| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "BufferLayer" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "BufferLayer.h" |
| #include "Colorizer.h" |
| #include "DisplayDevice.h" |
| #include "LayerRejecter.h" |
| |
| #include "RenderEngine/RenderEngine.h" |
| |
| #include <gui/BufferItem.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| |
| #include <ui/DebugUtils.h> |
| |
| #include <utils/Errors.h> |
| #include <utils/Log.h> |
| #include <utils/NativeHandle.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Trace.h> |
| |
| #include <cutils/compiler.h> |
| #include <cutils/native_handle.h> |
| #include <cutils/properties.h> |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <mutex> |
| |
| namespace android { |
| |
| BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags) |
| : Layer(flinger, client, name, w, h, flags), |
| mTextureName(mFlinger->getNewTexture()), |
| mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), |
| mBufferLatched(false), |
| mRefreshPending(false) { |
| ALOGV("Creating Layer %s", name.string()); |
| |
| mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); |
| |
| mPremultipliedAlpha = !(flags & ISurfaceComposerClient::eNonPremultiplied); |
| |
| mPotentialCursor = flags & ISurfaceComposerClient::eCursorWindow; |
| mProtectedByApp = flags & ISurfaceComposerClient::eProtectedByApp; |
| |
| // drawing state & current state are identical |
| mDrawingState = mCurrentState; |
| } |
| |
| BufferLayer::~BufferLayer() { |
| mFlinger->deleteTextureAsync(mTextureName); |
| |
| if (!getBE().mHwcLayers.empty()) { |
| ALOGE("Found stale hardware composer layers when destroying " |
| "surface flinger layer %s", |
| mName.string()); |
| destroyAllHwcLayers(); |
| } |
| } |
| |
| void BufferLayer::useSurfaceDamage() { |
| if (mFlinger->mForceFullDamage) { |
| surfaceDamageRegion = Region::INVALID_REGION; |
| } else { |
| surfaceDamageRegion = getDrawingSurfaceDamage(); |
| } |
| } |
| |
| void BufferLayer::useEmptyDamage() { |
| surfaceDamageRegion.clear(); |
| } |
| |
| bool BufferLayer::isOpaque(const Layer::State& s) const { |
| // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the |
| // layer's opaque flag. |
| if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (mActiveBuffer == nullptr)) { |
| return false; |
| } |
| |
| // if the layer has the opaque flag, then we're always opaque, |
| // otherwise we use the current buffer's format. |
| return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); |
| } |
| |
| bool BufferLayer::isVisible() const { |
| return !(isHiddenByPolicy()) && getAlpha() > 0.0f && |
| (mActiveBuffer != nullptr || getBE().compositionInfo.hwc.sidebandStream != nullptr); |
| } |
| |
| bool BufferLayer::isFixedSize() const { |
| return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; |
| } |
| |
| static constexpr mat4 inverseOrientation(uint32_t transform) { |
| const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); |
| const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); |
| const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); |
| mat4 tr; |
| |
| if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { |
| tr = tr * rot90; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { |
| tr = tr * flipH; |
| } |
| if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { |
| tr = tr * flipV; |
| } |
| return inverse(tr); |
| } |
| |
| /* |
| * onDraw will draw the current layer onto the presentable buffer |
| */ |
| void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip, |
| bool useIdentityTransform) { |
| ATRACE_CALL(); |
| |
| CompositionInfo& compositionInfo = getBE().compositionInfo; |
| |
| if (CC_UNLIKELY(mActiveBuffer == 0)) { |
| // the texture has not been created yet, this Layer has |
| // in fact never been drawn into. This happens frequently with |
| // SurfaceView because the WindowManager can't know when the client |
| // has drawn the first time. |
| |
| // If there is nothing under us, we paint the screen in black, otherwise |
| // we just skip this update. |
| |
| // figure out if there is something below us |
| Region under; |
| bool finished = false; |
| mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (finished || layer == static_cast<BufferLayer const*>(this)) { |
| finished = true; |
| return; |
| } |
| under.orSelf(renderArea.getTransform().transform(layer->visibleRegion)); |
| }); |
| // if not everything below us is covered, we plug the holes! |
| Region holes(clip.subtract(under)); |
| if (!holes.isEmpty()) { |
| clearWithOpenGL(renderArea, 0, 0, 0, 1); |
| } |
| return; |
| } |
| |
| // Bind the current buffer to the GL texture, and wait for it to be |
| // ready for us to draw into. |
| status_t err = bindTextureImage(); |
| if (err != NO_ERROR) { |
| ALOGW("onDraw: bindTextureImage failed (err=%d)", err); |
| // Go ahead and draw the buffer anyway; no matter what we do the screen |
| // is probably going to have something visibly wrong. |
| } |
| |
| bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure()); |
| |
| auto& engine(mFlinger->getRenderEngine()); |
| |
| if (!blackOutLayer) { |
| // TODO: we could be more subtle with isFixedSize() |
| const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize(); |
| |
| // Query the texture matrix given our current filtering mode. |
| float textureMatrix[16]; |
| setFilteringEnabled(useFiltering); |
| getDrawingTransformMatrix(textureMatrix); |
| |
| if (getTransformToDisplayInverse()) { |
| /* |
| * the code below applies the primary display's inverse transform to |
| * the texture transform |
| */ |
| uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); |
| mat4 tr = inverseOrientation(transform); |
| |
| /** |
| * TODO(b/36727915): This is basically a hack. |
| * |
| * Ensure that regardless of the parent transformation, |
| * this buffer is always transformed from native display |
| * orientation to display orientation. For example, in the case |
| * of a camera where the buffer remains in native orientation, |
| * we want the pixels to always be upright. |
| */ |
| sp<Layer> p = mDrawingParent.promote(); |
| if (p != nullptr) { |
| const auto parentTransform = p->getTransform(); |
| tr = tr * inverseOrientation(parentTransform.getOrientation()); |
| } |
| |
| // and finally apply it to the original texture matrix |
| const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); |
| memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); |
| } |
| |
| // Set things up for texturing. |
| mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); |
| mTexture.setFiltering(useFiltering); |
| mTexture.setMatrix(textureMatrix); |
| compositionInfo.re.texture = mTexture; |
| |
| engine.setupLayerTexturing(mTexture); |
| } else { |
| engine.setupLayerBlackedOut(); |
| } |
| drawWithOpenGL(renderArea, useIdentityTransform); |
| engine.disableTexturing(); |
| } |
| |
| void BufferLayer::drawNow(const RenderArea& renderArea, bool useIdentityTransform) { |
| CompositionInfo& compositionInfo = getBE().compositionInfo; |
| auto& engine(mFlinger->getRenderEngine()); |
| |
| draw(renderArea, useIdentityTransform); |
| |
| engine.setupLayerTexturing(compositionInfo.re.texture); |
| engine.setupLayerBlending(compositionInfo.re.preMultipliedAlpha, compositionInfo.re.opaque, |
| false, compositionInfo.re.color); |
| engine.setSourceDataSpace(compositionInfo.hwc.dataspace); |
| engine.setSourceY410BT2020(compositionInfo.re.Y410BT2020); |
| engine.drawMesh(getBE().getMesh()); |
| engine.disableBlending(); |
| engine.disableTexturing(); |
| engine.setSourceY410BT2020(false); |
| } |
| |
| bool BufferLayer::isHdrY410() const { |
| // pixel format is HDR Y410 masquerading as RGBA_1010102 |
| return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && |
| getDrawingApi() == NATIVE_WINDOW_API_MEDIA && |
| getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); |
| } |
| |
| void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& display) { |
| // Apply this display's projection's viewport to the visible region |
| // before giving it to the HWC HAL. |
| const Transform& tr = display->getTransform(); |
| const auto& viewport = display->getViewport(); |
| Region visible = tr.transform(visibleRegion.intersect(viewport)); |
| const auto displayId = display->getId(); |
| if (!hasHwcLayer(displayId)) { |
| ALOGE("[%s] failed to setPerFrameData: no HWC layer found (%d)", |
| mName.string(), displayId); |
| return; |
| } |
| auto& hwcInfo = getBE().mHwcLayers[displayId]; |
| auto& hwcLayer = hwcInfo.layer; |
| auto error = hwcLayer->setVisibleRegion(visible); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| visible.dump(LOG_TAG); |
| } |
| |
| error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| surfaceDamageRegion.dump(LOG_TAG); |
| } |
| |
| // Sideband layers |
| if (getBE().compositionInfo.hwc.sidebandStream.get()) { |
| setCompositionType(displayId, HWC2::Composition::Sideband); |
| ALOGV("[%s] Requesting Sideband composition", mName.string()); |
| error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle()); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), |
| getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| return; |
| } |
| |
| // Device or Cursor layers |
| if (mPotentialCursor) { |
| ALOGV("[%s] Requesting Cursor composition", mName.string()); |
| setCompositionType(displayId, HWC2::Composition::Cursor); |
| } else { |
| ALOGV("[%s] Requesting Device composition", mName.string()); |
| setCompositionType(displayId, HWC2::Composition::Device); |
| } |
| |
| ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace); |
| error = hwcLayer->setDataspace(mCurrentDataSpace); |
| if (error != HWC2::Error::None) { |
| ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| const HdrMetadata& metadata = getDrawingHdrMetadata(); |
| error = hwcLayer->setPerFrameMetadata(display->getSupportedPerFrameMetadata(), metadata); |
| if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { |
| ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| setHwcLayerBuffer(display); |
| } |
| |
| bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { |
| if (mBufferLatched) { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); |
| } |
| mRefreshPending = false; |
| return hasReadyFrame(); |
| } |
| |
| bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence, |
| const std::shared_ptr<FenceTime>& presentFence, |
| const CompositorTiming& compositorTiming) { |
| // mFrameLatencyNeeded is true when a new frame was latched for the |
| // composition. |
| if (!mFrameLatencyNeeded) return false; |
| |
| // Update mFrameEventHistory. |
| { |
| Mutex::Autolock lock(mFrameEventHistoryMutex); |
| mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, |
| compositorTiming); |
| } |
| |
| // Update mFrameTracker. |
| nsecs_t desiredPresentTime = getDesiredPresentTime(); |
| mFrameTracker.setDesiredPresentTime(desiredPresentTime); |
| |
| const std::string layerName(getName().c_str()); |
| mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime); |
| |
| std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime(); |
| if (frameReadyFence->isValid()) { |
| mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); |
| } else { |
| // There was no fence for this frame, so assume that it was ready |
| // to be presented at the desired present time. |
| mFrameTracker.setFrameReadyTime(desiredPresentTime); |
| } |
| |
| if (presentFence->isValid()) { |
| mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence); |
| mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); |
| } else if (mFlinger->getHwComposer().isConnected(HWC_DISPLAY_PRIMARY)) { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| const nsecs_t actualPresentTime = |
| mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY); |
| mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime); |
| mFrameTracker.setActualPresentTime(actualPresentTime); |
| } |
| |
| mFrameTracker.advanceFrame(); |
| mFrameLatencyNeeded = false; |
| return true; |
| } |
| |
| Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { |
| ATRACE_CALL(); |
| |
| std::optional<Region> sidebandStreamDirtyRegion = latchSidebandStream(recomputeVisibleRegions); |
| |
| if (sidebandStreamDirtyRegion) { |
| return *sidebandStreamDirtyRegion; |
| } |
| |
| Region dirtyRegion; |
| |
| if (!hasReadyFrame()) { |
| return dirtyRegion; |
| } |
| |
| // if we've already called updateTexImage() without going through |
| // a composition step, we have to skip this layer at this point |
| // because we cannot call updateTeximage() without a corresponding |
| // compositionComplete() call. |
| // we'll trigger an update in onPreComposition(). |
| if (mRefreshPending) { |
| return dirtyRegion; |
| } |
| |
| // If the head buffer's acquire fence hasn't signaled yet, return and |
| // try again later |
| if (!fenceHasSignaled()) { |
| mFlinger->signalLayerUpdate(); |
| return dirtyRegion; |
| } |
| |
| // Capture the old state of the layer for comparisons later |
| const State& s(getDrawingState()); |
| const bool oldOpacity = isOpaque(s); |
| sp<GraphicBuffer> oldBuffer = mActiveBuffer; |
| |
| if (!allTransactionsSignaled()) { |
| mFlinger->signalLayerUpdate(); |
| return dirtyRegion; |
| } |
| |
| status_t err = updateTexImage(recomputeVisibleRegions, latchTime); |
| if (err != NO_ERROR) { |
| return dirtyRegion; |
| } |
| |
| err = updateActiveBuffer(); |
| if (err != NO_ERROR) { |
| return dirtyRegion; |
| } |
| |
| mBufferLatched = true; |
| |
| err = updateFrameNumber(latchTime); |
| if (err != NO_ERROR) { |
| return dirtyRegion; |
| } |
| |
| mRefreshPending = true; |
| mFrameLatencyNeeded = true; |
| if (oldBuffer == nullptr) { |
| // the first time we receive a buffer, we need to trigger a |
| // geometry invalidation. |
| recomputeVisibleRegions = true; |
| } |
| |
| ui::Dataspace dataSpace = getDrawingDataSpace(); |
| // treat modern dataspaces as legacy dataspaces whenever possible, until |
| // we can trust the buffer producers |
| switch (dataSpace) { |
| case ui::Dataspace::V0_SRGB: |
| dataSpace = ui::Dataspace::SRGB; |
| break; |
| case ui::Dataspace::V0_SRGB_LINEAR: |
| dataSpace = ui::Dataspace::SRGB_LINEAR; |
| break; |
| case ui::Dataspace::V0_JFIF: |
| dataSpace = ui::Dataspace::JFIF; |
| break; |
| case ui::Dataspace::V0_BT601_625: |
| dataSpace = ui::Dataspace::BT601_625; |
| break; |
| case ui::Dataspace::V0_BT601_525: |
| dataSpace = ui::Dataspace::BT601_525; |
| break; |
| case ui::Dataspace::V0_BT709: |
| dataSpace = ui::Dataspace::BT709; |
| break; |
| default: |
| break; |
| } |
| mCurrentDataSpace = dataSpace; |
| |
| Rect crop(getDrawingCrop()); |
| const uint32_t transform(getDrawingTransform()); |
| const uint32_t scalingMode(getDrawingScalingMode()); |
| if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || |
| (scalingMode != mCurrentScalingMode)) { |
| mCurrentCrop = crop; |
| mCurrentTransform = transform; |
| mCurrentScalingMode = scalingMode; |
| recomputeVisibleRegions = true; |
| } |
| |
| if (oldBuffer != nullptr) { |
| uint32_t bufWidth = mActiveBuffer->getWidth(); |
| uint32_t bufHeight = mActiveBuffer->getHeight(); |
| if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { |
| recomputeVisibleRegions = true; |
| } |
| } |
| |
| if (oldOpacity != isOpaque(s)) { |
| recomputeVisibleRegions = true; |
| } |
| |
| // Remove any sync points corresponding to the buffer which was just |
| // latched |
| { |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| auto point = mLocalSyncPoints.begin(); |
| while (point != mLocalSyncPoints.end()) { |
| if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { |
| // This sync point must have been added since we started |
| // latching. Don't drop it yet. |
| ++point; |
| continue; |
| } |
| |
| if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { |
| point = mLocalSyncPoints.erase(point); |
| } else { |
| ++point; |
| } |
| } |
| } |
| |
| // FIXME: postedRegion should be dirty & bounds |
| // transform the dirty region to window-manager space |
| return getTransform().transform(Region(Rect(getActiveWidth(s), getActiveHeight(s)))); |
| } |
| |
| // transaction |
| void BufferLayer::notifyAvailableFrames() { |
| auto headFrameNumber = getHeadFrameNumber(); |
| bool headFenceSignaled = fenceHasSignaled(); |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| for (auto& point : mLocalSyncPoints) { |
| if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { |
| point->setFrameAvailable(); |
| } |
| } |
| } |
| |
| bool BufferLayer::hasReadyFrame() const { |
| return hasDrawingBuffer() || getSidebandStreamChanged() || getAutoRefresh(); |
| } |
| |
| uint32_t BufferLayer::getEffectiveScalingMode() const { |
| if (mOverrideScalingMode >= 0) { |
| return mOverrideScalingMode; |
| } |
| |
| return mCurrentScalingMode; |
| } |
| |
| bool BufferLayer::isProtected() const { |
| const sp<GraphicBuffer>& buffer(mActiveBuffer); |
| return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); |
| } |
| |
| bool BufferLayer::latchUnsignaledBuffers() { |
| static bool propertyLoaded = false; |
| static bool latch = false; |
| static std::mutex mutex; |
| std::lock_guard<std::mutex> lock(mutex); |
| if (!propertyLoaded) { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.latch_unsignaled", value, "0"); |
| latch = atoi(value); |
| propertyLoaded = true; |
| } |
| return latch; |
| } |
| |
| // h/w composer set-up |
| bool BufferLayer::allTransactionsSignaled() { |
| auto headFrameNumber = getHeadFrameNumber(); |
| bool matchingFramesFound = false; |
| bool allTransactionsApplied = true; |
| Mutex::Autolock lock(mLocalSyncPointMutex); |
| |
| for (auto& point : mLocalSyncPoints) { |
| if (point->getFrameNumber() > headFrameNumber) { |
| break; |
| } |
| matchingFramesFound = true; |
| |
| if (!point->frameIsAvailable()) { |
| // We haven't notified the remote layer that the frame for |
| // this point is available yet. Notify it now, and then |
| // abort this attempt to latch. |
| point->setFrameAvailable(); |
| allTransactionsApplied = false; |
| break; |
| } |
| |
| allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); |
| } |
| return !matchingFramesFound || allTransactionsApplied; |
| } |
| |
| // As documented in libhardware header, formats in the range |
| // 0x100 - 0x1FF are specific to the HAL implementation, and |
| // are known to have no alpha channel |
| // TODO: move definition for device-specific range into |
| // hardware.h, instead of using hard-coded values here. |
| #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) |
| |
| bool BufferLayer::getOpacityForFormat(uint32_t format) { |
| if (HARDWARE_IS_DEVICE_FORMAT(format)) { |
| return true; |
| } |
| switch (format) { |
| case HAL_PIXEL_FORMAT_RGBA_8888: |
| case HAL_PIXEL_FORMAT_BGRA_8888: |
| case HAL_PIXEL_FORMAT_RGBA_FP16: |
| case HAL_PIXEL_FORMAT_RGBA_1010102: |
| return false; |
| } |
| // in all other case, we have no blending (also for unknown formats) |
| return true; |
| } |
| |
| bool BufferLayer::needsFiltering(const RenderArea& renderArea) const { |
| return mNeedsFiltering || renderArea.needsFiltering(); |
| } |
| |
| void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const { |
| ATRACE_CALL(); |
| const State& s(getDrawingState()); |
| |
| computeGeometry(renderArea, getBE().mMesh, useIdentityTransform); |
| |
| /* |
| * NOTE: the way we compute the texture coordinates here produces |
| * different results than when we take the HWC path -- in the later case |
| * the "source crop" is rounded to texel boundaries. |
| * This can produce significantly different results when the texture |
| * is scaled by a large amount. |
| * |
| * The GL code below is more logical (imho), and the difference with |
| * HWC is due to a limitation of the HWC API to integers -- a question |
| * is suspend is whether we should ignore this problem or revert to |
| * GL composition when a buffer scaling is applied (maybe with some |
| * minimal value)? Or, we could make GL behave like HWC -- but this feel |
| * like more of a hack. |
| */ |
| const Rect bounds{computeBounds()}; // Rounds from FloatRect |
| |
| Transform t = getTransform(); |
| Rect win = bounds; |
| Rect finalCrop = getFinalCrop(s); |
| if (!finalCrop.isEmpty()) { |
| win = t.transform(win); |
| if (!win.intersect(finalCrop, &win)) { |
| win.clear(); |
| } |
| win = t.inverse().transform(win); |
| if (!win.intersect(bounds, &win)) { |
| win.clear(); |
| } |
| } |
| |
| float left = float(win.left) / float(getActiveWidth(s)); |
| float top = float(win.top) / float(getActiveHeight(s)); |
| float right = float(win.right) / float(getActiveWidth(s)); |
| float bottom = float(win.bottom) / float(getActiveHeight(s)); |
| |
| // TODO: we probably want to generate the texture coords with the mesh |
| // here we assume that we only have 4 vertices |
| Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>()); |
| texCoords[0] = vec2(left, 1.0f - top); |
| texCoords[1] = vec2(left, 1.0f - bottom); |
| texCoords[2] = vec2(right, 1.0f - bottom); |
| texCoords[3] = vec2(right, 1.0f - top); |
| |
| auto& engine(mFlinger->getRenderEngine()); |
| engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */, |
| getColor()); |
| engine.setSourceDataSpace(mCurrentDataSpace); |
| |
| if (isHdrY410()) { |
| engine.setSourceY410BT2020(true); |
| } |
| |
| engine.drawMesh(getBE().mMesh); |
| engine.disableBlending(); |
| |
| engine.setSourceY410BT2020(false); |
| } |
| |
| uint64_t BufferLayer::getHeadFrameNumber() const { |
| if (hasDrawingBuffer()) { |
| return getFrameNumber(); |
| } else { |
| return mCurrentFrameNumber; |
| } |
| } |
| |
| } // namespace android |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |