blob: 6dd29ba316e436d3043d306050ab3c5fd4d15c02 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "BufferQueueLayer.h"
#include "LayerRejecter.h"
#include <system/window.h>
namespace android {
BufferQueueLayer::BufferQueueLayer(SurfaceFlinger* flinger, const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags)
: BufferLayer(flinger, client, name, w, h, flags),
mConsumer(nullptr),
mProducer(nullptr),
mFormat(PIXEL_FORMAT_NONE),
mPreviousFrameNumber(0),
mUpdateTexImageFailed(false),
mQueueItemLock(),
mQueueItemCondition(),
mQueueItems(),
mLastFrameNumberReceived(0),
mAutoRefresh(false),
mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT),
mQueuedFrames(0),
mSidebandStreamChanged(false) {
mCurrentState.requested_legacy = mCurrentState.active_legacy;
}
// -----------------------------------------------------------------------
// Interface implementation for Layer
// -----------------------------------------------------------------------
void BufferQueueLayer::onLayerDisplayed(const sp<Fence>& releaseFence) {
mConsumer->setReleaseFence(releaseFence);
}
void BufferQueueLayer::abandon() {
mConsumer->abandon();
}
void BufferQueueLayer::setTransformHint(uint32_t orientation) const {
mConsumer->setTransformHint(orientation);
}
std::vector<OccupancyTracker::Segment> BufferQueueLayer::getOccupancyHistory(bool forceFlush) {
std::vector<OccupancyTracker::Segment> history;
status_t result = mConsumer->getOccupancyHistory(forceFlush, &history);
if (result != NO_ERROR) {
ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result);
return {};
}
return history;
}
bool BufferQueueLayer::getTransformToDisplayInverse() const {
return mConsumer->getTransformToDisplayInverse();
}
void BufferQueueLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
if (!mConsumer->releasePendingBuffer()) {
return;
}
auto releaseFenceTime = std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence());
mReleaseTimeline.updateSignalTimes();
mReleaseTimeline.push(releaseFenceTime);
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (mPreviousFrameNumber != 0) {
mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime,
std::move(releaseFenceTime));
}
}
void BufferQueueLayer::setDefaultBufferSize(uint32_t w, uint32_t h) {
mConsumer->setDefaultBufferSize(w, h);
}
int32_t BufferQueueLayer::getQueuedFrameCount() const {
return mQueuedFrames;
}
bool BufferQueueLayer::shouldPresentNow(const DispSync& dispSync) const {
if (getSidebandStreamChanged() || getAutoRefresh()) {
return true;
}
if (!hasDrawingBuffer()) {
return false;
}
Mutex::Autolock lock(mQueueItemLock);
const int64_t addedTime = mQueueItems[0].mTimestamp;
const nsecs_t expectedPresentTime = mConsumer->computeExpectedPresent(dispSync);
// Ignore timestamps more than a second in the future
const bool isPlausible = addedTime < (expectedPresentTime + s2ns(1));
ALOGW_IF(!isPlausible,
"[%s] Timestamp %" PRId64 " seems implausible "
"relative to expectedPresent %" PRId64,
mName.string(), addedTime, expectedPresentTime);
const bool isDue = addedTime < expectedPresentTime;
return isDue || !isPlausible;
}
// -----------------------------------------------------------------------
// Interface implementation for BufferLayer
// -----------------------------------------------------------------------
bool BufferQueueLayer::fenceHasSignaled() const {
if (latchUnsignaledBuffers()) {
return true;
}
if (!hasDrawingBuffer()) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems[0].mIsDroppable) {
// Even though this buffer's fence may not have signaled yet, it could
// be replaced by another buffer before it has a chance to, which means
// that it's possible to get into a situation where a buffer is never
// able to be latched. To avoid this, grab this buffer anyway.
return true;
}
return mQueueItems[0].mFenceTime->getSignalTime() != Fence::SIGNAL_TIME_PENDING;
}
nsecs_t BufferQueueLayer::getDesiredPresentTime() {
return mConsumer->getTimestamp();
}
std::shared_ptr<FenceTime> BufferQueueLayer::getCurrentFenceTime() const {
return mConsumer->getCurrentFenceTime();
}
void BufferQueueLayer::getDrawingTransformMatrix(float *matrix) {
return mConsumer->getTransformMatrix(matrix);
}
// NOTE: SurfaceFlinger's definitions of "Current" and "Drawing" do not neatly map to BufferQueue's
// These functions get the fields for the frame that is currently in SurfaceFlinger's Drawing state
// so the functions start with "getDrawing". The data is retrieved from the BufferQueueConsumer's
// current buffer so the consumer functions start with "getCurrent".
//
// This results in the rather confusing functions below.
uint32_t BufferQueueLayer::getDrawingTransform() const {
return mConsumer->getCurrentTransform();
}
ui::Dataspace BufferQueueLayer::getDrawingDataSpace() const {
return mConsumer->getCurrentDataSpace();
}
Rect BufferQueueLayer::getDrawingCrop() const {
return mConsumer->getCurrentCrop();
}
uint32_t BufferQueueLayer::getDrawingScalingMode() const {
return mConsumer->getCurrentScalingMode();
}
Region BufferQueueLayer::getDrawingSurfaceDamage() const {
return mConsumer->getSurfaceDamage();
}
const HdrMetadata& BufferQueueLayer::getDrawingHdrMetadata() const {
return mConsumer->getCurrentHdrMetadata();
}
int BufferQueueLayer::getDrawingApi() const {
return mConsumer->getCurrentApi();
}
PixelFormat BufferQueueLayer::getPixelFormat() const {
return mFormat;
}
uint64_t BufferQueueLayer::getFrameNumber() const {
Mutex::Autolock lock(mQueueItemLock);
return mQueueItems[0].mFrameNumber;
}
bool BufferQueueLayer::getAutoRefresh() const {
return mAutoRefresh;
}
bool BufferQueueLayer::getSidebandStreamChanged() const {
return mSidebandStreamChanged;
}
std::optional<Region> BufferQueueLayer::latchSidebandStream(bool& recomputeVisibleRegions) {
if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was true
// replicated in LayerBE until FE/BE is ready to be synchronized
getBE().compositionInfo.hwc.sidebandStream = mConsumer->getSidebandStream();
if (getBE().compositionInfo.hwc.sidebandStream != nullptr) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
const State& s(getDrawingState());
return getTransform().transform(Region(Rect(s.active_legacy.w, s.active_legacy.h)));
}
return {};
}
bool BufferQueueLayer::hasDrawingBuffer() const {
return mQueuedFrames > 0;
}
void BufferQueueLayer::setFilteringEnabled(bool enabled) {
return mConsumer->setFilteringEnabled(enabled);
}
status_t BufferQueueLayer::bindTextureImage() const {
return mConsumer->bindTextureImage();
}
status_t BufferQueueLayer::updateTexImage(bool& recomputeVisibleRegions, nsecs_t latchTime) {
// This boolean is used to make sure that SurfaceFlinger's shadow copy
// of the buffer queue isn't modified when the buffer queue is returning
// BufferItem's that weren't actually queued. This can happen in shared
// buffer mode.
bool queuedBuffer = false;
LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
getProducerStickyTransform() != 0, mName.string(), mOverrideScalingMode,
getTransformToDisplayInverse(), mFreezeGeometryUpdates);
status_t updateResult =
mConsumer->updateTexImage(&r, *mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer,
mLastFrameNumberReceived);
if (updateResult == BufferQueue::PRESENT_LATER) {
// Producer doesn't want buffer to be displayed yet. Signal a
// layer update so we check again at the next opportunity.
mFlinger->signalLayerUpdate();
return BAD_VALUE;
} else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) {
// If the buffer has been rejected, remove it from the shadow queue
// and return early
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
return BAD_VALUE;
} else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
// This can occur if something goes wrong when trying to create the
// EGLImage for this buffer. If this happens, the buffer has already
// been released, so we need to clean up the queue and bug out
// early.
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.clear();
android_atomic_and(0, &mQueuedFrames);
mTimeStats.clearLayerRecord(getName().c_str());
}
// Once we have hit this state, the shadow queue may no longer
// correctly reflect the incoming BufferQueue's contents, so even if
// updateTexImage starts working, the only safe course of action is
// to continue to ignore updates.
mUpdateTexImageFailed = true;
return BAD_VALUE;
}
if (queuedBuffer) {
// Autolock scope
auto currentFrameNumber = mConsumer->getFrameNumber();
Mutex::Autolock lock(mQueueItemLock);
// Remove any stale buffers that have been dropped during
// updateTexImage
while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
const std::string layerName(getName().c_str());
mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime);
mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime);
mQueueItems.removeAt(0);
}
// Decrement the queued-frames count. Signal another event if we
// have more frames pending.
if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) || mAutoRefresh) {
mFlinger->signalLayerUpdate();
}
return NO_ERROR;
}
status_t BufferQueueLayer::updateActiveBuffer() {
// update the active buffer
mActiveBuffer = mConsumer->getCurrentBuffer(&mActiveBufferSlot);
getBE().compositionInfo.mBuffer = mActiveBuffer;
getBE().compositionInfo.mBufferSlot = mActiveBufferSlot;
if (mActiveBuffer == nullptr) {
// this can only happen if the very first buffer was rejected.
return BAD_VALUE;
}
return NO_ERROR;
}
status_t BufferQueueLayer::updateFrameNumber(nsecs_t latchTime) {
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mConsumer->getFrameNumber();
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
}
return NO_ERROR;
}
void BufferQueueLayer::setHwcLayerBuffer(const sp<const DisplayDevice>& display) {
const auto displayId = display->getId();
auto& hwcInfo = getBE().mHwcLayers[displayId];
auto& hwcLayer = hwcInfo.layer;
uint32_t hwcSlot = 0;
sp<GraphicBuffer> hwcBuffer;
hwcInfo.bufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer, &hwcSlot, &hwcBuffer);
auto acquireFence = mConsumer->getCurrentFence();
auto error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
// -----------------------------------------------------------------------
// Interface implementation for BufferLayerConsumer::ContentsChangedListener
// -----------------------------------------------------------------------
void BufferQueueLayer::onFrameAvailable(const BufferItem& item) {
// Add this buffer from our internal queue tracker
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
// Reset the frame number tracker when we receive the first buffer after
// a frame number reset
if (item.mFrameNumber == 1) {
mLastFrameNumberReceived = 0;
}
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
mQueueItems.push_back(item);
android_atomic_inc(&mQueuedFrames);
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
item.mGraphicBuffer->getHeight(), item.mFrameNumber);
mFlinger->signalLayerUpdate();
}
void BufferQueueLayer::onFrameReplaced(const BufferItem& item) {
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
if (!hasDrawingBuffer()) {
ALOGE("Can't replace a frame on an empty queue");
return;
}
mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
}
void BufferQueueLayer::onSidebandStreamChanged() {
if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was false
mFlinger->signalLayerUpdate();
}
}
// -----------------------------------------------------------------------
void BufferQueueLayer::onFirstRef() {
BufferLayer::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer, true);
mProducer = new MonitoredProducer(producer, mFlinger, this);
{
// Grab the SF state lock during this since it's the only safe way to access RenderEngine
Mutex::Autolock lock(mFlinger->mStateLock);
mConsumer =
new BufferLayerConsumer(consumer, mFlinger->getRenderEngine(), mTextureName, this);
}
mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
mConsumer->setContentsChangedListener(this);
mConsumer->setName(mName);
if (mFlinger->isLayerTripleBufferingDisabled()) {
mProducer->setMaxDequeuedBufferCount(2);
}
}
status_t BufferQueueLayer::setDefaultBufferProperties(uint32_t w, uint32_t h, PixelFormat format) {
uint32_t const maxSurfaceDims =
std::min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
// never allow a surface larger than what our underlying GL implementation
// can handle.
if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) {
ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
return BAD_VALUE;
}
mFormat = format;
setDefaultBufferSize(w, h);
mConsumer->setDefaultBufferFormat(format);
mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
return NO_ERROR;
}
sp<IGraphicBufferProducer> BufferQueueLayer::getProducer() const {
return mProducer;
}
uint32_t BufferQueueLayer::getProducerStickyTransform() const {
int producerStickyTransform = 0;
int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
if (ret != OK) {
ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
strerror(-ret), ret);
return 0;
}
return static_cast<uint32_t>(producerStickyTransform);
}
} // namespace android