blob: 5c8a9b2573656e8a8fc410f0b4ab4a8ffa406610 [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <math/quat.h>
#include <math/TMatHelpers.h>
#include <math/vec3.h>
#include <stdint.h>
#include <sys/types.h>
#define PURE __attribute__((pure))
#if __cplusplus >= 201402L
#define CONSTEXPR constexpr
#else
#define CONSTEXPR
#endif
namespace android {
// -------------------------------------------------------------------------------------
namespace details {
template<typename T>
class TQuaternion;
/**
* A 3x3 column-major matrix class.
*
* Conceptually a 3x3 matrix is a an array of 3 column vec3:
*
* mat3 m =
* \f$
* \left(
* \begin{array}{ccc}
* m[0] & m[1] & m[2] \\
* \end{array}
* \right)
* \f$
* =
* \f$
* \left(
* \begin{array}{ccc}
* m[0][0] & m[1][0] & m[2][0] \\
* m[0][1] & m[1][1] & m[2][1] \\
* m[0][2] & m[1][2] & m[2][2] \\
* \end{array}
* \right)
* \f$
* =
* \f$
* \left(
* \begin{array}{ccc}
* m(0,0) & m(0,1) & m(0,2) \\
* m(1,0) & m(1,1) & m(1,2) \\
* m(2,0) & m(2,1) & m(2,2) \\
* \end{array}
* \right)
* \f$
*
* m[n] is the \f$ n^{th} \f$ column of the matrix and is a vec3.
*
*/
template <typename T>
class TMat33 : public TVecUnaryOperators<TMat33, T>,
public TVecComparisonOperators<TMat33, T>,
public TVecAddOperators<TMat33, T>,
public TMatProductOperators<TMat33, T>,
public TMatSquareFunctions<TMat33, T>,
public TMatTransform<TMat33, T>,
public TMatHelpers<TMat33, T>,
public TMatDebug<TMat33, T> {
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
typedef TVec3<T> col_type;
typedef TVec3<T> row_type;
static constexpr size_t COL_SIZE = col_type::SIZE; // size of a column (i.e.: number of rows)
static constexpr size_t ROW_SIZE = row_type::SIZE; // size of a row (i.e.: number of columns)
static constexpr size_t NUM_ROWS = COL_SIZE;
static constexpr size_t NUM_COLS = ROW_SIZE;
private:
/*
* <-- N columns -->
*
* a[0][0] a[1][0] a[2][0] ... a[N][0] ^
* a[0][1] a[1][1] a[2][1] ... a[N][1] |
* a[0][2] a[1][2] a[2][2] ... a[N][2] M rows
* ... |
* a[0][M] a[1][M] a[2][M] ... a[N][M] v
*
* COL_SIZE = M
* ROW_SIZE = N
* m[0] = [ a[0][0] a[0][1] a[0][2] ... a[0][M] ]
*/
col_type m_value[NUM_COLS];
public:
// array access
inline constexpr col_type const& operator[](size_t column) const {
#if __cplusplus >= 201402L
// only possible in C++0x14 with constexpr
assert(column < NUM_COLS);
#endif
return m_value[column];
}
inline col_type& operator[](size_t column) {
assert(column < NUM_COLS);
return m_value[column];
}
// -----------------------------------------------------------------------
// we want the compiler generated versions for these...
TMat33(const TMat33&) = default;
~TMat33() = default;
TMat33& operator = (const TMat33&) = default;
/**
* constructors
*/
/**
* leaves object uninitialized. use with caution.
*/
explicit constexpr TMat33(no_init)
: m_value{ col_type(col_type::NO_INIT),
col_type(col_type::NO_INIT),
col_type(col_type::NO_INIT) } {}
/**
* initialize to identity.
*
* \f$
* \left(
* \begin{array}{ccc}
* 1 & 0 & 0 \\
* 0 & 1 & 0 \\
* 0 & 0 & 1 \\
* \end{array}
* \right)
* \f$
*/
CONSTEXPR TMat33();
/**
* initialize to Identity*scalar.
*
* \f$
* \left(
* \begin{array}{ccc}
* v & 0 & 0 \\
* 0 & v & 0 \\
* 0 & 0 & v \\
* \end{array}
* \right)
* \f$
*/
template<typename U>
explicit CONSTEXPR TMat33(U v);
/**
* sets the diagonal to a vector.
*
* \f$
* \left(
* \begin{array}{ccc}
* v[0] & 0 & 0 \\
* 0 & v[1] & 0 \\
* 0 & 0 & v[2] \\
* \end{array}
* \right)
* \f$
*/
template <typename U>
explicit CONSTEXPR TMat33(const TVec3<U>& v);
/**
* construct from another matrix of the same size
*/
template <typename U>
explicit CONSTEXPR TMat33(const TMat33<U>& rhs);
/**
* construct from 3 column vectors.
*
* \f$
* \left(
* \begin{array}{ccc}
* v0 & v1 & v2 \\
* \end{array}
* \right)
* \f$
*/
template <typename A, typename B, typename C>
CONSTEXPR TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2);
/** construct from 9 elements in column-major form.
*
* \f$
* \left(
* \begin{array}{ccc}
* m[0][0] & m[1][0] & m[2][0] \\
* m[0][1] & m[1][1] & m[2][1] \\
* m[0][2] & m[1][2] & m[2][2] \\
* \end{array}
* \right)
* \f$
*/
template <
typename A, typename B, typename C,
typename D, typename E, typename F,
typename G, typename H, typename I>
CONSTEXPR TMat33(
A m00, B m01, C m02,
D m10, E m11, F m12,
G m20, H m21, I m22);
/**
* construct from a quaternion
*/
template <typename U>
explicit CONSTEXPR TMat33(const TQuaternion<U>& q);
/**
* construct from a C array in column major form.
*/
template <typename U>
explicit CONSTEXPR TMat33(U const* rawArray);
/**
* orthogonalize only works on matrices of size 3x3
*/
friend inline
CONSTEXPR TMat33 orthogonalize(const TMat33& m) {
TMat33 ret(TMat33::NO_INIT);
ret[0] = normalize(m[0]);
ret[2] = normalize(cross(ret[0], m[1]));
ret[1] = normalize(cross(ret[2], ret[0]));
return ret;
}
};
// ----------------------------------------------------------------------------------------
// Constructors
// ----------------------------------------------------------------------------------------
// Since the matrix code could become pretty big quickly, we don't inline most
// operations.
template <typename T>
CONSTEXPR TMat33<T>::TMat33() {
m_value[0] = col_type(1, 0, 0);
m_value[1] = col_type(0, 1, 0);
m_value[2] = col_type(0, 0, 1);
}
template <typename T>
template <typename U>
CONSTEXPR TMat33<T>::TMat33(U v) {
m_value[0] = col_type(v, 0, 0);
m_value[1] = col_type(0, v, 0);
m_value[2] = col_type(0, 0, v);
}
template<typename T>
template<typename U>
CONSTEXPR TMat33<T>::TMat33(const TVec3<U>& v) {
m_value[0] = col_type(v.x, 0, 0);
m_value[1] = col_type(0, v.y, 0);
m_value[2] = col_type(0, 0, v.z);
}
// construct from 9 scalars. Note that the arrangement
// of values in the constructor is the transpose of the matrix
// notation.
template<typename T>
template <
typename A, typename B, typename C,
typename D, typename E, typename F,
typename G, typename H, typename I>
CONSTEXPR TMat33<T>::TMat33(
A m00, B m01, C m02,
D m10, E m11, F m12,
G m20, H m21, I m22) {
m_value[0] = col_type(m00, m01, m02);
m_value[1] = col_type(m10, m11, m12);
m_value[2] = col_type(m20, m21, m22);
}
template <typename T>
template <typename U>
CONSTEXPR TMat33<T>::TMat33(const TMat33<U>& rhs) {
for (size_t col = 0; col < NUM_COLS; ++col) {
m_value[col] = col_type(rhs[col]);
}
}
// Construct from 3 column vectors.
template <typename T>
template <typename A, typename B, typename C>
CONSTEXPR TMat33<T>::TMat33(const TVec3<A>& v0, const TVec3<B>& v1, const TVec3<C>& v2) {
m_value[0] = v0;
m_value[1] = v1;
m_value[2] = v2;
}
// Construct from raw array, in column-major form.
template <typename T>
template <typename U>
CONSTEXPR TMat33<T>::TMat33(U const* rawArray) {
for (size_t col = 0; col < NUM_COLS; ++col) {
for (size_t row = 0; row < NUM_ROWS; ++row) {
m_value[col][row] = *rawArray++;
}
}
}
template <typename T>
template <typename U>
CONSTEXPR TMat33<T>::TMat33(const TQuaternion<U>& q) {
const U n = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
const U s = n > 0 ? 2/n : 0;
const U x = s*q.x;
const U y = s*q.y;
const U z = s*q.z;
const U xx = x*q.x;
const U xy = x*q.y;
const U xz = x*q.z;
const U xw = x*q.w;
const U yy = y*q.y;
const U yz = y*q.z;
const U yw = y*q.w;
const U zz = z*q.z;
const U zw = z*q.w;
m_value[0] = col_type(1-yy-zz, xy+zw, xz-yw); // NOLINT
m_value[1] = col_type( xy-zw, 1-xx-zz, yz+xw); // NOLINT
m_value[2] = col_type( xz+yw, yz-xw, 1-xx-yy); // NOLINT
}
// ----------------------------------------------------------------------------------------
// Arithmetic operators outside of class
// ----------------------------------------------------------------------------------------
/* We use non-friend functions here to prevent the compiler from using
* implicit conversions, for instance of a scalar to a vector. The result would
* not be what the caller expects.
*
* Also note that the order of the arguments in the inner loop is important since
* it determines the output type (only relevant when T != U).
*/
// matrix * column-vector, result is a vector of the same type than the input vector
template <typename T, typename U>
CONSTEXPR typename TMat33<U>::col_type PURE operator *(const TMat33<T>& lhs, const TVec3<U>& rhs) {
// Result is initialized to zero.
typename TMat33<U>::col_type result;
for (size_t col = 0; col < TMat33<T>::NUM_COLS; ++col) {
result += lhs[col] * rhs[col];
}
return result;
}
// row-vector * matrix, result is a vector of the same type than the input vector
template <typename T, typename U>
CONSTEXPR typename TMat33<U>::row_type PURE operator *(const TVec3<U>& lhs, const TMat33<T>& rhs) {
typename TMat33<U>::row_type result(TMat33<U>::row_type::NO_INIT);
for (size_t col = 0; col < TMat33<T>::NUM_COLS; ++col) {
result[col] = dot(lhs, rhs[col]);
}
return result;
}
// matrix * scalar, result is a matrix of the same type than the input matrix
template<typename T, typename U>
constexpr typename std::enable_if<std::is_arithmetic<U>::value, TMat33<T>>::type PURE
operator*(TMat33<T> lhs, U rhs) {
return lhs *= rhs;
}
// scalar * matrix, result is a matrix of the same type than the input matrix
template<typename T, typename U>
constexpr typename std::enable_if<std::is_arithmetic<U>::value, TMat33<T>>::type PURE
operator*(U lhs, const TMat33<T>& rhs) {
return rhs * lhs;
}
//------------------------------------------------------------------------------
template <typename T>
CONSTEXPR TMat33<T> orthogonalize(const TMat33<T>& m) {
TMat33<T> ret(TMat33<T>::NO_INIT);
ret[0] = normalize(m[0]);
ret[2] = normalize(cross(ret[0], m[1]));
ret[1] = normalize(cross(ret[2], ret[0]));
return ret;
}
// ----------------------------------------------------------------------------------------
/* FIXME: this should go into TMatSquareFunctions<> but for some reason
* BASE<T>::col_type is not accessible from there (???)
*/
template<typename T>
CONSTEXPR typename TMat33<T>::col_type PURE diag(const TMat33<T>& m) {
return matrix::diag(m);
}
} // namespace details
// ----------------------------------------------------------------------------------------
typedef details::TMat33<double> mat3d;
typedef details::TMat33<float> mat3;
typedef details::TMat33<float> mat3f;
// ----------------------------------------------------------------------------------------
} // namespace android
#undef PURE
#undef CONSTEXPR