| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "libtimeinstate" |
| |
| #include "cputimeinstate.h" |
| #include <bpf_timeinstate.h> |
| |
| #include <dirent.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <sys/sysinfo.h> |
| |
| #include <mutex> |
| #include <numeric> |
| #include <optional> |
| #include <set> |
| #include <string> |
| #include <unordered_map> |
| #include <vector> |
| |
| #include <android-base/file.h> |
| #include <android-base/parseint.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/unique_fd.h> |
| #include <bpf/BpfMap.h> |
| #include <libbpf.h> |
| #include <log/log.h> |
| |
| using android::base::StringPrintf; |
| using android::base::unique_fd; |
| |
| namespace android { |
| namespace bpf { |
| |
| static std::mutex gInitializedMutex; |
| static bool gInitialized = false; |
| static std::mutex gTrackingMutex; |
| static bool gTracking = false; |
| static uint32_t gNPolicies = 0; |
| static uint32_t gNCpus = 0; |
| static std::vector<std::vector<uint32_t>> gPolicyFreqs; |
| static std::vector<std::vector<uint32_t>> gPolicyCpus; |
| static std::vector<uint32_t> gCpuIndexMap; |
| static std::set<uint32_t> gAllFreqs; |
| static unique_fd gTisTotalMapFd; |
| static unique_fd gTisMapFd; |
| static unique_fd gConcurrentMapFd; |
| static unique_fd gUidLastUpdateMapFd; |
| static unique_fd gPidTisMapFd; |
| |
| static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) { |
| std::string data; |
| |
| if (!android::base::ReadFileToString(path, &data)) return {}; |
| |
| auto strings = android::base::Split(data, " \n"); |
| std::vector<uint32_t> ret; |
| for (const auto &s : strings) { |
| if (s.empty()) continue; |
| uint32_t n; |
| if (!android::base::ParseUint(s, &n)) return {}; |
| ret.emplace_back(n); |
| } |
| return ret; |
| } |
| |
| static int isPolicyFile(const struct dirent *d) { |
| return android::base::StartsWith(d->d_name, "policy"); |
| } |
| |
| static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) { |
| uint32_t policyN1, policyN2; |
| if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 || |
| sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1) |
| return 0; |
| return policyN1 - policyN2; |
| } |
| |
| static bool initGlobals() { |
| std::lock_guard<std::mutex> guard(gInitializedMutex); |
| if (gInitialized) return true; |
| |
| gNCpus = get_nprocs_conf(); |
| |
| struct dirent **dirlist; |
| const char basepath[] = "/sys/devices/system/cpu/cpufreq"; |
| int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles); |
| if (ret == -1 || ret == 0) return false; |
| gNPolicies = ret; |
| |
| std::vector<std::string> policyFileNames; |
| for (uint32_t i = 0; i < gNPolicies; ++i) { |
| policyFileNames.emplace_back(dirlist[i]->d_name); |
| free(dirlist[i]); |
| } |
| free(dirlist); |
| uint32_t max_cpu_number = 0; |
| for (const auto &policy : policyFileNames) { |
| std::vector<uint32_t> freqs; |
| for (const auto &name : {"available", "boost"}) { |
| std::string path = |
| StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name); |
| auto nums = readNumbersFromFile(path); |
| if (!nums) continue; |
| freqs.insert(freqs.end(), nums->begin(), nums->end()); |
| } |
| if (freqs.empty()) return false; |
| std::sort(freqs.begin(), freqs.end()); |
| gPolicyFreqs.emplace_back(freqs); |
| |
| for (auto freq : freqs) gAllFreqs.insert(freq); |
| |
| std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus"); |
| auto cpus = readNumbersFromFile(path); |
| if (!cpus) return false; |
| for (auto cpu : *cpus) { |
| if(cpu > max_cpu_number) |
| max_cpu_number = cpu; |
| } |
| gPolicyCpus.emplace_back(*cpus); |
| } |
| gCpuIndexMap = std::vector<uint32_t>(max_cpu_number+1, -1); |
| uint32_t cpuorder = 0; |
| for (const auto &cpuList : gPolicyCpus) { |
| for (auto cpu : cpuList) { |
| gCpuIndexMap[cpu] = cpuorder++; |
| } |
| } |
| |
| gTisTotalMapFd = |
| unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_total_time_in_state_map")}; |
| if (gTisTotalMapFd < 0) return false; |
| |
| gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")}; |
| if (gTisMapFd < 0) return false; |
| |
| gConcurrentMapFd = |
| unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; |
| if (gConcurrentMapFd < 0) return false; |
| |
| gUidLastUpdateMapFd = |
| unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_last_update_map")}; |
| if (gUidLastUpdateMapFd < 0) return false; |
| |
| gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_timeInState_pid_time_in_state_map")}; |
| if (gPidTisMapFd < 0) return false; |
| |
| unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map")); |
| if (trackedPidMapFd < 0) return false; |
| |
| gInitialized = true; |
| return true; |
| } |
| |
| static int retrieveProgramFd(const std::string &eventType, const std::string &eventName) { |
| std::string path = StringPrintf(BPF_FS_PATH "prog_timeInState_tracepoint_%s_%s", |
| eventType.c_str(), eventName.c_str()); |
| return retrieveProgram(path.c_str()); |
| } |
| |
| static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) { |
| int prog_fd = retrieveProgramFd(eventType, eventName); |
| if (prog_fd < 0) return false; |
| return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0; |
| } |
| |
| static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) { |
| auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq", |
| gPolicyCpus[policy][0]); |
| auto freqVec = readNumbersFromFile(path); |
| if (!freqVec.has_value() || freqVec->size() != 1) return {}; |
| for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) { |
| if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1; |
| } |
| return {}; |
| } |
| |
| // Check if tracking is expected to work without activating it. |
| bool isTrackingUidTimesSupported() { |
| auto freqs = getCpuFreqs(); |
| if (!freqs || freqs->empty()) return false; |
| if (gTracking) return true; |
| if (retrieveProgramFd("sched", "sched_switch") < 0) return false; |
| if (retrieveProgramFd("power", "cpu_frequency") < 0) return false; |
| if (retrieveProgramFd("sched", "sched_process_free") < 0) return false; |
| return true; |
| } |
| |
| // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes. |
| // Returns true on success, false otherwise. |
| // Tracking is active only once a live process has successfully called this function; if the calling |
| // process dies then it must be called again to resume tracking. |
| // This function should *not* be called while tracking is already active; doing so is unnecessary |
| // and can lead to accounting errors. |
| bool startTrackingUidTimes() { |
| std::lock_guard<std::mutex> guard(gTrackingMutex); |
| if (!initGlobals()) return false; |
| if (gTracking) return true; |
| |
| unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_policy_map")); |
| if (cpuPolicyFd < 0) return false; |
| |
| for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) { |
| for (auto &cpu : gPolicyCpus[i]) { |
| if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false; |
| } |
| } |
| |
| unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_freq_to_idx_map")); |
| if (freqToIdxFd < 0) return false; |
| freq_idx_key_t key; |
| for (uint32_t i = 0; i < gNPolicies; ++i) { |
| key.policy = i; |
| for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) { |
| key.freq = gPolicyFreqs[i][j]; |
| // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq. |
| // The uid_times map still uses 0-based indexes, and the sched_switch program handles |
| // conversion between them, so this does not affect our map reading code. |
| uint32_t idx = j + 1; |
| if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false; |
| } |
| } |
| |
| unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_last_update_map")); |
| if (cpuLastUpdateFd < 0) return false; |
| std::vector<uint64_t> zeros(get_nprocs_conf(), 0); |
| uint32_t zero = 0; |
| if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false; |
| |
| unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_nr_active_map")); |
| if (nrActiveFd < 0) return false; |
| if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false; |
| |
| unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_nr_active_map")); |
| if (policyNrActiveFd < 0) return false; |
| for (uint32_t i = 0; i < gNPolicies; ++i) { |
| if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false; |
| } |
| |
| unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_freq_idx_map")); |
| if (policyFreqIdxFd < 0) return false; |
| for (uint32_t i = 0; i < gNPolicies; ++i) { |
| auto freqIdx = getPolicyFreqIdx(i); |
| if (!freqIdx.has_value()) return false; |
| if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false; |
| } |
| |
| gTracking = attachTracepointProgram("sched", "sched_switch") && |
| attachTracepointProgram("power", "cpu_frequency") && |
| attachTracepointProgram("sched", "sched_process_free"); |
| return gTracking; |
| } |
| |
| std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() { |
| if (!gInitialized && !initGlobals()) return {}; |
| return gPolicyFreqs; |
| } |
| |
| std::optional<std::vector<std::vector<uint64_t>>> getTotalCpuFreqTimes() { |
| if (!gInitialized && !initGlobals()) return {}; |
| |
| std::vector<std::vector<uint64_t>> out; |
| uint32_t maxFreqCount = 0; |
| for (const auto &freqList : gPolicyFreqs) { |
| if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); |
| out.emplace_back(freqList.size(), 0); |
| } |
| |
| std::vector<uint64_t> vals(gNCpus); |
| const uint32_t freqCount = maxFreqCount <= MAX_FREQS_FOR_TOTAL ? maxFreqCount : |
| MAX_FREQS_FOR_TOTAL; |
| for (uint32_t freqIdx = 0; freqIdx < freqCount; ++freqIdx) { |
| if (findMapEntry(gTisTotalMapFd, &freqIdx, vals.data())) return {}; |
| for (uint32_t policyIdx = 0; policyIdx < gNPolicies; ++policyIdx) { |
| if (freqIdx >= gPolicyFreqs[policyIdx].size()) continue; |
| for (const auto &cpu : gPolicyCpus[policyIdx]) { |
| out[policyIdx][freqIdx] += vals[gCpuIndexMap[cpu]]; |
| } |
| } |
| } |
| |
| return out; |
| } |
| // Retrieve the times in ns that uid spent running at each CPU frequency. |
| // Return contains no value on error, otherwise it contains a vector of vectors using the format: |
| // [[t0_0, t0_1, ...], |
| // [t1_0, t1_1, ...], ...] |
| // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq. |
| std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) { |
| if (!gInitialized && !initGlobals()) return {}; |
| |
| std::vector<std::vector<uint64_t>> out; |
| uint32_t maxFreqCount = 0; |
| for (const auto &freqList : gPolicyFreqs) { |
| if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); |
| out.emplace_back(freqList.size(), 0); |
| } |
| |
| std::vector<tis_val_t> vals(gNCpus); |
| for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) { |
| const time_key_t key = {.uid = uid, .bucket = i}; |
| if (findMapEntry(gTisMapFd, &key, vals.data())) { |
| time_key_t tmpKey; |
| if (errno != ENOENT || getFirstMapKey(gTisMapFd, &tmpKey)) return {}; |
| continue; |
| } |
| |
| auto offset = i * FREQS_PER_ENTRY; |
| auto nextOffset = (i + 1) * FREQS_PER_ENTRY; |
| for (uint32_t j = 0; j < gNPolicies; ++j) { |
| if (offset >= gPolicyFreqs[j].size()) continue; |
| auto begin = out[j].begin() + offset; |
| auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end(); |
| |
| for (const auto &cpu : gPolicyCpus[j]) { |
| std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, |
| std::plus<uint64_t>()); |
| } |
| } |
| } |
| |
| return out; |
| } |
| |
| static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate, |
| uint64_t *newLastUpdate) { |
| uint64_t uidLastUpdate; |
| if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {}; |
| // Updates that occurred during the previous read may have been missed. To mitigate |
| // this, don't ignore entries updated up to 1s before *lastUpdate |
| constexpr uint64_t NSEC_PER_SEC = 1000000000; |
| if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false; |
| if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate; |
| return true; |
| } |
| |
| // Retrieve the times in ns that each uid spent running at each CPU freq. |
| // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors |
| // using the format: |
| // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], |
| // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } |
| // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq. |
| std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>> |
| getUidsCpuFreqTimes() { |
| return getUidsUpdatedCpuFreqTimes(nullptr); |
| } |
| |
| // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have |
| // not run since before lastUpdate. |
| // Return format is the same as getUidsCpuFreqTimes() |
| std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>> |
| getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) { |
| if (!gInitialized && !initGlobals()) return {}; |
| time_key_t key, prevKey; |
| std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map; |
| if (getFirstMapKey(gTisMapFd, &key)) { |
| if (errno == ENOENT) return map; |
| return std::nullopt; |
| } |
| |
| std::vector<std::vector<uint64_t>> mapFormat; |
| for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0); |
| |
| uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; |
| std::vector<tis_val_t> vals(gNCpus); |
| do { |
| if (lastUpdate) { |
| auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); |
| if (!uidUpdated.has_value()) return {}; |
| if (!*uidUpdated) continue; |
| } |
| if (findMapEntry(gTisMapFd, &key, vals.data())) return {}; |
| if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat); |
| |
| auto offset = key.bucket * FREQS_PER_ENTRY; |
| auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY; |
| for (uint32_t i = 0; i < gNPolicies; ++i) { |
| if (offset >= gPolicyFreqs[i].size()) continue; |
| auto begin = map[key.uid][i].begin() + offset; |
| auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY : |
| map[key.uid][i].end(); |
| for (const auto &cpu : gPolicyCpus[i]) { |
| std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, |
| std::plus<uint64_t>()); |
| } |
| } |
| prevKey = key; |
| } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key)); |
| if (errno != ENOENT) return {}; |
| if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; |
| return map; |
| } |
| |
| static bool verifyConcurrentTimes(const concurrent_time_t &ct) { |
| uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0); |
| uint64_t policySum = 0; |
| for (const auto &vec : ct.policy) { |
| policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0); |
| } |
| return activeSum == policySum; |
| } |
| |
| // Retrieve the times in ns that uid spent running concurrently with each possible number of other |
| // tasks on each cluster (policy times) and overall (active times). |
| // Return contains no value on error, otherwise it contains a concurrent_time_t with the format: |
| // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]} |
| // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent |
| // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster |
| std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) { |
| if (!gInitialized && !initGlobals()) return {}; |
| concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)}; |
| for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0); |
| std::vector<concurrent_val_t> vals(gNCpus); |
| for (uint32_t i = 0; i <= (gNCpus - 1) / CPUS_PER_ENTRY; ++i) { |
| const time_key_t key = {.uid = uid, .bucket = i}; |
| if (findMapEntry(gConcurrentMapFd, &key, vals.data())) { |
| time_key_t tmpKey; |
| if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &tmpKey)) return {}; |
| continue; |
| } |
| auto offset = key.bucket * CPUS_PER_ENTRY; |
| auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; |
| |
| auto activeBegin = ret.active.begin() + offset; |
| auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end(); |
| |
| for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { |
| std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, |
| std::plus<uint64_t>()); |
| } |
| |
| for (uint32_t policy = 0; policy < gNPolicies; ++policy) { |
| if (offset >= gPolicyCpus[policy].size()) continue; |
| auto policyBegin = ret.policy[policy].begin() + offset; |
| auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY |
| : ret.policy[policy].end(); |
| |
| for (const auto &cpu : gPolicyCpus[policy]) { |
| std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy), |
| policyBegin, std::plus<uint64_t>()); |
| } |
| } |
| } |
| if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false); |
| return ret; |
| } |
| |
| // Retrieve the times in ns that each uid spent running concurrently with each possible number of |
| // other tasks on each cluster (policy times) and overall (active times). |
| // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's |
| // using the format: |
| // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...} |
| // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent |
| // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster. |
| std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() { |
| return getUidsUpdatedConcurrentTimes(nullptr); |
| } |
| |
| // Retrieve the times in ns that each uid spent running concurrently with each possible number of |
| // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have |
| // not run since before lastUpdate. |
| // Return format is the same as getUidsConcurrentTimes() |
| std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes( |
| uint64_t *lastUpdate) { |
| if (!gInitialized && !initGlobals()) return {}; |
| time_key_t key, prevKey; |
| std::unordered_map<uint32_t, concurrent_time_t> ret; |
| if (getFirstMapKey(gConcurrentMapFd, &key)) { |
| if (errno == ENOENT) return ret; |
| return {}; |
| } |
| |
| concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)}; |
| for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0); |
| |
| std::vector<concurrent_val_t> vals(gNCpus); |
| std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd; |
| |
| uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; |
| do { |
| if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {}; |
| if (lastUpdate) { |
| auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); |
| if (!uidUpdated.has_value()) return {}; |
| if (!*uidUpdated) continue; |
| } |
| if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {}; |
| if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat); |
| |
| auto offset = key.bucket * CPUS_PER_ENTRY; |
| auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; |
| |
| activeBegin = ret[key.uid].active.begin(); |
| activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end(); |
| |
| for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { |
| std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, |
| std::plus<uint64_t>()); |
| } |
| |
| for (uint32_t policy = 0; policy < gNPolicies; ++policy) { |
| if (offset >= gPolicyCpus[policy].size()) continue; |
| policyBegin = ret[key.uid].policy[policy].begin() + offset; |
| policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY |
| : ret[key.uid].policy[policy].end(); |
| |
| for (const auto &cpu : gPolicyCpus[policy]) { |
| std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy), |
| policyBegin, std::plus<uint64_t>()); |
| } |
| } |
| } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key)); |
| if (errno != ENOENT) return {}; |
| for (const auto &[key, value] : ret) { |
| if (!verifyConcurrentTimes(value)) { |
| auto val = getUidConcurrentTimes(key, false); |
| if (val.has_value()) ret[key] = val.value(); |
| } |
| } |
| if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; |
| return ret; |
| } |
| |
| // Clear all time in state data for a given uid. Returns false on error, true otherwise. |
| // This is only suitable for clearing data when an app is uninstalled; if called on a UID with |
| // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that |
| // UID. |
| bool clearUidTimes(uint32_t uid) { |
| if (!gInitialized && !initGlobals()) return false; |
| |
| time_key_t key = {.uid = uid}; |
| |
| uint32_t maxFreqCount = 0; |
| for (const auto &freqList : gPolicyFreqs) { |
| if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); |
| } |
| |
| tis_val_t zeros = {0}; |
| std::vector<tis_val_t> vals(gNCpus, zeros); |
| for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { |
| if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) |
| return false; |
| if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false; |
| } |
| |
| concurrent_val_t czeros = { .active = {0}, .policy = {0}, }; |
| std::vector<concurrent_val_t> cvals(gNCpus, czeros); |
| for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { |
| if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT) |
| return false; |
| if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false; |
| } |
| |
| if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false; |
| return true; |
| } |
| |
| bool startTrackingProcessCpuTimes(pid_t pid) { |
| if (!gInitialized && !initGlobals()) return false; |
| |
| unique_fd trackedPidHashMapFd( |
| mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_hash_map")); |
| if (trackedPidHashMapFd < 0) return false; |
| |
| unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map")); |
| if (trackedPidMapFd < 0) return false; |
| |
| for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) { |
| // Find first available [index, pid] entry in the pid_tracked_hash_map map |
| if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) { |
| if (errno != EEXIST) { |
| return false; |
| } |
| continue; // This index is already taken |
| } |
| |
| tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE}; |
| if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) { |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| // Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking |
| // aggregated with other tasks sharing the same TGID and aggregation key. |
| bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) { |
| if (!gInitialized && !initGlobals()) return false; |
| |
| unique_fd taskAggregationMapFd( |
| mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_task_aggregation_map")); |
| if (taskAggregationMapFd < 0) return false; |
| |
| return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0; |
| } |
| |
| // Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by |
| // aggregation key. |
| // Return contains no value on error, otherwise it contains a map from aggregation keys |
| // to vectors of vectors using the format: |
| // { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], |
| // aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } |
| // where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq. |
| std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> |
| getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector<uint16_t> &aggregationKeys) { |
| if (!gInitialized && !initGlobals()) return {}; |
| |
| uint32_t maxFreqCount = 0; |
| std::vector<std::vector<uint64_t>> mapFormat; |
| for (const auto &freqList : gPolicyFreqs) { |
| if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); |
| mapFormat.emplace_back(freqList.size(), 0); |
| } |
| |
| bool dataCollected = false; |
| std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map; |
| std::vector<tis_val_t> vals(gNCpus); |
| for (uint16_t aggregationKey : aggregationKeys) { |
| map.emplace(aggregationKey, mapFormat); |
| |
| aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey}; |
| for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { |
| if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) { |
| if (errno != ENOENT) { |
| return {}; |
| } |
| continue; |
| } else { |
| dataCollected = true; |
| } |
| |
| // Combine data by aggregating time-in-state data grouped by CPU cluster aka policy. |
| uint32_t offset = key.bucket * FREQS_PER_ENTRY; |
| uint32_t nextOffset = offset + FREQS_PER_ENTRY; |
| for (uint32_t j = 0; j < gNPolicies; ++j) { |
| if (offset >= gPolicyFreqs[j].size()) continue; |
| auto begin = map[key.aggregation_key][j].begin() + offset; |
| auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY |
| : map[key.aggregation_key][j].end(); |
| for (const auto &cpu : gPolicyCpus[j]) { |
| std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, |
| std::plus<uint64_t>()); |
| } |
| } |
| } |
| } |
| |
| if (!dataCollected) { |
| // Check if eBPF is supported on this device. If it is, gTisMap should not be empty. |
| time_key_t key; |
| if (getFirstMapKey(gTisMapFd, &key) != 0) { |
| return {}; |
| } |
| } |
| return map; |
| } |
| |
| } // namespace bpf |
| } // namespace android |