames));
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayedContentSample(const sp<IBinder>& display,
int64_t maxFrames, int64_t timestamp,
gui::DisplayedFrameStats* outStats) {
if (!outStats) {
return binderStatusFromStatusT(BAD_VALUE);
}
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
DisplayedFrameStats stats;
status = mFlinger->getDisplayedContentSample(display, static_cast<uint64_t>(maxFrames),
static_cast<uint64_t>(timestamp), &stats);
if (status == NO_ERROR) {
// convert from ui::DisplayedFrameStats to gui::DisplayedFrameStats
outStats->numFrames = static_cast<int64_t>(stats.numFrames);
outStats->component_0_sample.reserve(stats.component_0_sample.size());
for (const auto& s : stats.component_0_sample) {
outStats->component_0_sample.push_back(static_cast<int64_t>(s));
}
outStats->component_1_sample.reserve(stats.component_1_sample.size());
for (const auto& s : stats.component_1_sample) {
outStats->component_1_sample.push_back(static_cast<int64_t>(s));
}
outStats->component_2_sample.reserve(stats.component_2_sample.size());
for (const auto& s : stats.component_2_sample) {
outStats->component_2_sample.push_back(static_cast<int64_t>(s));
}
outStats->component_3_sample.reserve(stats.component_3_sample.size());
for (const auto& s : stats.component_3_sample) {
outStats->component_3_sample.push_back(static_cast<int64_t>(s));
}
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getProtectedContentSupport(bool* outSupported) {
status_t status = mFlinger->getProtectedContentSupport(outSupported);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::isWideColorDisplay(const sp<IBinder>& token,
bool* outIsWideColorDisplay) {
status_t status = mFlinger->isWideColorDisplay(token, outIsWideColorDisplay);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addRegionSamplingListener(
const gui::ARect& samplingArea, const sp<IBinder>& stopLayerHandle,
const sp<gui::IRegionSamplingListener>& listener) {
status_t status = checkReadFrameBufferPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
android::Rect rect;
rect.left = samplingArea.left;
rect.top = samplingArea.top;
rect.right = samplingArea.right;
rect.bottom = samplingArea.bottom;
status = mFlinger->addRegionSamplingListener(rect, stopLayerHandle, listener);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeRegionSamplingListener(
const sp<gui::IRegionSamplingListener>& listener) {
status_t status = checkReadFrameBufferPermission();
if (status == OK) {
status = mFlinger->removeRegionSamplingListener(listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addFpsListener(int32_t taskId,
const sp<gui::IFpsListener>& listener) {
status_t status = checkReadFrameBufferPermission();
if (status == OK) {
status = mFlinger->addFpsListener(taskId, listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeFpsListener(const sp<gui::IFpsListener>& listener) {
status_t status = checkReadFrameBufferPermission();
if (status == OK) {
status = mFlinger->removeFpsListener(listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->addTunnelModeEnabledListener(listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeTunnelModeEnabledListener(
const sp<gui::ITunnelModeEnabledListener>& listener) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->removeTunnelModeEnabledListener(listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
const gui::DisplayModeSpecs& specs) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->setDesiredDisplayModeSpecs(displayToken, specs);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
gui::DisplayModeSpecs* outSpecs) {
if (!outSpecs) {
return binderStatusFromStatusT(BAD_VALUE);
}
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
status = mFlinger->getDesiredDisplayModeSpecs(displayToken, outSpecs);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
bool* outSupport) {
status_t status = mFlinger->getDisplayBrightnessSupport(displayToken, outSupport);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setDisplayBrightness(const sp<IBinder>& displayToken,
const gui::DisplayBrightness& brightness) {
status_t status = checkControlDisplayBrightnessPermission();
if (status == OK) {
status = mFlinger->setDisplayBrightness(displayToken, brightness);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
status_t status = checkControlDisplayBrightnessPermission();
if (status == OK) {
status = mFlinger->addHdrLayerInfoListener(displayToken, listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeHdrLayerInfoListener(
const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
status_t status = checkControlDisplayBrightnessPermission();
if (status == OK) {
status = mFlinger->removeHdrLayerInfoListener(displayToken, listener);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::notifyPowerBoost(int boostId) {
status_t status = checkAccessPermission();
if (status == OK) {
status = mFlinger->notifyPowerBoost(boostId);
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setGlobalShadowSettings(const gui::Color& ambientColor,
const gui::Color& spotColor,
float lightPosY, float lightPosZ,
float lightRadius) {
status_t status = checkAccessPermission();
if (status != OK) {
return binderStatusFromStatusT(status);
}
half4 ambientColorHalf = {ambientColor.r, ambientColor.g, ambientColor.b, ambientColor.a};
half4 spotColorHalf = {spotColor.r, spotColor.g, spotColor.b, spotColor.a};
status = mFlinger->setGlobalShadowSettings(ambientColorHalf, spotColorHalf, lightPosY,
lightPosZ, lightRadius);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getDisplayDecorationSupport(
const sp<IBinder>& displayToken, std::optional<gui::DisplayDecorationSupport>* outSupport) {
std::optional<aidl::android::hardware::graphics::common::DisplayDecorationSupport> support;
status_t status = mFlinger->getDisplayDecorationSupport(displayToken, &support);
if (status != NO_ERROR) {
ALOGE("getDisplayDecorationSupport failed with error %d", status);
return binderStatusFromStatusT(status);
}
if (!support || !support.has_value()) {
outSupport->reset();
} else {
outSupport->emplace();
outSupport->value().format = static_cast<int32_t>(support->format);
outSupport->value().alphaInterpretation =
static_cast<int32_t>(support->alphaInterpretation);
}
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setGameModeFrameRateOverride(int32_t uid, float frameRate) {
status_t status;
const int c_uid = IPCThreadState::self()->getCallingUid();
if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) {
status = mFlinger->setGameModeFrameRateOverride(uid, frameRate);
} else {
ALOGE("setGameModeFrameRateOverride() permission denied for uid: %d", c_uid);
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setGameDefaultFrameRateOverride(int32_t uid, float frameRate) {
status_t status;
const int c_uid = IPCThreadState::self()->getCallingUid();
if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) {
status = mFlinger->setGameDefaultFrameRateOverride(uid, frameRate);
} else {
ALOGE("setGameDefaultFrameRateOverride() permission denied for uid: %d", c_uid);
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::enableRefreshRateOverlay(bool active) {
mFlinger->sfdo_enableRefreshRateOverlay(active);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::setDebugFlash(int delay) {
mFlinger->sfdo_setDebugFlash(delay);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::scheduleComposite() {
mFlinger->sfdo_scheduleComposite();
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::scheduleCommit() {
mFlinger->sfdo_scheduleCommit();
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::forceClientComposition(bool enabled) {
mFlinger->sfdo_forceClientComposition(enabled);
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::updateSmallAreaDetection(const std::vector<int32_t>& appIds,
const std::vector<float>& thresholds) {
status_t status;
const int c_uid = IPCThreadState::self()->getCallingUid();
if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) {
if (appIds.size() != thresholds.size()) return binderStatusFromStatusT(BAD_VALUE);
std::vector<std::pair<int32_t, float>> mappings;
const size_t size = appIds.size();
mappings.reserve(size);
for (int i = 0; i < size; i++) {
auto row = std::make_pair(appIds[i], thresholds[i]);
mappings.push_back(row);
}
status = mFlinger->updateSmallAreaDetection(mappings);
} else {
ALOGE("updateSmallAreaDetection() permission denied for uid: %d", c_uid);
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::setSmallAreaDetectionThreshold(int32_t appId, float threshold) {
status_t status;
const int c_uid = IPCThreadState::self()->getCallingUid();
if (c_uid == AID_ROOT || c_uid == AID_SYSTEM) {
status = mFlinger->setSmallAreaDetectionThreshold(appId, threshold);
} else {
ALOGE("setSmallAreaDetectionThreshold() permission denied for uid: %d", c_uid);
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getGpuContextPriority(int32_t* outPriority) {
*outPriority = mFlinger->getGpuContextPriority();
return binder::Status::ok();
}
binder::Status SurfaceComposerAIDL::getMaxAcquiredBufferCount(int32_t* buffers) {
status_t status = mFlinger->getMaxAcquiredBufferCount(buffers);
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::addWindowInfosListener(
const sp<gui::IWindowInfosListener>& windowInfosListener,
gui::WindowInfosListenerInfo* outInfo) {
status_t status;
const int pid = IPCThreadState::self()->getCallingPid();
const int uid = IPCThreadState::self()->getCallingUid();
// TODO(b/270566761) update permissions check so that only system_server and shell can add
// WindowInfosListeners
if (uid == AID_SYSTEM || uid == AID_GRAPHICS ||
checkPermission(sAccessSurfaceFlinger, pid, uid)) {
status = mFlinger->addWindowInfosListener(windowInfosListener, outInfo);
} else {
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::removeWindowInfosListener(
const sp<gui::IWindowInfosListener>& windowInfosListener) {
status_t status;
const int pid = IPCThreadState::self()->getCallingPid();
const int uid = IPCThreadState::self()->getCallingUid();
if (uid == AID_SYSTEM || uid == AID_GRAPHICS ||
checkPermission(sAccessSurfaceFlinger, pid, uid)) {
status = mFlinger->removeWindowInfosListener(windowInfosListener);
} else {
status = PERMISSION_DENIED;
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getStalledTransactionInfo(
int pid, std::optional<gui::StalledTransactionInfo>* outInfo) {
const int callingPid = IPCThreadState::self()->getCallingPid();
const int callingUid = IPCThreadState::self()->getCallingUid();
if (!checkPermission(sAccessSurfaceFlinger, callingPid, callingUid)) {
return binderStatusFromStatusT(PERMISSION_DENIED);
}
std::optional<TransactionHandler::StalledTransactionInfo> stalledTransactionInfo;
status_t status = mFlinger->getStalledTransactionInfo(pid, stalledTransactionInfo);
if (stalledTransactionInfo) {
gui::StalledTransactionInfo result;
result.layerName = String16{stalledTransactionInfo->layerName.c_str()},
result.bufferId = stalledTransactionInfo->bufferId,
result.frameNumber = stalledTransactionInfo->frameNumber,
outInfo->emplace(std::move(result));
} else {
outInfo->reset();
}
return binderStatusFromStatusT(status);
}
binder::Status SurfaceComposerAIDL::getSchedulingPolicy(gui::SchedulingPolicy* outPolicy) {
return gui::getSchedulingPolicy(outPolicy);
}
status_t SurfaceComposerAIDL::checkAccessPermission(bool usePermissionCache) {
if (!mFlinger->callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", ipc->getCallingPid(),
ipc->getCallingUid());
return PERMISSION_DENIED;
}
return OK;
}
status_t SurfaceComposerAIDL::checkControlDisplayBrightnessPermission() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) && (uid != AID_SYSTEM) &&
!PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) {
ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
status_t SurfaceComposerAIDL::checkReadFrameBufferPermission() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) && !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
return OK;
}
void SurfaceFlinger::forceFutureUpdate(int delayInMs) {
static_cast<void>(mScheduler->scheduleDelayed([&]() { scheduleRepaint(); }, ms2ns(delayInMs)));
}
const DisplayDevice* SurfaceFlinger::getDisplayFromLayerStack(ui::LayerStack layerStack) {
for (const auto& [_, display] : mDisplays) {
if (display->getLayerStack() == layerStack) {
return display.get();
}
}
return nullptr;
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion -Wextra"