blob: 5aff4296f90c2ba33555acfba82d5596403a011f [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "LibSurfaceFlingerUnittests"
#define LOG_NDEBUG 0
#include "Scheduler/TimeKeeper.h"
#include "Scheduler/VSyncDispatchTimerQueue.h"
#include "Scheduler/VSyncTracker.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <thread>
using namespace testing;
using namespace std::literals;
namespace android::scheduler {
class MockVSyncTracker : public VSyncTracker {
public:
MockVSyncTracker(nsecs_t period) : mPeriod{period} {
ON_CALL(*this, nextAnticipatedVSyncTimeFrom(_))
.WillByDefault(Invoke(this, &MockVSyncTracker::nextVSyncTime));
}
MOCK_METHOD1(addVsyncTimestamp, void(nsecs_t));
MOCK_CONST_METHOD1(nextAnticipatedVSyncTimeFrom, nsecs_t(nsecs_t));
MOCK_CONST_METHOD0(currentPeriod, nsecs_t());
MOCK_METHOD1(setPeriod, void(nsecs_t));
nsecs_t nextVSyncTime(nsecs_t timePoint) const {
if (timePoint % mPeriod == 0) {
return timePoint;
}
return (timePoint - (timePoint % mPeriod) + mPeriod);
}
protected:
nsecs_t const mPeriod;
};
class ControllableClock : public TimeKeeper {
public:
ControllableClock() {
ON_CALL(*this, alarmIn(_, _))
.WillByDefault(Invoke(this, &ControllableClock::alarmInDefaultBehavior));
ON_CALL(*this, now()).WillByDefault(Invoke(this, &ControllableClock::fakeTime));
}
MOCK_CONST_METHOD0(now, nsecs_t());
MOCK_METHOD2(alarmIn, void(std::function<void()> const&, nsecs_t time));
MOCK_METHOD0(alarmCancel, void());
void alarmInDefaultBehavior(std::function<void()> const& callback, nsecs_t time) {
mCallback = callback;
mNextCallbackTime = time + mCurrentTime;
}
nsecs_t fakeTime() const { return mCurrentTime; }
void advanceToNextCallback() {
mCurrentTime = mNextCallbackTime;
if (mCallback) {
mCallback();
}
}
void advanceBy(nsecs_t advancement) {
mCurrentTime += advancement;
if (mCurrentTime >= mNextCallbackTime && mCallback) {
mCallback();
}
};
private:
std::function<void()> mCallback;
nsecs_t mNextCallbackTime = 0;
nsecs_t mCurrentTime = 0;
};
class CountingCallback {
public:
CountingCallback(VSyncDispatch& dispatch)
: mDispatch(dispatch),
mToken(dispatch.registerCallback(std::bind(&CountingCallback::counter, this,
std::placeholders::_1),
"test")) {}
~CountingCallback() { mDispatch.unregisterCallback(mToken); }
operator VSyncDispatch::CallbackToken() const { return mToken; }
void counter(nsecs_t time) { mCalls.push_back(time); }
VSyncDispatch& mDispatch;
VSyncDispatch::CallbackToken mToken;
std::vector<nsecs_t> mCalls;
};
class PausingCallback {
public:
PausingCallback(VSyncDispatch& dispatch, std::chrono::milliseconds pauseAmount)
: mDispatch(dispatch),
mToken(dispatch.registerCallback(std::bind(&PausingCallback::pause, this,
std::placeholders::_1),
"test")),
mRegistered(true),
mPauseAmount(pauseAmount) {}
~PausingCallback() { unregister(); }
operator VSyncDispatch::CallbackToken() const { return mToken; }
void pause(nsecs_t) {
std::unique_lock<std::mutex> lk(mMutex);
mPause = true;
mCv.notify_all();
mCv.wait_for(lk, mPauseAmount, [this] { return !mPause; });
mResourcePresent = (mResource.lock() != nullptr);
}
bool waitForPause() {
std::unique_lock<std::mutex> lk(mMutex);
auto waiting = mCv.wait_for(lk, 10s, [this] { return mPause; });
return waiting;
}
void stashResource(std::weak_ptr<void> const& resource) { mResource = resource; }
bool resourcePresent() { return mResourcePresent; }
void unpause() {
std::unique_lock<std::mutex> lk(mMutex);
mPause = false;
mCv.notify_all();
}
void unregister() {
if (mRegistered) {
mDispatch.unregisterCallback(mToken);
mRegistered = false;
}
}
VSyncDispatch& mDispatch;
VSyncDispatch::CallbackToken mToken;
bool mRegistered = true;
std::mutex mMutex;
std::condition_variable mCv;
bool mPause = false;
std::weak_ptr<void> mResource;
bool mResourcePresent = false;
std::chrono::milliseconds const mPauseAmount;
};
class VSyncDispatchTimerQueueTest : public testing::Test {
protected:
std::unique_ptr<TimeKeeper> createTimeKeeper() {
class TimeKeeperWrapper : public TimeKeeper {
public:
TimeKeeperWrapper(TimeKeeper& control) : mControllableClock(control) {}
void alarmIn(std::function<void()> const& callback, nsecs_t time) final {
mControllableClock.alarmIn(callback, time);
}
void alarmCancel() final { mControllableClock.alarmCancel(); }
nsecs_t now() const final { return mControllableClock.now(); }
private:
TimeKeeper& mControllableClock;
};
return std::make_unique<TimeKeeperWrapper>(mMockClock);
}
~VSyncDispatchTimerQueueTest() {
// destructor of dispatch will cancelAlarm(). Ignore final cancel in common test.
Mock::VerifyAndClearExpectations(&mMockClock);
}
void advanceToNextCallback() { mMockClock.advanceToNextCallback(); }
NiceMock<ControllableClock> mMockClock;
static nsecs_t constexpr mDispatchGroupThreshold = 5;
nsecs_t const mPeriod = 1000;
nsecs_t const mVsyncMoveThreshold = 300;
NiceMock<MockVSyncTracker> mStubTracker{mPeriod};
VSyncDispatchTimerQueue mDispatch{createTimeKeeper(), mStubTracker, mDispatchGroupThreshold,
mVsyncMoveThreshold};
};
TEST_F(VSyncDispatchTimerQueueTest, unregistersSetAlarmOnDestruction) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmCancel());
{
VSyncDispatchTimerQueue mDispatch{createTimeKeeper(), mStubTracker, mDispatchGroupThreshold,
mVsyncMoveThreshold};
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 100, 1000), ScheduleResult::Scheduled);
}
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmSettingFuture) {
auto intended = mPeriod - 230;
EXPECT_CALL(mMockClock, alarmIn(_, 900));
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 100, intended), ScheduleResult::Scheduled);
advanceToNextCallback();
ASSERT_THAT(cb.mCalls.size(), Eq(1));
EXPECT_THAT(cb.mCalls[0], Eq(mPeriod));
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmSettingFutureWithAdjustmentToTrueVsync) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(1000)).WillOnce(Return(1150));
EXPECT_CALL(mMockClock, alarmIn(_, 1050));
CountingCallback cb(mDispatch);
mDispatch.schedule(cb, 100, mPeriod);
advanceToNextCallback();
ASSERT_THAT(cb.mCalls.size(), Eq(1));
EXPECT_THAT(cb.mCalls[0], Eq(1150));
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmSettingAdjustmentPast) {
auto const now = 234;
mMockClock.advanceBy(234);
auto const workDuration = 10 * mPeriod;
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(now + workDuration))
.WillOnce(Return(mPeriod * 11));
EXPECT_CALL(mMockClock, alarmIn(_, mPeriod - now));
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, workDuration, mPeriod), ScheduleResult::Scheduled);
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmCancel) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmCancel());
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 100, mPeriod), ScheduleResult::Scheduled);
EXPECT_EQ(mDispatch.cancel(cb), CancelResult::Cancelled);
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmCancelTooLate) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmCancel());
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 100, mPeriod), ScheduleResult::Scheduled);
mMockClock.advanceBy(950);
EXPECT_EQ(mDispatch.cancel(cb), CancelResult::TooLate);
}
TEST_F(VSyncDispatchTimerQueueTest, basicAlarmCancelTooLateWhenRunning) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmCancel());
PausingCallback cb(mDispatch, std::chrono::duration_cast<std::chrono::milliseconds>(1s));
EXPECT_EQ(mDispatch.schedule(cb, 100, mPeriod), ScheduleResult::Scheduled);
std::thread pausingThread([&] { mMockClock.advanceToNextCallback(); });
EXPECT_TRUE(cb.waitForPause());
EXPECT_EQ(mDispatch.cancel(cb), CancelResult::TooLate);
cb.unpause();
pausingThread.join();
}
TEST_F(VSyncDispatchTimerQueueTest, unregisterSynchronizes) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmCancel());
auto resource = std::make_shared<int>(110);
PausingCallback cb(mDispatch, 50ms);
cb.stashResource(resource);
EXPECT_EQ(mDispatch.schedule(cb, 100, mPeriod), ScheduleResult::Scheduled);
std::thread pausingThread([&] { mMockClock.advanceToNextCallback(); });
EXPECT_TRUE(cb.waitForPause());
cb.unregister();
resource.reset();
cb.unpause();
pausingThread.join();
EXPECT_TRUE(cb.resourcePresent());
}
TEST_F(VSyncDispatchTimerQueueTest, basicTwoAlarmSetting) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(1000))
.Times(4)
.WillOnce(Return(1055))
.WillOnce(Return(1063))
.WillOnce(Return(1063))
.WillOnce(Return(1075));
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 955)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 813)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 162)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 100, mPeriod);
mDispatch.schedule(cb1, 250, mPeriod);
advanceToNextCallback();
advanceToNextCallback();
ASSERT_THAT(cb0.mCalls.size(), Eq(1));
EXPECT_THAT(cb0.mCalls[0], Eq(1075));
ASSERT_THAT(cb1.mCalls.size(), Eq(1));
EXPECT_THAT(cb1.mCalls[0], Eq(1063));
}
TEST_F(VSyncDispatchTimerQueueTest, rearmsFaroutTimeoutWhenCancellingCloseOne) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(_))
.Times(4)
.WillOnce(Return(10000))
.WillOnce(Return(1000))
.WillOnce(Return(10000))
.WillOnce(Return(10000));
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 9900)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 750)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 9900)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 100, mPeriod * 10);
mDispatch.schedule(cb1, 250, mPeriod);
mDispatch.cancel(cb1);
}
TEST_F(VSyncDispatchTimerQueueTest, noUnnecessaryRearmsWhenRescheduling) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 600)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 100)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 400, 1000);
mDispatch.schedule(cb1, 200, 1000);
mDispatch.schedule(cb1, 300, 1000);
advanceToNextCallback();
}
TEST_F(VSyncDispatchTimerQueueTest, necessaryRearmsWhenModifying) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 600)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 500)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 100)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 400, 1000);
mDispatch.schedule(cb1, 200, 1000);
mDispatch.schedule(cb1, 500, 1000);
advanceToNextCallback();
}
TEST_F(VSyncDispatchTimerQueueTest, modifyIntoGroup) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 600)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 1000)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 990)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 10)).InSequence(seq);
auto offset = 400;
auto closeOffset = offset + mDispatchGroupThreshold - 1;
auto notCloseOffset = offset + 2 * mDispatchGroupThreshold;
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 400, 1000);
mDispatch.schedule(cb1, 200, 1000);
mDispatch.schedule(cb1, closeOffset, 1000);
advanceToNextCallback();
ASSERT_THAT(cb0.mCalls.size(), Eq(1));
EXPECT_THAT(cb0.mCalls[0], Eq(mPeriod));
ASSERT_THAT(cb1.mCalls.size(), Eq(1));
EXPECT_THAT(cb1.mCalls[0], Eq(mPeriod));
mDispatch.schedule(cb0, 400, 2000);
mDispatch.schedule(cb1, notCloseOffset, 2000);
advanceToNextCallback();
ASSERT_THAT(cb1.mCalls.size(), Eq(2));
EXPECT_THAT(cb1.mCalls[1], Eq(2000));
advanceToNextCallback();
ASSERT_THAT(cb0.mCalls.size(), Eq(2));
EXPECT_THAT(cb0.mCalls[1], Eq(2000));
}
TEST_F(VSyncDispatchTimerQueueTest, rearmsWhenEndingAndDoesntCancel) {
EXPECT_CALL(mMockClock, alarmIn(_, 900));
EXPECT_CALL(mMockClock, alarmIn(_, 800));
EXPECT_CALL(mMockClock, alarmIn(_, 100));
EXPECT_CALL(mMockClock, alarmCancel());
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 100, 1000);
mDispatch.schedule(cb1, 200, 1000);
advanceToNextCallback();
EXPECT_EQ(mDispatch.cancel(cb0), CancelResult::Cancelled);
}
TEST_F(VSyncDispatchTimerQueueTest, setAlarmCallsAtCorrectTimeWithChangingVsync) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(_))
.Times(3)
.WillOnce(Return(950))
.WillOnce(Return(1975))
.WillOnce(Return(2950));
CountingCallback cb(mDispatch);
mDispatch.schedule(cb, 100, 920);
mMockClock.advanceBy(850);
EXPECT_THAT(cb.mCalls.size(), Eq(1));
mDispatch.schedule(cb, 100, 1900);
mMockClock.advanceBy(900);
EXPECT_THAT(cb.mCalls.size(), Eq(1));
mMockClock.advanceBy(125);
EXPECT_THAT(cb.mCalls.size(), Eq(2));
mDispatch.schedule(cb, 100, 2900);
mMockClock.advanceBy(975);
EXPECT_THAT(cb.mCalls.size(), Eq(3));
}
TEST_F(VSyncDispatchTimerQueueTest, callbackReentrancy) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 900)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 1000)).InSequence(seq);
VSyncDispatch::CallbackToken tmp;
tmp = mDispatch.registerCallback([&](auto) { mDispatch.schedule(tmp, 100, 2000); }, "o.o");
mDispatch.schedule(tmp, 100, 1000);
advanceToNextCallback();
}
TEST_F(VSyncDispatchTimerQueueTest, callbackReentrantWithPastWakeup) {
VSyncDispatch::CallbackToken tmp;
std::optional<nsecs_t> lastTarget;
tmp = mDispatch.registerCallback(
[&](auto timestamp) {
EXPECT_EQ(mDispatch.schedule(tmp, 400, timestamp - mVsyncMoveThreshold),
ScheduleResult::Scheduled);
EXPECT_EQ(mDispatch.schedule(tmp, 400, timestamp), ScheduleResult::Scheduled);
EXPECT_EQ(mDispatch.schedule(tmp, 400, timestamp + mVsyncMoveThreshold),
ScheduleResult::Scheduled);
lastTarget = timestamp;
},
"oo");
mDispatch.schedule(tmp, 999, 1000);
advanceToNextCallback();
EXPECT_THAT(lastTarget, Eq(1000));
advanceToNextCallback();
EXPECT_THAT(lastTarget, Eq(2000));
}
TEST_F(VSyncDispatchTimerQueueTest, modificationsAroundVsyncTime) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 1000)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 200)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 1000)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 150)).InSequence(seq);
CountingCallback cb(mDispatch);
mDispatch.schedule(cb, 0, 1000);
mMockClock.advanceBy(750);
mDispatch.schedule(cb, 50, 1000);
advanceToNextCallback();
mDispatch.schedule(cb, 50, 2000);
mMockClock.advanceBy(800);
mDispatch.schedule(cb, 100, 2000);
}
TEST_F(VSyncDispatchTimerQueueTest, lateModifications) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 500)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 400)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 350)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 950)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 500, 1000);
mDispatch.schedule(cb1, 100, 1000);
advanceToNextCallback();
mDispatch.schedule(cb0, 200, 2000);
mDispatch.schedule(cb1, 150, 1000);
advanceToNextCallback();
advanceToNextCallback();
}
TEST_F(VSyncDispatchTimerQueueTest, doesntCancelPriorValidTimerForFutureMod) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 500)).InSequence(seq);
CountingCallback cb0(mDispatch);
CountingCallback cb1(mDispatch);
mDispatch.schedule(cb0, 500, 1000);
mDispatch.schedule(cb1, 500, 20000);
}
TEST_F(VSyncDispatchTimerQueueTest, setsTimerAfterCancellation) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 500)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmCancel()).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 900)).InSequence(seq);
CountingCallback cb0(mDispatch);
mDispatch.schedule(cb0, 500, 1000);
mDispatch.cancel(cb0);
mDispatch.schedule(cb0, 100, 1000);
}
TEST_F(VSyncDispatchTimerQueueTest, makingUpIdsError) {
VSyncDispatch::CallbackToken token(100);
EXPECT_THAT(mDispatch.schedule(token, 100, 1000), Eq(ScheduleResult::Error));
EXPECT_THAT(mDispatch.cancel(token), Eq(CancelResult::Error));
}
TEST_F(VSyncDispatchTimerQueueTest, canMoveCallbackBackwardsInTime) {
CountingCallback cb0(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb0, 500, 1000), ScheduleResult::Scheduled);
EXPECT_EQ(mDispatch.schedule(cb0, 100, 1000), ScheduleResult::Scheduled);
}
// b/1450138150
TEST_F(VSyncDispatchTimerQueueTest, doesNotMoveCallbackBackwardsAndSkipAScheduledTargetVSync) {
EXPECT_CALL(mMockClock, alarmIn(_, 500));
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 500, 1000), ScheduleResult::Scheduled);
mMockClock.advanceBy(400);
EXPECT_EQ(mDispatch.schedule(cb, 800, 1000), ScheduleResult::Scheduled);
advanceToNextCallback();
ASSERT_THAT(cb.mCalls.size(), Eq(1));
}
TEST_F(VSyncDispatchTimerQueueTest, targetOffsetMovingBackALittleCanStillSchedule) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(1000))
.Times(2)
.WillOnce(Return(1000))
.WillOnce(Return(1002));
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 500, 1000), ScheduleResult::Scheduled);
mMockClock.advanceBy(400);
EXPECT_EQ(mDispatch.schedule(cb, 400, 1000), ScheduleResult::Scheduled);
}
TEST_F(VSyncDispatchTimerQueueTest, canScheduleNegativeOffsetAgainstDifferentPeriods) {
CountingCallback cb0(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb0, 500, 1000), ScheduleResult::Scheduled);
advanceToNextCallback();
EXPECT_EQ(mDispatch.schedule(cb0, 1100, 2000), ScheduleResult::Scheduled);
}
TEST_F(VSyncDispatchTimerQueueTest, canScheduleLargeNegativeOffset) {
Sequence seq;
EXPECT_CALL(mMockClock, alarmIn(_, 500)).InSequence(seq);
EXPECT_CALL(mMockClock, alarmIn(_, 600)).InSequence(seq);
CountingCallback cb0(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb0, 500, 1000), ScheduleResult::Scheduled);
advanceToNextCallback();
EXPECT_EQ(mDispatch.schedule(cb0, 1900, 2000), ScheduleResult::Scheduled);
}
TEST_F(VSyncDispatchTimerQueueTest, scheduleUpdatesDoesNotAffectSchedulingState) {
EXPECT_CALL(mMockClock, alarmIn(_, 600));
CountingCallback cb(mDispatch);
EXPECT_EQ(mDispatch.schedule(cb, 400, 1000), ScheduleResult::Scheduled);
EXPECT_EQ(mDispatch.schedule(cb, 1400, 1000), ScheduleResult::Scheduled);
advanceToNextCallback();
}
TEST_F(VSyncDispatchTimerQueueTest, helperMove) {
EXPECT_CALL(mMockClock, alarmIn(_, 500)).Times(1);
EXPECT_CALL(mMockClock, alarmCancel()).Times(1);
VSyncCallbackRegistration cb(
mDispatch, [](auto) {}, "");
VSyncCallbackRegistration cb1(std::move(cb));
cb.schedule(100, 1000);
cb.cancel();
cb1.schedule(500, 1000);
cb1.cancel();
}
TEST_F(VSyncDispatchTimerQueueTest, helperMoveAssign) {
EXPECT_CALL(mMockClock, alarmIn(_, 500)).Times(1);
EXPECT_CALL(mMockClock, alarmCancel()).Times(1);
VSyncCallbackRegistration cb(
mDispatch, [](auto) {}, "");
VSyncCallbackRegistration cb1(
mDispatch, [](auto) {}, "");
cb1 = std::move(cb);
cb.schedule(100, 1000);
cb.cancel();
cb1.schedule(500, 1000);
cb1.cancel();
}
class VSyncDispatchTimerQueueEntryTest : public testing::Test {
protected:
nsecs_t const mPeriod = 1000;
nsecs_t const mVsyncMoveThreshold = 200;
NiceMock<MockVSyncTracker> mStubTracker{mPeriod};
};
TEST_F(VSyncDispatchTimerQueueEntryTest, stateAfterInitialization) {
std::string name("basicname");
VSyncDispatchTimerQueueEntry entry(
name, [](auto) {}, mVsyncMoveThreshold);
EXPECT_THAT(entry.name(), Eq(name));
EXPECT_FALSE(entry.lastExecutedVsyncTarget());
EXPECT_FALSE(entry.wakeupTime());
}
TEST_F(VSyncDispatchTimerQueueEntryTest, stateScheduling) {
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_FALSE(entry.wakeupTime());
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
auto const wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(*wakeup, Eq(900));
entry.disarm();
EXPECT_FALSE(entry.wakeupTime());
}
TEST_F(VSyncDispatchTimerQueueEntryTest, stateSchedulingReallyLongWakeupLatency) {
auto const duration = 500;
auto const now = 8750;
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(now + duration))
.Times(1)
.WillOnce(Return(10000));
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_FALSE(entry.wakeupTime());
EXPECT_THAT(entry.schedule(500, 994, mStubTracker, now), Eq(ScheduleResult::Scheduled));
auto const wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(*wakeup, Eq(9500));
}
TEST_F(VSyncDispatchTimerQueueEntryTest, runCallback) {
auto callCount = 0;
auto calledTime = 0;
VSyncDispatchTimerQueueEntry entry(
"test",
[&](auto time) {
callCount++;
calledTime = time;
},
mVsyncMoveThreshold);
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
auto const wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(*wakeup, Eq(900));
entry.callback(entry.executing());
EXPECT_THAT(callCount, Eq(1));
EXPECT_THAT(calledTime, Eq(mPeriod));
EXPECT_FALSE(entry.wakeupTime());
auto lastCalledTarget = entry.lastExecutedVsyncTarget();
ASSERT_TRUE(lastCalledTarget);
EXPECT_THAT(*lastCalledTarget, Eq(mPeriod));
}
TEST_F(VSyncDispatchTimerQueueEntryTest, updateCallback) {
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(_))
.Times(2)
.WillOnce(Return(1000))
.WillOnce(Return(1020));
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_FALSE(entry.wakeupTime());
entry.update(mStubTracker, 0);
EXPECT_FALSE(entry.wakeupTime());
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
auto wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(wakeup, Eq(900));
entry.update(mStubTracker, 0);
wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(*wakeup, Eq(920));
}
TEST_F(VSyncDispatchTimerQueueEntryTest, skipsUpdateIfJustScheduled) {
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
entry.update(mStubTracker, 0);
auto const wakeup = entry.wakeupTime();
ASSERT_TRUE(wakeup);
EXPECT_THAT(*wakeup, Eq(wakeup));
}
TEST_F(VSyncDispatchTimerQueueEntryTest, willSnapToNextTargettableVSync) {
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
entry.executing(); // 1000 is executing
// had 1000 not been executing, this could have been scheduled for time 800.
EXPECT_THAT(entry.schedule(200, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(*entry.wakeupTime(), Eq(1800));
EXPECT_THAT(entry.schedule(50, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(*entry.wakeupTime(), Eq(1950));
EXPECT_THAT(entry.schedule(200, 1001, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(*entry.wakeupTime(), Eq(1800));
}
TEST_F(VSyncDispatchTimerQueueEntryTest,
willRequestNextEstimateWhenSnappingToNextTargettableVSync) {
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
Sequence seq;
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(500))
.InSequence(seq)
.WillOnce(Return(1000));
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(500))
.InSequence(seq)
.WillOnce(Return(1000));
EXPECT_CALL(mStubTracker, nextAnticipatedVSyncTimeFrom(1000 + mVsyncMoveThreshold))
.InSequence(seq)
.WillOnce(Return(2000));
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
entry.executing(); // 1000 is executing
EXPECT_THAT(entry.schedule(200, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
}
TEST_F(VSyncDispatchTimerQueueEntryTest, reportsScheduledIfStillTime) {
VSyncDispatchTimerQueueEntry entry(
"test", [](auto) {}, mVsyncMoveThreshold);
EXPECT_THAT(entry.schedule(100, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(entry.schedule(200, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(entry.schedule(50, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
EXPECT_THAT(entry.schedule(1200, 500, mStubTracker, 0), Eq(ScheduleResult::Scheduled));
}
} // namespace android::scheduler