| /* |
| * Copyright 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cmath> |
| #include <vector> |
| #include <ultrahdr/gainmapmath.h> |
| |
| namespace android::ultrahdr { |
| |
| static const std::vector<float> kPqOETF = [] { |
| std::vector<float> result; |
| for (int idx = 0; idx < kPqOETFNumEntries; idx++) { |
| float value = static_cast<float>(idx) / static_cast<float>(kPqOETFNumEntries - 1); |
| result.push_back(pqOetf(value)); |
| } |
| return result; |
| }(); |
| |
| static const std::vector<float> kPqInvOETF = [] { |
| std::vector<float> result; |
| for (int idx = 0; idx < kPqInvOETFNumEntries; idx++) { |
| float value = static_cast<float>(idx) / static_cast<float>(kPqInvOETFNumEntries - 1); |
| result.push_back(pqInvOetf(value)); |
| } |
| return result; |
| }(); |
| |
| static const std::vector<float> kHlgOETF = [] { |
| std::vector<float> result; |
| for (int idx = 0; idx < kHlgOETFNumEntries; idx++) { |
| float value = static_cast<float>(idx) / static_cast<float>(kHlgOETFNumEntries - 1); |
| result.push_back(hlgOetf(value)); |
| } |
| return result; |
| }(); |
| |
| static const std::vector<float> kHlgInvOETF = [] { |
| std::vector<float> result; |
| for (int idx = 0; idx < kHlgInvOETFNumEntries; idx++) { |
| float value = static_cast<float>(idx) / static_cast<float>(kHlgInvOETFNumEntries - 1); |
| result.push_back(hlgInvOetf(value)); |
| } |
| return result; |
| }(); |
| |
| static const std::vector<float> kSrgbInvOETF = [] { |
| std::vector<float> result; |
| for (int idx = 0; idx < kSrgbInvOETFNumEntries; idx++) { |
| float value = static_cast<float>(idx) / static_cast<float>(kSrgbInvOETFNumEntries - 1); |
| result.push_back(srgbInvOetf(value)); |
| } |
| return result; |
| }(); |
| |
| // Use Shepard's method for inverse distance weighting. For more information: |
| // en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method |
| |
| float ShepardsIDW::euclideanDistance(float x1, float x2, float y1, float y2) { |
| return sqrt(((y2 - y1) * (y2 - y1)) + (x2 - x1) * (x2 - x1)); |
| } |
| |
| void ShepardsIDW::fillShepardsIDW(float *weights, int incR, int incB) { |
| for (int y = 0; y < mMapScaleFactor; y++) { |
| for (int x = 0; x < mMapScaleFactor; x++) { |
| float pos_x = ((float)x) / mMapScaleFactor; |
| float pos_y = ((float)y) / mMapScaleFactor; |
| int curr_x = floor(pos_x); |
| int curr_y = floor(pos_y); |
| int next_x = curr_x + incR; |
| int next_y = curr_y + incB; |
| float e1_distance = euclideanDistance(pos_x, curr_x, pos_y, curr_y); |
| int index = y * mMapScaleFactor * 4 + x * 4; |
| if (e1_distance == 0) { |
| weights[index++] = 1.f; |
| weights[index++] = 0.f; |
| weights[index++] = 0.f; |
| weights[index++] = 0.f; |
| } else { |
| float e1_weight = 1.f / e1_distance; |
| |
| float e2_distance = euclideanDistance(pos_x, curr_x, pos_y, next_y); |
| float e2_weight = 1.f / e2_distance; |
| |
| float e3_distance = euclideanDistance(pos_x, next_x, pos_y, curr_y); |
| float e3_weight = 1.f / e3_distance; |
| |
| float e4_distance = euclideanDistance(pos_x, next_x, pos_y, next_y); |
| float e4_weight = 1.f / e4_distance; |
| |
| float total_weight = e1_weight + e2_weight + e3_weight + e4_weight; |
| |
| weights[index++] = e1_weight / total_weight; |
| weights[index++] = e2_weight / total_weight; |
| weights[index++] = e3_weight / total_weight; |
| weights[index++] = e4_weight / total_weight; |
| } |
| } |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // sRGB transformations |
| |
| static const float kMaxPixelFloat = 1.0f; |
| static float clampPixelFloat(float value) { |
| return (value < 0.0f) ? 0.0f : (value > kMaxPixelFloat) ? kMaxPixelFloat : value; |
| } |
| |
| // See IEC 61966-2-1/Amd 1:2003, Equation F.7. |
| static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f; |
| |
| float srgbLuminance(Color e) { |
| return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b; |
| } |
| |
| // See ITU-R BT.709-6, Section 3. |
| // Uses the same coefficients for deriving luma signal as |
| // IEC 61966-2-1/Amd 1:2003 states for luminance, so we reuse the luminance |
| // function above. |
| static const float kSrgbCb = 1.8556f, kSrgbCr = 1.5748f; |
| |
| Color srgbRgbToYuv(Color e_gamma) { |
| float y_gamma = srgbLuminance(e_gamma); |
| return {{{ y_gamma, |
| (e_gamma.b - y_gamma) / kSrgbCb, |
| (e_gamma.r - y_gamma) / kSrgbCr }}}; |
| } |
| |
| // See ITU-R BT.709-6, Section 3. |
| // Same derivation to BT.2100's YUV->RGB, below. Similar to srgbRgbToYuv, we |
| // can reuse the luminance coefficients since they are the same. |
| static const float kSrgbGCb = kSrgbB * kSrgbCb / kSrgbG; |
| static const float kSrgbGCr = kSrgbR * kSrgbCr / kSrgbG; |
| |
| Color srgbYuvToRgb(Color e_gamma) { |
| return {{{ clampPixelFloat(e_gamma.y + kSrgbCr * e_gamma.v), |
| clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v), |
| clampPixelFloat(e_gamma.y + kSrgbCb * e_gamma.u) }}}; |
| } |
| |
| // See IEC 61966-2-1/Amd 1:2003, Equations F.5 and F.6. |
| float srgbInvOetf(float e_gamma) { |
| if (e_gamma <= 0.04045f) { |
| return e_gamma / 12.92f; |
| } else { |
| return pow((e_gamma + 0.055f) / 1.055f, 2.4); |
| } |
| } |
| |
| Color srgbInvOetf(Color e_gamma) { |
| return {{{ srgbInvOetf(e_gamma.r), |
| srgbInvOetf(e_gamma.g), |
| srgbInvOetf(e_gamma.b) }}}; |
| } |
| |
| // See IEC 61966-2-1, Equations F.5 and F.6. |
| float srgbInvOetfLUT(float e_gamma) { |
| uint32_t value = static_cast<uint32_t>(e_gamma * (kSrgbInvOETFNumEntries - 1) + 0.5); |
| //TODO() : Remove once conversion modules have appropriate clamping in place |
| value = CLIP3(value, 0, kSrgbInvOETFNumEntries - 1); |
| return kSrgbInvOETF[value]; |
| } |
| |
| Color srgbInvOetfLUT(Color e_gamma) { |
| return {{{ srgbInvOetfLUT(e_gamma.r), |
| srgbInvOetfLUT(e_gamma.g), |
| srgbInvOetfLUT(e_gamma.b) }}}; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Display-P3 transformations |
| |
| // See SMPTE EG 432-1, Equation 7-8. |
| static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f; |
| |
| float p3Luminance(Color e) { |
| return kP3R * e.r + kP3G * e.g + kP3B * e.b; |
| } |
| |
| // See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2. |
| // Unfortunately, calculation of luma signal differs from calculation of |
| // luminance for Display-P3, so we can't reuse p3Luminance here. |
| static const float kP3YR = 0.299f, kP3YG = 0.587f, kP3YB = 0.114f; |
| static const float kP3Cb = 1.772f, kP3Cr = 1.402f; |
| |
| Color p3RgbToYuv(Color e_gamma) { |
| float y_gamma = kP3YR * e_gamma.r + kP3YG * e_gamma.g + kP3YB * e_gamma.b; |
| return {{{ y_gamma, |
| (e_gamma.b - y_gamma) / kP3Cb, |
| (e_gamma.r - y_gamma) / kP3Cr }}}; |
| } |
| |
| // See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2. |
| // Same derivation to BT.2100's YUV->RGB, below. Similar to p3RgbToYuv, we must |
| // use luma signal coefficients rather than the luminance coefficients. |
| static const float kP3GCb = kP3YB * kP3Cb / kP3YG; |
| static const float kP3GCr = kP3YR * kP3Cr / kP3YG; |
| |
| Color p3YuvToRgb(Color e_gamma) { |
| return {{{ clampPixelFloat(e_gamma.y + kP3Cr * e_gamma.v), |
| clampPixelFloat(e_gamma.y - kP3GCb * e_gamma.u - kP3GCr * e_gamma.v), |
| clampPixelFloat(e_gamma.y + kP3Cb * e_gamma.u) }}}; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // BT.2100 transformations - according to ITU-R BT.2100-2 |
| |
| // See ITU-R BT.2100-2, Table 5, HLG Reference OOTF |
| static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f; |
| |
| float bt2100Luminance(Color e) { |
| return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; |
| } |
| |
| // See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals. |
| // BT.2100 uses the same coefficients for calculating luma signal and luminance, |
| // so we reuse the luminance function here. |
| static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f; |
| |
| Color bt2100RgbToYuv(Color e_gamma) { |
| float y_gamma = bt2100Luminance(e_gamma); |
| return {{{ y_gamma, |
| (e_gamma.b - y_gamma) / kBt2100Cb, |
| (e_gamma.r - y_gamma) / kBt2100Cr }}}; |
| } |
| |
| // See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals. |
| // |
| // Similar to bt2100RgbToYuv above, we can reuse the luminance coefficients. |
| // |
| // Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty |
| // straight forward; we just invert the formulas for U and V above. But deriving |
| // the formula for G is a bit more complicated: |
| // |
| // Start with equation for luminance: |
| // Y = kBt2100R * R + kBt2100G * G + kBt2100B * B |
| // Solve for G: |
| // G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B |
| // Substitute equations for R and B in terms YUV: |
| // G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B |
| // Simplify: |
| // G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G) |
| // + U * (kBt2100B * kBt2100Cb / kBt2100G) |
| // + V * (kBt2100R * kBt2100Cr / kBt2100G) |
| // |
| // We then get the following coeficients for calculating G from YUV: |
| // |
| // Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1 |
| // Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645 |
| // Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713 |
| |
| static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G; |
| static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G; |
| |
| Color bt2100YuvToRgb(Color e_gamma) { |
| return {{{ clampPixelFloat(e_gamma.y + kBt2100Cr * e_gamma.v), |
| clampPixelFloat(e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v), |
| clampPixelFloat(e_gamma.y + kBt2100Cb * e_gamma.u) }}}; |
| } |
| |
| // See ITU-R BT.2100-2, Table 5, HLG Reference OETF. |
| static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073; |
| |
| float hlgOetf(float e) { |
| if (e <= 1.0f/12.0f) { |
| return sqrt(3.0f * e); |
| } else { |
| return kHlgA * log(12.0f * e - kHlgB) + kHlgC; |
| } |
| } |
| |
| Color hlgOetf(Color e) { |
| return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}}; |
| } |
| |
| float hlgOetfLUT(float e) { |
| uint32_t value = static_cast<uint32_t>(e * (kHlgOETFNumEntries - 1) + 0.5); |
| //TODO() : Remove once conversion modules have appropriate clamping in place |
| value = CLIP3(value, 0, kHlgOETFNumEntries - 1); |
| |
| return kHlgOETF[value]; |
| } |
| |
| Color hlgOetfLUT(Color e) { |
| return {{{ hlgOetfLUT(e.r), hlgOetfLUT(e.g), hlgOetfLUT(e.b) }}}; |
| } |
| |
| // See ITU-R BT.2100-2, Table 5, HLG Reference EOTF. |
| float hlgInvOetf(float e_gamma) { |
| if (e_gamma <= 0.5f) { |
| return pow(e_gamma, 2.0f) / 3.0f; |
| } else { |
| return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f; |
| } |
| } |
| |
| Color hlgInvOetf(Color e_gamma) { |
| return {{{ hlgInvOetf(e_gamma.r), |
| hlgInvOetf(e_gamma.g), |
| hlgInvOetf(e_gamma.b) }}}; |
| } |
| |
| float hlgInvOetfLUT(float e_gamma) { |
| uint32_t value = static_cast<uint32_t>(e_gamma * (kHlgInvOETFNumEntries - 1) + 0.5); |
| //TODO() : Remove once conversion modules have appropriate clamping in place |
| value = CLIP3(value, 0, kHlgInvOETFNumEntries - 1); |
| |
| return kHlgInvOETF[value]; |
| } |
| |
| Color hlgInvOetfLUT(Color e_gamma) { |
| return {{{ hlgInvOetfLUT(e_gamma.r), |
| hlgInvOetfLUT(e_gamma.g), |
| hlgInvOetfLUT(e_gamma.b) }}}; |
| } |
| |
| // See ITU-R BT.2100-2, Table 4, Reference PQ OETF. |
| static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f; |
| static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f, |
| kPqC3 = 2392.0f / 4096.0f * 32.0f; |
| |
| float pqOetf(float e) { |
| if (e <= 0.0f) return 0.0f; |
| return pow((kPqC1 + kPqC2 * pow(e, kPqM1)) / (1 + kPqC3 * pow(e, kPqM1)), |
| kPqM2); |
| } |
| |
| Color pqOetf(Color e) { |
| return {{{ pqOetf(e.r), pqOetf(e.g), pqOetf(e.b) }}}; |
| } |
| |
| float pqOetfLUT(float e) { |
| uint32_t value = static_cast<uint32_t>(e * (kPqOETFNumEntries - 1) + 0.5); |
| //TODO() : Remove once conversion modules have appropriate clamping in place |
| value = CLIP3(value, 0, kPqOETFNumEntries - 1); |
| |
| return kPqOETF[value]; |
| } |
| |
| Color pqOetfLUT(Color e) { |
| return {{{ pqOetfLUT(e.r), pqOetfLUT(e.g), pqOetfLUT(e.b) }}}; |
| } |
| |
| // Derived from the inverse of the Reference PQ OETF. |
| static const float kPqInvA = 128.0f, kPqInvB = 107.0f, kPqInvC = 2413.0f, kPqInvD = 2392.0f, |
| kPqInvE = 6.2773946361f, kPqInvF = 0.0126833f; |
| |
| float pqInvOetf(float e_gamma) { |
| // This equation blows up if e_gamma is 0.0, and checking on <= 0.0 doesn't |
| // always catch 0.0. So, check on 0.0001, since anything this small will |
| // effectively be crushed to zero anyways. |
| if (e_gamma <= 0.0001f) return 0.0f; |
| return pow((kPqInvA * pow(e_gamma, kPqInvF) - kPqInvB) |
| / (kPqInvC - kPqInvD * pow(e_gamma, kPqInvF)), |
| kPqInvE); |
| } |
| |
| Color pqInvOetf(Color e_gamma) { |
| return {{{ pqInvOetf(e_gamma.r), |
| pqInvOetf(e_gamma.g), |
| pqInvOetf(e_gamma.b) }}}; |
| } |
| |
| float pqInvOetfLUT(float e_gamma) { |
| uint32_t value = static_cast<uint32_t>(e_gamma * (kPqInvOETFNumEntries - 1) + 0.5); |
| //TODO() : Remove once conversion modules have appropriate clamping in place |
| value = CLIP3(value, 0, kPqInvOETFNumEntries - 1); |
| |
| return kPqInvOETF[value]; |
| } |
| |
| Color pqInvOetfLUT(Color e_gamma) { |
| return {{{ pqInvOetfLUT(e_gamma.r), |
| pqInvOetfLUT(e_gamma.g), |
| pqInvOetfLUT(e_gamma.b) }}}; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Color conversions |
| |
| Color bt709ToP3(Color e) { |
| return {{{ 0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b, |
| 0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b, |
| 0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b }}}; |
| } |
| |
| Color bt709ToBt2100(Color e) { |
| return {{{ 0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b, |
| 0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b, |
| 0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b }}}; |
| } |
| |
| Color p3ToBt709(Color e) { |
| return {{{ 1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b, |
| -0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b, |
| -0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b }}}; |
| } |
| |
| Color p3ToBt2100(Color e) { |
| return {{{ 0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b, |
| 0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b, |
| -0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b }}}; |
| } |
| |
| Color bt2100ToBt709(Color e) { |
| return {{{ 1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b, |
| -0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b, |
| -0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b }}}; |
| } |
| |
| Color bt2100ToP3(Color e) { |
| return {{{ 1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b, |
| -0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b, |
| 0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b |
| }}}; |
| } |
| |
| // TODO: confirm we always want to convert like this before calculating |
| // luminance. |
| ColorTransformFn getHdrConversionFn(ultrahdr_color_gamut sdr_gamut, |
| ultrahdr_color_gamut hdr_gamut) { |
| switch (sdr_gamut) { |
| case ULTRAHDR_COLORGAMUT_BT709: |
| switch (hdr_gamut) { |
| case ULTRAHDR_COLORGAMUT_BT709: |
| return identityConversion; |
| case ULTRAHDR_COLORGAMUT_P3: |
| return p3ToBt709; |
| case ULTRAHDR_COLORGAMUT_BT2100: |
| return bt2100ToBt709; |
| case ULTRAHDR_COLORGAMUT_UNSPECIFIED: |
| return nullptr; |
| } |
| break; |
| case ULTRAHDR_COLORGAMUT_P3: |
| switch (hdr_gamut) { |
| case ULTRAHDR_COLORGAMUT_BT709: |
| return bt709ToP3; |
| case ULTRAHDR_COLORGAMUT_P3: |
| return identityConversion; |
| case ULTRAHDR_COLORGAMUT_BT2100: |
| return bt2100ToP3; |
| case ULTRAHDR_COLORGAMUT_UNSPECIFIED: |
| return nullptr; |
| } |
| break; |
| case ULTRAHDR_COLORGAMUT_BT2100: |
| switch (hdr_gamut) { |
| case ULTRAHDR_COLORGAMUT_BT709: |
| return bt709ToBt2100; |
| case ULTRAHDR_COLORGAMUT_P3: |
| return p3ToBt2100; |
| case ULTRAHDR_COLORGAMUT_BT2100: |
| return identityConversion; |
| case ULTRAHDR_COLORGAMUT_UNSPECIFIED: |
| return nullptr; |
| } |
| break; |
| case ULTRAHDR_COLORGAMUT_UNSPECIFIED: |
| return nullptr; |
| } |
| } |
| |
| // All of these conversions are derived from the respective input YUV->RGB conversion followed by |
| // the RGB->YUV for the receiving encoding. They are consistent with the RGB<->YUV functions in this |
| // file, given that we uses BT.709 encoding for sRGB and BT.601 encoding for Display-P3, to match |
| // DataSpace. |
| |
| Color yuv709To601(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + 0.101579f * e_gamma.u + 0.196076f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.989854f * e_gamma.u + -0.110653f * e_gamma.v, |
| 0.0f * e_gamma.y + -0.072453f * e_gamma.u + 0.983398f * e_gamma.v }}}; |
| } |
| |
| Color yuv709To2100(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + -0.016969f * e_gamma.u + 0.096312f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.995306f * e_gamma.u + -0.051192f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.011507f * e_gamma.u + 1.002637f * e_gamma.v }}}; |
| } |
| |
| Color yuv601To709(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + -0.118188f * e_gamma.u + -0.212685f * e_gamma.v, |
| 0.0f * e_gamma.y + 1.018640f * e_gamma.u + 0.114618f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.075049f * e_gamma.u + 1.025327f * e_gamma.v }}}; |
| } |
| |
| Color yuv601To2100(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + -0.128245f * e_gamma.u + -0.115879f * e_gamma.v, |
| 0.0f * e_gamma.y + 1.010016f * e_gamma.u + 0.061592f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.086969f * e_gamma.u + 1.029350f * e_gamma.v }}}; |
| } |
| |
| Color yuv2100To709(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + 0.018149f * e_gamma.u + -0.095132f * e_gamma.v, |
| 0.0f * e_gamma.y + 1.004123f * e_gamma.u + 0.051267f * e_gamma.v, |
| 0.0f * e_gamma.y + -0.011524f * e_gamma.u + 0.996782f * e_gamma.v }}}; |
| } |
| |
| Color yuv2100To601(Color e_gamma) { |
| return {{{ 1.0f * e_gamma.y + 0.117887f * e_gamma.u + 0.105521f * e_gamma.v, |
| 0.0f * e_gamma.y + 0.995211f * e_gamma.u + -0.059549f * e_gamma.v, |
| 0.0f * e_gamma.y + -0.084085f * e_gamma.u + 0.976518f * e_gamma.v }}}; |
| } |
| |
| void transformYuv420(jr_uncompressed_ptr image, size_t x_chroma, size_t y_chroma, |
| ColorTransformFn fn) { |
| Color yuv1 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 ); |
| Color yuv2 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 ); |
| Color yuv3 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 + 1); |
| Color yuv4 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 + 1); |
| |
| yuv1 = fn(yuv1); |
| yuv2 = fn(yuv2); |
| yuv3 = fn(yuv3); |
| yuv4 = fn(yuv4); |
| |
| Color new_uv = (yuv1 + yuv2 + yuv3 + yuv4) / 4.0f; |
| |
| size_t pixel_y1_idx = x_chroma * 2 + y_chroma * 2 * image->luma_stride; |
| size_t pixel_y2_idx = (x_chroma * 2 + 1) + y_chroma * 2 * image->luma_stride; |
| size_t pixel_y3_idx = x_chroma * 2 + (y_chroma * 2 + 1) * image->luma_stride; |
| size_t pixel_y4_idx = (x_chroma * 2 + 1) + (y_chroma * 2 + 1) * image->luma_stride; |
| |
| uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y1_idx]; |
| uint8_t& y2_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y2_idx]; |
| uint8_t& y3_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y3_idx]; |
| uint8_t& y4_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y4_idx]; |
| |
| size_t pixel_count = image->chroma_stride * image->height / 2; |
| size_t pixel_uv_idx = x_chroma + y_chroma * (image->chroma_stride); |
| |
| uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->chroma_data)[pixel_uv_idx]; |
| uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->chroma_data)[pixel_count + pixel_uv_idx]; |
| |
| y1_uint = static_cast<uint8_t>(CLIP3((yuv1.y * 255.0f + 0.5f), 0, 255)); |
| y2_uint = static_cast<uint8_t>(CLIP3((yuv2.y * 255.0f + 0.5f), 0, 255)); |
| y3_uint = static_cast<uint8_t>(CLIP3((yuv3.y * 255.0f + 0.5f), 0, 255)); |
| y4_uint = static_cast<uint8_t>(CLIP3((yuv4.y * 255.0f + 0.5f), 0, 255)); |
| |
| u_uint = static_cast<uint8_t>(CLIP3((new_uv.u * 255.0f + 128.0f + 0.5f), 0, 255)); |
| v_uint = static_cast<uint8_t>(CLIP3((new_uv.v * 255.0f + 128.0f + 0.5f), 0, 255)); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Gain map calculations |
| uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata) { |
| return encodeGain(y_sdr, y_hdr, metadata, |
| log2(metadata->minContentBoost), log2(metadata->maxContentBoost)); |
| } |
| |
| uint8_t encodeGain(float y_sdr, float y_hdr, ultrahdr_metadata_ptr metadata, |
| float log2MinContentBoost, float log2MaxContentBoost) { |
| float gain = 1.0f; |
| if (y_sdr > 0.0f) { |
| gain = y_hdr / y_sdr; |
| } |
| |
| if (gain < metadata->minContentBoost) gain = metadata->minContentBoost; |
| if (gain > metadata->maxContentBoost) gain = metadata->maxContentBoost; |
| |
| return static_cast<uint8_t>((log2(gain) - log2MinContentBoost) |
| / (log2MaxContentBoost - log2MinContentBoost) |
| * 255.0f); |
| } |
| |
| Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata) { |
| float logBoost = log2(metadata->minContentBoost) * (1.0f - gain) |
| + log2(metadata->maxContentBoost) * gain; |
| float gainFactor = exp2(logBoost); |
| return e * gainFactor; |
| } |
| |
| Color applyGain(Color e, float gain, ultrahdr_metadata_ptr metadata, float displayBoost) { |
| float logBoost = log2(metadata->minContentBoost) * (1.0f - gain) |
| + log2(metadata->maxContentBoost) * gain; |
| float gainFactor = exp2(logBoost * displayBoost / metadata->maxContentBoost); |
| return e * gainFactor; |
| } |
| |
| Color applyGainLUT(Color e, float gain, GainLUT& gainLUT) { |
| float gainFactor = gainLUT.getGainFactor(gain); |
| return e * gainFactor; |
| } |
| |
| Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->data); |
| size_t luma_stride = image->luma_stride; |
| uint8_t* chroma_data = reinterpret_cast<uint8_t*>(image->chroma_data); |
| size_t chroma_stride = image->chroma_stride; |
| |
| size_t offset_cr = chroma_stride * (image->height / 2); |
| size_t pixel_y_idx = x + y * luma_stride; |
| size_t pixel_chroma_idx = x / 2 + (y / 2) * chroma_stride; |
| |
| uint8_t y_uint = luma_data[pixel_y_idx]; |
| uint8_t u_uint = chroma_data[pixel_chroma_idx]; |
| uint8_t v_uint = chroma_data[offset_cr + pixel_chroma_idx]; |
| |
| // 128 bias for UV given we are using jpeglib; see: |
| // https://github.com/kornelski/libjpeg/blob/master/structure.doc |
| return {{{ static_cast<float>(y_uint) / 255.0f, |
| (static_cast<float>(u_uint) - 128.0f) / 255.0f, |
| (static_cast<float>(v_uint) - 128.0f) / 255.0f }}}; |
| } |
| |
| Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| uint16_t* luma_data = reinterpret_cast<uint16_t*>(image->data); |
| size_t luma_stride = image->luma_stride == 0 ? image->width : image->luma_stride; |
| uint16_t* chroma_data = reinterpret_cast<uint16_t*>(image->chroma_data); |
| size_t chroma_stride = image->chroma_stride; |
| |
| size_t pixel_y_idx = y * luma_stride + x; |
| size_t pixel_u_idx = (y >> 1) * chroma_stride + (x & ~0x1); |
| size_t pixel_v_idx = pixel_u_idx + 1; |
| |
| uint16_t y_uint = luma_data[pixel_y_idx] >> 6; |
| uint16_t u_uint = chroma_data[pixel_u_idx] >> 6; |
| uint16_t v_uint = chroma_data[pixel_v_idx] >> 6; |
| |
| // Conversions include taking narrow-range into account. |
| return {{{ (static_cast<float>(y_uint) - 64.0f) / 876.0f, |
| (static_cast<float>(u_uint) - 64.0f) / 896.0f - 0.5f, |
| (static_cast<float>(v_uint) - 64.0f) / 896.0f - 0.5f }}}; |
| } |
| |
| typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t); |
| |
| static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y, |
| getPixelFn get_pixel_fn) { |
| Color e = {{{ 0.0f, 0.0f, 0.0f }}}; |
| for (size_t dy = 0; dy < map_scale_factor; ++dy) { |
| for (size_t dx = 0; dx < map_scale_factor; ++dx) { |
| e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy); |
| } |
| } |
| |
| return e / static_cast<float>(map_scale_factor * map_scale_factor); |
| } |
| |
| Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel); |
| } |
| |
| Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return samplePixels(image, map_scale_factor, x, y, getP010Pixel); |
| } |
| |
| // TODO: do we need something more clever for filtering either the map or images |
| // to generate the map? |
| |
| static size_t clamp(const size_t& val, const size_t& low, const size_t& high) { |
| return val < low ? low : (high < val ? high : val); |
| } |
| |
| static float mapUintToFloat(uint8_t map_uint) { |
| return static_cast<float>(map_uint) / 255.0f; |
| } |
| |
| static float pythDistance(float x_diff, float y_diff) { |
| return sqrt(pow(x_diff, 2.0f) + pow(y_diff, 2.0f)); |
| } |
| |
| // TODO: If map_scale_factor is guaranteed to be an integer, then remove the following. |
| float sampleMap(jr_uncompressed_ptr map, float map_scale_factor, size_t x, size_t y) { |
| float x_map = static_cast<float>(x) / map_scale_factor; |
| float y_map = static_cast<float>(y) / map_scale_factor; |
| |
| size_t x_lower = static_cast<size_t>(floor(x_map)); |
| size_t x_upper = x_lower + 1; |
| size_t y_lower = static_cast<size_t>(floor(y_map)); |
| size_t y_upper = y_lower + 1; |
| |
| x_lower = clamp(x_lower, 0, map->width - 1); |
| x_upper = clamp(x_upper, 0, map->width - 1); |
| y_lower = clamp(y_lower, 0, map->height - 1); |
| y_upper = clamp(y_upper, 0, map->height - 1); |
| |
| // Use Shepard's method for inverse distance weighting. For more information: |
| // en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method |
| |
| float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]); |
| float e1_dist = pythDistance(x_map - static_cast<float>(x_lower), |
| y_map - static_cast<float>(y_lower)); |
| if (e1_dist == 0.0f) return e1; |
| |
| float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]); |
| float e2_dist = pythDistance(x_map - static_cast<float>(x_lower), |
| y_map - static_cast<float>(y_upper)); |
| if (e2_dist == 0.0f) return e2; |
| |
| float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]); |
| float e3_dist = pythDistance(x_map - static_cast<float>(x_upper), |
| y_map - static_cast<float>(y_lower)); |
| if (e3_dist == 0.0f) return e3; |
| |
| float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]); |
| float e4_dist = pythDistance(x_map - static_cast<float>(x_upper), |
| y_map - static_cast<float>(y_upper)); |
| if (e4_dist == 0.0f) return e2; |
| |
| float e1_weight = 1.0f / e1_dist; |
| float e2_weight = 1.0f / e2_dist; |
| float e3_weight = 1.0f / e3_dist; |
| float e4_weight = 1.0f / e4_dist; |
| float total_weight = e1_weight + e2_weight + e3_weight + e4_weight; |
| |
| return e1 * (e1_weight / total_weight) |
| + e2 * (e2_weight / total_weight) |
| + e3 * (e3_weight / total_weight) |
| + e4 * (e4_weight / total_weight); |
| } |
| |
| float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y, |
| ShepardsIDW& weightTables) { |
| // TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the |
| // following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor) |
| int x_lower = x / map_scale_factor; |
| int x_upper = x_lower + 1; |
| int y_lower = y / map_scale_factor; |
| int y_upper = y_lower + 1; |
| |
| x_lower = std::min(x_lower, map->width - 1); |
| x_upper = std::min(x_upper, map->width - 1); |
| y_lower = std::min(y_lower, map->height - 1); |
| y_upper = std::min(y_upper, map->height - 1); |
| |
| float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]); |
| float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]); |
| float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]); |
| float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]); |
| |
| // TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the |
| // following by using & (map_scale_factor - 1) |
| int offset_x = x % map_scale_factor; |
| int offset_y = y % map_scale_factor; |
| |
| float* weights = weightTables.mWeights; |
| if (x_lower == x_upper && y_lower == y_upper) weights = weightTables.mWeightsC; |
| else if (x_lower == x_upper) weights = weightTables.mWeightsNR; |
| else if (y_lower == y_upper) weights = weightTables.mWeightsNB; |
| weights += offset_y * map_scale_factor * 4 + offset_x * 4; |
| |
| return e1 * weights[0] + e2 * weights[1] + e3 * weights[2] + e4 * weights[3]; |
| } |
| |
| uint32_t colorToRgba1010102(Color e_gamma) { |
| return (0x3ff & static_cast<uint32_t>(e_gamma.r * 1023.0f)) |
| | ((0x3ff & static_cast<uint32_t>(e_gamma.g * 1023.0f)) << 10) |
| | ((0x3ff & static_cast<uint32_t>(e_gamma.b * 1023.0f)) << 20) |
| | (0x3 << 30); // Set alpha to 1.0 |
| } |
| |
| uint64_t colorToRgbaF16(Color e_gamma) { |
| return (uint64_t) floatToHalf(e_gamma.r) |
| | (((uint64_t) floatToHalf(e_gamma.g)) << 16) |
| | (((uint64_t) floatToHalf(e_gamma.b)) << 32) |
| | (((uint64_t) floatToHalf(1.0f)) << 48); |
| } |
| |
| } // namespace android::ultrahdr |