| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // clang-format off |
| #include "../Macros.h" |
| // clang-format on |
| |
| #include "TouchInputMapper.h" |
| |
| #include <ftl/enum.h> |
| #include <input/PrintTools.h> |
| |
| #include "CursorButtonAccumulator.h" |
| #include "CursorScrollAccumulator.h" |
| #include "TouchButtonAccumulator.h" |
| #include "TouchCursorInputMapperCommon.h" |
| #include "ui/Rotation.h" |
| |
| namespace android { |
| |
| // --- Constants --- |
| |
| // Artificial latency on synthetic events created from stylus data without corresponding touch |
| // data. |
| static constexpr nsecs_t STYLUS_DATA_LATENCY = ms2ns(10); |
| |
| // Minimum width between two pointers to determine a gesture as freeform gesture in mm |
| static const float MIN_FREEFORM_GESTURE_WIDTH_IN_MILLIMETER = 30; |
| // --- Static Definitions --- |
| |
| static const DisplayViewport kUninitializedViewport; |
| |
| static std::string toString(const Rect& rect) { |
| return base::StringPrintf("Rect{%d, %d, %d, %d}", rect.left, rect.top, rect.right, rect.bottom); |
| } |
| |
| static std::string toString(const ui::Size& size) { |
| return base::StringPrintf("%dx%d", size.width, size.height); |
| } |
| |
| static bool isPointInRect(const Rect& rect, vec2 p) { |
| return p.x >= rect.left && p.x < rect.right && p.y >= rect.top && p.y < rect.bottom; |
| } |
| |
| static std::string toString(const InputDeviceUsiVersion& v) { |
| return base::StringPrintf("%d.%d", v.majorVersion, v.minorVersion); |
| } |
| |
| template <typename T> |
| inline static void swap(T& a, T& b) { |
| T temp = a; |
| a = b; |
| b = temp; |
| } |
| |
| static float calculateCommonVector(float a, float b) { |
| if (a > 0 && b > 0) { |
| return a < b ? a : b; |
| } else if (a < 0 && b < 0) { |
| return a > b ? a : b; |
| } else { |
| return 0; |
| } |
| } |
| |
| inline static float distance(float x1, float y1, float x2, float y2) { |
| return hypotf(x1 - x2, y1 - y2); |
| } |
| |
| inline static int32_t signExtendNybble(int32_t value) { |
| return value >= 8 ? value - 16 : value; |
| } |
| |
| static ui::Size getNaturalDisplaySize(const DisplayViewport& viewport) { |
| ui::Size rotatedDisplaySize{viewport.deviceWidth, viewport.deviceHeight}; |
| if (viewport.orientation == ui::ROTATION_90 || viewport.orientation == ui::ROTATION_270) { |
| std::swap(rotatedDisplaySize.width, rotatedDisplaySize.height); |
| } |
| return rotatedDisplaySize; |
| } |
| |
| static int32_t filterButtonState(InputReaderConfiguration& config, int32_t buttonState) { |
| if (!config.stylusButtonMotionEventsEnabled) { |
| buttonState &= |
| ~(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY | AMOTION_EVENT_BUTTON_STYLUS_SECONDARY); |
| } |
| return buttonState; |
| } |
| |
| // --- RawPointerData --- |
| |
| void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { |
| float x = 0, y = 0; |
| uint32_t count = touchingIdBits.count(); |
| if (count) { |
| for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const Pointer& pointer = pointerForId(id); |
| x += pointer.x; |
| y += pointer.y; |
| } |
| x /= count; |
| y /= count; |
| } |
| *outX = x; |
| *outY = y; |
| } |
| |
| // --- TouchInputMapper --- |
| |
| TouchInputMapper::TouchInputMapper(InputDeviceContext& deviceContext, |
| const InputReaderConfiguration& readerConfig) |
| : InputMapper(deviceContext, readerConfig), |
| mTouchButtonAccumulator(deviceContext), |
| mConfig(readerConfig) {} |
| |
| TouchInputMapper::~TouchInputMapper() {} |
| |
| uint32_t TouchInputMapper::getSources() const { |
| return mSource; |
| } |
| |
| void TouchInputMapper::populateDeviceInfo(InputDeviceInfo& info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| if (mDeviceMode == DeviceMode::DISABLED) { |
| return; |
| } |
| |
| info.addMotionRange(mOrientedRanges.x); |
| info.addMotionRange(mOrientedRanges.y); |
| info.addMotionRange(mOrientedRanges.pressure); |
| |
| if (mDeviceMode == DeviceMode::UNSCALED && mSource == AINPUT_SOURCE_TOUCHPAD) { |
| // Populate RELATIVE_X and RELATIVE_Y motion ranges for touchpad capture mode. |
| // |
| // RELATIVE_X and RELATIVE_Y motion ranges should be the largest possible relative |
| // motion, i.e. the hardware dimensions, as the finger could move completely across the |
| // touchpad in one sample cycle. |
| const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; |
| const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; |
| info.addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, mSource, -x.max, x.max, x.flat, x.fuzz, |
| x.resolution); |
| info.addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, mSource, -y.max, y.max, y.flat, y.fuzz, |
| y.resolution); |
| } |
| |
| if (mOrientedRanges.size) { |
| info.addMotionRange(*mOrientedRanges.size); |
| } |
| |
| if (mOrientedRanges.touchMajor) { |
| info.addMotionRange(*mOrientedRanges.touchMajor); |
| info.addMotionRange(*mOrientedRanges.touchMinor); |
| } |
| |
| if (mOrientedRanges.toolMajor) { |
| info.addMotionRange(*mOrientedRanges.toolMajor); |
| info.addMotionRange(*mOrientedRanges.toolMinor); |
| } |
| |
| if (mOrientedRanges.orientation) { |
| info.addMotionRange(*mOrientedRanges.orientation); |
| } |
| |
| if (mOrientedRanges.distance) { |
| info.addMotionRange(*mOrientedRanges.distance); |
| } |
| |
| if (mOrientedRanges.tilt) { |
| info.addMotionRange(*mOrientedRanges.tilt); |
| } |
| |
| if (mCursorScrollAccumulator.haveRelativeVWheel()) { |
| info.addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| } |
| if (mCursorScrollAccumulator.haveRelativeHWheel()) { |
| info.addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); |
| } |
| info.setButtonUnderPad(mParameters.hasButtonUnderPad); |
| info.setUsiVersion(mParameters.usiVersion); |
| } |
| |
| void TouchInputMapper::dump(std::string& dump) { |
| dump += StringPrintf(INDENT2 "Touch Input Mapper (mode - %s):\n", |
| ftl::enum_string(mDeviceMode).c_str()); |
| dumpParameters(dump); |
| dumpVirtualKeys(dump); |
| dumpRawPointerAxes(dump); |
| dumpCalibration(dump); |
| dumpAffineTransformation(dump); |
| dumpDisplay(dump); |
| |
| dump += StringPrintf(INDENT3 "Translation and Scaling Factors:\n"); |
| mRawToDisplay.dump(dump, "RawToDisplay Transform:", INDENT4); |
| mRawRotation.dump(dump, "RawRotation Transform:", INDENT4); |
| dump += StringPrintf(INDENT4 "OrientedXPrecision: %0.3f\n", mOrientedXPrecision); |
| dump += StringPrintf(INDENT4 "OrientedYPrecision: %0.3f\n", mOrientedYPrecision); |
| dump += StringPrintf(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); |
| dump += StringPrintf(INDENT4 "PressureScale: %0.3f\n", mPressureScale); |
| dump += StringPrintf(INDENT4 "SizeScale: %0.3f\n", mSizeScale); |
| dump += StringPrintf(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); |
| dump += StringPrintf(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); |
| dump += StringPrintf(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); |
| dump += StringPrintf(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); |
| dump += StringPrintf(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); |
| dump += StringPrintf(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); |
| dump += StringPrintf(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); |
| |
| dump += StringPrintf(INDENT3 "Last Raw Button State: 0x%08x\n", mLastRawState.buttonState); |
| dump += StringPrintf(INDENT3 "Last Raw Touch: pointerCount=%d\n", |
| mLastRawState.rawPointerData.pointerCount); |
| for (uint32_t i = 0; i < mLastRawState.rawPointerData.pointerCount; i++) { |
| const RawPointerData::Pointer& pointer = mLastRawState.rawPointerData.pointers[i]; |
| dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " |
| "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " |
| "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " |
| "toolType=%s, isHovering=%s\n", |
| i, pointer.id, pointer.x, pointer.y, pointer.pressure, |
| pointer.touchMajor, pointer.touchMinor, pointer.toolMajor, |
| pointer.toolMinor, pointer.orientation, pointer.tiltX, pointer.tiltY, |
| pointer.distance, ftl::enum_string(pointer.toolType).c_str(), |
| toString(pointer.isHovering)); |
| } |
| |
| dump += StringPrintf(INDENT3 "Last Cooked Button State: 0x%08x\n", |
| mLastCookedState.buttonState); |
| dump += StringPrintf(INDENT3 "Last Cooked Touch: pointerCount=%d\n", |
| mLastCookedState.cookedPointerData.pointerCount); |
| for (uint32_t i = 0; i < mLastCookedState.cookedPointerData.pointerCount; i++) { |
| const PointerProperties& pointerProperties = |
| mLastCookedState.cookedPointerData.pointerProperties[i]; |
| const PointerCoords& pointerCoords = mLastCookedState.cookedPointerData.pointerCoords[i]; |
| dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, dx=%0.3f, dy=%0.3f, " |
| "pressure=%0.3f, touchMajor=%0.3f, touchMinor=%0.3f, " |
| "toolMajor=%0.3f, toolMinor=%0.3f, " |
| "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " |
| "toolType=%s, isHovering=%s\n", |
| i, pointerProperties.id, pointerCoords.getX(), pointerCoords.getY(), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), |
| pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), |
| ftl::enum_string(pointerProperties.toolType).c_str(), |
| toString(mLastCookedState.cookedPointerData.isHovering(i))); |
| } |
| |
| dump += INDENT3 "Stylus Fusion:\n"; |
| dump += StringPrintf(INDENT4 "ExternalStylusConnected: %s\n", |
| toString(mExternalStylusConnected)); |
| dump += StringPrintf(INDENT4 "Fused External Stylus Pointer ID: %s\n", |
| toString(mFusedStylusPointerId).c_str()); |
| dump += StringPrintf(INDENT4 "External Stylus Data Timeout: %" PRId64 "\n", |
| mExternalStylusFusionTimeout); |
| dump += StringPrintf(INDENT4 " External Stylus Buttons Applied: 0x%08x", |
| mExternalStylusButtonsApplied); |
| dump += INDENT3 "External Stylus State:\n"; |
| dumpStylusState(dump, mExternalStylusState); |
| |
| if (mDeviceMode == DeviceMode::POINTER) { |
| dump += StringPrintf(INDENT3 "Pointer Gesture Detector:\n"); |
| dump += StringPrintf(INDENT4 "XMovementScale: %0.3f\n", mPointerXMovementScale); |
| dump += StringPrintf(INDENT4 "YMovementScale: %0.3f\n", mPointerYMovementScale); |
| dump += StringPrintf(INDENT4 "XZoomScale: %0.3f\n", mPointerXZoomScale); |
| dump += StringPrintf(INDENT4 "YZoomScale: %0.3f\n", mPointerYZoomScale); |
| dump += StringPrintf(INDENT4 "MaxSwipeWidth: %f\n", mPointerGestureMaxSwipeWidth); |
| } |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::reconfigure(nsecs_t when, |
| const InputReaderConfiguration& config, |
| ConfigurationChanges changes) { |
| std::list<NotifyArgs> out = InputMapper::reconfigure(when, config, changes); |
| |
| mConfig = config; |
| |
| // Full configuration should happen the first time configure is called and |
| // when the device type is changed. Changing a device type can affect |
| // various other parameters so should result in a reconfiguration. |
| if (!changes.any() || changes.test(InputReaderConfiguration::Change::DEVICE_TYPE)) { |
| // Configure basic parameters. |
| mParameters = computeParameters(getDeviceContext()); |
| |
| // Configure common accumulators. |
| mCursorScrollAccumulator.configure(getDeviceContext()); |
| mTouchButtonAccumulator.configure(); |
| |
| // Configure absolute axis information. |
| configureRawPointerAxes(); |
| |
| // Prepare input device calibration. |
| parseCalibration(); |
| resolveCalibration(); |
| } |
| |
| if (!changes.any() || |
| changes.test(InputReaderConfiguration::Change::TOUCH_AFFINE_TRANSFORMATION)) { |
| // Update location calibration to reflect current settings |
| updateAffineTransformation(); |
| } |
| |
| if (!changes.any() || changes.test(InputReaderConfiguration::Change::POINTER_SPEED)) { |
| // Update pointer speed. |
| mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); |
| mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); |
| mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); |
| } |
| |
| using namespace ftl::flag_operators; |
| bool resetNeeded = false; |
| if (!changes.any() || |
| changes.any(InputReaderConfiguration::Change::DISPLAY_INFO | |
| InputReaderConfiguration::Change::POINTER_CAPTURE | |
| InputReaderConfiguration::Change::POINTER_GESTURE_ENABLEMENT | |
| InputReaderConfiguration::Change::SHOW_TOUCHES | |
| InputReaderConfiguration::Change::EXTERNAL_STYLUS_PRESENCE | |
| InputReaderConfiguration::Change::DEVICE_TYPE)) { |
| // Configure device sources, display dimensions, orientation and |
| // scaling factors. |
| configureInputDevice(when, &resetNeeded); |
| } |
| |
| if (changes.any() && resetNeeded) { |
| out += reset(when); |
| |
| // Send reset, unless this is the first time the device has been configured, |
| // in which case the reader will call reset itself after all mappers are ready. |
| out.emplace_back(NotifyDeviceResetArgs(getContext()->getNextId(), when, getDeviceId())); |
| } |
| return out; |
| } |
| |
| void TouchInputMapper::resolveExternalStylusPresence() { |
| std::vector<InputDeviceInfo> devices; |
| getContext()->getExternalStylusDevices(devices); |
| mExternalStylusConnected = !devices.empty(); |
| |
| if (!mExternalStylusConnected) { |
| resetExternalStylus(); |
| } |
| } |
| |
| TouchInputMapper::Parameters TouchInputMapper::computeParameters( |
| const InputDeviceContext& deviceContext) { |
| Parameters parameters; |
| // Use the pointer presentation mode for devices that do not support distinct |
| // multitouch. The spot-based presentation relies on being able to accurately |
| // locate two or more fingers on the touch pad. |
| parameters.gestureMode = deviceContext.hasInputProperty(INPUT_PROP_SEMI_MT) |
| ? Parameters::GestureMode::SINGLE_TOUCH |
| : Parameters::GestureMode::MULTI_TOUCH; |
| |
| const PropertyMap& config = deviceContext.getConfiguration(); |
| std::optional<std::string> gestureModeString = config.getString("touch.gestureMode"); |
| if (gestureModeString.has_value()) { |
| if (*gestureModeString == "single-touch") { |
| parameters.gestureMode = Parameters::GestureMode::SINGLE_TOUCH; |
| } else if (*gestureModeString == "multi-touch") { |
| parameters.gestureMode = Parameters::GestureMode::MULTI_TOUCH; |
| } else if (*gestureModeString != "default") { |
| ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString->c_str()); |
| } |
| } |
| |
| parameters.deviceType = computeDeviceType(deviceContext); |
| |
| parameters.hasButtonUnderPad = deviceContext.hasInputProperty(INPUT_PROP_BUTTONPAD); |
| |
| parameters.orientationAware = |
| config.getBool("touch.orientationAware") |
| .value_or(parameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN); |
| |
| parameters.orientation = ui::ROTATION_0; |
| std::optional<std::string> orientationString = config.getString("touch.orientation"); |
| if (orientationString.has_value()) { |
| if (parameters.deviceType != Parameters::DeviceType::TOUCH_SCREEN) { |
| ALOGW("The configuration 'touch.orientation' is only supported for touchscreens."); |
| } else if (*orientationString == "ORIENTATION_90") { |
| parameters.orientation = ui::ROTATION_90; |
| } else if (*orientationString == "ORIENTATION_180") { |
| parameters.orientation = ui::ROTATION_180; |
| } else if (*orientationString == "ORIENTATION_270") { |
| parameters.orientation = ui::ROTATION_270; |
| } else if (*orientationString != "ORIENTATION_0") { |
| ALOGW("Invalid value for touch.orientation: '%s'", orientationString->c_str()); |
| } |
| } |
| |
| parameters.hasAssociatedDisplay = false; |
| parameters.associatedDisplayIsExternal = false; |
| if (parameters.orientationAware || |
| parameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN || |
| parameters.deviceType == Parameters::DeviceType::POINTER || |
| (parameters.deviceType == Parameters::DeviceType::TOUCH_NAVIGATION && |
| deviceContext.getAssociatedViewport())) { |
| parameters.hasAssociatedDisplay = true; |
| if (parameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN) { |
| parameters.associatedDisplayIsExternal = deviceContext.isExternal(); |
| parameters.uniqueDisplayId = config.getString("touch.displayId").value_or("").c_str(); |
| } |
| } |
| if (deviceContext.getAssociatedDisplayPort()) { |
| parameters.hasAssociatedDisplay = true; |
| } |
| |
| // Initial downs on external touch devices should wake the device. |
| // Normally we don't do this for internal touch screens to prevent them from waking |
| // up in your pocket but you can enable it using the input device configuration. |
| parameters.wake = config.getBool("touch.wake").value_or(deviceContext.isExternal()); |
| |
| std::optional<int32_t> usiVersionMajor = config.getInt("touch.usiVersionMajor"); |
| std::optional<int32_t> usiVersionMinor = config.getInt("touch.usiVersionMinor"); |
| if (usiVersionMajor.has_value() && usiVersionMinor.has_value()) { |
| parameters.usiVersion = { |
| .majorVersion = *usiVersionMajor, |
| .minorVersion = *usiVersionMinor, |
| }; |
| } |
| |
| parameters.enableForInactiveViewport = |
| config.getBool("touch.enableForInactiveViewport").value_or(false); |
| |
| return parameters; |
| } |
| |
| TouchInputMapper::Parameters::DeviceType TouchInputMapper::computeDeviceType( |
| const InputDeviceContext& deviceContext) { |
| Parameters::DeviceType deviceType; |
| if (deviceContext.hasInputProperty(INPUT_PROP_DIRECT)) { |
| // The device is a touch screen. |
| deviceType = Parameters::DeviceType::TOUCH_SCREEN; |
| } else if (deviceContext.hasInputProperty(INPUT_PROP_POINTER)) { |
| // The device is a pointing device like a track pad. |
| deviceType = Parameters::DeviceType::POINTER; |
| } else { |
| // The device is a touch pad of unknown purpose. |
| deviceType = Parameters::DeviceType::POINTER; |
| } |
| |
| // Type association takes precedence over the device type found in the idc file. |
| std::string deviceTypeString = deviceContext.getDeviceTypeAssociation().value_or(""); |
| if (deviceTypeString.empty()) { |
| deviceTypeString = |
| deviceContext.getConfiguration().getString("touch.deviceType").value_or(""); |
| } |
| if (deviceTypeString == "touchScreen") { |
| deviceType = Parameters::DeviceType::TOUCH_SCREEN; |
| } else if (deviceTypeString == "touchNavigation") { |
| deviceType = Parameters::DeviceType::TOUCH_NAVIGATION; |
| } else if (deviceTypeString == "pointer") { |
| deviceType = Parameters::DeviceType::POINTER; |
| } else if (deviceTypeString != "default" && deviceTypeString != "") { |
| ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.c_str()); |
| } |
| return deviceType; |
| } |
| |
| void TouchInputMapper::dumpParameters(std::string& dump) { |
| dump += INDENT3 "Parameters:\n"; |
| |
| dump += INDENT4 "GestureMode: " + ftl::enum_string(mParameters.gestureMode) + "\n"; |
| |
| dump += INDENT4 "DeviceType: " + ftl::enum_string(mParameters.deviceType) + "\n"; |
| |
| dump += StringPrintf(INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s, " |
| "displayId='%s'\n", |
| toString(mParameters.hasAssociatedDisplay), |
| toString(mParameters.associatedDisplayIsExternal), |
| mParameters.uniqueDisplayId.c_str()); |
| dump += StringPrintf(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); |
| dump += INDENT4 "Orientation: " + ftl::enum_string(mParameters.orientation) + "\n"; |
| dump += StringPrintf(INDENT4 "UsiVersion: %s\n", |
| toString(mParameters.usiVersion, toString).c_str()); |
| dump += StringPrintf(INDENT4 "EnableForInactiveViewport: %s\n", |
| toString(mParameters.enableForInactiveViewport)); |
| } |
| |
| void TouchInputMapper::configureRawPointerAxes() { |
| mRawPointerAxes.clear(); |
| } |
| |
| void TouchInputMapper::dumpRawPointerAxes(std::string& dump) { |
| dump += INDENT3 "Raw Touch Axes:\n"; |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); |
| dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); |
| } |
| |
| bool TouchInputMapper::hasExternalStylus() const { |
| return mExternalStylusConnected; |
| } |
| |
| /** |
| * Determine which DisplayViewport to use. |
| * 1. If a device has associated display, get the matching viewport. |
| * 2. Always use the suggested viewport from WindowManagerService for pointers. |
| * 3. Get the matching viewport by either unique id in idc file or by the display type |
| * (internal or external). |
| * 4. Otherwise, use a non-display viewport. |
| */ |
| std::optional<DisplayViewport> TouchInputMapper::findViewport() { |
| if (mParameters.hasAssociatedDisplay && mDeviceMode != DeviceMode::UNSCALED) { |
| if (getDeviceContext().getAssociatedViewport()) { |
| return getDeviceContext().getAssociatedViewport(); |
| } |
| |
| const std::optional<std::string> associatedDisplayUniqueId = |
| getDeviceContext().getAssociatedDisplayUniqueId(); |
| if (associatedDisplayUniqueId) { |
| return getDeviceContext().getAssociatedViewport(); |
| } |
| |
| if (mDeviceMode == DeviceMode::POINTER) { |
| std::optional<DisplayViewport> viewport = |
| mConfig.getDisplayViewportById(mConfig.defaultPointerDisplayId); |
| if (viewport) { |
| return viewport; |
| } else { |
| ALOGW("Can't find designated display viewport with ID %" PRId32 " for pointers.", |
| mConfig.defaultPointerDisplayId); |
| } |
| } |
| |
| // Check if uniqueDisplayId is specified in idc file. |
| if (!mParameters.uniqueDisplayId.empty()) { |
| return mConfig.getDisplayViewportByUniqueId(mParameters.uniqueDisplayId); |
| } |
| |
| ViewportType viewportTypeToUse; |
| if (mParameters.associatedDisplayIsExternal) { |
| viewportTypeToUse = ViewportType::EXTERNAL; |
| } else { |
| viewportTypeToUse = ViewportType::INTERNAL; |
| } |
| |
| std::optional<DisplayViewport> viewport = |
| mConfig.getDisplayViewportByType(viewportTypeToUse); |
| if (!viewport && viewportTypeToUse == ViewportType::EXTERNAL) { |
| ALOGW("Input device %s should be associated with external display, " |
| "fallback to internal one for the external viewport is not found.", |
| getDeviceName().c_str()); |
| viewport = mConfig.getDisplayViewportByType(ViewportType::INTERNAL); |
| } |
| |
| return viewport; |
| } |
| |
| // No associated display, return a non-display viewport. |
| DisplayViewport newViewport; |
| // Raw width and height in the natural orientation. |
| int32_t rawWidth = mRawPointerAxes.getRawWidth(); |
| int32_t rawHeight = mRawPointerAxes.getRawHeight(); |
| newViewport.setNonDisplayViewport(rawWidth, rawHeight); |
| return std::make_optional(newViewport); |
| } |
| |
| int32_t TouchInputMapper::clampResolution(const char* axisName, int32_t resolution) const { |
| if (resolution < 0) { |
| ALOGE("Invalid %s resolution %" PRId32 " for device %s", axisName, resolution, |
| getDeviceName().c_str()); |
| return 0; |
| } |
| return resolution; |
| } |
| |
| void TouchInputMapper::initializeSizeRanges() { |
| if (mCalibration.sizeCalibration == Calibration::SizeCalibration::NONE) { |
| mSizeScale = 0.0f; |
| return; |
| } |
| |
| // Size of diagonal axis. |
| const float diagonalSize = hypotf(mDisplayBounds.width, mDisplayBounds.height); |
| |
| // Size factors. |
| if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.touchMajor.maxValue != 0) { |
| mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; |
| } else if (mRawPointerAxes.toolMajor.valid && mRawPointerAxes.toolMajor.maxValue != 0) { |
| mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; |
| } else { |
| mSizeScale = 0.0f; |
| } |
| |
| mOrientedRanges.touchMajor = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR, |
| .source = mSource, |
| .min = 0, |
| .max = diagonalSize, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| |
| if (mRawPointerAxes.touchMajor.valid) { |
| mRawPointerAxes.touchMajor.resolution = |
| clampResolution("touchMajor", mRawPointerAxes.touchMajor.resolution); |
| mOrientedRanges.touchMajor->resolution = mRawPointerAxes.touchMajor.resolution; |
| } |
| |
| mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; |
| mOrientedRanges.touchMinor->axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; |
| if (mRawPointerAxes.touchMinor.valid) { |
| mRawPointerAxes.touchMinor.resolution = |
| clampResolution("touchMinor", mRawPointerAxes.touchMinor.resolution); |
| mOrientedRanges.touchMinor->resolution = mRawPointerAxes.touchMinor.resolution; |
| } |
| |
| mOrientedRanges.toolMajor = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_TOOL_MAJOR, |
| .source = mSource, |
| .min = 0, |
| .max = diagonalSize, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| if (mRawPointerAxes.toolMajor.valid) { |
| mRawPointerAxes.toolMajor.resolution = |
| clampResolution("toolMajor", mRawPointerAxes.toolMajor.resolution); |
| mOrientedRanges.toolMajor->resolution = mRawPointerAxes.toolMajor.resolution; |
| } |
| |
| mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; |
| mOrientedRanges.toolMinor->axis = AMOTION_EVENT_AXIS_TOOL_MINOR; |
| if (mRawPointerAxes.toolMinor.valid) { |
| mRawPointerAxes.toolMinor.resolution = |
| clampResolution("toolMinor", mRawPointerAxes.toolMinor.resolution); |
| mOrientedRanges.toolMinor->resolution = mRawPointerAxes.toolMinor.resolution; |
| } |
| |
| if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { |
| mOrientedRanges.touchMajor->resolution *= mGeometricScale; |
| mOrientedRanges.touchMinor->resolution *= mGeometricScale; |
| mOrientedRanges.toolMajor->resolution *= mGeometricScale; |
| mOrientedRanges.toolMinor->resolution *= mGeometricScale; |
| } else { |
| // Support for other calibrations can be added here. |
| ALOGW("%s calibration is not supported for size ranges at the moment. " |
| "Using raw resolution instead", |
| ftl::enum_string(mCalibration.sizeCalibration).c_str()); |
| } |
| |
| mOrientedRanges.size = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_SIZE, |
| .source = mSource, |
| .min = 0, |
| .max = 1.0, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| } |
| |
| void TouchInputMapper::initializeOrientedRanges() { |
| // Configure X and Y factors. |
| const float orientedScaleX = mRawToDisplay.getScaleX(); |
| const float orientedScaleY = mRawToDisplay.getScaleY(); |
| mOrientedXPrecision = 1.0f / orientedScaleX; |
| mOrientedYPrecision = 1.0f / orientedScaleY; |
| |
| mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; |
| mOrientedRanges.x.source = mSource; |
| mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; |
| mOrientedRanges.y.source = mSource; |
| |
| // Scale factor for terms that are not oriented in a particular axis. |
| // If the pixels are square then xScale == yScale otherwise we fake it |
| // by choosing an average. |
| mGeometricScale = avg(orientedScaleX, orientedScaleY); |
| |
| initializeSizeRanges(); |
| |
| // Pressure factors. |
| mPressureScale = 0; |
| float pressureMax = 1.0; |
| if (mCalibration.pressureCalibration == Calibration::PressureCalibration::PHYSICAL || |
| mCalibration.pressureCalibration == Calibration::PressureCalibration::AMPLITUDE) { |
| if (mCalibration.pressureScale) { |
| mPressureScale = *mCalibration.pressureScale; |
| pressureMax = mPressureScale * mRawPointerAxes.pressure.maxValue; |
| } else if (mRawPointerAxes.pressure.valid && mRawPointerAxes.pressure.maxValue != 0) { |
| mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; |
| } |
| } |
| |
| mOrientedRanges.pressure = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_PRESSURE, |
| .source = mSource, |
| .min = 0, |
| .max = pressureMax, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| |
| // Tilt |
| mTiltXCenter = 0; |
| mTiltXScale = 0; |
| mTiltYCenter = 0; |
| mTiltYScale = 0; |
| mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; |
| if (mHaveTilt) { |
| mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, mRawPointerAxes.tiltX.maxValue); |
| mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, mRawPointerAxes.tiltY.maxValue); |
| mTiltXScale = M_PI / 180; |
| mTiltYScale = M_PI / 180; |
| |
| if (mRawPointerAxes.tiltX.resolution) { |
| mTiltXScale = 1.0 / mRawPointerAxes.tiltX.resolution; |
| } |
| if (mRawPointerAxes.tiltY.resolution) { |
| mTiltYScale = 1.0 / mRawPointerAxes.tiltY.resolution; |
| } |
| |
| mOrientedRanges.tilt = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_TILT, |
| .source = mSource, |
| .min = 0, |
| .max = M_PI_2, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| } |
| |
| // Orientation |
| mOrientationScale = 0; |
| if (mHaveTilt) { |
| mOrientedRanges.orientation = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_ORIENTATION, |
| .source = mSource, |
| .min = -M_PI, |
| .max = M_PI, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| |
| } else if (mCalibration.orientationCalibration != Calibration::OrientationCalibration::NONE) { |
| if (mCalibration.orientationCalibration == |
| Calibration::OrientationCalibration::INTERPOLATED) { |
| if (mRawPointerAxes.orientation.valid) { |
| if (mRawPointerAxes.orientation.maxValue > 0) { |
| mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; |
| } else if (mRawPointerAxes.orientation.minValue < 0) { |
| mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; |
| } else { |
| mOrientationScale = 0; |
| } |
| } |
| } |
| |
| mOrientedRanges.orientation = InputDeviceInfo::MotionRange{ |
| .axis = AMOTION_EVENT_AXIS_ORIENTATION, |
| .source = mSource, |
| .min = -M_PI_2, |
| .max = M_PI_2, |
| .flat = 0, |
| .fuzz = 0, |
| .resolution = 0, |
| }; |
| } |
| |
| // Distance |
| mDistanceScale = 0; |
| if (mCalibration.distanceCalibration != Calibration::DistanceCalibration::NONE) { |
| if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::SCALED) { |
| mDistanceScale = mCalibration.distanceScale.value_or(1.0f); |
| } |
| |
| mOrientedRanges.distance = InputDeviceInfo::MotionRange{ |
| |
| .axis = AMOTION_EVENT_AXIS_DISTANCE, |
| .source = mSource, |
| .min = mRawPointerAxes.distance.minValue * mDistanceScale, |
| .max = mRawPointerAxes.distance.maxValue * mDistanceScale, |
| .flat = 0, |
| .fuzz = mRawPointerAxes.distance.fuzz * mDistanceScale, |
| .resolution = 0, |
| }; |
| } |
| |
| // Oriented X/Y range (in the rotated display's orientation) |
| const FloatRect rawFrame = Rect{mRawPointerAxes.x.minValue, mRawPointerAxes.y.minValue, |
| mRawPointerAxes.x.maxValue, mRawPointerAxes.y.maxValue} |
| .toFloatRect(); |
| const auto orientedRangeRect = mRawToRotatedDisplay.transform(rawFrame); |
| mOrientedRanges.x.min = orientedRangeRect.left; |
| mOrientedRanges.y.min = orientedRangeRect.top; |
| mOrientedRanges.x.max = orientedRangeRect.right; |
| mOrientedRanges.y.max = orientedRangeRect.bottom; |
| |
| // Oriented flat (in the rotated display's orientation) |
| const auto orientedFlat = |
| transformWithoutTranslation(mRawToRotatedDisplay, |
| {static_cast<float>(mRawPointerAxes.x.flat), |
| static_cast<float>(mRawPointerAxes.y.flat)}); |
| mOrientedRanges.x.flat = std::abs(orientedFlat.x); |
| mOrientedRanges.y.flat = std::abs(orientedFlat.y); |
| |
| // Oriented fuzz (in the rotated display's orientation) |
| const auto orientedFuzz = |
| transformWithoutTranslation(mRawToRotatedDisplay, |
| {static_cast<float>(mRawPointerAxes.x.fuzz), |
| static_cast<float>(mRawPointerAxes.y.fuzz)}); |
| mOrientedRanges.x.fuzz = std::abs(orientedFuzz.x); |
| mOrientedRanges.y.fuzz = std::abs(orientedFuzz.y); |
| |
| // Oriented resolution (in the rotated display's orientation) |
| const auto orientedRes = |
| transformWithoutTranslation(mRawToRotatedDisplay, |
| {static_cast<float>(mRawPointerAxes.x.resolution), |
| static_cast<float>(mRawPointerAxes.y.resolution)}); |
| mOrientedRanges.x.resolution = std::abs(orientedRes.x); |
| mOrientedRanges.y.resolution = std::abs(orientedRes.y); |
| } |
| |
| void TouchInputMapper::computeInputTransforms() { |
| constexpr auto isRotated = [](const ui::Transform::RotationFlags& rotation) { |
| return rotation == ui::Transform::ROT_90 || rotation == ui::Transform::ROT_270; |
| }; |
| |
| // See notes about input coordinates in the inputflinger docs: |
| // //frameworks/native/services/inputflinger/docs/input_coordinates.md |
| |
| // Step 1: Undo the raw offset so that the raw coordinate space now starts at (0, 0). |
| ui::Transform undoOffsetInRaw; |
| undoOffsetInRaw.set(-mRawPointerAxes.x.minValue, -mRawPointerAxes.y.minValue); |
| |
| // Step 2: Rotate the raw coordinates to account for input device orientation. The coordinates |
| // will now be in the same orientation as the display in ROTATION_0. |
| // Note: Negating an ui::Rotation value will give its inverse rotation. |
| const auto inputDeviceOrientation = ui::Transform::toRotationFlags(-mParameters.orientation); |
| const ui::Size orientedRawSize = isRotated(inputDeviceOrientation) |
| ? ui::Size{mRawPointerAxes.getRawHeight(), mRawPointerAxes.getRawWidth()} |
| : ui::Size{mRawPointerAxes.getRawWidth(), mRawPointerAxes.getRawHeight()}; |
| // When rotating raw values, account for the extra unit added when calculating the raw range. |
| const auto orientInRaw = ui::Transform(inputDeviceOrientation, orientedRawSize.width - 1, |
| orientedRawSize.height - 1); |
| |
| // Step 3: Rotate the raw coordinates to account for the display rotation. The coordinates will |
| // now be in the same orientation as the rotated display. There is no need to rotate the |
| // coordinates to the display rotation if the device is not orientation-aware. |
| const auto viewportRotation = ui::Transform::toRotationFlags(-mViewport.orientation); |
| const auto rotatedRawSize = mParameters.orientationAware && isRotated(viewportRotation) |
| ? ui::Size{orientedRawSize.height, orientedRawSize.width} |
| : orientedRawSize; |
| // When rotating raw values, account for the extra unit added when calculating the raw range. |
| const auto rotateInRaw = mParameters.orientationAware |
| ? ui::Transform(viewportRotation, rotatedRawSize.width - 1, rotatedRawSize.height - 1) |
| : ui::Transform(); |
| |
| // Step 4: Scale the raw coordinates to the display space. |
| // - In DIRECT mode, we assume that the raw surface of the touch device maps perfectly to |
| // the surface of the display panel. This is usually true for touchscreens. |
| // - In POINTER mode, we cannot assume that the display and the touch device have the same |
| // aspect ratio, since it is likely to be untrue for devices like external drawing tablets. |
| // In this case, we used a fixed scale so that 1) we use the same scale across both the x and |
| // y axes to ensure the mapping does not stretch gestures, and 2) the entire region of the |
| // display can be reached by the touch device. |
| // - From this point onward, we are no longer in the discrete space of the raw coordinates but |
| // are in the continuous space of the logical display. |
| ui::Transform scaleRawToDisplay; |
| const float xScale = static_cast<float>(mViewport.deviceWidth) / rotatedRawSize.width; |
| const float yScale = static_cast<float>(mViewport.deviceHeight) / rotatedRawSize.height; |
| if (mDeviceMode == DeviceMode::DIRECT) { |
| scaleRawToDisplay.set(xScale, 0, 0, yScale); |
| } else if (mDeviceMode == DeviceMode::POINTER) { |
| const float fixedScale = std::max(xScale, yScale); |
| scaleRawToDisplay.set(fixedScale, 0, 0, fixedScale); |
| } else { |
| LOG_ALWAYS_FATAL("computeInputTransform can only be used for DIRECT and POINTER modes"); |
| } |
| |
| // Step 5: Undo the display rotation to bring us back to the un-rotated display coordinate space |
| // that InputReader uses. |
| const auto undoRotateInDisplay = |
| ui::Transform(viewportRotation, mViewport.deviceWidth, mViewport.deviceHeight) |
| .inverse(); |
| |
| // Now put it all together! |
| mRawToRotatedDisplay = (scaleRawToDisplay * (rotateInRaw * (orientInRaw * undoOffsetInRaw))); |
| mRawToDisplay = (undoRotateInDisplay * mRawToRotatedDisplay); |
| mRawRotation = ui::Transform{mRawToDisplay.getOrientation()}; |
| } |
| |
| void TouchInputMapper::configureInputDevice(nsecs_t when, bool* outResetNeeded) { |
| const DeviceMode oldDeviceMode = mDeviceMode; |
| |
| resolveExternalStylusPresence(); |
| |
| // Determine device mode. |
| if (mParameters.deviceType == Parameters::DeviceType::POINTER && |
| mConfig.pointerGesturesEnabled && !mConfig.pointerCaptureRequest.enable) { |
| mSource = AINPUT_SOURCE_MOUSE; |
| mDeviceMode = DeviceMode::POINTER; |
| if (hasStylus()) { |
| mSource |= AINPUT_SOURCE_STYLUS; |
| } |
| } else if (isTouchScreen()) { |
| mSource = AINPUT_SOURCE_TOUCHSCREEN; |
| mDeviceMode = DeviceMode::DIRECT; |
| if (hasStylus()) { |
| mSource |= AINPUT_SOURCE_STYLUS; |
| } |
| if (hasExternalStylus()) { |
| mSource |= AINPUT_SOURCE_BLUETOOTH_STYLUS; |
| } |
| } else if (mParameters.deviceType == Parameters::DeviceType::TOUCH_NAVIGATION) { |
| mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; |
| mDeviceMode = DeviceMode::NAVIGATION; |
| } else { |
| mSource = AINPUT_SOURCE_TOUCHPAD; |
| mDeviceMode = DeviceMode::UNSCALED; |
| } |
| |
| const std::optional<DisplayViewport> newViewportOpt = findViewport(); |
| |
| // Ensure the device is valid and can be used. |
| if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { |
| ALOGW("Touch device '%s' did not report support for X or Y axis! " |
| "The device will be inoperable.", |
| getDeviceName().c_str()); |
| mDeviceMode = DeviceMode::DISABLED; |
| } else if (!newViewportOpt) { |
| ALOGI("Touch device '%s' could not query the properties of its associated " |
| "display. The device will be inoperable until the display size " |
| "becomes available.", |
| getDeviceName().c_str()); |
| mDeviceMode = DeviceMode::DISABLED; |
| } else if (!mParameters.enableForInactiveViewport && !newViewportOpt->isActive) { |
| ALOGI("Disabling %s (device %i) because the associated viewport is not active", |
| getDeviceName().c_str(), getDeviceId()); |
| mDeviceMode = DeviceMode::DISABLED; |
| } |
| |
| // Raw width and height in the natural orientation. |
| const ui::Size rawSize{mRawPointerAxes.getRawWidth(), mRawPointerAxes.getRawHeight()}; |
| const int32_t rawXResolution = mRawPointerAxes.x.resolution; |
| const int32_t rawYResolution = mRawPointerAxes.y.resolution; |
| // Calculate the mean resolution when both x and y resolution are set, otherwise set it to 0. |
| const float rawMeanResolution = |
| (rawXResolution > 0 && rawYResolution > 0) ? (rawXResolution + rawYResolution) / 2 : 0; |
| |
| const DisplayViewport& newViewport = newViewportOpt.value_or(kUninitializedViewport); |
| const bool viewportChanged = mViewport != newViewport; |
| bool skipViewportUpdate = false; |
| if (viewportChanged) { |
| const bool viewportOrientationChanged = mViewport.orientation != newViewport.orientation; |
| const bool viewportDisplayIdChanged = mViewport.displayId != newViewport.displayId; |
| mViewport = newViewport; |
| |
| if (mDeviceMode == DeviceMode::DIRECT || mDeviceMode == DeviceMode::POINTER) { |
| const auto oldDisplayBounds = mDisplayBounds; |
| |
| mDisplayBounds = getNaturalDisplaySize(mViewport); |
| mPhysicalFrameInRotatedDisplay = {mViewport.physicalLeft, mViewport.physicalTop, |
| mViewport.physicalRight, mViewport.physicalBottom}; |
| |
| // TODO(b/257118693): Remove the dependence on the old orientation/rotation logic that |
| // uses mInputDeviceOrientation. The new logic uses the transforms calculated in |
| // computeInputTransforms(). |
| // InputReader works in the un-rotated display coordinate space, so we don't need to do |
| // anything if the device is already orientation-aware. If the device is not |
| // orientation-aware, then we need to apply the inverse rotation of the display so that |
| // when the display rotation is applied later as a part of the per-window transform, we |
| // get the expected screen coordinates. |
| mInputDeviceOrientation = mParameters.orientationAware |
| ? ui::ROTATION_0 |
| : getInverseRotation(mViewport.orientation); |
| // For orientation-aware devices that work in the un-rotated coordinate space, the |
| // viewport update should be skipped if it is only a change in the orientation. |
| skipViewportUpdate = !viewportDisplayIdChanged && mParameters.orientationAware && |
| mDisplayBounds == oldDisplayBounds && viewportOrientationChanged; |
| |
| // Apply the input device orientation for the device. |
| mInputDeviceOrientation = mInputDeviceOrientation + mParameters.orientation; |
| computeInputTransforms(); |
| } else { |
| mDisplayBounds = rawSize; |
| mPhysicalFrameInRotatedDisplay = Rect{mDisplayBounds}; |
| mInputDeviceOrientation = ui::ROTATION_0; |
| mRawToDisplay.reset(); |
| mRawToDisplay.set(-mRawPointerAxes.x.minValue, -mRawPointerAxes.y.minValue); |
| mRawToRotatedDisplay = mRawToDisplay; |
| } |
| } |
| |
| // If moving between pointer modes, need to reset some state. |
| bool deviceModeChanged = mDeviceMode != oldDeviceMode; |
| if (deviceModeChanged) { |
| mOrientedRanges.clear(); |
| } |
| |
| // Create and preserve the pointer controller in the following cases: |
| const bool isPointerControllerNeeded = |
| // - when the device is in pointer mode, to show the mouse cursor; |
| (mDeviceMode == DeviceMode::POINTER) || |
| // - when pointer capture is enabled, to preserve the mouse cursor position; |
| (mParameters.deviceType == Parameters::DeviceType::POINTER && |
| mConfig.pointerCaptureRequest.enable) || |
| // - when we should be showing touches; |
| (mDeviceMode == DeviceMode::DIRECT && mConfig.showTouches) || |
| // - when we should be showing a pointer icon for direct styluses. |
| (mDeviceMode == DeviceMode::DIRECT && mConfig.stylusPointerIconEnabled && hasStylus()); |
| if (isPointerControllerNeeded) { |
| if (mPointerController == nullptr) { |
| mPointerController = getContext()->getPointerController(getDeviceId()); |
| } |
| if (mConfig.pointerCaptureRequest.enable) { |
| mPointerController->fade(PointerControllerInterface::Transition::IMMEDIATE); |
| } |
| } else { |
| if (mPointerController != nullptr && mDeviceMode == DeviceMode::DIRECT && |
| !mConfig.showTouches) { |
| mPointerController->clearSpots(); |
| } |
| mPointerController.reset(); |
| } |
| |
| if ((viewportChanged && !skipViewportUpdate) || deviceModeChanged) { |
| ALOGI("Device reconfigured: id=%d, name='%s', size %s, orientation %d, mode %d, " |
| "display id %d", |
| getDeviceId(), getDeviceName().c_str(), toString(mDisplayBounds).c_str(), |
| mInputDeviceOrientation, mDeviceMode, mViewport.displayId); |
| |
| configureVirtualKeys(); |
| |
| initializeOrientedRanges(); |
| |
| // Location |
| updateAffineTransformation(); |
| |
| if (mDeviceMode == DeviceMode::POINTER) { |
| // Compute pointer gesture detection parameters. |
| float rawDiagonal = hypotf(rawSize.width, rawSize.height); |
| float displayDiagonal = hypotf(mDisplayBounds.width, mDisplayBounds.height); |
| |
| // Scale movements such that one whole swipe of the touch pad covers a |
| // given area relative to the diagonal size of the display when no acceleration |
| // is applied. |
| // Assume that the touch pad has a square aspect ratio such that movements in |
| // X and Y of the same number of raw units cover the same physical distance. |
| mPointerXMovementScale = |
| mConfig.pointerGestureMovementSpeedRatio * displayDiagonal / rawDiagonal; |
| mPointerYMovementScale = mPointerXMovementScale; |
| |
| // Scale zooms to cover a smaller range of the display than movements do. |
| // This value determines the area around the pointer that is affected by freeform |
| // pointer gestures. |
| mPointerXZoomScale = |
| mConfig.pointerGestureZoomSpeedRatio * displayDiagonal / rawDiagonal; |
| mPointerYZoomScale = mPointerXZoomScale; |
| |
| // Calculate the min freeform gesture width. It will be 0 when the resolution of any |
| // axis is non positive value. |
| const float minFreeformGestureWidth = |
| rawMeanResolution * MIN_FREEFORM_GESTURE_WIDTH_IN_MILLIMETER; |
| |
| mPointerGestureMaxSwipeWidth = |
| std::max(mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal, |
| minFreeformGestureWidth); |
| } |
| |
| // Inform the dispatcher about the changes. |
| *outResetNeeded = true; |
| bumpGeneration(); |
| } |
| } |
| |
| void TouchInputMapper::dumpDisplay(std::string& dump) { |
| dump += StringPrintf(INDENT3 "%s\n", mViewport.toString().c_str()); |
| dump += StringPrintf(INDENT3 "DisplayBounds: %s\n", toString(mDisplayBounds).c_str()); |
| dump += StringPrintf(INDENT3 "PhysicalFrameInRotatedDisplay: %s\n", |
| toString(mPhysicalFrameInRotatedDisplay).c_str()); |
| dump += StringPrintf(INDENT3 "InputDeviceOrientation: %d\n", mInputDeviceOrientation); |
| } |
| |
| void TouchInputMapper::configureVirtualKeys() { |
| std::vector<VirtualKeyDefinition> virtualKeyDefinitions; |
| getDeviceContext().getVirtualKeyDefinitions(virtualKeyDefinitions); |
| |
| mVirtualKeys.clear(); |
| |
| if (virtualKeyDefinitions.size() == 0) { |
| return; |
| } |
| |
| int32_t touchScreenLeft = mRawPointerAxes.x.minValue; |
| int32_t touchScreenTop = mRawPointerAxes.y.minValue; |
| int32_t touchScreenWidth = mRawPointerAxes.getRawWidth(); |
| int32_t touchScreenHeight = mRawPointerAxes.getRawHeight(); |
| |
| for (const VirtualKeyDefinition& virtualKeyDefinition : virtualKeyDefinitions) { |
| VirtualKey virtualKey; |
| |
| virtualKey.scanCode = virtualKeyDefinition.scanCode; |
| int32_t keyCode; |
| int32_t dummyKeyMetaState; |
| uint32_t flags; |
| if (getDeviceContext().mapKey(virtualKey.scanCode, 0, 0, &keyCode, &dummyKeyMetaState, |
| &flags)) { |
| ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode); |
| continue; // drop the key |
| } |
| |
| virtualKey.keyCode = keyCode; |
| virtualKey.flags = flags; |
| |
| // convert the key definition's display coordinates into touch coordinates for a hit box |
| int32_t halfWidth = virtualKeyDefinition.width / 2; |
| int32_t halfHeight = virtualKeyDefinition.height / 2; |
| |
| virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) * touchScreenWidth / |
| mDisplayBounds.width + |
| touchScreenLeft; |
| virtualKey.hitRight = (virtualKeyDefinition.centerX + halfWidth) * touchScreenWidth / |
| mDisplayBounds.width + |
| touchScreenLeft; |
| virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) * touchScreenHeight / |
| mDisplayBounds.height + |
| touchScreenTop; |
| virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) * touchScreenHeight / |
| mDisplayBounds.height + |
| touchScreenTop; |
| mVirtualKeys.push_back(virtualKey); |
| } |
| } |
| |
| void TouchInputMapper::dumpVirtualKeys(std::string& dump) { |
| if (!mVirtualKeys.empty()) { |
| dump += INDENT3 "Virtual Keys:\n"; |
| |
| for (size_t i = 0; i < mVirtualKeys.size(); i++) { |
| const VirtualKey& virtualKey = mVirtualKeys[i]; |
| dump += StringPrintf(INDENT4 "%zu: scanCode=%d, keyCode=%d, " |
| "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", |
| i, virtualKey.scanCode, virtualKey.keyCode, virtualKey.hitLeft, |
| virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); |
| } |
| } |
| } |
| |
| void TouchInputMapper::parseCalibration() { |
| const PropertyMap& in = getDeviceContext().getConfiguration(); |
| Calibration& out = mCalibration; |
| |
| // Size |
| out.sizeCalibration = Calibration::SizeCalibration::DEFAULT; |
| std::optional<std::string> sizeCalibrationString = in.getString("touch.size.calibration"); |
| if (sizeCalibrationString.has_value()) { |
| if (*sizeCalibrationString == "none") { |
| out.sizeCalibration = Calibration::SizeCalibration::NONE; |
| } else if (*sizeCalibrationString == "geometric") { |
| out.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; |
| } else if (*sizeCalibrationString == "diameter") { |
| out.sizeCalibration = Calibration::SizeCalibration::DIAMETER; |
| } else if (*sizeCalibrationString == "box") { |
| out.sizeCalibration = Calibration::SizeCalibration::BOX; |
| } else if (*sizeCalibrationString == "area") { |
| out.sizeCalibration = Calibration::SizeCalibration::AREA; |
| } else if (*sizeCalibrationString != "default") { |
| ALOGW("Invalid value for touch.size.calibration: '%s'", sizeCalibrationString->c_str()); |
| } |
| } |
| |
| out.sizeScale = in.getFloat("touch.size.scale"); |
| out.sizeBias = in.getFloat("touch.size.bias"); |
| out.sizeIsSummed = in.getBool("touch.size.isSummed"); |
| |
| // Pressure |
| out.pressureCalibration = Calibration::PressureCalibration::DEFAULT; |
| std::optional<std::string> pressureCalibrationString = |
| in.getString("touch.pressure.calibration"); |
| if (pressureCalibrationString.has_value()) { |
| if (*pressureCalibrationString == "none") { |
| out.pressureCalibration = Calibration::PressureCalibration::NONE; |
| } else if (*pressureCalibrationString == "physical") { |
| out.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; |
| } else if (*pressureCalibrationString == "amplitude") { |
| out.pressureCalibration = Calibration::PressureCalibration::AMPLITUDE; |
| } else if (*pressureCalibrationString != "default") { |
| ALOGW("Invalid value for touch.pressure.calibration: '%s'", |
| pressureCalibrationString->c_str()); |
| } |
| } |
| |
| out.pressureScale = in.getFloat("touch.pressure.scale"); |
| |
| // Orientation |
| out.orientationCalibration = Calibration::OrientationCalibration::DEFAULT; |
| std::optional<std::string> orientationCalibrationString = |
| in.getString("touch.orientation.calibration"); |
| if (orientationCalibrationString.has_value()) { |
| if (*orientationCalibrationString == "none") { |
| out.orientationCalibration = Calibration::OrientationCalibration::NONE; |
| } else if (*orientationCalibrationString == "interpolated") { |
| out.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; |
| } else if (*orientationCalibrationString == "vector") { |
| out.orientationCalibration = Calibration::OrientationCalibration::VECTOR; |
| } else if (*orientationCalibrationString != "default") { |
| ALOGW("Invalid value for touch.orientation.calibration: '%s'", |
| orientationCalibrationString->c_str()); |
| } |
| } |
| |
| // Distance |
| out.distanceCalibration = Calibration::DistanceCalibration::DEFAULT; |
| std::optional<std::string> distanceCalibrationString = |
| in.getString("touch.distance.calibration"); |
| if (distanceCalibrationString.has_value()) { |
| if (*distanceCalibrationString == "none") { |
| out.distanceCalibration = Calibration::DistanceCalibration::NONE; |
| } else if (*distanceCalibrationString == "scaled") { |
| out.distanceCalibration = Calibration::DistanceCalibration::SCALED; |
| } else if (*distanceCalibrationString != "default") { |
| ALOGW("Invalid value for touch.distance.calibration: '%s'", |
| distanceCalibrationString->c_str()); |
| } |
| } |
| |
| out.distanceScale = in.getFloat("touch.distance.scale"); |
| } |
| |
| void TouchInputMapper::resolveCalibration() { |
| // Size |
| if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { |
| if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DEFAULT) { |
| mCalibration.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; |
| } |
| } else { |
| mCalibration.sizeCalibration = Calibration::SizeCalibration::NONE; |
| } |
| |
| // Pressure |
| if (mRawPointerAxes.pressure.valid) { |
| if (mCalibration.pressureCalibration == Calibration::PressureCalibration::DEFAULT) { |
| mCalibration.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; |
| } |
| } else { |
| mCalibration.pressureCalibration = Calibration::PressureCalibration::NONE; |
| } |
| |
| // Orientation |
| if (mRawPointerAxes.orientation.valid) { |
| if (mCalibration.orientationCalibration == Calibration::OrientationCalibration::DEFAULT) { |
| mCalibration.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; |
| } |
| } else { |
| mCalibration.orientationCalibration = Calibration::OrientationCalibration::NONE; |
| } |
| |
| // Distance |
| if (mRawPointerAxes.distance.valid) { |
| if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::DEFAULT) { |
| mCalibration.distanceCalibration = Calibration::DistanceCalibration::SCALED; |
| } |
| } else { |
| mCalibration.distanceCalibration = Calibration::DistanceCalibration::NONE; |
| } |
| } |
| |
| void TouchInputMapper::dumpCalibration(std::string& dump) { |
| dump += INDENT3 "Calibration:\n"; |
| |
| dump += INDENT4 "touch.size.calibration: "; |
| dump += ftl::enum_string(mCalibration.sizeCalibration) + "\n"; |
| |
| if (mCalibration.sizeScale) { |
| dump += StringPrintf(INDENT4 "touch.size.scale: %0.3f\n", *mCalibration.sizeScale); |
| } |
| |
| if (mCalibration.sizeBias) { |
| dump += StringPrintf(INDENT4 "touch.size.bias: %0.3f\n", *mCalibration.sizeBias); |
| } |
| |
| if (mCalibration.sizeIsSummed) { |
| dump += StringPrintf(INDENT4 "touch.size.isSummed: %s\n", |
| toString(*mCalibration.sizeIsSummed)); |
| } |
| |
| // Pressure |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PressureCalibration::NONE: |
| dump += INDENT4 "touch.pressure.calibration: none\n"; |
| break; |
| case Calibration::PressureCalibration::PHYSICAL: |
| dump += INDENT4 "touch.pressure.calibration: physical\n"; |
| break; |
| case Calibration::PressureCalibration::AMPLITUDE: |
| dump += INDENT4 "touch.pressure.calibration: amplitude\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| if (mCalibration.pressureScale) { |
| dump += StringPrintf(INDENT4 "touch.pressure.scale: %0.3f\n", *mCalibration.pressureScale); |
| } |
| |
| // Orientation |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::OrientationCalibration::NONE: |
| dump += INDENT4 "touch.orientation.calibration: none\n"; |
| break; |
| case Calibration::OrientationCalibration::INTERPOLATED: |
| dump += INDENT4 "touch.orientation.calibration: interpolated\n"; |
| break; |
| case Calibration::OrientationCalibration::VECTOR: |
| dump += INDENT4 "touch.orientation.calibration: vector\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| // Distance |
| switch (mCalibration.distanceCalibration) { |
| case Calibration::DistanceCalibration::NONE: |
| dump += INDENT4 "touch.distance.calibration: none\n"; |
| break; |
| case Calibration::DistanceCalibration::SCALED: |
| dump += INDENT4 "touch.distance.calibration: scaled\n"; |
| break; |
| default: |
| ALOG_ASSERT(false); |
| } |
| |
| if (mCalibration.distanceScale) { |
| dump += StringPrintf(INDENT4 "touch.distance.scale: %0.3f\n", *mCalibration.distanceScale); |
| } |
| } |
| |
| void TouchInputMapper::dumpAffineTransformation(std::string& dump) { |
| dump += INDENT3 "Affine Transformation:\n"; |
| |
| dump += StringPrintf(INDENT4 "X scale: %0.3f\n", mAffineTransform.x_scale); |
| dump += StringPrintf(INDENT4 "X ymix: %0.3f\n", mAffineTransform.x_ymix); |
| dump += StringPrintf(INDENT4 "X offset: %0.3f\n", mAffineTransform.x_offset); |
| dump += StringPrintf(INDENT4 "Y xmix: %0.3f\n", mAffineTransform.y_xmix); |
| dump += StringPrintf(INDENT4 "Y scale: %0.3f\n", mAffineTransform.y_scale); |
| dump += StringPrintf(INDENT4 "Y offset: %0.3f\n", mAffineTransform.y_offset); |
| } |
| |
| void TouchInputMapper::updateAffineTransformation() { |
| mAffineTransform = getPolicy()->getTouchAffineTransformation(getDeviceContext().getDescriptor(), |
| mInputDeviceOrientation); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::reset(nsecs_t when) { |
| std::list<NotifyArgs> out = cancelTouch(when, when); |
| updateTouchSpots(); |
| |
| mCursorButtonAccumulator.reset(getDeviceContext()); |
| mCursorScrollAccumulator.reset(getDeviceContext()); |
| mTouchButtonAccumulator.reset(); |
| |
| mPointerVelocityControl.reset(); |
| mWheelXVelocityControl.reset(); |
| mWheelYVelocityControl.reset(); |
| |
| mRawStatesPending.clear(); |
| mCurrentRawState.clear(); |
| mCurrentCookedState.clear(); |
| mLastRawState.clear(); |
| mLastCookedState.clear(); |
| mPointerUsage = PointerUsage::NONE; |
| mSentHoverEnter = false; |
| mHavePointerIds = false; |
| mCurrentMotionAborted = false; |
| mDownTime = 0; |
| |
| mCurrentVirtualKey.down = false; |
| |
| mPointerGesture.reset(); |
| mPointerSimple.reset(); |
| resetExternalStylus(); |
| |
| if (mPointerController != nullptr) { |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| mPointerController->clearSpots(); |
| } |
| |
| return out += InputMapper::reset(when); |
| } |
| |
| void TouchInputMapper::resetExternalStylus() { |
| mExternalStylusState.clear(); |
| mFusedStylusPointerId.reset(); |
| mExternalStylusFusionTimeout = LLONG_MAX; |
| mExternalStylusDataPending = false; |
| mExternalStylusButtonsApplied = 0; |
| } |
| |
| void TouchInputMapper::clearStylusDataPendingFlags() { |
| mExternalStylusDataPending = false; |
| mExternalStylusFusionTimeout = LLONG_MAX; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::process(const RawEvent* rawEvent) { |
| mCursorButtonAccumulator.process(rawEvent); |
| mCursorScrollAccumulator.process(rawEvent); |
| mTouchButtonAccumulator.process(rawEvent); |
| |
| std::list<NotifyArgs> out; |
| if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { |
| out += sync(rawEvent->when, rawEvent->readTime); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::sync(nsecs_t when, nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| if (mDeviceMode == DeviceMode::DISABLED) { |
| // Only save the last pending state when the device is disabled. |
| mRawStatesPending.clear(); |
| } |
| // Push a new state. |
| mRawStatesPending.emplace_back(); |
| |
| RawState& next = mRawStatesPending.back(); |
| next.clear(); |
| next.when = when; |
| next.readTime = readTime; |
| |
| // Sync button state. |
| next.buttonState = filterButtonState(mConfig, |
| mTouchButtonAccumulator.getButtonState() | |
| mCursorButtonAccumulator.getButtonState()); |
| |
| // Sync scroll |
| next.rawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); |
| next.rawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); |
| mCursorScrollAccumulator.finishSync(); |
| |
| // Sync touch |
| syncTouch(when, &next); |
| |
| // The last RawState is the actually second to last, since we just added a new state |
| const RawState& last = |
| mRawStatesPending.size() == 1 ? mCurrentRawState : mRawStatesPending.rbegin()[1]; |
| |
| std::tie(next.when, next.readTime) = |
| applyBluetoothTimestampSmoothening(getDeviceContext().getDeviceIdentifier(), when, |
| readTime, last.when); |
| |
| // Assign pointer ids. |
| if (!mHavePointerIds) { |
| assignPointerIds(last, next); |
| } |
| |
| ALOGD_IF(debugRawEvents(), |
| "syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " |
| "hovering ids 0x%08x -> 0x%08x, canceled ids 0x%08x", |
| last.rawPointerData.pointerCount, next.rawPointerData.pointerCount, |
| last.rawPointerData.touchingIdBits.value, next.rawPointerData.touchingIdBits.value, |
| last.rawPointerData.hoveringIdBits.value, next.rawPointerData.hoveringIdBits.value, |
| next.rawPointerData.canceledIdBits.value); |
| |
| if (!next.rawPointerData.touchingIdBits.isEmpty() && |
| !next.rawPointerData.hoveringIdBits.isEmpty() && |
| last.rawPointerData.hoveringIdBits != next.rawPointerData.hoveringIdBits) { |
| ALOGI("Multi-touch contains some hovering ids 0x%08x", |
| next.rawPointerData.hoveringIdBits.value); |
| } |
| |
| out += processRawTouches(/*timeout=*/false); |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::processRawTouches(bool timeout) { |
| std::list<NotifyArgs> out; |
| if (mDeviceMode == DeviceMode::DISABLED) { |
| // Do not process raw event while the device is disabled. |
| return out; |
| } |
| |
| // Drain any pending touch states. The invariant here is that the mCurrentRawState is always |
| // valid and must go through the full cook and dispatch cycle. This ensures that anything |
| // touching the current state will only observe the events that have been dispatched to the |
| // rest of the pipeline. |
| const size_t N = mRawStatesPending.size(); |
| size_t count; |
| for (count = 0; count < N; count++) { |
| const RawState& next = mRawStatesPending[count]; |
| |
| // A failure to assign the stylus id means that we're waiting on stylus data |
| // and so should defer the rest of the pipeline. |
| if (assignExternalStylusId(next, timeout)) { |
| break; |
| } |
| |
| // All ready to go. |
| clearStylusDataPendingFlags(); |
| mCurrentRawState = next; |
| if (mCurrentRawState.when < mLastRawState.when) { |
| mCurrentRawState.when = mLastRawState.when; |
| mCurrentRawState.readTime = mLastRawState.readTime; |
| } |
| out += cookAndDispatch(mCurrentRawState.when, mCurrentRawState.readTime); |
| } |
| if (count != 0) { |
| mRawStatesPending.erase(mRawStatesPending.begin(), mRawStatesPending.begin() + count); |
| } |
| |
| if (mExternalStylusDataPending) { |
| if (timeout) { |
| nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY; |
| clearStylusDataPendingFlags(); |
| mCurrentRawState = mLastRawState; |
| ALOGD_IF(DEBUG_STYLUS_FUSION, |
| "Timeout expired, synthesizing event with new stylus data"); |
| const nsecs_t readTime = when; // consider this synthetic event to be zero latency |
| out += cookAndDispatch(when, readTime); |
| } else if (mExternalStylusFusionTimeout == LLONG_MAX) { |
| mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT; |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| } |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::cookAndDispatch(nsecs_t when, nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| // Always start with a clean state. |
| mCurrentCookedState.clear(); |
| |
| // Apply stylus buttons to current raw state. |
| applyExternalStylusButtonState(when); |
| |
| // Handle policy on initial down or hover events. |
| bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && |
| mCurrentRawState.rawPointerData.pointerCount != 0; |
| |
| uint32_t policyFlags = 0; |
| bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState; |
| if (initialDown || buttonsPressed) { |
| // If this is a touch screen, hide the pointer on an initial down. |
| if (mDeviceMode == DeviceMode::DIRECT) { |
| getContext()->fadePointer(); |
| } |
| |
| if (mParameters.wake) { |
| policyFlags |= POLICY_FLAG_WAKE; |
| } |
| } |
| |
| // Consume raw off-screen touches before cooking pointer data. |
| // If touches are consumed, subsequent code will not receive any pointer data. |
| bool consumed; |
| out += consumeRawTouches(when, readTime, policyFlags, consumed /*byref*/); |
| if (consumed) { |
| mCurrentRawState.rawPointerData.clear(); |
| } |
| |
| // Cook pointer data. This call populates the mCurrentCookedState.cookedPointerData structure |
| // with cooked pointer data that has the same ids and indices as the raw data. |
| // The following code can use either the raw or cooked data, as needed. |
| cookPointerData(); |
| |
| // Apply stylus pressure to current cooked state. |
| applyExternalStylusTouchState(when); |
| |
| // Synthesize key down from raw buttons if needed. |
| out += synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, readTime, getDeviceId(), |
| mSource, mViewport.displayId, policyFlags, |
| mLastCookedState.buttonState, mCurrentCookedState.buttonState); |
| |
| // Dispatch the touches either directly or by translation through a pointer on screen. |
| if (mDeviceMode == DeviceMode::POINTER) { |
| for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| if (isStylusToolType(pointer.toolType)) { |
| mCurrentCookedState.stylusIdBits.markBit(id); |
| } else if (pointer.toolType == ToolType::FINGER || |
| pointer.toolType == ToolType::UNKNOWN) { |
| mCurrentCookedState.fingerIdBits.markBit(id); |
| } else if (pointer.toolType == ToolType::MOUSE) { |
| mCurrentCookedState.mouseIdBits.markBit(id); |
| } |
| } |
| for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| if (isStylusToolType(pointer.toolType)) { |
| mCurrentCookedState.stylusIdBits.markBit(id); |
| } |
| } |
| |
| // Stylus takes precedence over all tools, then mouse, then finger. |
| PointerUsage pointerUsage = mPointerUsage; |
| if (!mCurrentCookedState.stylusIdBits.isEmpty()) { |
| mCurrentCookedState.mouseIdBits.clear(); |
| mCurrentCookedState.fingerIdBits.clear(); |
| pointerUsage = PointerUsage::STYLUS; |
| } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) { |
| mCurrentCookedState.fingerIdBits.clear(); |
| pointerUsage = PointerUsage::MOUSE; |
| } else if (!mCurrentCookedState.fingerIdBits.isEmpty() || |
| isPointerDown(mCurrentRawState.buttonState)) { |
| pointerUsage = PointerUsage::GESTURES; |
| } |
| |
| out += dispatchPointerUsage(when, readTime, policyFlags, pointerUsage); |
| } else { |
| if (!mCurrentMotionAborted) { |
| updateTouchSpots(); |
| out += dispatchButtonRelease(when, readTime, policyFlags); |
| out += dispatchHoverExit(when, readTime, policyFlags); |
| out += dispatchTouches(when, readTime, policyFlags); |
| out += dispatchHoverEnterAndMove(when, readTime, policyFlags); |
| out += dispatchButtonPress(when, readTime, policyFlags); |
| } |
| |
| if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { |
| mCurrentMotionAborted = false; |
| } |
| } |
| |
| // Synthesize key up from raw buttons if needed. |
| out += synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, readTime, getDeviceId(), |
| mSource, mViewport.displayId, policyFlags, |
| mLastCookedState.buttonState, mCurrentCookedState.buttonState); |
| |
| // Clear some transient state. |
| mCurrentRawState.rawVScroll = 0; |
| mCurrentRawState.rawHScroll = 0; |
| |
| // Copy current touch to last touch in preparation for the next cycle. |
| mLastRawState = mCurrentRawState; |
| mLastCookedState = mCurrentCookedState; |
| return out; |
| } |
| |
| void TouchInputMapper::updateTouchSpots() { |
| if (!mConfig.showTouches || mPointerController == nullptr) { |
| return; |
| } |
| |
| // Update touch spots when this is a touchscreen even when it's not enabled so that we can |
| // clear touch spots. |
| if (mDeviceMode != DeviceMode::DIRECT && |
| (mDeviceMode != DeviceMode::DISABLED || !isTouchScreen())) { |
| return; |
| } |
| |
| mPointerController->setPresentation(PointerControllerInterface::Presentation::SPOT); |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| |
| mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords.cbegin(), |
| mCurrentCookedState.cookedPointerData.idToIndex.cbegin(), |
| mCurrentCookedState.cookedPointerData.touchingIdBits | |
| mCurrentCookedState.cookedPointerData.hoveringIdBits, |
| mViewport.displayId); |
| } |
| |
| bool TouchInputMapper::isTouchScreen() { |
| return mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN && |
| mParameters.hasAssociatedDisplay; |
| } |
| |
| void TouchInputMapper::applyExternalStylusButtonState(nsecs_t when) { |
| if (mDeviceMode == DeviceMode::DIRECT && hasExternalStylus()) { |
| // If any of the external buttons are already pressed by the touch device, ignore them. |
| const int32_t pressedButtons = |
| filterButtonState(mConfig, |
| ~mCurrentRawState.buttonState & mExternalStylusState.buttons); |
| const int32_t releasedButtons = |
| mExternalStylusButtonsApplied & ~mExternalStylusState.buttons; |
| |
| mCurrentRawState.buttonState |= pressedButtons; |
| mCurrentRawState.buttonState &= ~releasedButtons; |
| |
| mExternalStylusButtonsApplied |= pressedButtons; |
| mExternalStylusButtonsApplied &= ~releasedButtons; |
| } |
| } |
| |
| void TouchInputMapper::applyExternalStylusTouchState(nsecs_t when) { |
| CookedPointerData& currentPointerData = mCurrentCookedState.cookedPointerData; |
| const CookedPointerData& lastPointerData = mLastCookedState.cookedPointerData; |
| if (!mFusedStylusPointerId || !currentPointerData.isTouching(*mFusedStylusPointerId)) { |
| return; |
| } |
| |
| float pressure = lastPointerData.isTouching(*mFusedStylusPointerId) |
| ? lastPointerData.pointerCoordsForId(*mFusedStylusPointerId) |
| .getAxisValue(AMOTION_EVENT_AXIS_PRESSURE) |
| : 0.f; |
| if (mExternalStylusState.pressure && *mExternalStylusState.pressure > 0.f) { |
| pressure = *mExternalStylusState.pressure; |
| } |
| PointerCoords& coords = currentPointerData.editPointerCoordsWithId(*mFusedStylusPointerId); |
| coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); |
| |
| if (mExternalStylusState.toolType != ToolType::UNKNOWN) { |
| PointerProperties& properties = |
| currentPointerData.editPointerPropertiesWithId(*mFusedStylusPointerId); |
| properties.toolType = mExternalStylusState.toolType; |
| } |
| } |
| |
| bool TouchInputMapper::assignExternalStylusId(const RawState& state, bool timeout) { |
| if (mDeviceMode != DeviceMode::DIRECT || !hasExternalStylus()) { |
| return false; |
| } |
| |
| // Check if the stylus pointer has gone up. |
| if (mFusedStylusPointerId && |
| !state.rawPointerData.touchingIdBits.hasBit(*mFusedStylusPointerId)) { |
| ALOGD_IF(DEBUG_STYLUS_FUSION, "Stylus pointer is going up"); |
| mFusedStylusPointerId.reset(); |
| return false; |
| } |
| |
| const bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && |
| state.rawPointerData.pointerCount != 0; |
| if (!initialDown) { |
| return false; |
| } |
| |
| if (!mExternalStylusState.pressure) { |
| ALOGD_IF(DEBUG_STYLUS_FUSION, "Stylus does not support pressure, no pointer fusion needed"); |
| return false; |
| } |
| |
| if (*mExternalStylusState.pressure != 0.0f) { |
| ALOGD_IF(DEBUG_STYLUS_FUSION, "Have both stylus and touch data, beginning fusion"); |
| mFusedStylusPointerId = state.rawPointerData.touchingIdBits.firstMarkedBit(); |
| return false; |
| } |
| |
| if (timeout) { |
| ALOGD_IF(DEBUG_STYLUS_FUSION, "Timeout expired, assuming touch is not a stylus."); |
| mFusedStylusPointerId.reset(); |
| mExternalStylusFusionTimeout = LLONG_MAX; |
| return false; |
| } |
| |
| // We are waiting for the external stylus to report a pressure value. Withhold touches from |
| // being processed until we either get pressure data or timeout. |
| if (mExternalStylusFusionTimeout == LLONG_MAX) { |
| mExternalStylusFusionTimeout = state.when + EXTERNAL_STYLUS_DATA_TIMEOUT; |
| } |
| ALOGD_IF(DEBUG_STYLUS_FUSION, |
| "No stylus data but stylus is connected, requesting timeout (%" PRId64 "ms)", |
| mExternalStylusFusionTimeout); |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| return true; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::timeoutExpired(nsecs_t when) { |
| std::list<NotifyArgs> out; |
| if (mDeviceMode == DeviceMode::POINTER) { |
| if (mPointerUsage == PointerUsage::GESTURES) { |
| // Since this is a synthetic event, we can consider its latency to be zero |
| const nsecs_t readTime = when; |
| out += dispatchPointerGestures(when, readTime, /*policyFlags=*/0, /*isTimeout=*/true); |
| } |
| } else if (mDeviceMode == DeviceMode::DIRECT) { |
| if (mExternalStylusFusionTimeout <= when) { |
| out += processRawTouches(/*timeout=*/true); |
| } else if (mExternalStylusFusionTimeout != LLONG_MAX) { |
| getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); |
| } |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::updateExternalStylusState(const StylusState& state) { |
| std::list<NotifyArgs> out; |
| const bool buttonsChanged = mExternalStylusState.buttons != state.buttons; |
| mExternalStylusState = state; |
| if (mFusedStylusPointerId || mExternalStylusFusionTimeout != LLONG_MAX || buttonsChanged) { |
| // The following three cases are handled here: |
| // - We're in the middle of a fused stream of data; |
| // - We're waiting on external stylus data before dispatching the initial down; or |
| // - Only the button state, which is not reported through a specific pointer, has changed. |
| // Go ahead and dispatch now that we have fresh stylus data. |
| mExternalStylusDataPending = true; |
| out += processRawTouches(/*timeout=*/false); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::consumeRawTouches(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags, bool& outConsumed) { |
| outConsumed = false; |
| std::list<NotifyArgs> out; |
| // Check for release of a virtual key. |
| if (mCurrentVirtualKey.down) { |
| if (mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| // Pointer went up while virtual key was down. |
| mCurrentVirtualKey.down = false; |
| if (!mCurrentVirtualKey.ignored) { |
| ALOGD_IF(DEBUG_VIRTUAL_KEYS, |
| "VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); |
| out.push_back(dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | |
| AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)); |
| } |
| outConsumed = true; |
| return out; |
| } |
| |
| if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { |
| uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); |
| if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { |
| // Pointer is still within the space of the virtual key. |
| outConsumed = true; |
| return out; |
| } |
| } |
| |
| // Pointer left virtual key area or another pointer also went down. |
| // Send key cancellation but do not consume the touch yet. |
| // This is useful when the user swipes through from the virtual key area |
| // into the main display surface. |
| mCurrentVirtualKey.down = false; |
| if (!mCurrentVirtualKey.ignored) { |
| ALOGD_IF(DEBUG_VIRTUAL_KEYS, "VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); |
| out.push_back(dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | |
| AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | |
| AKEY_EVENT_FLAG_CANCELED)); |
| } |
| } |
| |
| if (!mCurrentRawState.rawPointerData.hoveringIdBits.isEmpty() && |
| mCurrentRawState.rawPointerData.touchingIdBits.isEmpty() && |
| mDeviceMode != DeviceMode::UNSCALED) { |
| // We have hovering pointers, and there are no touching pointers. |
| bool hoveringPointersInFrame = false; |
| auto hoveringIds = mCurrentRawState.rawPointerData.hoveringIdBits; |
| while (!hoveringIds.isEmpty()) { |
| uint32_t id = hoveringIds.clearFirstMarkedBit(); |
| const auto& pointer = mCurrentRawState.rawPointerData.pointerForId(id); |
| if (isPointInsidePhysicalFrame(pointer.x, pointer.y)) { |
| hoveringPointersInFrame = true; |
| break; |
| } |
| } |
| if (!hoveringPointersInFrame) { |
| // All hovering pointers are outside the physical frame. |
| outConsumed = true; |
| return out; |
| } |
| } |
| |
| if (mLastRawState.rawPointerData.touchingIdBits.isEmpty() && |
| !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| // Pointer just went down. Check for virtual key press or off-screen touches. |
| uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); |
| const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); |
| // Skip checking whether the pointer is inside the physical frame if the device is in |
| // unscaled or pointer mode. |
| if (!isPointInsidePhysicalFrame(pointer.x, pointer.y) && |
| mDeviceMode != DeviceMode::UNSCALED && mDeviceMode != DeviceMode::POINTER) { |
| // If exactly one pointer went down, check for virtual key hit. |
| // Otherwise, we will drop the entire stroke. |
| if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { |
| const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); |
| if (virtualKey) { |
| mCurrentVirtualKey.down = true; |
| mCurrentVirtualKey.downTime = when; |
| mCurrentVirtualKey.keyCode = virtualKey->keyCode; |
| mCurrentVirtualKey.scanCode = virtualKey->scanCode; |
| mCurrentVirtualKey.ignored = |
| getContext()->shouldDropVirtualKey(when, virtualKey->keyCode, |
| virtualKey->scanCode); |
| |
| if (!mCurrentVirtualKey.ignored) { |
| ALOGD_IF(DEBUG_VIRTUAL_KEYS, |
| "VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", |
| mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); |
| out.push_back(dispatchVirtualKey(when, readTime, policyFlags, |
| AKEY_EVENT_ACTION_DOWN, |
| AKEY_EVENT_FLAG_FROM_SYSTEM | |
| AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)); |
| } |
| } |
| } |
| outConsumed = true; |
| return out; |
| } |
| } |
| |
| // Disable all virtual key touches that happen within a short time interval of the |
| // most recent touch within the screen area. The idea is to filter out stray |
| // virtual key presses when interacting with the touch screen. |
| // |
| // Problems we're trying to solve: |
| // |
| // 1. While scrolling a list or dragging the window shade, the user swipes down into a |
| // virtual key area that is implemented by a separate touch panel and accidentally |
| // triggers a virtual key. |
| // |
| // 2. While typing in the on screen keyboard, the user taps slightly outside the screen |
| // area and accidentally triggers a virtual key. This often happens when virtual keys |
| // are layed out below the screen near to where the on screen keyboard's space bar |
| // is displayed. |
| if (mConfig.virtualKeyQuietTime > 0 && |
| !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { |
| getContext()->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); |
| } |
| return out; |
| } |
| |
| NotifyKeyArgs TouchInputMapper::dispatchVirtualKey(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags, int32_t keyEventAction, |
| int32_t keyEventFlags) { |
| int32_t keyCode = mCurrentVirtualKey.keyCode; |
| int32_t scanCode = mCurrentVirtualKey.scanCode; |
| nsecs_t downTime = mCurrentVirtualKey.downTime; |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| policyFlags |= POLICY_FLAG_VIRTUAL; |
| |
| return NotifyKeyArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| AINPUT_SOURCE_KEYBOARD, mViewport.displayId, policyFlags, keyEventAction, |
| keyEventFlags, keyCode, scanCode, metaState, downTime); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortTouches(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| if (mCurrentMotionAborted) { |
| // Current motion event was already aborted. |
| return out; |
| } |
| BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; |
| if (!currentIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, |
| -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| mCurrentMotionAborted = true; |
| } |
| return out; |
| } |
| |
| // Updates pointer coords and properties for pointers with specified ids that have moved. |
| // Returns true if any of them changed. |
| static bool updateMovedPointers(const PropertiesArray& inProperties, CoordsArray& inCoords, |
| const IdToIndexArray& inIdToIndex, PropertiesArray& outProperties, |
| CoordsArray& outCoords, IdToIndexArray& outIdToIndex, |
| BitSet32 idBits) { |
| bool changed = false; |
| while (!idBits.isEmpty()) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t inIndex = inIdToIndex[id]; |
| uint32_t outIndex = outIdToIndex[id]; |
| |
| const PointerProperties& curInProperties = inProperties[inIndex]; |
| const PointerCoords& curInCoords = inCoords[inIndex]; |
| PointerProperties& curOutProperties = outProperties[outIndex]; |
| PointerCoords& curOutCoords = outCoords[outIndex]; |
| |
| if (curInProperties != curOutProperties) { |
| curOutProperties.copyFrom(curInProperties); |
| changed = true; |
| } |
| |
| if (curInCoords != curOutCoords) { |
| curOutCoords.copyFrom(curInCoords); |
| changed = true; |
| } |
| } |
| return changed; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchTouches(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; |
| BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits; |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| |
| if (currentIdBits == lastIdBits) { |
| if (!currentIdBits.isEmpty()) { |
| // No pointer id changes so this is a move event. |
| // The listener takes care of batching moves so we don't have to deal with that here. |
| out.push_back( |
| dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, |
| 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, |
| -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| } |
| } else { |
| // There may be pointers going up and pointers going down and pointers moving |
| // all at the same time. |
| BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); |
| BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); |
| BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); |
| BitSet32 dispatchedIdBits(lastIdBits.value); |
| |
| // Update last coordinates of pointers that have moved so that we observe the new |
| // pointer positions at the same time as other pointers that have just gone up. |
| bool moveNeeded = |
| updateMovedPointers(mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, moveIdBits); |
| if (buttonState != mLastCookedState.buttonState) { |
| moveNeeded = true; |
| } |
| |
| // Dispatch pointer up events. |
| while (!upIdBits.isEmpty()) { |
| uint32_t upId = upIdBits.clearFirstMarkedBit(); |
| bool isCanceled = mCurrentCookedState.cookedPointerData.canceledIdBits.hasBit(upId); |
| if (isCanceled) { |
| ALOGI("Canceling pointer %d for the palm event was detected.", upId); |
| } |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_UP, 0, |
| isCanceled ? AMOTION_EVENT_FLAG_CANCELED : 0, metaState, |
| buttonState, 0, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, upId, mOrientedXPrecision, |
| mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| dispatchedIdBits.clearBit(upId); |
| mCurrentCookedState.cookedPointerData.canceledIdBits.clearBit(upId); |
| } |
| |
| // Dispatch move events if any of the remaining pointers moved from their old locations. |
| // Although applications receive new locations as part of individual pointer up |
| // events, they do not generally handle them except when presented in a move event. |
| if (moveNeeded && !moveIdBits.isEmpty()) { |
| ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, -1, mOrientedXPrecision, |
| mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| } |
| |
| // Dispatch pointer down events using the new pointer locations. |
| while (!downIdBits.isEmpty()) { |
| uint32_t downId = downIdBits.clearFirstMarkedBit(); |
| dispatchedIdBits.markBit(downId); |
| |
| if (dispatchedIdBits.count() == 1) { |
| // First pointer is going down. Set down time. |
| mDownTime = when; |
| } |
| |
| out.push_back( |
| dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, |
| 0, mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| dispatchedIdBits, downId, mOrientedXPrecision, |
| mOrientedYPrecision, mDownTime, MotionClassification::NONE)); |
| } |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchHoverExit(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| if (mSentHoverEnter && |
| (mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty() || |
| !mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty())) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, |
| mLastCookedState.buttonState, 0, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, |
| mLastCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| mSentHoverEnter = false; |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| if (mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty() && |
| !mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| if (!mSentHoverEnter) { |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, |
| mCurrentRawState.buttonState, 0, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| mSentHoverEnter = true; |
| } |
| |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, |
| mCurrentRawState.buttonState, 0, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, |
| mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchButtonRelease(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); |
| const BitSet32& idBits = findActiveIdBits(mLastCookedState.cookedPointerData); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| while (!releasedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); |
| buttonState &= ~actionButton; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, |
| metaState, buttonState, 0, |
| mLastCookedState.cookedPointerData.pointerProperties, |
| mLastCookedState.cookedPointerData.pointerCoords, |
| mLastCookedState.cookedPointerData.idToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchButtonPress(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); |
| const BitSet32& idBits = findActiveIdBits(mCurrentCookedState.cookedPointerData); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| while (!pressedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); |
| buttonState |= actionButton; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, metaState, |
| buttonState, 0, |
| mCurrentCookedState.cookedPointerData.pointerProperties, |
| mCurrentCookedState.cookedPointerData.pointerCoords, |
| mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, mDownTime, |
| MotionClassification::NONE)); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchGestureButtonRelease(nsecs_t when, |
| uint32_t policyFlags, |
| BitSet32 idBits, |
| nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| |
| while (!releasedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); |
| buttonState &= ~actionButton; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, |
| metaState, buttonState, 0, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, |
| mPointerGesture.lastGestureIdToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerGesture.downTime, MotionClassification::NONE)); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchGestureButtonPress(nsecs_t when, |
| uint32_t policyFlags, |
| BitSet32 idBits, |
| nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); |
| const int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mLastCookedState.buttonState; |
| |
| while (!pressedButtons.isEmpty()) { |
| int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); |
| buttonState |= actionButton; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, metaState, |
| buttonState, 0, mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, idBits, -1, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerGesture.downTime, MotionClassification::NONE)); |
| } |
| return out; |
| } |
| |
| const BitSet32& TouchInputMapper::findActiveIdBits(const CookedPointerData& cookedPointerData) { |
| if (!cookedPointerData.touchingIdBits.isEmpty()) { |
| return cookedPointerData.touchingIdBits; |
| } |
| return cookedPointerData.hoveringIdBits; |
| } |
| |
| void TouchInputMapper::cookPointerData() { |
| uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; |
| |
| mCurrentCookedState.cookedPointerData.clear(); |
| mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount; |
| mCurrentCookedState.cookedPointerData.hoveringIdBits = |
| mCurrentRawState.rawPointerData.hoveringIdBits; |
| mCurrentCookedState.cookedPointerData.touchingIdBits = |
| mCurrentRawState.rawPointerData.touchingIdBits; |
| mCurrentCookedState.cookedPointerData.canceledIdBits = |
| mCurrentRawState.rawPointerData.canceledIdBits; |
| |
| if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { |
| mCurrentCookedState.buttonState = 0; |
| } else { |
| mCurrentCookedState.buttonState = mCurrentRawState.buttonState; |
| } |
| |
| // Walk through the the active pointers and map device coordinates onto |
| // display coordinates and adjust for display orientation. |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; |
| |
| // Size |
| float touchMajor, touchMinor, toolMajor, toolMinor, size; |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SizeCalibration::GEOMETRIC: |
| case Calibration::SizeCalibration::DIAMETER: |
| case Calibration::SizeCalibration::BOX: |
| case Calibration::SizeCalibration::AREA: |
| if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { |
| touchMajor = in.touchMajor; |
| touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; |
| toolMajor = in.toolMajor; |
| toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; |
| size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) |
| : in.touchMajor; |
| } else if (mRawPointerAxes.touchMajor.valid) { |
| toolMajor = touchMajor = in.touchMajor; |
| toolMinor = touchMinor = |
| mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; |
| size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) |
| : in.touchMajor; |
| } else if (mRawPointerAxes.toolMajor.valid) { |
| touchMajor = toolMajor = in.toolMajor; |
| touchMinor = toolMinor = |
| mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; |
| size = mRawPointerAxes.toolMinor.valid ? avg(in.toolMajor, in.toolMinor) |
| : in.toolMajor; |
| } else { |
| ALOG_ASSERT(false, |
| "No touch or tool axes. " |
| "Size calibration should have been resolved to NONE."); |
| touchMajor = 0; |
| touchMinor = 0; |
| toolMajor = 0; |
| toolMinor = 0; |
| size = 0; |
| } |
| |
| if (mCalibration.sizeIsSummed && *mCalibration.sizeIsSummed) { |
| uint32_t touchingCount = mCurrentRawState.rawPointerData.touchingIdBits.count(); |
| if (touchingCount > 1) { |
| touchMajor /= touchingCount; |
| touchMinor /= touchingCount; |
| toolMajor /= touchingCount; |
| toolMinor /= touchingCount; |
| size /= touchingCount; |
| } |
| } |
| |
| if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { |
| touchMajor *= mGeometricScale; |
| touchMinor *= mGeometricScale; |
| toolMajor *= mGeometricScale; |
| toolMinor *= mGeometricScale; |
| } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::AREA) { |
| touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; |
| touchMinor = touchMajor; |
| toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; |
| toolMinor = toolMajor; |
| } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DIAMETER) { |
| touchMinor = touchMajor; |
| toolMinor = toolMajor; |
| } |
| |
| mCalibration.applySizeScaleAndBias(touchMajor); |
| mCalibration.applySizeScaleAndBias(touchMinor); |
| mCalibration.applySizeScaleAndBias(toolMajor); |
| mCalibration.applySizeScaleAndBias(toolMinor); |
| size *= mSizeScale; |
| break; |
| case Calibration::SizeCalibration::DEFAULT: |
| LOG_ALWAYS_FATAL("Resolution should not be 'DEFAULT' at this point"); |
| break; |
| case Calibration::SizeCalibration::NONE: |
| touchMajor = 0; |
| touchMinor = 0; |
| toolMajor = 0; |
| toolMinor = 0; |
| size = 0; |
| break; |
| } |
| |
| // Pressure |
| float pressure; |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PressureCalibration::PHYSICAL: |
| case Calibration::PressureCalibration::AMPLITUDE: |
| pressure = in.pressure * mPressureScale; |
| break; |
| default: |
| pressure = in.isHovering ? 0 : 1; |
| break; |
| } |
| |
| // Tilt and Orientation |
| float tilt; |
| float orientation; |
| if (mHaveTilt) { |
| float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; |
| float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; |
| orientation = transformAngle(mRawRotation, atan2f(-sinf(tiltXAngle), sinf(tiltYAngle))); |
| tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); |
| } else { |
| tilt = 0; |
| |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::OrientationCalibration::INTERPOLATED: |
| orientation = transformAngle(mRawRotation, in.orientation * mOrientationScale); |
| break; |
| case Calibration::OrientationCalibration::VECTOR: { |
| int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); |
| int32_t c2 = signExtendNybble(in.orientation & 0x0f); |
| if (c1 != 0 || c2 != 0) { |
| orientation = transformAngle(mRawRotation, atan2f(c1, c2) * 0.5f); |
| float confidence = hypotf(c1, c2); |
| float scale = 1.0f + confidence / 16.0f; |
| touchMajor *= scale; |
| touchMinor /= scale; |
| toolMajor *= scale; |
| toolMinor /= scale; |
| } else { |
| orientation = 0; |
| } |
| break; |
| } |
| default: |
| orientation = 0; |
| } |
| } |
| |
| // Distance |
| float distance; |
| switch (mCalibration.distanceCalibration) { |
| case Calibration::DistanceCalibration::SCALED: |
| distance = in.distance * mDistanceScale; |
| break; |
| default: |
| distance = 0; |
| } |
| |
| // Adjust X,Y coords for device calibration and convert to the natural display coordinates. |
| vec2 transformed = {in.x, in.y}; |
| mAffineTransform.applyTo(transformed.x /*byRef*/, transformed.y /*byRef*/); |
| transformed = mRawToDisplay.transform(transformed); |
| |
| // Write output coords. |
| PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; |
| out.clear(); |
| out.setAxisValue(AMOTION_EVENT_AXIS_X, transformed.x); |
| out.setAxisValue(AMOTION_EVENT_AXIS_Y, transformed.y); |
| out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); |
| out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); |
| out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); |
| out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); |
| |
| // Write output relative fields if applicable. |
| uint32_t id = in.id; |
| if (mSource == AINPUT_SOURCE_TOUCHPAD && |
| mLastCookedState.cookedPointerData.hasPointerCoordsForId(id)) { |
| const PointerCoords& p = mLastCookedState.cookedPointerData.pointerCoordsForId(id); |
| float dx = transformed.x - p.getAxisValue(AMOTION_EVENT_AXIS_X); |
| float dy = transformed.y - p.getAxisValue(AMOTION_EVENT_AXIS_Y); |
| out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx); |
| out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy); |
| } |
| |
| // Write output properties. |
| PointerProperties& properties = mCurrentCookedState.cookedPointerData.pointerProperties[i]; |
| properties.clear(); |
| properties.id = id; |
| properties.toolType = in.toolType; |
| |
| // Write id index and mark id as valid. |
| mCurrentCookedState.cookedPointerData.idToIndex[id] = i; |
| mCurrentCookedState.cookedPointerData.validIdBits.markBit(id); |
| } |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchPointerUsage(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags, |
| PointerUsage pointerUsage) { |
| std::list<NotifyArgs> out; |
| if (pointerUsage != mPointerUsage) { |
| out += abortPointerUsage(when, readTime, policyFlags); |
| mPointerUsage = pointerUsage; |
| } |
| |
| switch (mPointerUsage) { |
| case PointerUsage::GESTURES: |
| out += dispatchPointerGestures(when, readTime, policyFlags, /*isTimeout=*/false); |
| break; |
| case PointerUsage::STYLUS: |
| out += dispatchPointerStylus(when, readTime, policyFlags); |
| break; |
| case PointerUsage::MOUSE: |
| out += dispatchPointerMouse(when, readTime, policyFlags); |
| break; |
| case PointerUsage::NONE: |
| break; |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortPointerUsage(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| switch (mPointerUsage) { |
| case PointerUsage::GESTURES: |
| out += abortPointerGestures(when, readTime, policyFlags); |
| break; |
| case PointerUsage::STYLUS: |
| out += abortPointerStylus(when, readTime, policyFlags); |
| break; |
| case PointerUsage::MOUSE: |
| out += abortPointerMouse(when, readTime, policyFlags); |
| break; |
| case PointerUsage::NONE: |
| break; |
| } |
| |
| mPointerUsage = PointerUsage::NONE; |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchPointerGestures(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags, |
| bool isTimeout) { |
| std::list<NotifyArgs> out; |
| // Update current gesture coordinates. |
| bool cancelPreviousGesture, finishPreviousGesture; |
| bool sendEvents = |
| preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture, isTimeout); |
| if (!sendEvents) { |
| return {}; |
| } |
| if (finishPreviousGesture) { |
| cancelPreviousGesture = false; |
| } |
| |
| // Update the pointer presentation and spots. |
| if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { |
| mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); |
| if (finishPreviousGesture || cancelPreviousGesture) { |
| mPointerController->clearSpots(); |
| } |
| |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { |
| mPointerController->setSpots(mPointerGesture.currentGestureCoords.cbegin(), |
| mPointerGesture.currentGestureIdToIndex.cbegin(), |
| mPointerGesture.currentGestureIdBits, |
| mPointerController->getDisplayId()); |
| } |
| } else { |
| mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); |
| } |
| |
| // Show or hide the pointer if needed. |
| switch (mPointerGesture.currentGestureMode) { |
| case PointerGesture::Mode::NEUTRAL: |
| case PointerGesture::Mode::QUIET: |
| if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH && |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) { |
| // Remind the user of where the pointer is after finishing a gesture with spots. |
| mPointerController->unfade(PointerControllerInterface::Transition::GRADUAL); |
| } |
| break; |
| case PointerGesture::Mode::TAP: |
| case PointerGesture::Mode::TAP_DRAG: |
| case PointerGesture::Mode::BUTTON_CLICK_OR_DRAG: |
| case PointerGesture::Mode::HOVER: |
| case PointerGesture::Mode::PRESS: |
| case PointerGesture::Mode::SWIPE: |
| // Unfade the pointer when the current gesture manipulates the |
| // area directly under the pointer. |
| mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); |
| break; |
| case PointerGesture::Mode::FREEFORM: |
| // Fade the pointer when the current gesture manipulates a different |
| // area and there are spots to guide the user experience. |
| if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| } else { |
| mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); |
| } |
| break; |
| } |
| |
| // Send events! |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentCookedState.buttonState; |
| const MotionClassification classification = |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE |
| ? MotionClassification::TWO_FINGER_SWIPE |
| : MotionClassification::NONE; |
| |
| uint32_t flags = 0; |
| |
| if (!PointerGesture::canGestureAffectWindowFocus(mPointerGesture.currentGestureMode)) { |
| flags |= AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE; |
| } |
| |
| // Update last coordinates of pointers that have moved so that we observe the new |
| // pointer positions at the same time as other pointers that have just gone up. |
| bool down = mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM; |
| bool moveNeeded = false; |
| if (down && !cancelPreviousGesture && !finishPreviousGesture && |
| !mPointerGesture.lastGestureIdBits.isEmpty() && |
| !mPointerGesture.currentGestureIdBits.isEmpty()) { |
| BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value & |
| mPointerGesture.lastGestureIdBits.value); |
| moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, |
| mPointerGesture.lastGestureIdToIndex, movedGestureIdBits); |
| if (buttonState != mLastCookedState.buttonState) { |
| moveNeeded = true; |
| } |
| } |
| |
| // Send motion events for all pointers that went up or were canceled. |
| BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); |
| if (!dispatchedGestureIdBits.isEmpty()) { |
| if (cancelPreviousGesture) { |
| const uint32_t cancelFlags = flags | AMOTION_EVENT_FLAG_CANCELED; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_CANCEL, 0, cancelFlags, metaState, |
| buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, |
| mPointerGesture.lastGestureIdToIndex, |
| dispatchedGestureIdBits, -1, 0, 0, |
| mPointerGesture.downTime, classification)); |
| |
| dispatchedGestureIdBits.clear(); |
| } else { |
| BitSet32 upGestureIdBits; |
| if (finishPreviousGesture) { |
| upGestureIdBits = dispatchedGestureIdBits; |
| } else { |
| upGestureIdBits.value = |
| dispatchedGestureIdBits.value & ~mPointerGesture.currentGestureIdBits.value; |
| } |
| while (!upGestureIdBits.isEmpty()) { |
| if (((mLastCookedState.buttonState & AMOTION_EVENT_BUTTON_PRIMARY) != 0 || |
| (mLastCookedState.buttonState & AMOTION_EVENT_BUTTON_SECONDARY) != 0) && |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG) { |
| out += dispatchGestureButtonRelease(when, policyFlags, dispatchedGestureIdBits, |
| readTime); |
| } |
| const uint32_t id = upGestureIdBits.clearFirstMarkedBit(); |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_UP, 0, flags, metaState, |
| buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, |
| mPointerGesture.lastGestureIdToIndex, |
| dispatchedGestureIdBits, id, 0, 0, |
| mPointerGesture.downTime, classification)); |
| |
| dispatchedGestureIdBits.clearBit(id); |
| } |
| } |
| } |
| |
| // Send motion events for all pointers that moved. |
| if (moveNeeded) { |
| out.push_back( |
| dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, |
| flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, -1, |
| 0, 0, mPointerGesture.downTime, classification)); |
| } |
| |
| // Send motion events for all pointers that went down. |
| if (down) { |
| BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value & |
| ~dispatchedGestureIdBits.value); |
| while (!downGestureIdBits.isEmpty()) { |
| uint32_t id = downGestureIdBits.clearFirstMarkedBit(); |
| dispatchedGestureIdBits.markBit(id); |
| |
| if (dispatchedGestureIdBits.count() == 1) { |
| mPointerGesture.downTime = when; |
| } |
| |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_POINTER_DOWN, 0, flags, metaState, |
| buttonState, 0, mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, |
| dispatchedGestureIdBits, id, 0, 0, |
| mPointerGesture.downTime, classification)); |
| if (((buttonState & AMOTION_EVENT_BUTTON_PRIMARY) != 0 || |
| (buttonState & AMOTION_EVENT_BUTTON_SECONDARY) != 0) && |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG) { |
| out += dispatchGestureButtonPress(when, policyFlags, dispatchedGestureIdBits, |
| readTime); |
| } |
| } |
| } |
| |
| // Send motion events for hover. |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::HOVER) { |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, |
| buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mPointerGesture.currentGestureProperties, |
| mPointerGesture.currentGestureCoords, |
| mPointerGesture.currentGestureIdToIndex, |
| mPointerGesture.currentGestureIdBits, -1, 0, 0, |
| mPointerGesture.downTime, MotionClassification::NONE)); |
| } else if (dispatchedGestureIdBits.isEmpty() && !mPointerGesture.lastGestureIdBits.isEmpty()) { |
| // Synthesize a hover move event after all pointers go up to indicate that |
| // the pointer is hovering again even if the user is not currently touching |
| // the touch pad. This ensures that a view will receive a fresh hover enter |
| // event after a tap. |
| const auto [x, y] = mPointerController->getPosition(); |
| |
| PointerProperties pointerProperties; |
| pointerProperties.clear(); |
| pointerProperties.id = 0; |
| pointerProperties.toolType = ToolType::FINGER; |
| |
| PointerCoords pointerCoords; |
| pointerCoords.clear(); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| |
| const int32_t displayId = mPointerController->getDisplayId(); |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, |
| buttonState, MotionClassification::NONE, |
| AMOTION_EVENT_EDGE_FLAG_NONE, 1, &pointerProperties, |
| &pointerCoords, 0, 0, x, y, mPointerGesture.downTime, |
| /* videoFrames */ {})); |
| } |
| |
| // Update state. |
| mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; |
| if (!down) { |
| mPointerGesture.lastGestureIdBits.clear(); |
| } else { |
| mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; |
| for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; |
| mPointerGesture.lastGestureProperties[index].copyFrom( |
| mPointerGesture.currentGestureProperties[index]); |
| mPointerGesture.lastGestureCoords[index].copyFrom( |
| mPointerGesture.currentGestureCoords[index]); |
| mPointerGesture.lastGestureIdToIndex[id] = index; |
| } |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortPointerGestures(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| const MotionClassification classification = |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::SWIPE |
| ? MotionClassification::TWO_FINGER_SWIPE |
| : MotionClassification::NONE; |
| std::list<NotifyArgs> out; |
| // Cancel previously dispatches pointers. |
| if (!mPointerGesture.lastGestureIdBits.isEmpty()) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| int32_t buttonState = mCurrentRawState.buttonState; |
| out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, |
| AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, |
| metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| mPointerGesture.lastGestureProperties, |
| mPointerGesture.lastGestureCoords, |
| mPointerGesture.lastGestureIdToIndex, |
| mPointerGesture.lastGestureIdBits, -1, 0, 0, |
| mPointerGesture.downTime, classification)); |
| } |
| |
| // Reset the current pointer gesture. |
| mPointerGesture.reset(); |
| mPointerVelocityControl.reset(); |
| |
| // Remove any current spots. |
| if (mPointerController != nullptr) { |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| mPointerController->clearSpots(); |
| } |
| return out; |
| } |
| |
| bool TouchInputMapper::preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, |
| bool* outFinishPreviousGesture, bool isTimeout) { |
| *outCancelPreviousGesture = false; |
| *outFinishPreviousGesture = false; |
| |
| // Handle TAP timeout. |
| if (isTimeout) { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: Processing timeout"); |
| |
| if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { |
| if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { |
| // The tap/drag timeout has not yet expired. |
| getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + |
| mConfig.pointerGestureTapDragInterval); |
| } else { |
| // The tap is finished. |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP finished"); |
| *outFinishPreviousGesture = true; |
| |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| mPointerVelocityControl.reset(); |
| return true; |
| } |
| } |
| |
| // We did not handle this timeout. |
| return false; |
| } |
| |
| const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); |
| const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); |
| |
| // Update the velocity tracker. |
| { |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(id); |
| const float x = pointer.x * mPointerXMovementScale; |
| const float y = pointer.y * mPointerYMovementScale; |
| mPointerGesture.velocityTracker.addMovement(when, id, AMOTION_EVENT_AXIS_X, x); |
| mPointerGesture.velocityTracker.addMovement(when, id, AMOTION_EVENT_AXIS_Y, y); |
| } |
| } |
| |
| // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning |
| // to NEUTRAL, then we should not generate tap event. |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER && |
| mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP && |
| mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP_DRAG) { |
| mPointerGesture.resetTap(); |
| } |
| |
| // Pick a new active touch id if needed. |
| // Choose an arbitrary pointer that just went down, if there is one. |
| // Otherwise choose an arbitrary remaining pointer. |
| // This guarantees we always have an active touch id when there is at least one pointer. |
| // We keep the same active touch id for as long as possible. |
| if (mPointerGesture.activeTouchId < 0) { |
| if (!mCurrentCookedState.fingerIdBits.isEmpty()) { |
| mPointerGesture.activeTouchId = mCurrentCookedState.fingerIdBits.firstMarkedBit(); |
| mPointerGesture.firstTouchTime = when; |
| } |
| } else if (!mCurrentCookedState.fingerIdBits.hasBit(mPointerGesture.activeTouchId)) { |
| mPointerGesture.activeTouchId = !mCurrentCookedState.fingerIdBits.isEmpty() |
| ? mCurrentCookedState.fingerIdBits.firstMarkedBit() |
| : -1; |
| } |
| const int32_t& activeTouchId = mPointerGesture.activeTouchId; |
| |
| // Switch states based on button and pointer state. |
| if (checkForTouchpadQuietTime(when)) { |
| // Case 1: Quiet time. (QUIET) |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: QUIET for next %0.3fms", |
| (mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval - when) * |
| 0.000001f); |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::QUIET) { |
| *outFinishPreviousGesture = true; |
| } |
| |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::QUIET; |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| mPointerVelocityControl.reset(); |
| } else if (isPointerDown(mCurrentRawState.buttonState)) { |
| // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) |
| // The pointer follows the active touch point. |
| // Emit DOWN, MOVE, UP events at the pointer location. |
| // |
| // Only the active touch matters; other fingers are ignored. This policy helps |
| // to handle the case where the user places a second finger on the touch pad |
| // to apply the necessary force to depress an integrated button below the surface. |
| // We don't want the second finger to be delivered to applications. |
| // |
| // For this to work well, we need to make sure to track the pointer that is really |
| // active. If the user first puts one finger down to click then adds another |
| // finger to drag then the active pointer should switch to the finger that is |
| // being dragged. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, currentFingerCount=%d", |
| activeTouchId, currentFingerCount); |
| // Reset state when just starting. |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::BUTTON_CLICK_OR_DRAG) { |
| *outFinishPreviousGesture = true; |
| mPointerGesture.activeGestureId = 0; |
| } |
| |
| // Switch pointers if needed. |
| // Find the fastest pointer and follow it. |
| if (activeTouchId >= 0 && currentFingerCount > 1) { |
| const auto [bestId, bestSpeed] = getFastestFinger(); |
| if (bestId >= 0 && bestId != activeTouchId) { |
| mPointerGesture.activeTouchId = bestId; |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: BUTTON_CLICK_OR_DRAG switched pointers, bestId=%d, " |
| "bestSpeed=%0.3f", |
| bestId, bestSpeed); |
| } |
| } |
| |
| if (activeTouchId >= 0 && mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { |
| // When using spots, the click will occur at the position of the anchor |
| // spot and all other spots will move there. |
| moveMousePointerFromPointerDelta(when, activeTouchId); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| const auto [x, y] = mPointerController->getPosition(); |
| |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::BUTTON_CLICK_OR_DRAG; |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = ToolType::FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| } else if (currentFingerCount == 0) { |
| // Case 3. No fingers down and button is not pressed. (NEUTRAL) |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::NEUTRAL) { |
| *outFinishPreviousGesture = true; |
| } |
| |
| // Watch for taps coming out of HOVER or TAP_DRAG mode. |
| // Checking for taps after TAP_DRAG allows us to detect double-taps. |
| bool tapped = false; |
| if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::HOVER || |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) && |
| lastFingerCount == 1) { |
| if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { |
| const auto [x, y] = mPointerController->getPosition(); |
| if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && |
| fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP"); |
| |
| mPointerGesture.tapUpTime = when; |
| getContext()->requestTimeoutAtTime(when + |
| mConfig.pointerGestureTapDragInterval); |
| |
| mPointerGesture.activeGestureId = 0; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP; |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = |
| mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = ToolType::FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, |
| mPointerGesture.tapX); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, |
| mPointerGesture.tapY); |
| mPointerGesture.currentGestureCoords[0] |
| .setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| |
| tapped = true; |
| } else { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP, deltaX=%f, deltaY=%f", |
| x - mPointerGesture.tapX, y - mPointerGesture.tapY); |
| } |
| } else { |
| if (DEBUG_GESTURES) { |
| if (mPointerGesture.tapDownTime != LLONG_MIN) { |
| ALOGD("Gestures: Not a TAP, %0.3fms since down", |
| (when - mPointerGesture.tapDownTime) * 0.000001f); |
| } else { |
| ALOGD("Gestures: Not a TAP, incompatible mode transitions"); |
| } |
| } |
| } |
| } |
| |
| mPointerVelocityControl.reset(); |
| |
| if (!tapped) { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: NEUTRAL"); |
| mPointerGesture.activeGestureId = -1; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; |
| mPointerGesture.currentGestureIdBits.clear(); |
| } |
| } else if (currentFingerCount == 1) { |
| // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) |
| // The pointer follows the active touch point. |
| // When in HOVER, emit HOVER_MOVE events at the pointer location. |
| // When in TAP_DRAG, emit MOVE events at the pointer location. |
| ALOG_ASSERT(activeTouchId >= 0); |
| |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::HOVER; |
| if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { |
| if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { |
| const auto [x, y] = mPointerController->getPosition(); |
| if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && |
| fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; |
| } else { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", |
| x - mPointerGesture.tapX, y - mPointerGesture.tapY); |
| } |
| } else { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP_DRAG, %0.3fms time since up", |
| (when - mPointerGesture.tapUpTime) * 0.000001f); |
| } |
| } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) { |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; |
| } |
| |
| if (mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { |
| // When using spots, the hover or drag will occur at the position of the anchor spot. |
| moveMousePointerFromPointerDelta(when, activeTouchId); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| bool down; |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG) { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP_DRAG"); |
| down = true; |
| } else { |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: HOVER"); |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER) { |
| *outFinishPreviousGesture = true; |
| } |
| mPointerGesture.activeGestureId = 0; |
| down = false; |
| } |
| |
| const auto [x, y] = mPointerController->getPosition(); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = ToolType::FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, |
| down ? 1.0f : 0.0f); |
| |
| if (lastFingerCount == 0 && currentFingerCount != 0) { |
| mPointerGesture.resetTap(); |
| mPointerGesture.tapDownTime = when; |
| mPointerGesture.tapX = x; |
| mPointerGesture.tapY = y; |
| } |
| } else { |
| // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) |
| prepareMultiFingerPointerGestures(when, outCancelPreviousGesture, outFinishPreviousGesture); |
| } |
| |
| if (DEBUG_GESTURES) { |
| ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " |
| "currentGestureMode=%d, currentGestureIdBits=0x%08x, " |
| "lastGestureMode=%d, lastGestureIdBits=0x%08x", |
| toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), |
| mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, |
| mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); |
| for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; |
| const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; |
| const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; |
| ALOGD(" currentGesture[%d]: index=%d, toolType=%s, " |
| "x=%0.3f, y=%0.3f, pressure=%0.3f", |
| id, index, ftl::enum_string(properties.toolType).c_str(), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_X), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_Y), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); |
| } |
| for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; |
| const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; |
| const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; |
| ALOGD(" lastGesture[%d]: index=%d, toolType=%s, " |
| "x=%0.3f, y=%0.3f, pressure=%0.3f", |
| id, index, ftl::enum_string(properties.toolType).c_str(), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_X), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_Y), |
| coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); |
| } |
| } |
| return true; |
| } |
| |
| bool TouchInputMapper::checkForTouchpadQuietTime(nsecs_t when) { |
| if (mPointerGesture.activeTouchId < 0) { |
| mPointerGesture.resetQuietTime(); |
| return false; |
| } |
| |
| if (when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval) { |
| return true; |
| } |
| |
| const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); |
| bool isQuietTime = false; |
| if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::PRESS || |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::SWIPE || |
| mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) && |
| currentFingerCount < 2) { |
| // Enter quiet time when exiting swipe or freeform state. |
| // This is to prevent accidentally entering the hover state and flinging the |
| // pointer when finishing a swipe and there is still one pointer left onscreen. |
| isQuietTime = true; |
| } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG && |
| currentFingerCount >= 2 && !isPointerDown(mCurrentRawState.buttonState)) { |
| // Enter quiet time when releasing the button and there are still two or more |
| // fingers down. This may indicate that one finger was used to press the button |
| // but it has not gone up yet. |
| isQuietTime = true; |
| } |
| if (isQuietTime) { |
| mPointerGesture.quietTime = when; |
| } |
| return isQuietTime; |
| } |
| |
| std::pair<int32_t, float> TouchInputMapper::getFastestFinger() { |
| int32_t bestId = -1; |
| float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| std::optional<float> vx = |
| mPointerGesture.velocityTracker.getVelocity(AMOTION_EVENT_AXIS_X, id); |
| std::optional<float> vy = |
| mPointerGesture.velocityTracker.getVelocity(AMOTION_EVENT_AXIS_Y, id); |
| if (vx && vy) { |
| float speed = hypotf(*vx, *vy); |
| if (speed > bestSpeed) { |
| bestId = id; |
| bestSpeed = speed; |
| } |
| } |
| } |
| return std::make_pair(bestId, bestSpeed); |
| } |
| |
| void TouchInputMapper::prepareMultiFingerPointerGestures(nsecs_t when, bool* cancelPreviousGesture, |
| bool* finishPreviousGesture) { |
| // We need to provide feedback for each finger that goes down so we cannot wait for the fingers |
| // to move before deciding what to do. |
| // |
| // The ambiguous case is deciding what to do when there are two fingers down but they have not |
| // moved enough to determine whether they are part of a drag or part of a freeform gesture, or |
| // just a press or long-press at the pointer location. |
| // |
| // When there are two fingers we start with the PRESS hypothesis and we generate a down at the |
| // pointer location. |
| // |
| // When the two fingers move enough or when additional fingers are added, we make a decision to |
| // transition into SWIPE or FREEFORM mode accordingly. |
| const int32_t activeTouchId = mPointerGesture.activeTouchId; |
| ALOG_ASSERT(activeTouchId >= 0); |
| |
| const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); |
| const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); |
| bool settled = |
| when >= mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval; |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::PRESS && |
| mPointerGesture.lastGestureMode != PointerGesture::Mode::SWIPE && |
| mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { |
| *finishPreviousGesture = true; |
| } else if (!settled && currentFingerCount > lastFingerCount) { |
| // Additional pointers have gone down but not yet settled. |
| // Reset the gesture. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: Resetting gesture since additional pointers went down for " |
| "MULTITOUCH, settle time remaining %0.3fms", |
| (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - |
| when) * 0.000001f); |
| *cancelPreviousGesture = true; |
| } else { |
| // Continue previous gesture. |
| mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; |
| } |
| |
| if (*finishPreviousGesture || *cancelPreviousGesture) { |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::PRESS; |
| mPointerGesture.activeGestureId = 0; |
| mPointerGesture.referenceIdBits.clear(); |
| mPointerVelocityControl.reset(); |
| |
| // Use the centroid and pointer location as the reference points for the gesture. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: Using centroid as reference for MULTITOUCH, settle time remaining " |
| "%0.3fms", |
| (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - |
| when) * 0.000001f); |
| mCurrentRawState.rawPointerData |
| .getCentroidOfTouchingPointers(&mPointerGesture.referenceTouchX, |
| &mPointerGesture.referenceTouchY); |
| std::tie(mPointerGesture.referenceGestureX, mPointerGesture.referenceGestureY) = |
| mPointerController->getPosition(); |
| } |
| |
| // Clear the reference deltas for fingers not yet included in the reference calculation. |
| for (BitSet32 idBits(mCurrentCookedState.fingerIdBits.value & |
| ~mPointerGesture.referenceIdBits.value); |
| !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| mPointerGesture.referenceDeltas[id].dx = 0; |
| mPointerGesture.referenceDeltas[id].dy = 0; |
| } |
| mPointerGesture.referenceIdBits = mCurrentCookedState.fingerIdBits; |
| |
| // Add delta for all fingers and calculate a common movement delta. |
| int32_t commonDeltaRawX = 0, commonDeltaRawY = 0; |
| BitSet32 commonIdBits(mLastCookedState.fingerIdBits.value & |
| mCurrentCookedState.fingerIdBits.value); |
| for (BitSet32 idBits(commonIdBits); !idBits.isEmpty();) { |
| bool first = (idBits == commonIdBits); |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| const RawPointerData::Pointer& cpd = mCurrentRawState.rawPointerData.pointerForId(id); |
| const RawPointerData::Pointer& lpd = mLastRawState.rawPointerData.pointerForId(id); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| delta.dx += cpd.x - lpd.x; |
| delta.dy += cpd.y - lpd.y; |
| |
| if (first) { |
| commonDeltaRawX = delta.dx; |
| commonDeltaRawY = delta.dy; |
| } else { |
| commonDeltaRawX = calculateCommonVector(commonDeltaRawX, delta.dx); |
| commonDeltaRawY = calculateCommonVector(commonDeltaRawY, delta.dy); |
| } |
| } |
| |
| // Consider transitions from PRESS to SWIPE or MULTITOUCH. |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS) { |
| float dist[MAX_POINTER_ID + 1]; |
| int32_t distOverThreshold = 0; |
| for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| dist[id] = hypotf(delta.dx * mPointerXZoomScale, delta.dy * mPointerYZoomScale); |
| if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { |
| distOverThreshold += 1; |
| } |
| } |
| |
| // Only transition when at least two pointers have moved further than |
| // the minimum distance threshold. |
| if (distOverThreshold >= 2) { |
| if (currentFingerCount > 2) { |
| // There are more than two pointers, switch to FREEFORM. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", |
| currentFingerCount); |
| *cancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; |
| } else { |
| // There are exactly two pointers. |
| BitSet32 idBits(mCurrentCookedState.fingerIdBits); |
| uint32_t id1 = idBits.clearFirstMarkedBit(); |
| uint32_t id2 = idBits.firstMarkedBit(); |
| const RawPointerData::Pointer& p1 = |
| mCurrentRawState.rawPointerData.pointerForId(id1); |
| const RawPointerData::Pointer& p2 = |
| mCurrentRawState.rawPointerData.pointerForId(id2); |
| float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); |
| if (mutualDistance > mPointerGestureMaxSwipeWidth) { |
| // There are two pointers but they are too far apart for a SWIPE, |
| // switch to FREEFORM. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", |
| mutualDistance, mPointerGestureMaxSwipeWidth); |
| *cancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; |
| } else { |
| // There are two pointers. Wait for both pointers to start moving |
| // before deciding whether this is a SWIPE or FREEFORM gesture. |
| float dist1 = dist[id1]; |
| float dist2 = dist[id2]; |
| if (dist1 >= mConfig.pointerGestureMultitouchMinDistance && |
| dist2 >= mConfig.pointerGestureMultitouchMinDistance) { |
| // Calculate the dot product of the displacement vectors. |
| // When the vectors are oriented in approximately the same direction, |
| // the angle betweeen them is near zero and the cosine of the angle |
| // approaches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * |
| // mag(v2). |
| PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; |
| PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; |
| float dx1 = delta1.dx * mPointerXZoomScale; |
| float dy1 = delta1.dy * mPointerYZoomScale; |
| float dx2 = delta2.dx * mPointerXZoomScale; |
| float dy2 = delta2.dy * mPointerYZoomScale; |
| float dot = dx1 * dx2 + dy1 * dy2; |
| float cosine = dot / (dist1 * dist2); // denominator always > 0 |
| if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { |
| // Pointers are moving in the same direction. Switch to SWIPE. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: PRESS transitioned to SWIPE, " |
| "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " |
| "cosine %0.3f >= %0.3f", |
| dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, |
| mConfig.pointerGestureMultitouchMinDistance, cosine, |
| mConfig.pointerGestureSwipeTransitionAngleCosine); |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::SWIPE; |
| } else { |
| // Pointers are moving in different directions. Switch to FREEFORM. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: PRESS transitioned to FREEFORM, " |
| "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " |
| "cosine %0.3f < %0.3f", |
| dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, |
| mConfig.pointerGestureMultitouchMinDistance, cosine, |
| mConfig.pointerGestureSwipeTransitionAngleCosine); |
| *cancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; |
| } |
| } |
| } |
| } |
| } |
| } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { |
| // Switch from SWIPE to FREEFORM if additional pointers go down. |
| // Cancel previous gesture. |
| if (currentFingerCount > 2) { |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", |
| currentFingerCount); |
| *cancelPreviousGesture = true; |
| mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; |
| } |
| } |
| |
| // Move the reference points based on the overall group motion of the fingers |
| // except in PRESS mode while waiting for a transition to occur. |
| if (mPointerGesture.currentGestureMode != PointerGesture::Mode::PRESS && |
| (commonDeltaRawX || commonDeltaRawY)) { |
| for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; |
| delta.dx = 0; |
| delta.dy = 0; |
| } |
| |
| mPointerGesture.referenceTouchX += commonDeltaRawX; |
| mPointerGesture.referenceTouchY += commonDeltaRawY; |
| |
| float commonDeltaX = commonDeltaRawX * mPointerXMovementScale; |
| float commonDeltaY = commonDeltaRawY * mPointerYMovementScale; |
| |
| rotateDelta(mInputDeviceOrientation, &commonDeltaX, &commonDeltaY); |
| mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); |
| |
| mPointerGesture.referenceGestureX += commonDeltaX; |
| mPointerGesture.referenceGestureY += commonDeltaY; |
| } |
| |
| // Report gestures. |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || |
| mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { |
| // PRESS or SWIPE mode. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: PRESS or SWIPE activeTouchId=%d, activeGestureId=%d, " |
| "currentTouchPointerCount=%d", |
| activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); |
| ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; |
| mPointerGesture.currentGestureProperties[0].clear(); |
| mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; |
| mPointerGesture.currentGestureProperties[0].toolType = ToolType::FINGER; |
| mPointerGesture.currentGestureCoords[0].clear(); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, |
| mPointerGesture.referenceGestureX); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, |
| mPointerGesture.referenceGestureY); |
| mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| if (mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { |
| float xOffset = static_cast<float>(commonDeltaRawX) / |
| (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue); |
| float yOffset = static_cast<float>(commonDeltaRawY) / |
| (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue); |
| mPointerGesture.currentGestureCoords[0] |
| .setAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET, xOffset); |
| mPointerGesture.currentGestureCoords[0] |
| .setAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET, yOffset); |
| } |
| } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { |
| // FREEFORM mode. |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: FREEFORM activeTouchId=%d, activeGestureId=%d, " |
| "currentTouchPointerCount=%d", |
| activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); |
| ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); |
| |
| mPointerGesture.currentGestureIdBits.clear(); |
| |
| BitSet32 mappedTouchIdBits; |
| BitSet32 usedGestureIdBits; |
| if (mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { |
| // Initially, assign the active gesture id to the active touch point |
| // if there is one. No other touch id bits are mapped yet. |
| if (!*cancelPreviousGesture) { |
| mappedTouchIdBits.markBit(activeTouchId); |
| usedGestureIdBits.markBit(mPointerGesture.activeGestureId); |
| mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = |
| mPointerGesture.activeGestureId; |
| } else { |
| mPointerGesture.activeGestureId = -1; |
| } |
| } else { |
| // Otherwise, assume we mapped all touches from the previous frame. |
| // Reuse all mappings that are still applicable. |
| mappedTouchIdBits.value = |
| mLastCookedState.fingerIdBits.value & mCurrentCookedState.fingerIdBits.value; |
| usedGestureIdBits = mPointerGesture.lastGestureIdBits; |
| |
| // Check whether we need to choose a new active gesture id because the |
| // current went went up. |
| for (BitSet32 upTouchIdBits(mLastCookedState.fingerIdBits.value & |
| ~mCurrentCookedState.fingerIdBits.value); |
| !upTouchIdBits.isEmpty();) { |
| uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); |
| uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; |
| if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { |
| mPointerGesture.activeGestureId = -1; |
| break; |
| } |
| } |
| } |
| |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: FREEFORM follow up mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " |
| "activeGestureId=%d", |
| mappedTouchIdBits.value, usedGestureIdBits.value, mPointerGesture.activeGestureId); |
| |
| BitSet32 idBits(mCurrentCookedState.fingerIdBits); |
| for (uint32_t i = 0; i < currentFingerCount; i++) { |
| uint32_t touchId = idBits.clearFirstMarkedBit(); |
| uint32_t gestureId; |
| if (!mappedTouchIdBits.hasBit(touchId)) { |
| gestureId = usedGestureIdBits.markFirstUnmarkedBit(); |
| mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: FREEFORM new mapping for touch id %d -> gesture id %d", touchId, |
| gestureId); |
| } else { |
| gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; |
| ALOGD_IF(DEBUG_GESTURES, |
| "Gestures: FREEFORM existing mapping for touch id %d -> gesture id %d", |
| touchId, gestureId); |
| } |
| mPointerGesture.currentGestureIdBits.markBit(gestureId); |
| mPointerGesture.currentGestureIdToIndex[gestureId] = i; |
| |
| const RawPointerData::Pointer& pointer = |
| mCurrentRawState.rawPointerData.pointerForId(touchId); |
| float deltaX = (pointer.x - mPointerGesture.referenceTouchX) * mPointerXZoomScale; |
| float deltaY = (pointer.y - mPointerGesture.referenceTouchY) * mPointerYZoomScale; |
| rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); |
| |
| mPointerGesture.currentGestureProperties[i].clear(); |
| mPointerGesture.currentGestureProperties[i].id = gestureId; |
| mPointerGesture.currentGestureProperties[i].toolType = ToolType::FINGER; |
| mPointerGesture.currentGestureCoords[i].clear(); |
| mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, |
| mPointerGesture.referenceGestureX + |
| deltaX); |
| mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, |
| mPointerGesture.referenceGestureY + |
| deltaY); |
| mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); |
| } |
| |
| if (mPointerGesture.activeGestureId < 0) { |
| mPointerGesture.activeGestureId = mPointerGesture.currentGestureIdBits.firstMarkedBit(); |
| ALOGD_IF(DEBUG_GESTURES, "Gestures: FREEFORM new activeGestureId=%d", |
| mPointerGesture.activeGestureId); |
| } |
| } |
| } |
| |
| void TouchInputMapper::moveMousePointerFromPointerDelta(nsecs_t when, uint32_t pointerId) { |
| const RawPointerData::Pointer& currentPointer = |
| mCurrentRawState.rawPointerData.pointerForId(pointerId); |
| const RawPointerData::Pointer& lastPointer = |
| mLastRawState.rawPointerData.pointerForId(pointerId); |
| float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; |
| float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; |
| |
| rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); |
| mPointerVelocityControl.move(when, &deltaX, &deltaY); |
| |
| mPointerController->move(deltaX, deltaY); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchPointerStylus(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| mPointerSimple.currentCoords.clear(); |
| mPointerSimple.currentProperties.clear(); |
| |
| bool down, hovering; |
| if (!mCurrentCookedState.stylusIdBits.isEmpty()) { |
| uint32_t id = mCurrentCookedState.stylusIdBits.firstMarkedBit(); |
| uint32_t index = mCurrentCookedState.cookedPointerData.idToIndex[id]; |
| hovering = mCurrentCookedState.cookedPointerData.hoveringIdBits.hasBit(id); |
| down = !hovering; |
| |
| float x = mCurrentCookedState.cookedPointerData.pointerCoords[index].getX(); |
| float y = mCurrentCookedState.cookedPointerData.pointerCoords[index].getY(); |
| // Styluses are configured specifically for one display. We only update the |
| // PointerController for this stylus if the PointerController is configured for |
| // the same display as this stylus, |
| if (getAssociatedDisplayId() == mViewport.displayId) { |
| mPointerController->setPosition(x, y); |
| std::tie(x, y) = mPointerController->getPosition(); |
| } |
| |
| mPointerSimple.currentCoords.copyFrom( |
| mCurrentCookedState.cookedPointerData.pointerCoords[index]); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerSimple.currentProperties.id = 0; |
| mPointerSimple.currentProperties.toolType = |
| mCurrentCookedState.cookedPointerData.pointerProperties[index].toolType; |
| } else { |
| down = false; |
| hovering = false; |
| } |
| |
| return dispatchPointerSimple(when, readTime, policyFlags, down, hovering, mViewport.displayId); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortPointerStylus(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| return abortPointerSimple(when, readTime, policyFlags); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchPointerMouse(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| mPointerSimple.currentCoords.clear(); |
| mPointerSimple.currentProperties.clear(); |
| |
| bool down, hovering; |
| if (!mCurrentCookedState.mouseIdBits.isEmpty()) { |
| uint32_t id = mCurrentCookedState.mouseIdBits.firstMarkedBit(); |
| if (mLastCookedState.mouseIdBits.hasBit(id)) { |
| moveMousePointerFromPointerDelta(when, id); |
| } else { |
| mPointerVelocityControl.reset(); |
| } |
| |
| down = isPointerDown(mCurrentRawState.buttonState); |
| hovering = !down; |
| |
| const auto [x, y] = mPointerController->getPosition(); |
| const uint32_t currentIndex = mCurrentRawState.rawPointerData.idToIndex[id]; |
| mPointerSimple.currentCoords.copyFrom( |
| mCurrentCookedState.cookedPointerData.pointerCoords[currentIndex]); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, |
| hovering ? 0.0f : 1.0f); |
| mPointerSimple.currentProperties.id = 0; |
| mPointerSimple.currentProperties.toolType = |
| mCurrentCookedState.cookedPointerData.pointerProperties[currentIndex].toolType; |
| } else { |
| mPointerVelocityControl.reset(); |
| |
| down = false; |
| hovering = false; |
| } |
| |
| const int32_t displayId = mPointerController->getDisplayId(); |
| return dispatchPointerSimple(when, readTime, policyFlags, down, hovering, displayId); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortPointerMouse(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out = abortPointerSimple(when, readTime, policyFlags); |
| |
| mPointerVelocityControl.reset(); |
| |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::dispatchPointerSimple(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags, bool down, |
| bool hovering, int32_t displayId) { |
| LOG_ALWAYS_FATAL_IF(mDeviceMode != DeviceMode::POINTER, |
| "%s cannot be used when the device is not in POINTER mode.", __func__); |
| std::list<NotifyArgs> out; |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| auto cursorPosition = mPointerSimple.currentCoords.getXYValue(); |
| |
| if (displayId == mPointerController->getDisplayId()) { |
| std::tie(cursorPosition.x, cursorPosition.y) = mPointerController->getPosition(); |
| if (down || hovering) { |
| mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); |
| mPointerController->clearSpots(); |
| mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); |
| } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| } |
| } |
| |
| if (mPointerSimple.down && !down) { |
| mPointerSimple.down = false; |
| |
| // Send up. |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_UP, 0, |
| 0, metaState, mLastRawState.buttonState, |
| MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.lastCursorX, mPointerSimple.lastCursorY, |
| mPointerSimple.downTime, |
| /* videoFrames */ {})); |
| } |
| |
| if (mPointerSimple.hovering && !hovering) { |
| mPointerSimple.hovering = false; |
| |
| // Send hover exit. |
| out.push_back( |
| NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, |
| displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, |
| metaState, mLastRawState.buttonState, MotionClassification::NONE, |
| AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.lastProperties, |
| &mPointerSimple.lastCoords, mOrientedXPrecision, |
| mOrientedYPrecision, mPointerSimple.lastCursorX, |
| mPointerSimple.lastCursorY, mPointerSimple.downTime, |
| /* videoFrames */ {})); |
| } |
| |
| if (down) { |
| if (!mPointerSimple.down) { |
| mPointerSimple.down = true; |
| mPointerSimple.downTime = when; |
| |
| // Send down. |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, |
| AMOTION_EVENT_ACTION_DOWN, 0, 0, metaState, |
| mCurrentRawState.buttonState, MotionClassification::NONE, |
| AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.currentProperties, |
| &mPointerSimple.currentCoords, mOrientedXPrecision, |
| mOrientedYPrecision, cursorPosition.x, cursorPosition.y, |
| mPointerSimple.downTime, /* videoFrames */ {})); |
| } |
| |
| // Send move. |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_MOVE, |
| 0, 0, metaState, mCurrentRawState.buttonState, |
| MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.currentProperties, |
| &mPointerSimple.currentCoords, mOrientedXPrecision, |
| mOrientedYPrecision, cursorPosition.x, cursorPosition.y, |
| mPointerSimple.downTime, /* videoFrames */ {})); |
| } |
| |
| if (hovering) { |
| if (!mPointerSimple.hovering) { |
| mPointerSimple.hovering = true; |
| |
| // Send hover enter. |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, |
| AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, |
| mCurrentRawState.buttonState, MotionClassification::NONE, |
| AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.currentProperties, |
| &mPointerSimple.currentCoords, mOrientedXPrecision, |
| mOrientedYPrecision, cursorPosition.x, cursorPosition.y, |
| mPointerSimple.downTime, /* videoFrames */ {})); |
| } |
| |
| // Send hover move. |
| out.push_back( |
| NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, |
| displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, |
| metaState, mCurrentRawState.buttonState, |
| MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, |
| mOrientedXPrecision, mOrientedYPrecision, cursorPosition.x, |
| cursorPosition.y, mPointerSimple.downTime, /* videoFrames */ {})); |
| } |
| |
| if (mCurrentRawState.rawVScroll || mCurrentRawState.rawHScroll) { |
| float vscroll = mCurrentRawState.rawVScroll; |
| float hscroll = mCurrentRawState.rawHScroll; |
| mWheelYVelocityControl.move(when, nullptr, &vscroll); |
| mWheelXVelocityControl.move(when, &hscroll, nullptr); |
| |
| // Send scroll. |
| PointerCoords pointerCoords; |
| pointerCoords.copyFrom(mPointerSimple.currentCoords); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); |
| |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_SCROLL, |
| 0, 0, metaState, mCurrentRawState.buttonState, |
| MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.currentProperties, &pointerCoords, |
| mOrientedXPrecision, mOrientedYPrecision, cursorPosition.x, |
| cursorPosition.y, mPointerSimple.downTime, |
| /* videoFrames */ {})); |
| } |
| |
| // Save state. |
| if (down || hovering) { |
| mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); |
| mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); |
| mPointerSimple.displayId = displayId; |
| mPointerSimple.source = mSource; |
| mPointerSimple.lastCursorX = cursorPosition.x; |
| mPointerSimple.lastCursorY = cursorPosition.y; |
| } else { |
| mPointerSimple.reset(); |
| } |
| return out; |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::abortPointerSimple(nsecs_t when, nsecs_t readTime, |
| uint32_t policyFlags) { |
| std::list<NotifyArgs> out; |
| if (mPointerSimple.down || mPointerSimple.hovering) { |
| int32_t metaState = getContext()->getGlobalMetaState(); |
| out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), |
| mPointerSimple.source, mPointerSimple.displayId, policyFlags, |
| AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, |
| metaState, mLastRawState.buttonState, |
| MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, |
| &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, |
| mOrientedXPrecision, mOrientedYPrecision, |
| mPointerSimple.lastCursorX, mPointerSimple.lastCursorY, |
| mPointerSimple.downTime, |
| /* videoFrames */ {})); |
| if (mPointerController != nullptr) { |
| mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); |
| } |
| } |
| mPointerSimple.reset(); |
| return out; |
| } |
| |
| static bool isStylusEvent(uint32_t source, int32_t action, const PointerProperties* properties) { |
| if (!isFromSource(source, AINPUT_SOURCE_STYLUS)) { |
| return false; |
| } |
| const auto actionIndex = action >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; |
| return isStylusToolType(properties[actionIndex].toolType); |
| } |
| |
| NotifyMotionArgs TouchInputMapper::dispatchMotion( |
| nsecs_t when, nsecs_t readTime, uint32_t policyFlags, uint32_t source, int32_t action, |
| int32_t actionButton, int32_t flags, int32_t metaState, int32_t buttonState, |
| int32_t edgeFlags, const PropertiesArray& properties, const CoordsArray& coords, |
| const IdToIndexArray& idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, |
| float yPrecision, nsecs_t downTime, MotionClassification classification) { |
| PointerCoords pointerCoords[MAX_POINTERS]; |
| PointerProperties pointerProperties[MAX_POINTERS]; |
| uint32_t pointerCount = 0; |
| while (!idBits.isEmpty()) { |
| uint32_t id = idBits.clearFirstMarkedBit(); |
| uint32_t index = idToIndex[id]; |
| pointerProperties[pointerCount].copyFrom(properties[index]); |
| pointerCoords[pointerCount].copyFrom(coords[index]); |
| |
| if (changedId >= 0 && id == uint32_t(changedId)) { |
| action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; |
| } |
| |
| pointerCount += 1; |
| } |
| |
| ALOG_ASSERT(pointerCount != 0); |
| |
| if (changedId >= 0 && pointerCount == 1) { |
| // Replace initial down and final up action. |
| // We can compare the action without masking off the changed pointer index |
| // because we know the index is 0. |
| if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { |
| action = AMOTION_EVENT_ACTION_DOWN; |
| } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { |
| if ((flags & AMOTION_EVENT_FLAG_CANCELED) != 0) { |
| action = AMOTION_EVENT_ACTION_CANCEL; |
| } else { |
| action = AMOTION_EVENT_ACTION_UP; |
| } |
| } else { |
| // Can't happen. |
| ALOG_ASSERT(false); |
| } |
| } |
| |
| const int32_t displayId = getAssociatedDisplayId().value_or(ADISPLAY_ID_NONE); |
| const bool showDirectStylusPointer = mConfig.stylusPointerIconEnabled && |
| mDeviceMode == DeviceMode::DIRECT && isStylusEvent(source, action, pointerProperties) && |
| mPointerController && displayId != ADISPLAY_ID_NONE && |
| displayId == mPointerController->getDisplayId(); |
| if (showDirectStylusPointer) { |
| switch (action & AMOTION_EVENT_ACTION_MASK) { |
| case AMOTION_EVENT_ACTION_HOVER_ENTER: |
| case AMOTION_EVENT_ACTION_HOVER_MOVE: |
| mPointerController->setPresentation( |
| PointerControllerInterface::Presentation::STYLUS_HOVER); |
| mPointerController |
| ->setPosition(mCurrentCookedState.cookedPointerData.pointerCoords[0].getX(), |
| mCurrentCookedState.cookedPointerData.pointerCoords[0] |
| .getY()); |
| mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); |
| break; |
| case AMOTION_EVENT_ACTION_HOVER_EXIT: |
| mPointerController->fade(PointerControllerInterface::Transition::IMMEDIATE); |
| break; |
| } |
| } |
| |
| float xCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; |
| float yCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; |
| if (mDeviceMode == DeviceMode::POINTER) { |
| std::tie(xCursorPosition, yCursorPosition) = mPointerController->getPosition(); |
| } |
| const int32_t deviceId = getDeviceId(); |
| std::vector<TouchVideoFrame> frames = getDeviceContext().getVideoFrames(); |
| std::for_each(frames.begin(), frames.end(), |
| [this](TouchVideoFrame& frame) { frame.rotate(this->mInputDeviceOrientation); }); |
| return NotifyMotionArgs(getContext()->getNextId(), when, readTime, deviceId, source, displayId, |
| policyFlags, action, actionButton, flags, metaState, buttonState, |
| classification, edgeFlags, pointerCount, pointerProperties, |
| pointerCoords, xPrecision, yPrecision, xCursorPosition, yCursorPosition, |
| downTime, std::move(frames)); |
| } |
| |
| std::list<NotifyArgs> TouchInputMapper::cancelTouch(nsecs_t when, nsecs_t readTime) { |
| std::list<NotifyArgs> out; |
| out += abortPointerUsage(when, readTime, /*policyFlags=*/0); |
| out += abortTouches(when, readTime, /* policyFlags=*/0); |
| return out; |
| } |
| |
| bool TouchInputMapper::isPointInsidePhysicalFrame(int32_t x, int32_t y) const { |
| return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue && |
| y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue && |
| isPointInRect(mPhysicalFrameInRotatedDisplay, mRawToRotatedDisplay.transform(x, y)); |
| } |
| |
| const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit(int32_t x, int32_t y) { |
| for (const VirtualKey& virtualKey : mVirtualKeys) { |
| ALOGD_IF(DEBUG_VIRTUAL_KEYS, |
| "VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " |
| "left=%d, top=%d, right=%d, bottom=%d", |
| x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, |
| virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); |
| |
| if (virtualKey.isHit(x, y)) { |
| return &virtualKey; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| void TouchInputMapper::assignPointerIds(const RawState& last, RawState& current) { |
| uint32_t currentPointerCount = current.rawPointerData.pointerCount; |
| uint32_t lastPointerCount = last.rawPointerData.pointerCount; |
| |
| current.rawPointerData.clearIdBits(); |
| |
| if (currentPointerCount == 0) { |
| // No pointers to assign. |
| return; |
| } |
| |
| if (lastPointerCount == 0) { |
| // All pointers are new. |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| uint32_t id = i; |
| current.rawPointerData.pointers[i].id = id; |
| current.rawPointerData.idToIndex[id] = i; |
| current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(i)); |
| } |
| return; |
| } |
| |
| if (currentPointerCount == 1 && lastPointerCount == 1 && |
| current.rawPointerData.pointers[0].toolType == last.rawPointerData.pointers[0].toolType) { |
| // Only one pointer and no change in count so it must have the same id as before. |
| uint32_t id = last.rawPointerData.pointers[0].id; |
| current.rawPointerData.pointers[0].id = id; |
| current.rawPointerData.idToIndex[id] = 0; |
| current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(0)); |
| return; |
| } |
| |
| // General case. |
| // We build a heap of squared euclidean distances between current and last pointers |
| // associated with the current and last pointer indices. Then, we find the best |
| // match (by distance) for each current pointer. |
| // The pointers must have the same tool type but it is possible for them to |
| // transition from hovering to touching or vice-versa while retaining the same id. |
| PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; |
| |
| uint32_t heapSize = 0; |
| for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; |
| currentPointerIndex++) { |
| for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; |
| lastPointerIndex++) { |
| const RawPointerData::Pointer& currentPointer = |
| current.rawPointerData.pointers[currentPointerIndex]; |
| const RawPointerData::Pointer& lastPointer = |
| last.rawPointerData.pointers[lastPointerIndex]; |
| if (currentPointer.toolType == lastPointer.toolType) { |
| int64_t deltaX = currentPointer.x - lastPointer.x; |
| int64_t deltaY = currentPointer.y - lastPointer.y; |
| |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| // Insert new element into the heap (sift up). |
| heap[heapSize].currentPointerIndex = currentPointerIndex; |
| heap[heapSize].lastPointerIndex = lastPointerIndex; |
| heap[heapSize].distance = distance; |
| heapSize += 1; |
| } |
| } |
| } |
| |
| // Heapify |
| for (uint32_t startIndex = heapSize / 2; startIndex != 0;) { |
| startIndex -= 1; |
| for (uint32_t parentIndex = startIndex;;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize && |
| heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| } |
| |
| if (DEBUG_POINTER_ASSIGNMENT) { |
| ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, i, |
| heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); |
| } |
| } |
| |
| // Pull matches out by increasing order of distance. |
| // To avoid reassigning pointers that have already been matched, the loop keeps track |
| // of which last and current pointers have been matched using the matchedXXXBits variables. |
| // It also tracks the used pointer id bits. |
| BitSet32 matchedLastBits(0); |
| BitSet32 matchedCurrentBits(0); |
| BitSet32 usedIdBits(0); |
| bool first = true; |
| for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { |
| while (heapSize > 0) { |
| if (first) { |
| // The first time through the loop, we just consume the root element of |
| // the heap (the one with smallest distance). |
| first = false; |
| } else { |
| // Previous iterations consumed the root element of the heap. |
| // Pop root element off of the heap (sift down). |
| heap[0] = heap[heapSize]; |
| for (uint32_t parentIndex = 0;;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize && |
| heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| |
| if (DEBUG_POINTER_ASSIGNMENT) { |
| ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); |
| for (size_t j = 0; j < heapSize; j++) { |
| ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, |
| j, heap[j].currentPointerIndex, heap[j].lastPointerIndex, |
| heap[j].distance); |
| } |
| } |
| } |
| |
| heapSize -= 1; |
| |
| uint32_t currentPointerIndex = heap[0].currentPointerIndex; |
| if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched |
| |
| uint32_t lastPointerIndex = heap[0].lastPointerIndex; |
| if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched |
| |
| matchedCurrentBits.markBit(currentPointerIndex); |
| matchedLastBits.markBit(lastPointerIndex); |
| |
| uint32_t id = last.rawPointerData.pointers[lastPointerIndex].id; |
| current.rawPointerData.pointers[currentPointerIndex].id = id; |
| current.rawPointerData.idToIndex[id] = currentPointerIndex; |
| current.rawPointerData.markIdBit(id, |
| current.rawPointerData.isHovering( |
| currentPointerIndex)); |
| usedIdBits.markBit(id); |
| |
| ALOGD_IF(DEBUG_POINTER_ASSIGNMENT, |
| "assignPointerIds - matched: cur=%" PRIu32 ", last=%" PRIu32 ", id=%" PRIu32 |
| ", distance=%" PRIu64, |
| lastPointerIndex, currentPointerIndex, id, heap[0].distance); |
| break; |
| } |
| } |
| |
| // Assign fresh ids to pointers that were not matched in the process. |
| for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { |
| uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); |
| uint32_t id = usedIdBits.markFirstUnmarkedBit(); |
| |
| current.rawPointerData.pointers[currentPointerIndex].id = id; |
| current.rawPointerData.idToIndex[id] = currentPointerIndex; |
| current.rawPointerData.markIdBit(id, |
| current.rawPointerData.isHovering(currentPointerIndex)); |
| |
| ALOGD_IF(DEBUG_POINTER_ASSIGNMENT, |
| "assignPointerIds - assigned: cur=%" PRIu32 ", id=%" PRIu32, currentPointerIndex, |
| id); |
| } |
| } |
| |
| int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| for (const VirtualKey& virtualKey : mVirtualKeys) { |
| if (virtualKey.keyCode == keyCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| for (const VirtualKey& virtualKey : mVirtualKeys) { |
| if (virtualKey.scanCode == scanCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, |
| const std::vector<int32_t>& keyCodes, |
| uint8_t* outFlags) { |
| for (const VirtualKey& virtualKey : mVirtualKeys) { |
| for (size_t i = 0; i < keyCodes.size(); i++) { |
| if (virtualKey.keyCode == keyCodes[i]) { |
| outFlags[i] = 1; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| std::optional<int32_t> TouchInputMapper::getAssociatedDisplayId() { |
| if (mParameters.hasAssociatedDisplay) { |
| if (mDeviceMode == DeviceMode::POINTER) { |
| return std::make_optional(mPointerController->getDisplayId()); |
| } else { |
| return std::make_optional(mViewport.displayId); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| } // namespace android |