blob: 1cb7f7ba8cd073c2053b7b4c34cf01bb9fcf0fca [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "TestHelpers.h"
#include <chrono>
#include <vector>
#include <attestation/HmacKeyManager.h>
#include <gtest/gtest.h>
#include <input/InputTransport.h>
using namespace std::chrono_literals;
namespace android {
namespace {
struct Pointer {
int32_t id;
float x;
float y;
ToolType toolType = ToolType::FINGER;
bool isResampled = false;
};
struct InputEventEntry {
std::chrono::nanoseconds eventTime;
std::vector<Pointer> pointers;
int32_t action;
};
} // namespace
class TouchResamplingTest : public testing::Test {
protected:
std::unique_ptr<InputPublisher> mPublisher;
std::unique_ptr<InputConsumer> mConsumer;
PreallocatedInputEventFactory mEventFactory;
uint32_t mSeq = 1;
void SetUp() override {
std::unique_ptr<InputChannel> serverChannel, clientChannel;
status_t result =
InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel);
ASSERT_EQ(OK, result);
mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel));
mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel),
/*enableTouchResampling=*/true);
}
status_t publishSimpleMotionEventWithCoords(int32_t action, nsecs_t eventTime,
const std::vector<PointerProperties>& properties,
const std::vector<PointerCoords>& coords);
void publishSimpleMotionEvent(int32_t action, nsecs_t eventTime,
const std::vector<Pointer>& pointers);
void publishInputEventEntries(const std::vector<InputEventEntry>& entries);
void consumeInputEventEntries(const std::vector<InputEventEntry>& entries,
std::chrono::nanoseconds frameTime);
void receiveResponseUntilSequence(uint32_t seq);
};
status_t TouchResamplingTest::publishSimpleMotionEventWithCoords(
int32_t action, nsecs_t eventTime, const std::vector<PointerProperties>& properties,
const std::vector<PointerCoords>& coords) {
const ui::Transform identityTransform;
const nsecs_t downTime = 0;
if (action == AMOTION_EVENT_ACTION_DOWN && eventTime != 0) {
ADD_FAILURE() << "Downtime should be equal to 0 (hardcoded for convenience)";
}
return mPublisher->publishMotionEvent(mSeq++, InputEvent::nextId(), /*deviceId=*/1,
AINPUT_SOURCE_TOUCHSCREEN, /*displayId=*/0, INVALID_HMAC,
action, /*actionButton=*/0, /*flags=*/0, /*edgeFlags=*/0,
AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE,
identityTransform, /*xPrecision=*/0, /*yPrecision=*/0,
AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform,
downTime, eventTime, properties.size(), properties.data(),
coords.data());
}
void TouchResamplingTest::publishSimpleMotionEvent(int32_t action, nsecs_t eventTime,
const std::vector<Pointer>& pointers) {
std::vector<PointerProperties> properties;
std::vector<PointerCoords> coords;
for (const Pointer& pointer : pointers) {
properties.push_back({});
properties.back().clear();
properties.back().id = pointer.id;
properties.back().toolType = pointer.toolType;
coords.push_back({});
coords.back().clear();
coords.back().setAxisValue(AMOTION_EVENT_AXIS_X, pointer.x);
coords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, pointer.y);
}
status_t result = publishSimpleMotionEventWithCoords(action, eventTime, properties, coords);
ASSERT_EQ(OK, result);
}
/**
* Each entry is published separately, one entry at a time. As a result, action is used here
* on a per-entry basis.
*/
void TouchResamplingTest::publishInputEventEntries(const std::vector<InputEventEntry>& entries) {
for (const InputEventEntry& entry : entries) {
publishSimpleMotionEvent(entry.action, entry.eventTime.count(), entry.pointers);
}
}
/**
* Inside the publisher, read responses repeatedly until the desired sequence number is returned.
*
* Sometimes, when you call 'sendFinishedSignal', you would be finishing a batch which is comprised
* of several input events. As a result, consumer will generate multiple 'finish' signals on your
* behalf.
*
* In this function, we call 'receiveConsumerResponse' in a loop until the desired sequence number
* is returned.
*/
void TouchResamplingTest::receiveResponseUntilSequence(uint32_t seq) {
size_t consumedEvents = 0;
while (consumedEvents < 100) {
android::base::Result<InputPublisher::ConsumerResponse> response =
mPublisher->receiveConsumerResponse();
ASSERT_TRUE(response.ok());
ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*response));
const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*response);
ASSERT_TRUE(finish.handled)
<< "publisher receiveFinishedSignal should have set handled to consumer's reply";
if (finish.seq == seq) {
return;
}
consumedEvents++;
}
FAIL() << "Got " << consumedEvents << "events, but still no event with seq=" << seq;
}
/**
* All entries are compared against a single MotionEvent, but the same data structure
* InputEventEntry is used here for simpler code. As a result, the entire array of InputEventEntry
* must contain identical values for the action field.
*/
void TouchResamplingTest::consumeInputEventEntries(const std::vector<InputEventEntry>& entries,
std::chrono::nanoseconds frameTime) {
ASSERT_GE(entries.size(), 1U) << "Must have at least 1 InputEventEntry to compare against";
uint32_t consumeSeq;
InputEvent* event;
status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, frameTime.count(),
&consumeSeq, &event);
ASSERT_EQ(OK, status);
MotionEvent* motionEvent = static_cast<MotionEvent*>(event);
ASSERT_EQ(entries.size() - 1, motionEvent->getHistorySize());
for (size_t i = 0; i < entries.size(); i++) { // most recent sample is last
SCOPED_TRACE(i);
const InputEventEntry& entry = entries[i];
ASSERT_EQ(entry.action, motionEvent->getAction());
ASSERT_EQ(entry.eventTime.count(), motionEvent->getHistoricalEventTime(i));
ASSERT_EQ(entry.pointers.size(), motionEvent->getPointerCount());
for (size_t p = 0; p < motionEvent->getPointerCount(); p++) {
SCOPED_TRACE(p);
// The pointers can be in any order, both in MotionEvent as well as InputEventEntry
ssize_t motionEventPointerIndex = motionEvent->findPointerIndex(entry.pointers[p].id);
ASSERT_GE(motionEventPointerIndex, 0) << "Pointer must be present in MotionEvent";
ASSERT_EQ(entry.pointers[p].x,
motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_X,
motionEventPointerIndex, i));
ASSERT_EQ(entry.pointers[p].x,
motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_X,
motionEventPointerIndex, i));
ASSERT_EQ(entry.pointers[p].y,
motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_Y,
motionEventPointerIndex, i));
ASSERT_EQ(entry.pointers[p].y,
motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y,
motionEventPointerIndex, i));
ASSERT_EQ(entry.pointers[p].isResampled,
motionEvent->isResampled(motionEventPointerIndex, i));
}
}
status = mConsumer->sendFinishedSignal(consumeSeq, true);
ASSERT_EQ(OK, status);
receiveResponseUntilSequence(consumeSeq);
}
/**
* Timeline
* ---------+------------------+------------------+--------+-----------------+----------------------
* 0 ms 10 ms 20 ms 25 ms 35 ms
* ACTION_DOWN ACTION_MOVE ACTION_MOVE ^ ^
* | |
* resampled value |
* frameTime
* Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case
* However, that would be 10 ms later than the last real sample (which came in at 20 ms).
* Therefore, the resampling should happen at 20 ms + RESAMPLE_MAX_PREDICTION = 28 ms.
* In this situation, though, resample time is further limited by taking half of the difference
* between the last two real events, which would put this time at:
* 20 ms + (20 ms - 10 ms) / 2 = 25 ms.
*/
TEST_F(TouchResamplingTest, EventIsResampled) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 35ms;
expectedEntries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
}
/**
* Same as above test, but use pointer id=1 instead of 0 to make sure that system does not
* have these hardcoded.
*/
TEST_F(TouchResamplingTest, EventIsResampledWithDifferentId) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 35ms;
expectedEntries = {
// id x y
{10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
{25ms, {{1, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
}
/**
* Stylus pointer coordinates are not resampled, but an event is still generated for the batch with
* a resampled timestamp and should be marked as such.
*/
TEST_F(TouchResamplingTest, StylusCoordinatesNotResampledFor) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 35ms;
expectedEntries = {
// id x y
{10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE},
// A resampled event is generated, but the stylus coordinates are not resampled.
{25ms,
{{0, 30, 30, .toolType = ToolType::STYLUS, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
}
/**
* Event should not be resampled when sample time is equal to event time.
*/
TEST_F(TouchResamplingTest, SampleTimeEqualsEventTime) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/;
expectedEntries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
// no resampled event because the time of resample falls exactly on the existing event
};
consumeInputEventEntries(expectedEntries, frameTime);
}
/**
* Once we send a resampled value to the app, we should continue to "lie" if the pointer
* does not move. So, if the pointer keeps the same coordinates, resampled value should continue
* to be used.
*/
TEST_F(TouchResamplingTest, ResampledValueIsUsedForIdenticalCoordinates) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 35ms;
expectedEntries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Coordinate value 30 has been resampled to 35. When a new event comes in with value 30 again,
// the system should still report 35.
entries = {
// id x y
{40ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/;
expectedEntries = {
// id x y
{40ms,
{{0, 35, 30, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten
{45ms,
{{0, 35, 30, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten
};
consumeInputEventEntries(expectedEntries, frameTime);
}
TEST_F(TouchResamplingTest, OldEventReceivedAfterResampleOccurs) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y
entries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 35ms;
expectedEntries = {
// id x y
{10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE},
{20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE},
{25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Above, the resampled event is at 25ms rather than at 30 ms = 35ms - RESAMPLE_LATENCY
// because we are further bound by how far we can extrapolate by the "last time delta".
// That's 50% of (20 ms - 10ms) => 5ms. So we can't predict more than 5 ms into the future
// from the event at 20ms, which is why the resampled event is at t = 25 ms.
// We resampled the event to 25 ms. Now, an older 'real' event comes in.
entries = {
// id x y
{24ms, {{0, 40, 30}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 50ms;
expectedEntries = {
// id x y
{24ms,
{{0, 35, 30, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten
{26ms,
{{0, 45, 30, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten
};
consumeInputEventEntries(expectedEntries, frameTime);
}
TEST_F(TouchResamplingTest, TwoPointersAreResampledIndependently) {
std::chrono::nanoseconds frameTime;
std::vector<InputEventEntry> entries, expectedEntries;
// full action for when a pointer with id=1 appears (some other pointer must already be present)
constexpr int32_t actionPointer1Down =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
// full action for when a pointer with id=0 disappears (some other pointer must still remain)
constexpr int32_t actionPointer0Up =
AMOTION_EVENT_ACTION_POINTER_UP + (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
// Initial ACTION_DOWN should be separate, because the first consume event will only return
// InputEvent with a single action.
entries = {
// id x y
{0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN},
};
publishInputEventEntries(entries);
frameTime = 5ms;
expectedEntries = {
// id x y
{0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN},
};
consumeInputEventEntries(expectedEntries, frameTime);
entries = {
// id x y
{10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 10ms + 5ms /*RESAMPLE_LATENCY*/;
expectedEntries = {
// id x y
{10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE},
// no resampled value because frameTime - RESAMPLE_LATENCY == eventTime
};
consumeInputEventEntries(expectedEntries, frameTime);
// Second pointer id=1 appears
entries = {
// id x y
{15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down},
};
publishInputEventEntries(entries);
frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/;
expectedEntries = {
// id x y
{15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down},
// no resampled value because frameTime - RESAMPLE_LATENCY == eventTime
};
consumeInputEventEntries(expectedEntries, frameTime);
// Both pointers move
entries = {
// id x y
{30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE},
{40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/;
expectedEntries = {
// id x y
{30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE},
{40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
{45ms,
{{0, 130, 130, .isResampled = true}, {1, 650, 650, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
// Both pointers move again
entries = {
// id x y
{60ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
{70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 75ms + 5ms /*RESAMPLE_LATENCY*/;
/**
* The sample at t = 60, pointer id 0 is not equal to 120, because this value of 120 was
* received twice, and resampled to 130. So if we already reported it as "130", we continue
* to report it as such. Similar with pointer id 1.
*/
expectedEntries = {
{60ms,
{{0, 130, 130, .isResampled = true}, // not 120! because it matches previous real event
{1, 650, 650, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE},
{70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE},
{75ms,
{{0, 135, 135, .isResampled = true}, {1, 750, 750, .isResampled = true}},
AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
// First pointer id=0 leaves the screen
entries = {
// id x y
{80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up},
};
publishInputEventEntries(entries);
frameTime = 90ms;
expectedEntries = {
// id x y
{80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up},
// no resampled event for ACTION_POINTER_UP
};
consumeInputEventEntries(expectedEntries, frameTime);
// Remaining pointer id=1 is still present, but doesn't move
entries = {
// id x y
{90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
};
publishInputEventEntries(entries);
frameTime = 100ms;
expectedEntries = {
// id x y
{90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE},
/**
* The latest event with ACTION_MOVE was at t = 70, coord = 700.
* Use that value for resampling here: (600 - 700) / (90 - 70) * 5 + 600
*/
{95ms, {{1, 575, 575, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE},
};
consumeInputEventEntries(expectedEntries, frameTime);
}
} // namespace android