blob: a1c73c38b07185a60fc99147f249b3c7bd114376 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "FrontEnd/LayerCreationArgs.h"
#include "FrontEnd/LayerLifecycleManager.h"
#include "RequestedLayerState.h"
#include "ftl/small_vector.h"
namespace android::surfaceflinger::frontend {
class LayerHierarchyBuilder;
// LayerHierarchy allows us to navigate the layer hierarchy in z-order, or depth first traversal.
// The hierarchy is created from a set of RequestedLayerStates. The hierarchy itself does not
// contain additional states. Instead, it is a representation of RequestedLayerStates as a graph.
//
// Each node in the hierarchy can be visited by multiple parents (making this a graph). While
// traversing the hierarchy, a new concept called Variant can be used to understand the
// relationship of the layer to its parent. The following variants are possible:
// Attached - child of the parent
// Detached - child of the parent but currently relative parented to another layer
// Relative - relative child of the parent
// Mirror - mirrored from another layer
//
// By representing the hierarchy as a graph, we can represent mirrored layer hierarchies without
// cloning the layer requested state. The mirrored hierarchy and its corresponding
// RequestedLayerStates are kept in sync because the mirrored hierarchy does not clone any
// states.
class LayerHierarchy {
public:
enum Variant : uint32_t {
Attached, // child of the parent
Detached, // child of the parent but currently relative parented to another layer
Relative, // relative child of the parent
Mirror, // mirrored from another layer
ftl_first = Attached,
ftl_last = Mirror,
};
// Represents a unique path to a node.
// The layer hierarchy is represented as a graph. Each node can be visited by multiple parents.
// This allows us to represent mirroring in an efficient way. See the example below:
// root
// ├─ A {Traversal path id = 1}
// ├─ B {Traversal path id = 2}
// │ ├─ C {Traversal path id = 3}
// │ ├─ D {Traversal path id = 4}
// │ └─ E (Mirrors C) {Traversal path id = 5}
// └─ F (Mirrors B) {Traversal path id = 6}
//
// C can be traversed via B or E or F and or via F then E.
// Depending on how the node is reached, its properties such as geometry or visibility might be
// different. And we can uniquely identify the node by keeping track of the nodes leading up to
// it. But to be more efficient we only need to track the nodes id and the top mirror root path.
// So C for example, would have the following unique traversal paths:
// - {Traversal path id = 3}
// - {Traversal path id = 3, mirrorRootIds = 5}
// - {Traversal path id = 3, mirrorRootIds = 6}
// - {Traversal path id = 3, mirrorRootIds = 6, 5}
struct TraversalPath {
uint32_t id;
LayerHierarchy::Variant variant;
// Mirrored layers can have a different geometry than their parents so we need to track
// the mirror roots in the traversal.
ftl::SmallVector<uint32_t, 5> mirrorRootIds;
// Relative layers can be visited twice, once by their parent and then once again by
// their relative parent. We keep track of the roots here to detect any loops in the
// hierarchy. If a relative root already exists in the list while building the
// TraversalPath, it means that somewhere in the hierarchy two layers are relatively
// parented to each other.
ftl::SmallVector<uint32_t, 5> relativeRootIds;
// First duplicate relative root id found. If this is a valid layer id that means we are
// in a loop.
uint32_t invalidRelativeRootId = UNASSIGNED_LAYER_ID;
// See isAttached()
bool detached = false;
bool hasRelZLoop() const { return invalidRelativeRootId != UNASSIGNED_LAYER_ID; }
// Returns true if this node is reached via one or more relative parents.
bool isRelative() const { return !relativeRootIds.empty(); }
// Returns true if the node or its parents are not Detached.
bool isAttached() const { return !detached; }
// Returns true if the node is a clone.
bool isClone() const { return !mirrorRootIds.empty(); }
bool operator==(const TraversalPath& other) const {
return id == other.id && mirrorRootIds == other.mirrorRootIds;
}
std::string toString() const;
static const TraversalPath ROOT;
};
struct TraversalPathHash {
std::size_t operator()(const LayerHierarchy::TraversalPath& key) const {
uint32_t hashCode = key.id * 31;
for (uint32_t mirrorRootId : key.mirrorRootIds) {
hashCode += mirrorRootId * 31;
}
return std::hash<size_t>{}(hashCode);
}
};
// Helper class to add nodes to an existing traversal id and removes the
// node when it goes out of scope.
class ScopedAddToTraversalPath {
public:
ScopedAddToTraversalPath(TraversalPath& traversalPath, uint32_t layerId,
LayerHierarchy::Variant variantArg);
~ScopedAddToTraversalPath();
private:
TraversalPath& mTraversalPath;
TraversalPath mParentPath;
};
LayerHierarchy(RequestedLayerState* layer);
// Visitor function that provides the hierarchy node and a traversal id which uniquely
// identifies how was visited. The hierarchy contains a pointer to the RequestedLayerState.
// Return false to stop traversing down the hierarchy.
typedef std::function<bool(const LayerHierarchy& hierarchy,
const LayerHierarchy::TraversalPath& traversalPath)>
Visitor;
// Traverse the hierarchy and visit all child variants.
void traverse(const Visitor& visitor) const {
TraversalPath root = TraversalPath::ROOT;
if (mLayer) {
root.id = mLayer->id;
}
traverse(visitor, root);
}
// Traverse the hierarchy in z-order, skipping children that have relative parents.
void traverseInZOrder(const Visitor& visitor) const {
TraversalPath root = TraversalPath::ROOT;
if (mLayer) {
root.id = mLayer->id;
}
traverseInZOrder(visitor, root);
}
const RequestedLayerState* getLayer() const;
const LayerHierarchy* getRelativeParent() const;
const LayerHierarchy* getParent() const;
friend std::ostream& operator<<(std::ostream& os, const LayerHierarchy& obj) {
std::string prefix = " ";
obj.dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false,
/*includeMirroredHierarchy*/ false);
return os;
}
std::string dump() const {
std::string prefix = " ";
std::ostringstream os;
dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false,
/*includeMirroredHierarchy*/ true);
return os.str();
}
std::string getDebugStringShort() const;
// Traverse the hierarchy and return true if loops are found. The outInvalidRelativeRoot
// will contain the first relative root that was visited twice in a traversal.
bool hasRelZLoop(uint32_t& outInvalidRelativeRoot) const;
std::vector<std::pair<LayerHierarchy*, Variant>> mChildren;
private:
friend LayerHierarchyBuilder;
LayerHierarchy(const LayerHierarchy& hierarchy, bool childrenOnly);
void addChild(LayerHierarchy*, LayerHierarchy::Variant);
void removeChild(LayerHierarchy*);
void sortChildrenByZOrder();
void updateChild(LayerHierarchy*, LayerHierarchy::Variant);
void traverseInZOrder(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const;
void traverse(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const;
void dump(std::ostream& out, const std::string& prefix, LayerHierarchy::Variant variant,
bool isLastChild, bool includeMirroredHierarchy) const;
const RequestedLayerState* mLayer;
LayerHierarchy* mParent = nullptr;
LayerHierarchy* mRelativeParent = nullptr;
};
// Given a list of RequestedLayerState, this class will build a root hierarchy and an
// offscreen hierarchy. The builder also has an update method which can update an existing
// hierarchy from a list of RequestedLayerState and associated change flags.
class LayerHierarchyBuilder {
public:
LayerHierarchyBuilder() = default;
void update(LayerLifecycleManager& layerLifecycleManager);
LayerHierarchy getPartialHierarchy(uint32_t, bool childrenOnly) const;
const LayerHierarchy& getHierarchy() const;
const LayerHierarchy& getOffscreenHierarchy() const;
std::string getDebugString(uint32_t layerId, uint32_t depth = 0) const;
private:
void onLayerAdded(RequestedLayerState* layer);
void attachToParent(LayerHierarchy*);
void detachFromParent(LayerHierarchy*);
void attachToRelativeParent(LayerHierarchy*);
void detachFromRelativeParent(LayerHierarchy*);
void attachHierarchyToRelativeParent(LayerHierarchy*);
void detachHierarchyFromRelativeParent(LayerHierarchy*);
void init(const std::vector<std::unique_ptr<RequestedLayerState>>&);
void doUpdate(const std::vector<std::unique_ptr<RequestedLayerState>>& layers,
const std::vector<std::unique_ptr<RequestedLayerState>>& destroyedLayers);
void onLayerDestroyed(RequestedLayerState* layer);
void updateMirrorLayer(RequestedLayerState* layer);
LayerHierarchy* getHierarchyFromId(uint32_t layerId, bool crashOnFailure = true);
std::unordered_map<uint32_t, LayerHierarchy*> mLayerIdToHierarchy;
std::vector<std::unique_ptr<LayerHierarchy>> mHierarchies;
LayerHierarchy mRoot{nullptr};
LayerHierarchy mOffscreenRoot{nullptr};
bool mInitialized = false;
};
} // namespace android::surfaceflinger::frontend