| /* |
| * Copyright (C) 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "TestHelpers.h" |
| |
| #include <chrono> |
| #include <vector> |
| |
| #include <attestation/HmacKeyManager.h> |
| #include <gtest/gtest.h> |
| #include <input/InputTransport.h> |
| |
| using namespace std::chrono_literals; |
| |
| namespace android { |
| |
| namespace { |
| |
| struct Pointer { |
| int32_t id; |
| float x; |
| float y; |
| ToolType toolType = ToolType::FINGER; |
| bool isResampled = false; |
| }; |
| |
| struct InputEventEntry { |
| std::chrono::nanoseconds eventTime; |
| std::vector<Pointer> pointers; |
| int32_t action; |
| }; |
| |
| } // namespace |
| |
| class TouchResamplingTest : public testing::Test { |
| protected: |
| std::unique_ptr<InputPublisher> mPublisher; |
| std::unique_ptr<InputConsumer> mConsumer; |
| PreallocatedInputEventFactory mEventFactory; |
| |
| uint32_t mSeq = 1; |
| |
| void SetUp() override { |
| std::unique_ptr<InputChannel> serverChannel, clientChannel; |
| status_t result = |
| InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel); |
| ASSERT_EQ(OK, result); |
| |
| mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel)); |
| mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel), |
| /*enableTouchResampling=*/true); |
| } |
| |
| status_t publishSimpleMotionEventWithCoords(int32_t action, nsecs_t eventTime, |
| const std::vector<PointerProperties>& properties, |
| const std::vector<PointerCoords>& coords); |
| void publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, |
| const std::vector<Pointer>& pointers); |
| void publishInputEventEntries(const std::vector<InputEventEntry>& entries); |
| void consumeInputEventEntries(const std::vector<InputEventEntry>& entries, |
| std::chrono::nanoseconds frameTime); |
| void receiveResponseUntilSequence(uint32_t seq); |
| }; |
| |
| status_t TouchResamplingTest::publishSimpleMotionEventWithCoords( |
| int32_t action, nsecs_t eventTime, const std::vector<PointerProperties>& properties, |
| const std::vector<PointerCoords>& coords) { |
| const ui::Transform identityTransform; |
| const nsecs_t downTime = 0; |
| |
| if (action == AMOTION_EVENT_ACTION_DOWN && eventTime != 0) { |
| ADD_FAILURE() << "Downtime should be equal to 0 (hardcoded for convenience)"; |
| } |
| return mPublisher->publishMotionEvent(mSeq++, InputEvent::nextId(), /*deviceId=*/1, |
| AINPUT_SOURCE_TOUCHSCREEN, /*displayId=*/0, INVALID_HMAC, |
| action, /*actionButton=*/0, /*flags=*/0, /*edgeFlags=*/0, |
| AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE, |
| identityTransform, /*xPrecision=*/0, /*yPrecision=*/0, |
| AMOTION_EVENT_INVALID_CURSOR_POSITION, |
| AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, |
| downTime, eventTime, properties.size(), properties.data(), |
| coords.data()); |
| } |
| |
| void TouchResamplingTest::publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, |
| const std::vector<Pointer>& pointers) { |
| std::vector<PointerProperties> properties; |
| std::vector<PointerCoords> coords; |
| |
| for (const Pointer& pointer : pointers) { |
| properties.push_back({}); |
| properties.back().clear(); |
| properties.back().id = pointer.id; |
| properties.back().toolType = pointer.toolType; |
| |
| coords.push_back({}); |
| coords.back().clear(); |
| coords.back().setAxisValue(AMOTION_EVENT_AXIS_X, pointer.x); |
| coords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, pointer.y); |
| } |
| |
| status_t result = publishSimpleMotionEventWithCoords(action, eventTime, properties, coords); |
| ASSERT_EQ(OK, result); |
| } |
| |
| /** |
| * Each entry is published separately, one entry at a time. As a result, action is used here |
| * on a per-entry basis. |
| */ |
| void TouchResamplingTest::publishInputEventEntries(const std::vector<InputEventEntry>& entries) { |
| for (const InputEventEntry& entry : entries) { |
| publishSimpleMotionEvent(entry.action, entry.eventTime.count(), entry.pointers); |
| } |
| } |
| |
| /** |
| * Inside the publisher, read responses repeatedly until the desired sequence number is returned. |
| * |
| * Sometimes, when you call 'sendFinishedSignal', you would be finishing a batch which is comprised |
| * of several input events. As a result, consumer will generate multiple 'finish' signals on your |
| * behalf. |
| * |
| * In this function, we call 'receiveConsumerResponse' in a loop until the desired sequence number |
| * is returned. |
| */ |
| void TouchResamplingTest::receiveResponseUntilSequence(uint32_t seq) { |
| size_t consumedEvents = 0; |
| while (consumedEvents < 100) { |
| android::base::Result<InputPublisher::ConsumerResponse> response = |
| mPublisher->receiveConsumerResponse(); |
| ASSERT_TRUE(response.ok()); |
| ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*response)); |
| const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*response); |
| ASSERT_TRUE(finish.handled) |
| << "publisher receiveFinishedSignal should have set handled to consumer's reply"; |
| if (finish.seq == seq) { |
| return; |
| } |
| consumedEvents++; |
| } |
| FAIL() << "Got " << consumedEvents << "events, but still no event with seq=" << seq; |
| } |
| |
| /** |
| * All entries are compared against a single MotionEvent, but the same data structure |
| * InputEventEntry is used here for simpler code. As a result, the entire array of InputEventEntry |
| * must contain identical values for the action field. |
| */ |
| void TouchResamplingTest::consumeInputEventEntries(const std::vector<InputEventEntry>& entries, |
| std::chrono::nanoseconds frameTime) { |
| ASSERT_GE(entries.size(), 1U) << "Must have at least 1 InputEventEntry to compare against"; |
| |
| uint32_t consumeSeq; |
| InputEvent* event; |
| |
| status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, frameTime.count(), |
| &consumeSeq, &event); |
| ASSERT_EQ(OK, status); |
| MotionEvent* motionEvent = static_cast<MotionEvent*>(event); |
| |
| ASSERT_EQ(entries.size() - 1, motionEvent->getHistorySize()); |
| for (size_t i = 0; i < entries.size(); i++) { // most recent sample is last |
| SCOPED_TRACE(i); |
| const InputEventEntry& entry = entries[i]; |
| ASSERT_EQ(entry.action, motionEvent->getAction()); |
| ASSERT_EQ(entry.eventTime.count(), motionEvent->getHistoricalEventTime(i)); |
| ASSERT_EQ(entry.pointers.size(), motionEvent->getPointerCount()); |
| |
| for (size_t p = 0; p < motionEvent->getPointerCount(); p++) { |
| SCOPED_TRACE(p); |
| // The pointers can be in any order, both in MotionEvent as well as InputEventEntry |
| ssize_t motionEventPointerIndex = motionEvent->findPointerIndex(entry.pointers[p].id); |
| ASSERT_GE(motionEventPointerIndex, 0) << "Pointer must be present in MotionEvent"; |
| ASSERT_EQ(entry.pointers[p].x, |
| motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_X, |
| motionEventPointerIndex, i)); |
| ASSERT_EQ(entry.pointers[p].x, |
| motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_X, |
| motionEventPointerIndex, i)); |
| ASSERT_EQ(entry.pointers[p].y, |
| motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_Y, |
| motionEventPointerIndex, i)); |
| ASSERT_EQ(entry.pointers[p].y, |
| motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, |
| motionEventPointerIndex, i)); |
| ASSERT_EQ(entry.pointers[p].isResampled, |
| motionEvent->isResampled(motionEventPointerIndex, i)); |
| } |
| } |
| |
| status = mConsumer->sendFinishedSignal(consumeSeq, true); |
| ASSERT_EQ(OK, status); |
| |
| receiveResponseUntilSequence(consumeSeq); |
| } |
| |
| /** |
| * Timeline |
| * ---------+------------------+------------------+--------+-----------------+---------------------- |
| * 0 ms 10 ms 20 ms 25 ms 35 ms |
| * ACTION_DOWN ACTION_MOVE ACTION_MOVE ^ ^ |
| * | | |
| * resampled value | |
| * frameTime |
| * Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case |
| * However, that would be 10 ms later than the last real sample (which came in at 20 ms). |
| * Therefore, the resampling should happen at 20 ms + RESAMPLE_MAX_PREDICTION = 28 ms. |
| * In this situation, though, resample time is further limited by taking half of the difference |
| * between the last two real events, which would put this time at: |
| * 20 ms + (20 ms - 10 ms) / 2 = 25 ms. |
| */ |
| TEST_F(TouchResamplingTest, EventIsResampled) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 35ms; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| /** |
| * Same as above test, but use pointer id=1 instead of 0 to make sure that system does not |
| * have these hardcoded. |
| */ |
| TEST_F(TouchResamplingTest, EventIsResampledWithDifferentId) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 35ms; |
| expectedEntries = { |
| // id x y |
| {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {25ms, {{1, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| /** |
| * Stylus pointer coordinates are not resampled, but an event is still generated for the batch with |
| * a resampled timestamp and should be marked as such. |
| */ |
| TEST_F(TouchResamplingTest, StylusCoordinatesNotResampledFor) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 35ms; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, |
| // A resampled event is generated, but the stylus coordinates are not resampled. |
| {25ms, |
| {{0, 30, 30, .toolType = ToolType::STYLUS, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| /** |
| * Event should not be resampled when sample time is equal to event time. |
| */ |
| TEST_F(TouchResamplingTest, SampleTimeEqualsEventTime) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| // no resampled event because the time of resample falls exactly on the existing event |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| /** |
| * Once we send a resampled value to the app, we should continue to "lie" if the pointer |
| * does not move. So, if the pointer keeps the same coordinates, resampled value should continue |
| * to be used. |
| */ |
| TEST_F(TouchResamplingTest, ResampledValueIsUsedForIdenticalCoordinates) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 35ms; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Coordinate value 30 has been resampled to 35. When a new event comes in with value 30 again, |
| // the system should still report 35. |
| entries = { |
| // id x y |
| {40ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; |
| expectedEntries = { |
| // id x y |
| {40ms, |
| {{0, 35, 30, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten |
| {45ms, |
| {{0, 35, 30, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| TEST_F(TouchResamplingTest, OldEventReceivedAfterResampleOccurs) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| entries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 35ms; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| // Above, the resampled event is at 25ms rather than at 30 ms = 35ms - RESAMPLE_LATENCY |
| // because we are further bound by how far we can extrapolate by the "last time delta". |
| // That's 50% of (20 ms - 10ms) => 5ms. So we can't predict more than 5 ms into the future |
| // from the event at 20ms, which is why the resampled event is at t = 25 ms. |
| |
| // We resampled the event to 25 ms. Now, an older 'real' event comes in. |
| entries = { |
| // id x y |
| {24ms, {{0, 40, 30}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 50ms; |
| expectedEntries = { |
| // id x y |
| {24ms, |
| {{0, 35, 30, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten |
| {26ms, |
| {{0, 45, 30, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| TEST_F(TouchResamplingTest, TwoPointersAreResampledIndependently) { |
| std::chrono::nanoseconds frameTime; |
| std::vector<InputEventEntry> entries, expectedEntries; |
| |
| // full action for when a pointer with id=1 appears (some other pointer must already be present) |
| constexpr int32_t actionPointer1Down = |
| AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| |
| // full action for when a pointer with id=0 disappears (some other pointer must still remain) |
| constexpr int32_t actionPointer0Up = |
| AMOTION_EVENT_ACTION_POINTER_UP + (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| |
| // Initial ACTION_DOWN should be separate, because the first consume event will only return |
| // InputEvent with a single action. |
| entries = { |
| // id x y |
| {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 5ms; |
| expectedEntries = { |
| // id x y |
| {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| entries = { |
| // id x y |
| {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 10ms + 5ms /*RESAMPLE_LATENCY*/; |
| expectedEntries = { |
| // id x y |
| {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, |
| // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Second pointer id=1 appears |
| entries = { |
| // id x y |
| {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; |
| expectedEntries = { |
| // id x y |
| {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, |
| // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Both pointers move |
| entries = { |
| // id x y |
| {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, |
| {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; |
| expectedEntries = { |
| // id x y |
| {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, |
| {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, |
| {45ms, |
| {{0, 130, 130, .isResampled = true}, {1, 650, 650, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Both pointers move again |
| entries = { |
| // id x y |
| {60ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, |
| {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 75ms + 5ms /*RESAMPLE_LATENCY*/; |
| /** |
| * The sample at t = 60, pointer id 0 is not equal to 120, because this value of 120 was |
| * received twice, and resampled to 130. So if we already reported it as "130", we continue |
| * to report it as such. Similar with pointer id 1. |
| */ |
| expectedEntries = { |
| {60ms, |
| {{0, 130, 130, .isResampled = true}, // not 120! because it matches previous real event |
| {1, 650, 650, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, |
| {75ms, |
| {{0, 135, 135, .isResampled = true}, {1, 750, 750, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // First pointer id=0 leaves the screen |
| entries = { |
| // id x y |
| {80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 90ms; |
| expectedEntries = { |
| // id x y |
| {80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up}, |
| // no resampled event for ACTION_POINTER_UP |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| |
| // Remaining pointer id=1 is still present, but doesn't move |
| entries = { |
| // id x y |
| {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| publishInputEventEntries(entries); |
| frameTime = 100ms; |
| expectedEntries = { |
| // id x y |
| {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, |
| /** |
| * The latest event with ACTION_MOVE was at t = 70, coord = 700. |
| * Use that value for resampling here: (600 - 700) / (90 - 70) * 5 + 600 |
| */ |
| {95ms, {{1, 575, 575, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, |
| }; |
| consumeInputEventEntries(expectedEntries, frameTime); |
| } |
| |
| } // namespace android |