blob: ea7078dd05c2e97e392ab6ca3bb8ae6e8fae3ce9 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "BLASTBufferQueue_test"
#include <gui/BLASTBufferQueue.h>
#include <android/hardware/graphics/common/1.2/types.h>
#include <gui/AidlStatusUtil.h>
#include <gui/BufferQueueCore.h>
#include <gui/BufferQueueProducer.h>
#include <gui/FrameTimestamps.h>
#include <gui/IGraphicBufferProducer.h>
#include <gui/IProducerListener.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>
#include <gui/SyncScreenCaptureListener.h>
#include <gui/test/CallbackUtils.h>
#include <private/gui/ComposerService.h>
#include <private/gui/ComposerServiceAIDL.h>
#include <tests/utils/ScreenshotUtils.h>
#include <ui/DisplayMode.h>
#include <ui/DisplayState.h>
#include <ui/GraphicBuffer.h>
#include <ui/GraphicTypes.h>
#include <ui/Rect.h>
#include <ui/Size.h>
#include <ui/Transform.h>
#include <gtest/gtest.h>
#include <com_android_graphics_libgui_flags.h>
using namespace std::chrono_literals;
namespace android {
using namespace com::android::graphics::libgui;
using Transaction = SurfaceComposerClient::Transaction;
using android::hardware::graphics::common::V1_2::BufferUsage;
class CountProducerListener : public BnProducerListener {
public:
void onBufferReleased() override {
std::scoped_lock<std::mutex> lock(mMutex);
mNumReleased++;
mReleaseCallback.notify_one();
}
void waitOnNumberReleased(int32_t expectedNumReleased) {
std::unique_lock<std::mutex> lock(mMutex);
while (mNumReleased < expectedNumReleased) {
ASSERT_NE(mReleaseCallback.wait_for(lock, std::chrono::seconds(3)),
std::cv_status::timeout)
<< "did not receive release";
}
}
private:
std::mutex mMutex;
std::condition_variable mReleaseCallback;
int32_t mNumReleased GUARDED_BY(mMutex) = 0;
};
class TestBLASTBufferQueue : public BLASTBufferQueue {
public:
TestBLASTBufferQueue(const std::string& name, const sp<SurfaceControl>& surface, int width,
int height, int32_t format)
: BLASTBufferQueue(name, surface, width, height, format) {}
void transactionCallback(nsecs_t latchTime, const sp<Fence>& presentFence,
const std::vector<SurfaceControlStats>& stats) override {
BLASTBufferQueue::transactionCallback(latchTime, presentFence, stats);
uint64_t frameNumber = stats[0].frameEventStats.frameNumber;
{
std::unique_lock lock{frameNumberMutex};
mLastTransactionFrameNumber = frameNumber;
mWaitForCallbackCV.notify_all();
}
}
void waitForCallback(int64_t frameNumber) {
std::unique_lock lock{frameNumberMutex};
// Wait until all but one of the submitted buffers have been released.
while (mLastTransactionFrameNumber < frameNumber) {
mWaitForCallbackCV.wait(lock);
}
}
private:
std::mutex frameNumberMutex;
std::condition_variable mWaitForCallbackCV;
int64_t mLastTransactionFrameNumber = -1;
};
class BLASTBufferQueueHelper {
public:
BLASTBufferQueueHelper(const sp<SurfaceControl>& sc, int width, int height) {
mBlastBufferQueueAdapter = new TestBLASTBufferQueue("TestBLASTBufferQueue", sc, width,
height, PIXEL_FORMAT_RGBA_8888);
}
void update(const sp<SurfaceControl>& sc, int width, int height) {
mBlastBufferQueueAdapter->update(sc, width, height, PIXEL_FORMAT_RGBA_8888);
}
void setSyncTransaction(Transaction& next, bool acquireSingleBuffer = true) {
auto callback = [&next](Transaction* t) { next.merge(std::move(*t)); };
mBlastBufferQueueAdapter->syncNextTransaction(callback, acquireSingleBuffer);
}
bool syncNextTransaction(std::function<void(Transaction*)> callback,
bool acquireSingleBuffer = true) {
return mBlastBufferQueueAdapter->syncNextTransaction(callback, acquireSingleBuffer);
}
void stopContinuousSyncTransaction() {
mBlastBufferQueueAdapter->stopContinuousSyncTransaction();
}
void clearSyncTransaction() { mBlastBufferQueueAdapter->clearSyncTransaction(); }
int getWidth() { return mBlastBufferQueueAdapter->mSize.width; }
int getHeight() { return mBlastBufferQueueAdapter->mSize.height; }
std::function<void(Transaction*)> getTransactionReadyCallback() {
return mBlastBufferQueueAdapter->mTransactionReadyCallback;
}
sp<IGraphicBufferProducer> getIGraphicBufferProducer() {
return mBlastBufferQueueAdapter->getIGraphicBufferProducer();
}
const sp<SurfaceControl> getSurfaceControl() {
return mBlastBufferQueueAdapter->mSurfaceControl;
}
sp<Surface> getSurface() {
return mBlastBufferQueueAdapter->getSurface(false /* includeSurfaceControlHandle */);
}
void waitForCallbacks() {
std::unique_lock lock{mBlastBufferQueueAdapter->mMutex};
// Wait until all but one of the submitted buffers have been released.
while (mBlastBufferQueueAdapter->mSubmitted.size() > 1) {
mBlastBufferQueueAdapter->mCallbackCV.wait(lock);
}
}
void waitForCallback(int64_t frameNumber) {
mBlastBufferQueueAdapter->waitForCallback(frameNumber);
}
void validateNumFramesSubmitted(int64_t numFramesSubmitted) {
std::unique_lock lock{mBlastBufferQueueAdapter->mMutex};
ASSERT_EQ(numFramesSubmitted, mBlastBufferQueueAdapter->mSubmitted.size());
}
void mergeWithNextTransaction(Transaction* merge, uint64_t frameNumber) {
mBlastBufferQueueAdapter->mergeWithNextTransaction(merge, frameNumber);
}
private:
sp<TestBLASTBufferQueue> mBlastBufferQueueAdapter;
};
class BLASTBufferQueueTest : public ::testing::Test {
public:
protected:
void SetUp() {
mComposer = ComposerService::getComposerService();
mClient = new SurfaceComposerClient();
const auto ids = SurfaceComposerClient::getPhysicalDisplayIds();
ASSERT_FALSE(ids.empty());
// display 0 is picked as this test is not much display depedent
mDisplayToken = SurfaceComposerClient::getPhysicalDisplayToken(ids.front());
ASSERT_NE(nullptr, mDisplayToken.get());
Transaction t;
t.setDisplayLayerStack(mDisplayToken, ui::DEFAULT_LAYER_STACK);
t.apply();
t.clear();
ui::DisplayState displayState;
ASSERT_EQ(NO_ERROR, SurfaceComposerClient::getDisplayState(mDisplayToken, &displayState));
const ui::Size& resolution = displayState.layerStackSpaceRect;
mDisplayWidth = resolution.getWidth();
mDisplayHeight = resolution.getHeight();
ALOGD("Display: %dx%d orientation:%d", mDisplayWidth, mDisplayHeight,
displayState.orientation);
mRootSurfaceControl = mClient->createSurface(String8("RootTestSurface"), mDisplayWidth,
mDisplayHeight, PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ nullptr);
t.setLayerStack(mRootSurfaceControl, ui::DEFAULT_LAYER_STACK)
.setLayer(mRootSurfaceControl, std::numeric_limits<int32_t>::max())
.show(mRootSurfaceControl)
.apply();
mSurfaceControl = mClient->createSurface(String8("TestSurface"), mDisplayWidth,
mDisplayHeight, PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ mRootSurfaceControl->getHandle());
mCaptureArgs.sourceCrop = Rect(ui::Size(mDisplayWidth, mDisplayHeight));
mCaptureArgs.layerHandle = mRootSurfaceControl->getHandle();
}
void setUpProducer(BLASTBufferQueueHelper& adapter, sp<IGraphicBufferProducer>& producer,
int32_t maxBufferCount = 2) {
producer = adapter.getIGraphicBufferProducer();
setUpProducer(producer, maxBufferCount);
}
void setUpProducer(sp<IGraphicBufferProducer>& igbProducer, int32_t maxBufferCount) {
ASSERT_NE(nullptr, igbProducer.get());
ASSERT_EQ(NO_ERROR, igbProducer->setMaxDequeuedBufferCount(maxBufferCount));
IGraphicBufferProducer::QueueBufferOutput qbOutput;
mProducerListener = new CountProducerListener();
ASSERT_EQ(NO_ERROR,
igbProducer->connect(mProducerListener, NATIVE_WINDOW_API_CPU, false, &qbOutput));
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
}
void fillBuffer(uint32_t* bufData, Rect rect, uint32_t stride, uint8_t r, uint8_t g,
uint8_t b) {
for (uint32_t row = rect.top; row < rect.bottom; row++) {
for (uint32_t col = rect.left; col < rect.right; col++) {
uint8_t* pixel = (uint8_t*)(bufData + (row * stride) + col);
*pixel = r;
*(pixel + 1) = g;
*(pixel + 2) = b;
*(pixel + 3) = 255;
}
}
}
void fillQuadrants(sp<GraphicBuffer>& buf) {
const auto bufWidth = buf->getWidth();
const auto bufHeight = buf->getHeight();
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(0, 0, bufWidth / 2, bufHeight / 2), buf->getStride(), 0, 0, 0);
fillBuffer(bufData, Rect(bufWidth / 2, 0, bufWidth, bufHeight / 2), buf->getStride(), 255,
0, 0);
fillBuffer(bufData, Rect(bufWidth / 2, bufHeight / 2, bufWidth, bufHeight),
buf->getStride(), 0, 255, 0);
fillBuffer(bufData, Rect(0, bufHeight / 2, bufWidth / 2, bufHeight), buf->getStride(), 0, 0,
255);
buf->unlock();
}
void checkScreenCapture(uint8_t r, uint8_t g, uint8_t b, Rect region, int32_t border = 0,
bool outsideRegion = false) {
sp<GraphicBuffer>& captureBuf = mCaptureResults.buffer;
const auto epsilon = 3;
const auto width = captureBuf->getWidth();
const auto height = captureBuf->getHeight();
const auto stride = captureBuf->getStride();
uint32_t* bufData;
captureBuf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_READ_OFTEN),
reinterpret_cast<void**>(&bufData));
for (uint32_t row = 0; row < height; row++) {
for (uint32_t col = 0; col < width; col++) {
uint8_t* pixel = (uint8_t*)(bufData + (row * stride) + col);
ASSERT_NE(nullptr, pixel);
bool inRegion;
if (!outsideRegion) {
inRegion = row >= region.top + border && row < region.bottom - border &&
col >= region.left + border && col < region.right - border;
} else {
inRegion = row >= region.top - border && row < region.bottom + border &&
col >= region.left - border && col < region.right + border;
}
if (!outsideRegion && inRegion) {
ASSERT_GE(epsilon, abs(r - *(pixel)));
ASSERT_GE(epsilon, abs(g - *(pixel + 1)));
ASSERT_GE(epsilon, abs(b - *(pixel + 2)));
} else if (outsideRegion && !inRegion) {
ASSERT_GE(epsilon, abs(r - *(pixel)));
ASSERT_GE(epsilon, abs(g - *(pixel + 1)));
ASSERT_GE(epsilon, abs(b - *(pixel + 2)));
}
ASSERT_EQ(false, ::testing::Test::HasFailure());
}
}
captureBuf->unlock();
}
void queueBuffer(sp<IGraphicBufferProducer> igbp, uint8_t r, uint8_t g, uint8_t b,
nsecs_t presentTimeDelay) {
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbp->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_TRUE(ret == IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION || ret == NO_ERROR);
ASSERT_EQ(OK, igbp->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight() / 2), buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
nsecs_t timestampNanos = systemTime() + presentTimeDelay;
IGraphicBufferProducer::QueueBufferInput input(timestampNanos, false, HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight / 2),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbp->queueBuffer(slot, input, &qbOutput);
}
sp<SurfaceComposerClient> mClient;
sp<ISurfaceComposer> mComposer;
sp<IBinder> mDisplayToken;
sp<SurfaceControl> mSurfaceControl;
sp<SurfaceControl> mRootSurfaceControl;
uint32_t mDisplayWidth;
uint32_t mDisplayHeight;
LayerCaptureArgs mCaptureArgs;
ScreenCaptureResults mCaptureResults;
sp<CountProducerListener> mProducerListener;
};
TEST_F(BLASTBufferQueueTest, CreateBLASTBufferQueue) {
// create BLASTBufferQueue adapter associated with this surface
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
ASSERT_EQ(mSurfaceControl, adapter.getSurfaceControl());
ASSERT_EQ(mDisplayWidth, adapter.getWidth());
ASSERT_EQ(mDisplayHeight, adapter.getHeight());
ASSERT_EQ(nullptr, adapter.getTransactionReadyCallback());
}
TEST_F(BLASTBufferQueueTest, Update) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<SurfaceControl> updateSurface =
mClient->createSurface(String8("UpdateTest"), mDisplayWidth / 2, mDisplayHeight / 2,
PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ mRootSurfaceControl->getHandle());
adapter.update(updateSurface, mDisplayWidth / 2, mDisplayHeight / 2);
ASSERT_EQ(updateSurface, adapter.getSurfaceControl());
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int32_t width;
igbProducer->query(NATIVE_WINDOW_WIDTH, &width);
ASSERT_EQ(mDisplayWidth / 2, width);
int32_t height;
igbProducer->query(NATIVE_WINDOW_HEIGHT, &height);
ASSERT_EQ(mDisplayHeight / 2, height);
}
TEST_F(BLASTBufferQueueTest, SyncNextTransaction) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
ASSERT_EQ(nullptr, adapter.getTransactionReadyCallback());
auto callback = [](Transaction*) {};
adapter.syncNextTransaction(callback);
ASSERT_NE(nullptr, adapter.getTransactionReadyCallback());
}
TEST_F(BLASTBufferQueueTest, DISABLED_onFrameAvailable_ApplyDesiredPresentTime) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
nsecs_t desiredPresentTime = systemTime() + nsecs_t(5 * 1e8);
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(desiredPresentTime, true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
adapter.waitForCallbacks();
ASSERT_GE(systemTime(), desiredPresentTime);
}
TEST_F(BLASTBufferQueueTest, onFrameAvailable_Apply) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight()), buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, TripleBuffering) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
std::vector<std::pair<int, sp<Fence>>> allocated;
int minUndequeuedBuffers = 0;
ASSERT_EQ(OK, igbProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &minUndequeuedBuffers));
const auto bufferCount = minUndequeuedBuffers + 2;
for (int i = 0; i < bufferCount; i++) {
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
allocated.push_back({slot, fence});
}
for (int i = 0; i < allocated.size(); i++) {
igbProducer->cancelBuffer(allocated[i].first, allocated[i].second);
}
for (int i = 0; i < 100; i++) {
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(NO_ERROR, ret);
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
}
adapter.waitForCallbacks();
}
TEST_F(BLASTBufferQueueTest, SetCrop_Item) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight() / 2), buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight / 2),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b,
{0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight / 2}));
}
TEST_F(BLASTBufferQueueTest, SetCrop_ScalingModeScaleCrop) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
int32_t bufferSideLength =
(mDisplayWidth < mDisplayHeight) ? mDisplayWidth / 2 : mDisplayHeight / 2;
int32_t finalCropSideLength = bufferSideLength / 2;
BLASTBufferQueueHelper adapter(mSurfaceControl, bufferSideLength, bufferSideLength);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, bufferSideLength, bufferSideLength,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight()), buf->getStride(), 0, 0, 0);
fillBuffer(bufData,
Rect(finalCropSideLength / 2, 0, buf->getWidth() - finalCropSideLength / 2,
buf->getHeight()),
buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(bufferSideLength, finalCropSideLength),
NATIVE_WINDOW_SCALING_MODE_SCALE_CROP, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(r, g, b,
{10, 10, (int32_t)bufferSideLength - 10,
(int32_t)bufferSideLength - 10}));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{0, 0, (int32_t)bufferSideLength, (int32_t)bufferSideLength},
/*border*/ 0, /*outsideRegion*/ true));
}
TEST_F(BLASTBufferQueueTest, ScaleCroppedBufferToBufferSize) {
Rect windowSize(1000, 1000);
Rect bufferSize(windowSize);
Rect bufferCrop(200, 200, 700, 700);
BLASTBufferQueueHelper adapter(mSurfaceControl, windowSize.getWidth(), windowSize.getHeight());
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, bufferSize.getWidth(),
bufferSize.getHeight(), PIXEL_FORMAT_RGBA_8888,
GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
// fill buffer with grey
fillBuffer(bufData, bufferSize, buf->getStride(), 127, 127, 127);
// fill crop area with different colors so we can verify the cropped region has been scaled
// correctly.
fillBuffer(bufData, Rect(200, 200, 450, 450), buf->getStride(), /* rgb */ 255, 0, 0);
fillBuffer(bufData, Rect(200, 451, 450, 700), buf->getStride(), /* rgb */ 0, 255, 0);
fillBuffer(bufData, Rect(451, 200, 700, 450), buf->getStride(), /* rgb */ 0, 0, 255);
fillBuffer(bufData, Rect(451, 451, 700, 700), buf->getStride(), /* rgb */ 255, 0, 0);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
bufferCrop /* Rect::INVALID_RECT */,
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
// Verify cropped region is scaled correctly.
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0, {10, 10, 490, 490}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 255, 0, {10, 510, 490, 990}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 255, {510, 10, 990, 490}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0, {510, 510, 990, 990}));
// Verify outside region is black.
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 0,
{0, 0, (int32_t)windowSize.getWidth(),
(int32_t)windowSize.getHeight()},
/*border*/ 0, /*outsideRegion*/ true));
}
TEST_F(BLASTBufferQueueTest, ScaleCroppedBufferToWindowSize) {
Rect windowSize(1000, 1000);
Rect bufferSize(500, 500);
Rect bufferCrop(100, 100, 350, 350);
BLASTBufferQueueHelper adapter(mSurfaceControl, windowSize.getWidth(), windowSize.getHeight());
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, bufferSize.getWidth(),
bufferSize.getHeight(), PIXEL_FORMAT_RGBA_8888,
GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
// fill buffer with grey
fillBuffer(bufData, bufferSize, buf->getStride(), 127, 127, 127);
// fill crop area with different colors so we can verify the cropped region has been scaled
// correctly.
fillBuffer(bufData, Rect(100, 100, 225, 225), buf->getStride(), /* rgb */ 255, 0, 0);
fillBuffer(bufData, Rect(100, 226, 225, 350), buf->getStride(), /* rgb */ 0, 255, 0);
fillBuffer(bufData, Rect(226, 100, 350, 225), buf->getStride(), /* rgb */ 0, 0, 255);
fillBuffer(bufData, Rect(226, 226, 350, 350), buf->getStride(), /* rgb */ 255, 0, 0);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
bufferCrop /* Rect::INVALID_RECT */,
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
// Verify cropped region is scaled correctly.
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0, {10, 10, 490, 490}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 255, 0, {10, 510, 490, 990}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 255, {510, 10, 990, 490}));
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0, {510, 510, 990, 990}));
// Verify outside region is black.
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 0,
{0, 0, (int32_t)windowSize.getWidth(),
(int32_t)windowSize.getHeight()},
/*border*/ 0, /*outsideRegion*/ true));
}
// b/196339769 verify we can can update the requested size while the in FREEZE scaling mode and
// scale the buffer properly when the mode changes to SCALE_TO_WINDOW
TEST_F(BLASTBufferQueueTest, ScalingModeChanges) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight / 4);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
{
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight / 4,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight()), buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN, {},
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
}
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b,
{0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight / 4}));
// update the size to half the display and dequeue a buffer quarter of the display.
adapter.update(mSurfaceControl, mDisplayWidth, mDisplayHeight / 2);
{
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight / 8,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
uint32_t* bufData;
buf->lock(static_cast<uint32_t>(GraphicBuffer::USAGE_SW_WRITE_OFTEN),
reinterpret_cast<void**>(&bufData));
g = 255;
fillBuffer(bufData, Rect(buf->getWidth(), buf->getHeight()), buf->getStride(), r, g, b);
buf->unlock();
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN, {},
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW,
0, Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
// ensure the buffer queue transaction has been committed
Transaction().apply(true /* synchronous */);
}
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
// verify we still scale the buffer to the new size (half the screen height)
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b,
{0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight / 2}));
}
TEST_F(BLASTBufferQueueTest, SyncThenNoSync) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
Transaction sync;
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
// queue non sync buffer, so this one should get blocked
// Add a present delay to allow the first screenshot to get taken.
nsecs_t presentTimeDelay = std::chrono::nanoseconds(500ms).count();
queueBuffer(igbProducer, r, g, b, presentTimeDelay);
CallbackHelper transactionCallback;
sync.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is green
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
mProducerListener->waitOnNumberReleased(1);
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, MultipleSyncTransactions) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
Transaction mainTransaction;
Transaction sync;
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
mainTransaction.merge(std::move(sync));
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, r, g, b, 0);
mainTransaction.merge(std::move(sync));
// Expect 1 buffer to be released even before sending to SurfaceFlinger
mProducerListener->waitOnNumberReleased(1);
CallbackHelper transactionCallback;
mainTransaction
.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, MultipleSyncTransactionWithNonSync) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
Transaction mainTransaction;
Transaction sync;
// queue a sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
mainTransaction.merge(std::move(sync));
// queue another buffer without setting sync transaction
queueBuffer(igbProducer, 0, 0, 255, 0);
// queue another sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, r, g, b, 0);
// Expect 1 buffer to be released because the non sync transaction should merge
// with the sync
mProducerListener->waitOnNumberReleased(1);
mainTransaction.merge(std::move(sync));
// Expect 2 buffers to be released due to merging the two syncs.
mProducerListener->waitOnNumberReleased(2);
CallbackHelper transactionCallback;
mainTransaction
.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, MultipleSyncRunOutOfBuffers) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer, 3);
Transaction mainTransaction;
Transaction sync;
// queue a sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
mainTransaction.merge(std::move(sync));
// queue a few buffers without setting sync transaction
queueBuffer(igbProducer, 0, 0, 255, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
// queue another sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, r, g, b, 0);
// Expect 3 buffers to be released because the non sync transactions should merge
// with the sync
mProducerListener->waitOnNumberReleased(3);
mainTransaction.merge(std::move(sync));
// Expect 4 buffers to be released due to merging the two syncs.
mProducerListener->waitOnNumberReleased(4);
CallbackHelper transactionCallback;
mainTransaction
.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
// Tests BBQ with a sync transaction when the buffers acquired reaches max and the only way to
// continue processing is for a release callback from SurfaceFlinger.
// This is done by sending a buffer to SF so it can release the previous one and allow BBQ to
// continue acquiring buffers.
TEST_F(BLASTBufferQueueTest, RunOutOfBuffersWaitingOnSF) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer, 4);
Transaction mainTransaction;
// Send a buffer to SF
queueBuffer(igbProducer, 0, 255, 0, 0);
Transaction sync;
// queue a sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
mainTransaction.merge(std::move(sync));
// queue a few buffers without setting sync transaction
queueBuffer(igbProducer, 0, 0, 255, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
// apply the first synced buffer to ensure we have to wait on SF
mainTransaction.apply();
// queue another sync transaction
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, r, g, b, 0);
// Expect 2 buffers to be released because the non sync transactions should merge
// with the sync
mProducerListener->waitOnNumberReleased(3);
mainTransaction.merge(std::move(sync));
CallbackHelper transactionCallback;
mainTransaction
.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, SyncNextTransactionAcquireMultipleBuffers) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
Transaction next;
adapter.setSyncTransaction(next, false);
queueBuffer(igbProducer, 0, 255, 0, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
// There should only be one frame submitted since the first frame will be released.
adapter.validateNumFramesSubmitted(1);
adapter.stopContinuousSyncTransaction();
// queue non sync buffer, so this one should get blocked
// Add a present delay to allow the first screenshot to get taken.
nsecs_t presentTimeDelay = std::chrono::nanoseconds(500ms).count();
queueBuffer(igbProducer, 255, 0, 0, presentTimeDelay);
CallbackHelper transactionCallback;
next.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is blue
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 255, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
mProducerListener->waitOnNumberReleased(2);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
TEST_F(BLASTBufferQueueTest, SyncNextTransactionOverwrite) {
std::mutex mutex;
std::condition_variable callbackReceivedCv;
bool receivedCallback = false;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
ASSERT_EQ(nullptr, adapter.getTransactionReadyCallback());
auto callback = [&](Transaction*) {
std::unique_lock<std::mutex> lock(mutex);
receivedCallback = true;
callbackReceivedCv.notify_one();
};
adapter.syncNextTransaction(callback);
ASSERT_NE(nullptr, adapter.getTransactionReadyCallback());
auto callback2 = [](Transaction*) {};
ASSERT_FALSE(adapter.syncNextTransaction(callback2));
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
queueBuffer(igbProducer, 0, 255, 0, 0);
std::unique_lock<std::mutex> lock(mutex);
if (!receivedCallback) {
ASSERT_NE(callbackReceivedCv.wait_for(lock, std::chrono::seconds(3)),
std::cv_status::timeout)
<< "did not receive callback";
}
ASSERT_TRUE(receivedCallback);
}
TEST_F(BLASTBufferQueueTest, ClearSyncTransaction) {
std::mutex mutex;
std::condition_variable callbackReceivedCv;
bool receivedCallback = false;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
ASSERT_EQ(nullptr, adapter.getTransactionReadyCallback());
auto callback = [&](Transaction*) {
std::unique_lock<std::mutex> lock(mutex);
receivedCallback = true;
callbackReceivedCv.notify_one();
};
adapter.syncNextTransaction(callback);
ASSERT_NE(nullptr, adapter.getTransactionReadyCallback());
adapter.clearSyncTransaction();
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
queueBuffer(igbProducer, 0, 255, 0, 0);
std::unique_lock<std::mutex> lock(mutex);
if (!receivedCallback) {
ASSERT_EQ(callbackReceivedCv.wait_for(lock, std::chrono::seconds(3)),
std::cv_status::timeout)
<< "did not receive callback";
}
ASSERT_FALSE(receivedCallback);
}
TEST_F(BLASTBufferQueueTest, SyncNextTransactionDropBuffer) {
uint8_t r = 255;
uint8_t g = 0;
uint8_t b = 0;
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
Transaction sync;
adapter.setSyncTransaction(sync);
queueBuffer(igbProducer, 0, 255, 0, 0);
// Merge a transaction that has a complete callback into the next frame so we can get notified
// when to take a screenshot
CallbackHelper transactionCallback;
Transaction t;
t.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext());
adapter.mergeWithNextTransaction(&t, 2);
queueBuffer(igbProducer, r, g, b, 0);
// Drop the buffer, but ensure the next one continues to get processed.
sync.setBuffer(mSurfaceControl, nullptr);
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(r, g, b, {0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
sync.apply();
}
// This test will currently fail because the old surfacecontrol will steal the last presented buffer
// until the old surface control is destroyed. This is not necessarily a bug but to document a
// limitation with the update API and to test any changes to make the api more robust. The current
// approach for the client is to recreate the blastbufferqueue when the surfacecontrol updates.
TEST_F(BLASTBufferQueueTest, DISABLED_DisconnectProducerTest) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
std::vector<sp<SurfaceControl>> surfaceControls;
sp<IGraphicBufferProducer> igbProducer;
for (int i = 0; i < 10; i++) {
sp<SurfaceControl> sc =
mClient->createSurface(String8("TestSurface"), mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ mRootSurfaceControl->getHandle());
Transaction()
.setLayerStack(mSurfaceControl, ui::DEFAULT_LAYER_STACK)
.setLayer(mSurfaceControl, std::numeric_limits<int32_t>::max())
.show(mSurfaceControl)
.setDataspace(mSurfaceControl, ui::Dataspace::V0_SRGB)
.apply(true);
surfaceControls.push_back(sc);
adapter.update(sc, mDisplayWidth, mDisplayHeight);
setUpProducer(adapter, igbProducer);
Transaction next;
queueBuffer(igbProducer, 0, 255, 0, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
adapter.setSyncTransaction(next, true);
queueBuffer(igbProducer, 255, 0, 0, 0);
CallbackHelper transactionCallback;
next.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
igbProducer->disconnect(NATIVE_WINDOW_API_CPU);
}
}
// See DISABLED_DisconnectProducerTest
TEST_F(BLASTBufferQueueTest, DISABLED_UpdateSurfaceControlTest) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
std::vector<sp<SurfaceControl>> surfaceControls;
sp<IGraphicBufferProducer> igbProducer;
for (int i = 0; i < 10; i++) {
sp<SurfaceControl> sc =
mClient->createSurface(String8("TestSurface"), mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888,
ISurfaceComposerClient::eFXSurfaceBufferState,
/*parent*/ mRootSurfaceControl->getHandle());
Transaction()
.setLayerStack(mSurfaceControl, ui::DEFAULT_LAYER_STACK)
.setLayer(mSurfaceControl, std::numeric_limits<int32_t>::max())
.show(mSurfaceControl)
.setDataspace(mSurfaceControl, ui::Dataspace::V0_SRGB)
.apply(true);
surfaceControls.push_back(sc);
adapter.update(sc, mDisplayWidth, mDisplayHeight);
setUpProducer(adapter, igbProducer);
Transaction next;
queueBuffer(igbProducer, 0, 255, 0, 0);
queueBuffer(igbProducer, 0, 0, 255, 0);
adapter.setSyncTransaction(next, true);
queueBuffer(igbProducer, 255, 0, 0, 0);
CallbackHelper transactionCallback;
next.addTransactionCompletedCallback(transactionCallback.function,
transactionCallback.getContext())
.apply();
CallbackData callbackData;
transactionCallback.getCallbackData(&callbackData);
// capture screen and verify that it is red
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{0, 0, (int32_t)mDisplayWidth, (int32_t)mDisplayHeight}));
}
}
class TestProducerListener : public BnProducerListener {
public:
sp<IGraphicBufferProducer> mIgbp;
TestProducerListener(const sp<IGraphicBufferProducer>& igbp) : mIgbp(igbp) {}
void onBufferReleased() override {
sp<GraphicBuffer> buffer;
sp<Fence> fence;
mIgbp->detachNextBuffer(&buffer, &fence);
}
};
TEST_F(BLASTBufferQueueTest, CustomProducerListener) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer = adapter.getIGraphicBufferProducer();
ASSERT_NE(nullptr, igbProducer.get());
ASSERT_EQ(NO_ERROR, igbProducer->setMaxDequeuedBufferCount(2));
IGraphicBufferProducer::QueueBufferOutput qbOutput;
ASSERT_EQ(NO_ERROR,
igbProducer->connect(new TestProducerListener(igbProducer), NATIVE_WINDOW_API_CPU,
false, &qbOutput));
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
for (int i = 0; i < 3; i++) {
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
}
adapter.waitForCallbacks();
}
TEST_F(BLASTBufferQueueTest, QueryNativeWindowQueuesToWindowComposer) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<android::Surface> surface = new Surface(adapter.getIGraphicBufferProducer());
ANativeWindow* nativeWindow = (ANativeWindow*)(surface.get());
int queuesToNativeWindow = 0;
int err = nativeWindow->query(nativeWindow, NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER,
&queuesToNativeWindow);
ASSERT_EQ(NO_ERROR, err);
ASSERT_EQ(queuesToNativeWindow, 1);
}
TEST_F(BLASTBufferQueueTest, TransformHint) {
// Transform hint is provided to BBQ via the surface control passed by WM
mSurfaceControl->setTransformHint(ui::Transform::ROT_90);
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer = adapter.getIGraphicBufferProducer();
ASSERT_NE(nullptr, igbProducer.get());
ASSERT_EQ(NO_ERROR, igbProducer->setMaxDequeuedBufferCount(2));
sp<Surface> surface = adapter.getSurface();
// Before connecting to the surface, we do not get a valid transform hint
int transformHint;
surface->query(NATIVE_WINDOW_TRANSFORM_HINT, &transformHint);
ASSERT_EQ(ui::Transform::ROT_0, transformHint);
ASSERT_EQ(NO_ERROR,
surface->connect(NATIVE_WINDOW_API_CPU, new TestProducerListener(igbProducer)));
// After connecting to the surface, we should get the correct hint.
surface->query(NATIVE_WINDOW_TRANSFORM_HINT, &transformHint);
ASSERT_EQ(ui::Transform::ROT_90, transformHint);
ANativeWindow_Buffer buffer;
surface->lock(&buffer, nullptr /* inOutDirtyBounds */);
// Transform hint is updated via callbacks or surface control updates
mSurfaceControl->setTransformHint(ui::Transform::ROT_0);
adapter.update(mSurfaceControl, mDisplayWidth, mDisplayHeight);
// The hint does not change and matches the value used when dequeueing the buffer.
surface->query(NATIVE_WINDOW_TRANSFORM_HINT, &transformHint);
ASSERT_EQ(ui::Transform::ROT_90, transformHint);
surface->unlockAndPost();
// After queuing the buffer, we get the updated transform hint
surface->query(NATIVE_WINDOW_TRANSFORM_HINT, &transformHint);
ASSERT_EQ(ui::Transform::ROT_0, transformHint);
adapter.waitForCallbacks();
}
class BLASTBufferQueueTransformTest : public BLASTBufferQueueTest {
public:
void test(uint32_t tr) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
auto bufWidth = mDisplayWidth;
auto bufHeight = mDisplayHeight;
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, bufWidth, bufHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, ret);
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
fillQuadrants(buf);
IGraphicBufferProducer::QueueBufferOutput qbOutput;
IGraphicBufferProducer::QueueBufferInput input(systemTime(), true /* autotimestamp */,
HAL_DATASPACE_UNKNOWN,
Rect(bufWidth, bufHeight),
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW,
tr, Fence::NO_FENCE);
igbProducer->queueBuffer(slot, input, &qbOutput);
ASSERT_NE(ui::Transform::ROT_INVALID, qbOutput.transformHint);
Transaction().apply(true /* synchronous */);
ASSERT_EQ(NO_ERROR, ScreenCapture::captureLayers(mCaptureArgs, mCaptureResults));
switch (tr) {
case ui::Transform::ROT_0:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 0,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 255,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
break;
case ui::Transform::FLIP_H:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 255,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
break;
case ui::Transform::FLIP_V:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 255,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
break;
case ui::Transform::ROT_90:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 0, 255,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
break;
case ui::Transform::ROT_180:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(0, 255, 0,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 255,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(255, 0, 0,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
break;
case ui::Transform::ROT_270:
ASSERT_NO_FATAL_FAILURE(checkScreenCapture(255, 0, 0,
{0, 0, (int32_t)mDisplayWidth / 2,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 255, 0,
{(int32_t)mDisplayWidth / 2, 0, (int32_t)mDisplayWidth,
(int32_t)mDisplayHeight / 2},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 255,
{(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth, (int32_t)mDisplayHeight},
1));
ASSERT_NO_FATAL_FAILURE(
checkScreenCapture(0, 0, 0,
{0, (int32_t)mDisplayHeight / 2,
(int32_t)mDisplayWidth / 2, (int32_t)mDisplayHeight},
1));
}
}
};
TEST_F(BLASTBufferQueueTransformTest, setTransform_ROT_0) {
test(ui::Transform::ROT_0);
}
TEST_F(BLASTBufferQueueTransformTest, setTransform_FLIP_H) {
test(ui::Transform::FLIP_H);
}
TEST_F(BLASTBufferQueueTransformTest, setTransform_FLIP_V) {
test(ui::Transform::FLIP_V);
}
TEST_F(BLASTBufferQueueTransformTest, setTransform_ROT_90) {
test(ui::Transform::ROT_90);
}
TEST_F(BLASTBufferQueueTransformTest, setTransform_ROT_180) {
test(ui::Transform::ROT_180);
}
TEST_F(BLASTBufferQueueTransformTest, setTransform_ROT_270) {
test(ui::Transform::ROT_270);
}
class BLASTFrameEventHistoryTest : public BLASTBufferQueueTest {
public:
void setUpAndQueueBuffer(const sp<IGraphicBufferProducer>& igbProducer,
nsecs_t* outRequestedPresentTime, nsecs_t* postedTime,
IGraphicBufferProducer::QueueBufferOutput* qbOutput,
bool getFrameTimestamps, nsecs_t requestedPresentTime = systemTime()) {
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
auto ret = igbProducer->dequeueBuffer(&slot, &fence, mDisplayWidth, mDisplayHeight,
PIXEL_FORMAT_RGBA_8888, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr);
if (IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION == ret) {
ASSERT_EQ(OK, igbProducer->requestBuffer(slot, &buf));
}
*outRequestedPresentTime = requestedPresentTime;
IGraphicBufferProducer::QueueBufferInput input(requestedPresentTime, false,
HAL_DATASPACE_UNKNOWN,
Rect(mDisplayWidth, mDisplayHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0,
Fence::NO_FENCE, /*sticky*/ 0,
getFrameTimestamps);
if (postedTime) *postedTime = systemTime();
igbProducer->queueBuffer(slot, input, qbOutput);
}
sp<SurfaceControl> mBufferQueueSurfaceControl;
};
TEST_F(BLASTFrameEventHistoryTest, FrameEventHistory_Basic) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
ProducerFrameEventHistory history;
setUpProducer(adapter, igbProducer);
IGraphicBufferProducer::QueueBufferOutput qbOutput;
nsecs_t requestedPresentTimeA = 0;
nsecs_t postedTimeA = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeA, &postedTimeA, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
FrameEvents* events = nullptr;
events = history.getFrame(1);
ASSERT_NE(nullptr, events);
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
adapter.waitForCallback(1);
// queue another buffer so we query for frame event deltas
nsecs_t requestedPresentTimeB = 0;
nsecs_t postedTimeB = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeB, &postedTimeB, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
adapter.waitForCallback(2);
events = history.getFrame(1);
ASSERT_NE(nullptr, events);
// frame number, requestedPresentTime, and postTime should not have changed
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
ASSERT_GE(events->latchTime, postedTimeA);
if (flags::frametimestamps_previousrelease()) {
ASSERT_EQ(events->dequeueReadyTime, FrameEvents::TIMESTAMP_PENDING);
}
ASSERT_NE(nullptr, events->gpuCompositionDoneFence);
ASSERT_NE(nullptr, events->displayPresentFence);
ASSERT_NE(nullptr, events->releaseFence);
// we should also have gotten the initial values for the next frame
events = history.getFrame(2);
ASSERT_NE(nullptr, events);
ASSERT_EQ(2, events->frameNumber);
ASSERT_EQ(requestedPresentTimeB, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeB);
// Now do the same as above with a third buffer, so that timings related to
// buffer releases make it back to the first frame.
nsecs_t requestedPresentTimeC = 0;
nsecs_t postedTimeC = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeC, &postedTimeC, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
adapter.waitForCallback(3);
// Check the first frame...
events = history.getFrame(1);
ASSERT_NE(nullptr, events);
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
ASSERT_GE(events->latchTime, postedTimeA);
// Now dequeueReadyTime is valid, because the release timings finally
// propaged to queueBuffer()
ASSERT_GE(events->dequeueReadyTime, events->latchTime);
ASSERT_NE(nullptr, events->gpuCompositionDoneFence);
ASSERT_NE(nullptr, events->displayPresentFence);
ASSERT_NE(nullptr, events->releaseFence);
// ...and the second
events = history.getFrame(2);
ASSERT_NE(nullptr, events);
ASSERT_EQ(2, events->frameNumber);
ASSERT_EQ(requestedPresentTimeB, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeB);
ASSERT_GE(events->latchTime, postedTimeB);
if (flags::frametimestamps_previousrelease()) {
ASSERT_EQ(events->dequeueReadyTime, FrameEvents::TIMESTAMP_PENDING);
}
ASSERT_NE(nullptr, events->gpuCompositionDoneFence);
ASSERT_NE(nullptr, events->displayPresentFence);
ASSERT_NE(nullptr, events->releaseFence);
// ...and finally the third!
events = history.getFrame(3);
ASSERT_NE(nullptr, events);
ASSERT_EQ(3, events->frameNumber);
ASSERT_EQ(requestedPresentTimeC, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeC);
// wait for any callbacks that have not been received
adapter.waitForCallbacks();
}
TEST_F(BLASTFrameEventHistoryTest, FrameEventHistory_DroppedFrame) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
setUpProducer(adapter, igbProducer);
ProducerFrameEventHistory history;
IGraphicBufferProducer::QueueBufferOutput qbOutput;
nsecs_t requestedPresentTimeA = 0;
nsecs_t postedTimeA = 0;
// Present the frame sometime in the future so we can add two frames to the queue so the older
// one will be dropped.
nsecs_t presentTime = systemTime() + std::chrono::nanoseconds(500ms).count();
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeA, &postedTimeA, &qbOutput, true,
presentTime);
history.applyDelta(qbOutput.frameTimestamps);
FrameEvents* events = nullptr;
events = history.getFrame(1);
ASSERT_NE(nullptr, events);
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
// queue another buffer so the first can be dropped
nsecs_t requestedPresentTimeB = 0;
nsecs_t postedTimeB = 0;
presentTime = systemTime() + std::chrono::nanoseconds(1ms).count();
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeB, &postedTimeB, &qbOutput, true,
presentTime);
history.applyDelta(qbOutput.frameTimestamps);
events = history.getFrame(1);
ASSERT_NE(nullptr, events);
// frame number, requestedPresentTime, and postTime should not have changed
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
// a valid latchtime and pre and post composition info should not be set for the dropped frame
ASSERT_FALSE(events->hasLatchInfo());
ASSERT_FALSE(events->hasDequeueReadyInfo());
ASSERT_FALSE(events->hasGpuCompositionDoneInfo());
ASSERT_FALSE(events->hasDisplayPresentInfo());
ASSERT_FALSE(events->hasReleaseInfo());
// wait for the last transaction to be completed.
adapter.waitForCallback(2);
// queue another buffer so we query for frame event deltas
nsecs_t requestedPresentTimeC = 0;
nsecs_t postedTimeC = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeC, &postedTimeC, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
adapter.waitForCallback(3);
// frame number, requestedPresentTime, and postTime should not have changed
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
// a valid latchtime and pre and post composition info should not be set for the dropped frame
ASSERT_FALSE(events->hasLatchInfo());
ASSERT_FALSE(events->hasDequeueReadyInfo());
ASSERT_FALSE(events->hasGpuCompositionDoneInfo());
ASSERT_FALSE(events->hasDisplayPresentInfo());
ASSERT_FALSE(events->hasReleaseInfo());
// we should also have gotten values for the presented frame
events = history.getFrame(2);
ASSERT_NE(nullptr, events);
ASSERT_EQ(2, events->frameNumber);
ASSERT_EQ(requestedPresentTimeB, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeB);
ASSERT_GE(events->latchTime, postedTimeB);
if (flags::frametimestamps_previousrelease()) {
ASSERT_EQ(events->dequeueReadyTime, FrameEvents::TIMESTAMP_PENDING);
}
ASSERT_NE(nullptr, events->gpuCompositionDoneFence);
ASSERT_NE(nullptr, events->displayPresentFence);
ASSERT_NE(nullptr, events->releaseFence);
// Queue another buffer to check for timestamps that came late
nsecs_t requestedPresentTimeD = 0;
nsecs_t postedTimeD = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeD, &postedTimeD, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
adapter.waitForCallback(4);
// frame number, requestedPresentTime, and postTime should not have changed
events = history.getFrame(1);
ASSERT_EQ(1, events->frameNumber);
ASSERT_EQ(requestedPresentTimeA, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeA);
// a valid latchtime and pre and post composition info should not be set for the dropped frame
ASSERT_FALSE(events->hasLatchInfo());
ASSERT_FALSE(events->hasDequeueReadyInfo());
ASSERT_FALSE(events->hasGpuCompositionDoneInfo());
ASSERT_FALSE(events->hasDisplayPresentInfo());
ASSERT_FALSE(events->hasReleaseInfo());
// we should also have gotten values for the presented frame
events = history.getFrame(2);
ASSERT_NE(nullptr, events);
ASSERT_EQ(2, events->frameNumber);
ASSERT_EQ(requestedPresentTimeB, events->requestedPresentTime);
ASSERT_GE(events->postedTime, postedTimeB);
ASSERT_GE(events->latchTime, postedTimeB);
ASSERT_GE(events->dequeueReadyTime, events->latchTime);
ASSERT_NE(nullptr, events->gpuCompositionDoneFence);
ASSERT_NE(nullptr, events->displayPresentFence);
ASSERT_NE(nullptr, events->releaseFence);
// wait for any callbacks that have not been received
adapter.waitForCallbacks();
}
TEST_F(BLASTFrameEventHistoryTest, FrameEventHistory_CompositorTimings) {
BLASTBufferQueueHelper adapter(mSurfaceControl, mDisplayWidth, mDisplayHeight);
sp<IGraphicBufferProducer> igbProducer;
ProducerFrameEventHistory history;
setUpProducer(adapter, igbProducer);
IGraphicBufferProducer::QueueBufferOutput qbOutput;
nsecs_t requestedPresentTimeA = 0;
nsecs_t postedTimeA = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeA, &postedTimeA, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
adapter.waitForCallback(1);
// queue another buffer so we query for frame event deltas
nsecs_t requestedPresentTimeB = 0;
nsecs_t postedTimeB = 0;
setUpAndQueueBuffer(igbProducer, &requestedPresentTimeB, &postedTimeB, &qbOutput, true);
history.applyDelta(qbOutput.frameTimestamps);
// check for a valid compositor deadline
ASSERT_NE(0, history.getReportedCompositeDeadline());
// wait for any callbacks that have not been received
adapter.waitForCallbacks();
}
} // namespace android