blob: b420a5a4e7a7bc726c4e4179bab9320939ed98cf [file] [log] [blame]
/*
* Copyright 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <input/MotionPredictor.h>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <numeric>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <input/InputEventBuilders.h>
#include <utils/Timers.h> // for nsecs_t
#include "Eigen/Core"
#include "Eigen/Geometry"
namespace android {
namespace {
using ::testing::FloatNear;
using ::testing::Matches;
using GroundTruthPoint = MotionPredictorMetricsManager::GroundTruthPoint;
using PredictionPoint = MotionPredictorMetricsManager::PredictionPoint;
using AtomFields = MotionPredictorMetricsManager::AtomFields;
inline constexpr int NANOS_PER_MILLIS = 1'000'000;
inline constexpr nsecs_t TEST_INITIAL_TIMESTAMP = 1'000'000'000;
inline constexpr size_t TEST_MAX_NUM_PREDICTIONS = 5;
inline constexpr nsecs_t TEST_PREDICTION_INTERVAL_NANOS = 12'500'000 / 3; // 1 / (240 hz)
inline constexpr int NO_DATA_SENTINEL = MotionPredictorMetricsManager::NO_DATA_SENTINEL;
// Parameters:
// • arg: Eigen::Vector2f
// • target: Eigen::Vector2f
// • epsilon: float
MATCHER_P2(Vector2fNear, target, epsilon, "") {
return Matches(FloatNear(target[0], epsilon))(arg[0]) &&
Matches(FloatNear(target[1], epsilon))(arg[1]);
}
// Parameters:
// • arg: PredictionPoint
// • target: PredictionPoint
// • epsilon: float
MATCHER_P2(PredictionPointNear, target, epsilon, "") {
if (!Matches(Vector2fNear(target.position, epsilon))(arg.position)) {
*result_listener << "Position mismatch. Actual: (" << arg.position[0] << ", "
<< arg.position[1] << "), expected: (" << target.position[0] << ", "
<< target.position[1] << ")";
return false;
}
if (!Matches(FloatNear(target.pressure, epsilon))(arg.pressure)) {
*result_listener << "Pressure mismatch. Actual: " << arg.pressure
<< ", expected: " << target.pressure;
return false;
}
if (arg.originTimestamp != target.originTimestamp) {
*result_listener << "Origin timestamp mismatch. Actual: " << arg.originTimestamp
<< ", expected: " << target.originTimestamp;
return false;
}
if (arg.targetTimestamp != target.targetTimestamp) {
*result_listener << "Target timestamp mismatch. Actual: " << arg.targetTimestamp
<< ", expected: " << target.targetTimestamp;
return false;
}
return true;
}
// --- Mathematical helper functions. ---
template <typename T>
T average(std::vector<T> values) {
return std::accumulate(values.begin(), values.end(), T{}) / static_cast<T>(values.size());
}
template <typename T>
T standardDeviation(std::vector<T> values) {
T mean = average(values);
T accumulator = {};
for (const T value : values) {
accumulator += value * value - mean * mean;
}
// Take the max with 0 to avoid negative values caused by numerical instability.
return std::sqrt(std::max(T{}, accumulator) / static_cast<T>(values.size()));
}
template <typename T>
T rmse(std::vector<T> errors) {
T sse = {};
for (const T error : errors) {
sse += error * error;
}
return std::sqrt(sse / static_cast<T>(errors.size()));
}
TEST(MathematicalHelperFunctionTest, Average) {
std::vector<float> values{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
EXPECT_EQ(5.5f, average(values));
}
TEST(MathematicalHelperFunctionTest, StandardDeviation) {
// https://www.calculator.net/standard-deviation-calculator.html?numberinputs=10%2C+12%2C+23%2C+23%2C+16%2C+23%2C+21%2C+16
std::vector<float> values{10, 12, 23, 23, 16, 23, 21, 16};
EXPECT_FLOAT_EQ(4.8989794855664f, standardDeviation(values));
}
TEST(MathematicalHelperFunctionTest, Rmse) {
std::vector<float> errors{1, 5, 7, 7, 8, 20};
EXPECT_FLOAT_EQ(9.899494937f, rmse(errors));
}
// --- MotionEvent-related helper functions. ---
// Creates a MotionEvent corresponding to the given GroundTruthPoint.
MotionEvent makeMotionEvent(const GroundTruthPoint& groundTruthPoint) {
// Build single pointer of type STYLUS, with coordinates from groundTruthPoint.
PointerBuilder pointerBuilder =
PointerBuilder(/*id=*/0, ToolType::STYLUS)
.x(groundTruthPoint.position[1])
.y(groundTruthPoint.position[0])
.axis(AMOTION_EVENT_AXIS_PRESSURE, groundTruthPoint.pressure);
return MotionEventBuilder(/*action=*/AMOTION_EVENT_ACTION_MOVE,
/*source=*/AINPUT_SOURCE_CLASS_POINTER)
.eventTime(groundTruthPoint.timestamp)
.pointer(pointerBuilder)
.build();
}
// Creates a MotionEvent corresponding to the given sequence of PredictionPoints.
MotionEvent makeMotionEvent(const std::vector<PredictionPoint>& predictionPoints) {
// Build single pointer of type STYLUS, with coordinates from first prediction point.
PointerBuilder pointerBuilder =
PointerBuilder(/*id=*/0, ToolType::STYLUS)
.x(predictionPoints[0].position[1])
.y(predictionPoints[0].position[0])
.axis(AMOTION_EVENT_AXIS_PRESSURE, predictionPoints[0].pressure);
MotionEvent predictionEvent =
MotionEventBuilder(
/*action=*/AMOTION_EVENT_ACTION_MOVE, /*source=*/AINPUT_SOURCE_CLASS_POINTER)
.eventTime(predictionPoints[0].targetTimestamp)
.pointer(pointerBuilder)
.build();
for (size_t i = 1; i < predictionPoints.size(); ++i) {
PointerCoords coords =
PointerBuilder(/*id=*/0, ToolType::STYLUS)
.x(predictionPoints[i].position[1])
.y(predictionPoints[i].position[0])
.axis(AMOTION_EVENT_AXIS_PRESSURE, predictionPoints[i].pressure)
.buildCoords();
predictionEvent.addSample(predictionPoints[i].targetTimestamp, &coords);
}
return predictionEvent;
}
// Creates a MotionEvent corresponding to a stylus lift (UP) ground truth event.
MotionEvent makeLiftMotionEvent() {
return MotionEventBuilder(/*action=*/AMOTION_EVENT_ACTION_UP,
/*source=*/AINPUT_SOURCE_CLASS_POINTER)
.pointer(PointerBuilder(/*id=*/0, ToolType::STYLUS))
.build();
}
TEST(MakeMotionEventTest, MakeGroundTruthMotionEvent) {
const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10.0f, 20.0f),
.pressure = 0.6f},
.timestamp = TEST_INITIAL_TIMESTAMP};
const MotionEvent groundTruthMotionEvent = makeMotionEvent(groundTruthPoint);
ASSERT_EQ(1u, groundTruthMotionEvent.getPointerCount());
// Note: a MotionEvent's "history size" is one less than its number of samples.
ASSERT_EQ(0u, groundTruthMotionEvent.getHistorySize());
EXPECT_EQ(groundTruthPoint.position[0], groundTruthMotionEvent.getRawPointerCoords(0)->getY());
EXPECT_EQ(groundTruthPoint.position[1], groundTruthMotionEvent.getRawPointerCoords(0)->getX());
EXPECT_EQ(groundTruthPoint.pressure,
groundTruthMotionEvent.getRawPointerCoords(0)->getAxisValue(
AMOTION_EVENT_AXIS_PRESSURE));
EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, groundTruthMotionEvent.getAction());
}
TEST(MakeMotionEventTest, MakePredictionMotionEvent) {
const nsecs_t originTimestamp = TEST_INITIAL_TIMESTAMP;
const std::vector<PredictionPoint>
predictionPoints{{{.position = Eigen::Vector2f(10.0f, 20.0f), .pressure = 0.6f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp + 5 * NANOS_PER_MILLIS},
{{.position = Eigen::Vector2f(11.0f, 22.0f), .pressure = 0.5f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp + 10 * NANOS_PER_MILLIS},
{{.position = Eigen::Vector2f(12.0f, 24.0f), .pressure = 0.4f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp + 15 * NANOS_PER_MILLIS}};
const MotionEvent predictionMotionEvent = makeMotionEvent(predictionPoints);
ASSERT_EQ(1u, predictionMotionEvent.getPointerCount());
// Note: a MotionEvent's "history size" is one less than its number of samples.
ASSERT_EQ(predictionPoints.size(), predictionMotionEvent.getHistorySize() + 1);
for (size_t i = 0; i < predictionPoints.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
const PointerCoords coords = *predictionMotionEvent.getHistoricalRawPointerCoords(
/*pointerIndex=*/0, /*historicalIndex=*/i);
EXPECT_EQ(predictionPoints[i].position[0], coords.getY());
EXPECT_EQ(predictionPoints[i].position[1], coords.getX());
EXPECT_EQ(predictionPoints[i].pressure, coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE));
// Note: originTimestamp is discarded when converting PredictionPoint to MotionEvent.
EXPECT_EQ(predictionPoints[i].targetTimestamp,
predictionMotionEvent.getHistoricalEventTime(i));
EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, predictionMotionEvent.getAction());
}
}
TEST(MakeMotionEventTest, MakeLiftMotionEvent) {
const MotionEvent liftMotionEvent = makeLiftMotionEvent();
ASSERT_EQ(1u, liftMotionEvent.getPointerCount());
// Note: a MotionEvent's "history size" is one less than its number of samples.
ASSERT_EQ(0u, liftMotionEvent.getHistorySize());
EXPECT_EQ(AMOTION_EVENT_ACTION_UP, liftMotionEvent.getAction());
}
// --- Ground-truth-generation helper functions. ---
std::vector<GroundTruthPoint> generateConstantGroundTruthPoints(
const GroundTruthPoint& groundTruthPoint, size_t numPoints) {
std::vector<GroundTruthPoint> groundTruthPoints;
nsecs_t timestamp = groundTruthPoint.timestamp;
for (size_t i = 0; i < numPoints; ++i) {
groundTruthPoints.emplace_back(groundTruthPoint);
groundTruthPoints.back().timestamp = timestamp;
timestamp += TEST_PREDICTION_INTERVAL_NANOS;
}
return groundTruthPoints;
}
// This function uses the coordinate system (y, x), with +y pointing downwards and +x pointing
// rightwards. Angles are measured counterclockwise from down (+y).
std::vector<GroundTruthPoint> generateCircularArcGroundTruthPoints(Eigen::Vector2f initialPosition,
float initialAngle,
float velocity,
float turningAngle,
size_t numPoints) {
std::vector<GroundTruthPoint> groundTruthPoints;
// Create first point.
if (numPoints > 0) {
groundTruthPoints.push_back({{.position = initialPosition, .pressure = 0.0f},
.timestamp = TEST_INITIAL_TIMESTAMP});
}
float trajectoryAngle = initialAngle; // measured counterclockwise from +y axis.
for (size_t i = 1; i < numPoints; ++i) {
const Eigen::Vector2f trajectory =
Eigen::Rotation2D(trajectoryAngle) * Eigen::Vector2f(1, 0);
groundTruthPoints.push_back(
{{.position = groundTruthPoints.back().position + velocity * trajectory,
.pressure = 0.0f},
.timestamp = groundTruthPoints.back().timestamp + TEST_PREDICTION_INTERVAL_NANOS});
trajectoryAngle += turningAngle;
}
return groundTruthPoints;
}
TEST(GenerateConstantGroundTruthPointsTest, BasicTest) {
const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10, 20), .pressure = 0.3f},
.timestamp = TEST_INITIAL_TIMESTAMP};
const std::vector<GroundTruthPoint> groundTruthPoints =
generateConstantGroundTruthPoints(groundTruthPoint, /*numPoints=*/3);
ASSERT_EQ(3u, groundTruthPoints.size());
// First point.
EXPECT_EQ(groundTruthPoints[0].position, groundTruthPoint.position);
EXPECT_EQ(groundTruthPoints[0].pressure, groundTruthPoint.pressure);
EXPECT_EQ(groundTruthPoints[0].timestamp, groundTruthPoint.timestamp);
// Second point.
EXPECT_EQ(groundTruthPoints[1].position, groundTruthPoint.position);
EXPECT_EQ(groundTruthPoints[1].pressure, groundTruthPoint.pressure);
EXPECT_GT(groundTruthPoints[1].timestamp, groundTruthPoints[0].timestamp);
// Third point.
EXPECT_EQ(groundTruthPoints[2].position, groundTruthPoint.position);
EXPECT_EQ(groundTruthPoints[2].pressure, groundTruthPoint.pressure);
EXPECT_GT(groundTruthPoints[2].timestamp, groundTruthPoints[1].timestamp);
}
TEST(GenerateCircularArcGroundTruthTest, StraightLineUpwards) {
const std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
/*initialPosition=*/Eigen::Vector2f(0, 0),
/*initialAngle=*/M_PI,
/*velocity=*/1.0f,
/*turningAngle=*/0.0f,
/*numPoints=*/3);
ASSERT_EQ(3u, groundTruthPoints.size());
EXPECT_THAT(groundTruthPoints[0].position, Vector2fNear(Eigen::Vector2f(0, 0), 1e-6));
EXPECT_THAT(groundTruthPoints[1].position, Vector2fNear(Eigen::Vector2f(-1, 0), 1e-6));
EXPECT_THAT(groundTruthPoints[2].position, Vector2fNear(Eigen::Vector2f(-2, 0), 1e-6));
// Check that timestamps are increasing between consecutive ground truth points.
EXPECT_GT(groundTruthPoints[1].timestamp, groundTruthPoints[0].timestamp);
EXPECT_GT(groundTruthPoints[2].timestamp, groundTruthPoints[1].timestamp);
}
TEST(GenerateCircularArcGroundTruthTest, CounterclockwiseSquare) {
// Generate points in a counterclockwise unit square starting pointing right.
const std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
/*initialPosition=*/Eigen::Vector2f(10, 100),
/*initialAngle=*/M_PI_2,
/*velocity=*/1.0f,
/*turningAngle=*/M_PI_2,
/*numPoints=*/5);
ASSERT_EQ(5u, groundTruthPoints.size());
EXPECT_THAT(groundTruthPoints[0].position, Vector2fNear(Eigen::Vector2f(10, 100), 1e-6));
EXPECT_THAT(groundTruthPoints[1].position, Vector2fNear(Eigen::Vector2f(10, 101), 1e-6));
EXPECT_THAT(groundTruthPoints[2].position, Vector2fNear(Eigen::Vector2f(9, 101), 1e-6));
EXPECT_THAT(groundTruthPoints[3].position, Vector2fNear(Eigen::Vector2f(9, 100), 1e-6));
EXPECT_THAT(groundTruthPoints[4].position, Vector2fNear(Eigen::Vector2f(10, 100), 1e-6));
}
// --- Prediction-generation helper functions. ---
// Creates a sequence of predictions with values equal to those of the given GroundTruthPoint.
std::vector<PredictionPoint> generateConstantPredictions(const GroundTruthPoint& groundTruthPoint) {
std::vector<PredictionPoint> predictions;
nsecs_t predictionTimestamp = groundTruthPoint.timestamp + TEST_PREDICTION_INTERVAL_NANOS;
for (size_t j = 0; j < TEST_MAX_NUM_PREDICTIONS; ++j) {
predictions.push_back(PredictionPoint{{.position = groundTruthPoint.position,
.pressure = groundTruthPoint.pressure},
.originTimestamp = groundTruthPoint.timestamp,
.targetTimestamp = predictionTimestamp});
predictionTimestamp += TEST_PREDICTION_INTERVAL_NANOS;
}
return predictions;
}
// Generates TEST_MAX_NUM_PREDICTIONS predictions from the given most recent two ground truth points
// by linear extrapolation of position and pressure. The interval between consecutive predictions'
// timestamps is TEST_PREDICTION_INTERVAL_NANOS.
std::vector<PredictionPoint> generatePredictionsByLinearExtrapolation(
const GroundTruthPoint& firstGroundTruth, const GroundTruthPoint& secondGroundTruth) {
// Precompute deltas.
const Eigen::Vector2f trajectory = secondGroundTruth.position - firstGroundTruth.position;
const float deltaPressure = secondGroundTruth.pressure - firstGroundTruth.pressure;
// Compute predictions.
std::vector<PredictionPoint> predictions;
Eigen::Vector2f predictionPosition = secondGroundTruth.position;
float predictionPressure = secondGroundTruth.pressure;
nsecs_t predictionTargetTimestamp = secondGroundTruth.timestamp;
for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS; ++i) {
predictionPosition += trajectory;
predictionPressure += deltaPressure;
predictionTargetTimestamp += TEST_PREDICTION_INTERVAL_NANOS;
predictions.push_back(
PredictionPoint{{.position = predictionPosition, .pressure = predictionPressure},
.originTimestamp = secondGroundTruth.timestamp,
.targetTimestamp = predictionTargetTimestamp});
}
return predictions;
}
TEST(GeneratePredictionsTest, GenerateConstantPredictions) {
const GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10, 20), .pressure = 0.3f},
.timestamp = TEST_INITIAL_TIMESTAMP};
const std::vector<PredictionPoint> predictionPoints =
generateConstantPredictions(groundTruthPoint);
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, predictionPoints.size());
for (size_t i = 0; i < predictionPoints.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
EXPECT_THAT(predictionPoints[i].position, Vector2fNear(groundTruthPoint.position, 1e-6));
EXPECT_THAT(predictionPoints[i].pressure, FloatNear(groundTruthPoint.pressure, 1e-6));
EXPECT_EQ(predictionPoints[i].originTimestamp, groundTruthPoint.timestamp);
EXPECT_EQ(predictionPoints[i].targetTimestamp,
groundTruthPoint.timestamp +
static_cast<nsecs_t>(i + 1) * TEST_PREDICTION_INTERVAL_NANOS);
}
}
TEST(GeneratePredictionsTest, LinearExtrapolationFromTwoPoints) {
const nsecs_t initialTimestamp = TEST_INITIAL_TIMESTAMP;
const std::vector<PredictionPoint> predictionPoints = generatePredictionsByLinearExtrapolation(
GroundTruthPoint{{.position = Eigen::Vector2f(100, 200), .pressure = 0.9f},
.timestamp = initialTimestamp},
GroundTruthPoint{{.position = Eigen::Vector2f(105, 190), .pressure = 0.8f},
.timestamp = initialTimestamp + TEST_PREDICTION_INTERVAL_NANOS});
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, predictionPoints.size());
const nsecs_t originTimestamp = initialTimestamp + TEST_PREDICTION_INTERVAL_NANOS;
EXPECT_THAT(predictionPoints[0],
PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(110, 180),
.pressure = 0.7f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp +
TEST_PREDICTION_INTERVAL_NANOS},
0.001));
EXPECT_THAT(predictionPoints[1],
PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(115, 170),
.pressure = 0.6f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp +
2 * TEST_PREDICTION_INTERVAL_NANOS},
0.001));
EXPECT_THAT(predictionPoints[2],
PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(120, 160),
.pressure = 0.5f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp +
3 * TEST_PREDICTION_INTERVAL_NANOS},
0.001));
EXPECT_THAT(predictionPoints[3],
PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(125, 150),
.pressure = 0.4f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp +
4 * TEST_PREDICTION_INTERVAL_NANOS},
0.001));
EXPECT_THAT(predictionPoints[4],
PredictionPointNear(PredictionPoint{{.position = Eigen::Vector2f(130, 140),
.pressure = 0.3f},
.originTimestamp = originTimestamp,
.targetTimestamp = originTimestamp +
5 * TEST_PREDICTION_INTERVAL_NANOS},
0.001));
}
// Generates predictions by linear extrapolation for each consecutive pair of ground truth points
// (see the comment for the above function for further explanation). Returns a vector of vectors of
// prediction points, where the first index is the source ground truth index, and the second is the
// prediction target index.
//
// The returned vector has size equal to the input vector, and the first element of the returned
// vector is always empty.
std::vector<std::vector<PredictionPoint>> generateAllPredictionsByLinearExtrapolation(
const std::vector<GroundTruthPoint>& groundTruthPoints) {
std::vector<std::vector<PredictionPoint>> allPredictions;
allPredictions.emplace_back();
for (size_t i = 1; i < groundTruthPoints.size(); ++i) {
allPredictions.push_back(generatePredictionsByLinearExtrapolation(groundTruthPoints[i - 1],
groundTruthPoints[i]));
}
return allPredictions;
}
TEST(GeneratePredictionsTest, GenerateAllPredictions) {
const nsecs_t initialTimestamp = TEST_INITIAL_TIMESTAMP;
std::vector<GroundTruthPoint>
groundTruthPoints{GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
.pressure = 0.5f},
.timestamp = initialTimestamp},
GroundTruthPoint{{.position = Eigen::Vector2f(1, -1),
.pressure = 0.51f},
.timestamp = initialTimestamp +
2 * TEST_PREDICTION_INTERVAL_NANOS},
GroundTruthPoint{{.position = Eigen::Vector2f(2, -2),
.pressure = 0.52f},
.timestamp = initialTimestamp +
3 * TEST_PREDICTION_INTERVAL_NANOS}};
const std::vector<std::vector<PredictionPoint>> allPredictions =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
// Check format of allPredictions data.
ASSERT_EQ(groundTruthPoints.size(), allPredictions.size());
EXPECT_TRUE(allPredictions[0].empty());
EXPECT_EQ(TEST_MAX_NUM_PREDICTIONS, allPredictions[1].size());
EXPECT_EQ(TEST_MAX_NUM_PREDICTIONS, allPredictions[2].size());
// Check positions of predictions generated from first pair of ground truth points.
EXPECT_THAT(allPredictions[1][0].position, Vector2fNear(Eigen::Vector2f(2, -2), 1e-9));
EXPECT_THAT(allPredictions[1][1].position, Vector2fNear(Eigen::Vector2f(3, -3), 1e-9));
EXPECT_THAT(allPredictions[1][2].position, Vector2fNear(Eigen::Vector2f(4, -4), 1e-9));
EXPECT_THAT(allPredictions[1][3].position, Vector2fNear(Eigen::Vector2f(5, -5), 1e-9));
EXPECT_THAT(allPredictions[1][4].position, Vector2fNear(Eigen::Vector2f(6, -6), 1e-9));
// Check pressures of predictions generated from first pair of ground truth points.
EXPECT_FLOAT_EQ(0.52f, allPredictions[1][0].pressure);
EXPECT_FLOAT_EQ(0.53f, allPredictions[1][1].pressure);
EXPECT_FLOAT_EQ(0.54f, allPredictions[1][2].pressure);
EXPECT_FLOAT_EQ(0.55f, allPredictions[1][3].pressure);
EXPECT_FLOAT_EQ(0.56f, allPredictions[1][4].pressure);
}
// --- Prediction error helper functions. ---
struct GeneralPositionErrors {
float alongTrajectoryErrorMean;
float alongTrajectoryErrorStd;
float offTrajectoryRmse;
};
// Inputs:
// • Vector of ground truth points
// • Vector of vectors of prediction points, where the first index is the source ground truth
// index, and the second is the prediction target index.
//
// Returns a vector of GeneralPositionErrors, indexed by prediction time delta bucket.
std::vector<GeneralPositionErrors> computeGeneralPositionErrors(
const std::vector<GroundTruthPoint>& groundTruthPoints,
const std::vector<std::vector<PredictionPoint>>& predictionPoints) {
// Aggregate errors by time bucket (prediction target index).
std::vector<GeneralPositionErrors> generalPostitionErrors;
for (size_t predictionTargetIndex = 0; predictionTargetIndex < TEST_MAX_NUM_PREDICTIONS;
++predictionTargetIndex) {
std::vector<float> alongTrajectoryErrors;
std::vector<float> alongTrajectorySquaredErrors;
std::vector<float> offTrajectoryErrors;
for (size_t sourceGroundTruthIndex = 1; sourceGroundTruthIndex < groundTruthPoints.size();
++sourceGroundTruthIndex) {
const size_t targetGroundTruthIndex =
sourceGroundTruthIndex + predictionTargetIndex + 1;
// Only include errors for points with a ground truth value.
if (targetGroundTruthIndex < groundTruthPoints.size()) {
const Eigen::Vector2f trajectory =
(groundTruthPoints[targetGroundTruthIndex].position -
groundTruthPoints[targetGroundTruthIndex - 1].position)
.normalized();
const Eigen::Vector2f orthogonalTrajectory =
Eigen::Rotation2Df(M_PI_2) * trajectory;
const Eigen::Vector2f positionError =
predictionPoints[sourceGroundTruthIndex][predictionTargetIndex].position -
groundTruthPoints[targetGroundTruthIndex].position;
alongTrajectoryErrors.push_back(positionError.dot(trajectory));
alongTrajectorySquaredErrors.push_back(alongTrajectoryErrors.back() *
alongTrajectoryErrors.back());
offTrajectoryErrors.push_back(positionError.dot(orthogonalTrajectory));
}
}
generalPostitionErrors.push_back(
{.alongTrajectoryErrorMean = average(alongTrajectoryErrors),
.alongTrajectoryErrorStd = standardDeviation(alongTrajectoryErrors),
.offTrajectoryRmse = rmse(offTrajectoryErrors)});
}
return generalPostitionErrors;
}
// Inputs:
// • Vector of ground truth points
// • Vector of vectors of prediction points, where the first index is the source ground truth
// index, and the second is the prediction target index.
//
// Returns a vector of pressure RMSEs, indexed by prediction time delta bucket.
std::vector<float> computePressureRmses(
const std::vector<GroundTruthPoint>& groundTruthPoints,
const std::vector<std::vector<PredictionPoint>>& predictionPoints) {
// Aggregate errors by time bucket (prediction target index).
std::vector<float> pressureRmses;
for (size_t predictionTargetIndex = 0; predictionTargetIndex < TEST_MAX_NUM_PREDICTIONS;
++predictionTargetIndex) {
std::vector<float> pressureErrors;
for (size_t sourceGroundTruthIndex = 1; sourceGroundTruthIndex < groundTruthPoints.size();
++sourceGroundTruthIndex) {
const size_t targetGroundTruthIndex =
sourceGroundTruthIndex + predictionTargetIndex + 1;
// Only include errors for points with a ground truth value.
if (targetGroundTruthIndex < groundTruthPoints.size()) {
pressureErrors.push_back(
predictionPoints[sourceGroundTruthIndex][predictionTargetIndex].pressure -
groundTruthPoints[targetGroundTruthIndex].pressure);
}
}
pressureRmses.push_back(rmse(pressureErrors));
}
return pressureRmses;
}
TEST(ErrorComputationHelperTest, ComputeGeneralPositionErrorsSimpleTest) {
std::vector<GroundTruthPoint> groundTruthPoints =
generateConstantGroundTruthPoints(GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
.pressure = 0.0f},
.timestamp = TEST_INITIAL_TIMESTAMP},
/*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
groundTruthPoints[3].position = Eigen::Vector2f(1, 0);
groundTruthPoints[4].position = Eigen::Vector2f(1, 1);
groundTruthPoints[5].position = Eigen::Vector2f(1, 3);
groundTruthPoints[6].position = Eigen::Vector2f(2, 3);
std::vector<std::vector<PredictionPoint>> predictionPoints =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
// The generated predictions look like:
//
// | Source | Target Ground Truth Index |
// | Index | 2 | 3 | 4 | 5 | 6 |
// |------------|--------|--------|--------|--------|--------|
// | 1 | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) |
// | 2 | | (0, 0) | (0, 0) | (0, 0) | (0, 0) |
// | 3 | | | (2, 0) | (3, 0) | (4, 0) |
// | 4 | | | | (1, 2) | (1, 3) |
// | 5 | | | | | (1, 5) |
// |---------------------------------------------------------|
// | Actual Ground Truth Values |
// | Position | (0, 0) | (1, 0) | (1, 1) | (1, 3) | (2, 3) |
// | Previous | (0, 0) | (0, 0) | (1, 0) | (1, 1) | (1, 3) |
//
// Note: this table organizes prediction targets by target ground truth index. Metrics are
// aggregated across points with the same prediction time bucket index, which is different.
// Each down-right diagonal from this table gives us points from a unique time bucket.
// Initialize expected prediction errors from the table above. The first time bucket corresponds
// to the long diagonal of the table, and subsequent time buckets step up-right from there.
const std::vector<std::vector<float>> expectedAlongTrajectoryErrors{{0, -1, -1, -1, -1},
{-1, -1, -3, -1},
{-1, -3, 2},
{-3, -2},
{-2}};
const std::vector<std::vector<float>> expectedOffTrajectoryErrors{{0, 0, 1, 0, 2},
{0, 1, 2, 0},
{1, 1, 3},
{1, 3},
{3}};
std::vector<GeneralPositionErrors> generalPositionErrors =
computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, generalPositionErrors.size());
for (size_t i = 0; i < generalPositionErrors.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
EXPECT_FLOAT_EQ(average(expectedAlongTrajectoryErrors[i]),
generalPositionErrors[i].alongTrajectoryErrorMean);
EXPECT_FLOAT_EQ(standardDeviation(expectedAlongTrajectoryErrors[i]),
generalPositionErrors[i].alongTrajectoryErrorStd);
EXPECT_FLOAT_EQ(rmse(expectedOffTrajectoryErrors[i]),
generalPositionErrors[i].offTrajectoryRmse);
}
}
TEST(ErrorComputationHelperTest, ComputePressureRmsesSimpleTest) {
// Generate ground truth points with pressures {0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5}.
// (We need TEST_MAX_NUM_PREDICTIONS + 2 to test all prediction time buckets.)
std::vector<GroundTruthPoint> groundTruthPoints =
generateConstantGroundTruthPoints(GroundTruthPoint{{.position = Eigen::Vector2f(0, 0),
.pressure = 0.0f},
.timestamp = TEST_INITIAL_TIMESTAMP},
/*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
for (size_t i = 4; i < groundTruthPoints.size(); ++i) {
groundTruthPoints[i].pressure = 0.5f;
}
std::vector<std::vector<PredictionPoint>> predictionPoints =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
std::vector<float> pressureRmses = computePressureRmses(groundTruthPoints, predictionPoints);
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, pressureRmses.size());
EXPECT_FLOAT_EQ(rmse(std::vector<float>{0.0f, 0.0f, -0.5f, 0.5f, 0.0f}), pressureRmses[0]);
EXPECT_FLOAT_EQ(rmse(std::vector<float>{0.0f, -0.5f, -0.5f, 1.0f}), pressureRmses[1]);
EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f, -0.5f, -0.5f}), pressureRmses[2]);
EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f, -0.5f}), pressureRmses[3]);
EXPECT_FLOAT_EQ(rmse(std::vector<float>{-0.5f}), pressureRmses[4]);
}
// --- MotionPredictorMetricsManager tests. ---
// Helper function that instantiates a MetricsManager with the given mock logged AtomFields. Takes
// vectors of ground truth and prediction points of the same length, and passes these points to the
// MetricsManager. The format of these vectors is expected to be:
// • groundTruthPoints: chronologically-ordered ground truth points, with at least 2 elements.
// • predictionPoints: the first index points to a vector of predictions corresponding to the
// source ground truth point with the same index.
// - The first element should be empty, because there are not expected to be predictions until
// we have received 2 ground truth points.
// - The last element may be empty, because there will be no future ground truth points to
// associate with those predictions (if not empty, it will be ignored).
// - To test all prediction buckets, there should be at least TEST_MAX_NUM_PREDICTIONS non-empty
// prediction sets (that is, excluding the first and last). Thus, groundTruthPoints and
// predictionPoints should have size at least TEST_MAX_NUM_PREDICTIONS + 2.
//
// The passed-in outAtomFields will contain the logged AtomFields when the function returns.
//
// This function returns void so that it can use test assertions.
void runMetricsManager(const std::vector<GroundTruthPoint>& groundTruthPoints,
const std::vector<std::vector<PredictionPoint>>& predictionPoints,
std::vector<AtomFields>& outAtomFields) {
MotionPredictorMetricsManager metricsManager(TEST_PREDICTION_INTERVAL_NANOS,
TEST_MAX_NUM_PREDICTIONS);
metricsManager.setMockLoggedAtomFields(&outAtomFields);
// Validate structure of groundTruthPoints and predictionPoints.
ASSERT_EQ(predictionPoints.size(), groundTruthPoints.size());
ASSERT_GE(groundTruthPoints.size(), 2u);
ASSERT_EQ(predictionPoints[0].size(), 0u);
for (size_t i = 1; i + 1 < predictionPoints.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
ASSERT_EQ(predictionPoints[i].size(), TEST_MAX_NUM_PREDICTIONS);
}
// Pass ground truth points and predictions (for all except first and last ground truth).
for (size_t i = 0; i < groundTruthPoints.size(); ++i) {
metricsManager.onRecord(makeMotionEvent(groundTruthPoints[i]));
if ((i > 0) && (i + 1 < predictionPoints.size())) {
metricsManager.onPredict(makeMotionEvent(predictionPoints[i]));
}
}
// Send a stroke-end event to trigger the logging call.
metricsManager.onRecord(makeLiftMotionEvent());
}
// Vacuous test:
// • Input: no prediction data.
// • Expectation: no metrics should be logged.
TEST(MotionPredictorMetricsManagerTest, NoPredictions) {
std::vector<AtomFields> mockLoggedAtomFields;
MotionPredictorMetricsManager metricsManager(TEST_PREDICTION_INTERVAL_NANOS,
TEST_MAX_NUM_PREDICTIONS);
metricsManager.setMockLoggedAtomFields(&mockLoggedAtomFields);
metricsManager.onRecord(makeMotionEvent(
GroundTruthPoint{{.position = Eigen::Vector2f(0, 0), .pressure = 0}, .timestamp = 0}));
metricsManager.onRecord(makeLiftMotionEvent());
// Check that mockLoggedAtomFields is still empty (as it was initialized empty), ensuring that
// no metrics were logged.
EXPECT_EQ(0u, mockLoggedAtomFields.size());
}
// Perfect predictions test:
// • Input: constant input events, perfect predictions matching the input events.
// • Expectation: all error metrics should be zero, or NO_DATA_SENTINEL for "unreported" metrics.
// (For example, scale-invariant errors are only reported for the final time bucket.)
TEST(MotionPredictorMetricsManagerTest, ConstantGroundTruthPerfectPredictions) {
GroundTruthPoint groundTruthPoint{{.position = Eigen::Vector2f(10.0f, 20.0f), .pressure = 0.6f},
.timestamp = TEST_INITIAL_TIMESTAMP};
// Generate ground truth and prediction points as described by the runMetricsManager comment.
std::vector<GroundTruthPoint> groundTruthPoints;
std::vector<std::vector<PredictionPoint>> predictionPoints;
for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
groundTruthPoints.push_back(groundTruthPoint);
predictionPoints.push_back(i > 0 ? generateConstantPredictions(groundTruthPoint)
: std::vector<PredictionPoint>{});
groundTruthPoint.timestamp += TEST_PREDICTION_INTERVAL_NANOS;
}
std::vector<AtomFields> atomFields;
runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
// Check that errors are all zero, or NO_DATA_SENTINEL for unreported metrics.
for (size_t i = 0; i < atomFields.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
const AtomFields& atom = atomFields[i];
const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
// General errors: reported for every time bucket.
EXPECT_EQ(0, atom.alongTrajectoryErrorMeanMillipixels);
EXPECT_EQ(0, atom.alongTrajectoryErrorStdMillipixels);
EXPECT_EQ(0, atom.offTrajectoryRmseMillipixels);
EXPECT_EQ(0, atom.pressureRmseMilliunits);
// High-velocity errors: reported only for the last two time buckets.
// However, this data has zero velocity, so these metrics should all be NO_DATA_SENTINEL.
EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityAlongTrajectoryRmse);
EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityOffTrajectoryRmse);
// Scale-invariant errors: reported only for the last time bucket.
if (i + 1 == atomFields.size()) {
EXPECT_EQ(0, atom.scaleInvariantAlongTrajectoryRmse);
EXPECT_EQ(0, atom.scaleInvariantOffTrajectoryRmse);
} else {
EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantAlongTrajectoryRmse);
EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantOffTrajectoryRmse);
}
}
}
TEST(MotionPredictorMetricsManagerTest, QuadraticPressureLinearPredictions) {
// Generate ground truth points.
//
// Ground truth pressures are a quadratically increasing function from some initial value.
const float initialPressure = 0.5f;
const float quadraticCoefficient = 0.01f;
std::vector<GroundTruthPoint> groundTruthPoints;
nsecs_t timestamp = TEST_INITIAL_TIMESTAMP;
// As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
// ground truth points.
for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
const float pressure = initialPressure + quadraticCoefficient * static_cast<float>(i * i);
groundTruthPoints.push_back(
GroundTruthPoint{{.position = Eigen::Vector2f(0, 0), .pressure = pressure},
.timestamp = timestamp});
timestamp += TEST_PREDICTION_INTERVAL_NANOS;
}
// Note: the first index is the source ground truth index, and the second is the prediction
// target index.
std::vector<std::vector<PredictionPoint>> predictionPoints =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
const std::vector<float> pressureErrors =
computePressureRmses(groundTruthPoints, predictionPoints);
// Run test.
std::vector<AtomFields> atomFields;
runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
// Check logged metrics match expectations.
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
for (size_t i = 0; i < atomFields.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
const AtomFields& atom = atomFields[i];
// Check time bucket delta matches expectation based on index and prediction interval.
const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
// Check pressure error matches expectation.
EXPECT_NEAR(static_cast<int>(1000 * pressureErrors[i]), atom.pressureRmseMilliunits, 1);
}
}
TEST(MotionPredictorMetricsManagerTest, QuadraticPositionLinearPredictionsGeneralErrors) {
// Generate ground truth points.
//
// Each component of the ground truth positions are an independent quadratically increasing
// function from some initial value.
const Eigen::Vector2f initialPosition(200, 300);
const Eigen::Vector2f quadraticCoefficients(-2, 3);
std::vector<GroundTruthPoint> groundTruthPoints;
nsecs_t timestamp = TEST_INITIAL_TIMESTAMP;
// As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
// ground truth points.
for (size_t i = 0; i < TEST_MAX_NUM_PREDICTIONS + 2; ++i) {
const Eigen::Vector2f position =
initialPosition + quadraticCoefficients * static_cast<float>(i * i);
groundTruthPoints.push_back(
GroundTruthPoint{{.position = position, .pressure = 0.5}, .timestamp = timestamp});
timestamp += TEST_PREDICTION_INTERVAL_NANOS;
}
// Note: the first index is the source ground truth index, and the second is the prediction
// target index.
std::vector<std::vector<PredictionPoint>> predictionPoints =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
std::vector<GeneralPositionErrors> generalPositionErrors =
computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
// Run test.
std::vector<AtomFields> atomFields;
runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
// Check logged metrics match expectations.
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
for (size_t i = 0; i < atomFields.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
const AtomFields& atom = atomFields[i];
// Check time bucket delta matches expectation based on index and prediction interval.
const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
// Check general position errors match expectation.
EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorMean),
atom.alongTrajectoryErrorMeanMillipixels, 1);
EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorStd),
atom.alongTrajectoryErrorStdMillipixels, 1);
EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].offTrajectoryRmse),
atom.offTrajectoryRmseMillipixels, 1);
}
}
// Counterclockwise regular octagonal section test:
// • Input – ground truth: constantly-spaced input events starting at a trajectory pointing exactly
// rightwards, and rotating by 45° counterclockwise after each input.
// • Input – predictions: simple linear extrapolations of previous two ground truth points.
//
// The code below uses the following terminology to distinguish references to ground truth events:
// • Source ground truth: the most recent ground truth point received at the time the prediction
// was made.
// • Target ground truth: the ground truth event that the prediction was attempting to match.
TEST(MotionPredictorMetricsManagerTest, CounterclockwiseOctagonGroundTruthLinearPredictions) {
// Select a stroke velocity that exceeds the high-velocity threshold of 1100 px/sec.
// For an input rate of 240 hz, 1100 px/sec * (1/240) sec/input ≈ 4.58 pixels per input.
const float strokeVelocity = 10; // pixels per input
// As described in the runMetricsManager comment, we should have TEST_MAX_NUM_PREDICTIONS + 2
// ground truth points.
std::vector<GroundTruthPoint> groundTruthPoints = generateCircularArcGroundTruthPoints(
/*initialPosition=*/Eigen::Vector2f(100, 100),
/*initialAngle=*/M_PI_2,
/*velocity=*/strokeVelocity,
/*turningAngle=*/-M_PI_4,
/*numPoints=*/TEST_MAX_NUM_PREDICTIONS + 2);
std::vector<std::vector<PredictionPoint>> predictionPoints =
generateAllPredictionsByLinearExtrapolation(groundTruthPoints);
std::vector<GeneralPositionErrors> generalPositionErrors =
computeGeneralPositionErrors(groundTruthPoints, predictionPoints);
// Run test.
std::vector<AtomFields> atomFields;
runMetricsManager(groundTruthPoints, predictionPoints, atomFields);
// Check logged metrics match expectations.
ASSERT_EQ(TEST_MAX_NUM_PREDICTIONS, atomFields.size());
for (size_t i = 0; i < atomFields.size(); ++i) {
SCOPED_TRACE(testing::Message() << "i = " << i);
const AtomFields& atom = atomFields[i];
const nsecs_t deltaTimeBucketNanos = TEST_PREDICTION_INTERVAL_NANOS * (i + 1);
EXPECT_EQ(deltaTimeBucketNanos / NANOS_PER_MILLIS, atom.deltaTimeBucketMilliseconds);
// General errors: reported for every time bucket.
EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].alongTrajectoryErrorMean),
atom.alongTrajectoryErrorMeanMillipixels, 1);
// We allow for some floating point error in standard deviation (0.02 pixels).
EXPECT_NEAR(1000 * generalPositionErrors[i].alongTrajectoryErrorStd,
atom.alongTrajectoryErrorStdMillipixels, 20);
// All position errors are equal, so the standard deviation should be approximately zero.
EXPECT_NEAR(0, atom.alongTrajectoryErrorStdMillipixels, 20);
// Absolute value for RMSE, since it must be non-negative.
EXPECT_NEAR(static_cast<int>(1000 * generalPositionErrors[i].offTrajectoryRmse),
atom.offTrajectoryRmseMillipixels, 1);
// High-velocity errors: reported only for the last two time buckets.
//
// Since our input stroke velocity is chosen to be above the high-velocity threshold, all
// data contributes to high-velocity errors, and thus high-velocity errors should be equal
// to general errors (where reported).
//
// As above, use absolute value for RMSE, since it must be non-negative.
if (i + 2 >= atomFields.size()) {
EXPECT_NEAR(static_cast<int>(
1000 * std::abs(generalPositionErrors[i].alongTrajectoryErrorMean)),
atom.highVelocityAlongTrajectoryRmse, 1);
EXPECT_NEAR(static_cast<int>(1000 *
std::abs(generalPositionErrors[i].offTrajectoryRmse)),
atom.highVelocityOffTrajectoryRmse, 1);
} else {
EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityAlongTrajectoryRmse);
EXPECT_EQ(NO_DATA_SENTINEL, atom.highVelocityOffTrajectoryRmse);
}
// Scale-invariant errors: reported only for the last time bucket, where the reported value
// is the aggregation across all time buckets.
//
// The MetricsManager stores mMaxNumPredictions recent ground truth segments. Our ground
// truth segments here all have a length of strokeVelocity, so we can convert general errors
// to scale-invariant errors by dividing by `strokeVelocty * TEST_MAX_NUM_PREDICTIONS`.
//
// As above, use absolute value for RMSE, since it must be non-negative.
if (i + 1 == atomFields.size()) {
const float pathLength = strokeVelocity * TEST_MAX_NUM_PREDICTIONS;
std::vector<float> alongTrajectoryAbsoluteErrors;
std::vector<float> offTrajectoryAbsoluteErrors;
for (size_t j = 0; j < TEST_MAX_NUM_PREDICTIONS; ++j) {
alongTrajectoryAbsoluteErrors.push_back(
std::abs(generalPositionErrors[j].alongTrajectoryErrorMean));
offTrajectoryAbsoluteErrors.push_back(
std::abs(generalPositionErrors[j].offTrajectoryRmse));
}
EXPECT_NEAR(static_cast<int>(1000 * average(alongTrajectoryAbsoluteErrors) /
pathLength),
atom.scaleInvariantAlongTrajectoryRmse, 1);
EXPECT_NEAR(static_cast<int>(1000 * average(offTrajectoryAbsoluteErrors) / pathLength),
atom.scaleInvariantOffTrajectoryRmse, 1);
} else {
EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantAlongTrajectoryRmse);
EXPECT_EQ(NO_DATA_SENTINEL, atom.scaleInvariantOffTrajectoryRmse);
}
}
}
} // namespace
} // namespace android