| /* |
| * Copyright (C) 2023 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "TfLiteMotionPredictor" |
| #include <input/TfLiteMotionPredictor.h> |
| |
| #include <fcntl.h> |
| #include <sys/mman.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <memory> |
| #include <span> |
| #include <type_traits> |
| #include <utility> |
| |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/mapped_file.h> |
| #define ATRACE_TAG ATRACE_TAG_INPUT |
| #include <cutils/trace.h> |
| #include <log/log.h> |
| #include <utils/Timers.h> |
| |
| #include "tensorflow/lite/core/api/error_reporter.h" |
| #include "tensorflow/lite/core/api/op_resolver.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/builtin_op_kernels.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/mutable_op_resolver.h" |
| |
| #include "tinyxml2.h" |
| |
| namespace android { |
| namespace { |
| |
| constexpr char SIGNATURE_KEY[] = "serving_default"; |
| |
| // Input tensor names. |
| constexpr char INPUT_R[] = "r"; |
| constexpr char INPUT_PHI[] = "phi"; |
| constexpr char INPUT_PRESSURE[] = "pressure"; |
| constexpr char INPUT_TILT[] = "tilt"; |
| constexpr char INPUT_ORIENTATION[] = "orientation"; |
| |
| // Output tensor names. |
| constexpr char OUTPUT_R[] = "r"; |
| constexpr char OUTPUT_PHI[] = "phi"; |
| constexpr char OUTPUT_PRESSURE[] = "pressure"; |
| |
| // Ideally, we would just use std::filesystem::exists here, but it requires libc++fs, which causes |
| // build issues in other parts of the system. |
| #if defined(__ANDROID__) |
| bool fileExists(const char* filename) { |
| struct stat buffer; |
| return stat(filename, &buffer) == 0; |
| } |
| #endif |
| |
| std::string getModelPath() { |
| #if defined(__ANDROID__) |
| static const char* oemModel = "/vendor/etc/motion_predictor_model.tflite"; |
| if (fileExists(oemModel)) { |
| return oemModel; |
| } |
| return "/system/etc/motion_predictor_model.tflite"; |
| #else |
| return base::GetExecutableDirectory() + "/motion_predictor_model.tflite"; |
| #endif |
| } |
| |
| std::string getConfigPath() { |
| // The config file should be alongside the model file. |
| return base::Dirname(getModelPath()) + "/motion_predictor_config.xml"; |
| } |
| |
| int64_t parseXMLInt64(const tinyxml2::XMLElement& configRoot, const char* elementName) { |
| const tinyxml2::XMLElement* element = configRoot.FirstChildElement(elementName); |
| LOG_ALWAYS_FATAL_IF(!element, "Could not find '%s' element", elementName); |
| |
| int64_t value = 0; |
| LOG_ALWAYS_FATAL_IF(element->QueryInt64Text(&value) != tinyxml2::XML_SUCCESS, |
| "Failed to parse %s: %s", elementName, element->GetText()); |
| return value; |
| } |
| |
| float parseXMLFloat(const tinyxml2::XMLElement& configRoot, const char* elementName) { |
| const tinyxml2::XMLElement* element = configRoot.FirstChildElement(elementName); |
| LOG_ALWAYS_FATAL_IF(!element, "Could not find '%s' element", elementName); |
| |
| float value = 0; |
| LOG_ALWAYS_FATAL_IF(element->QueryFloatText(&value) != tinyxml2::XML_SUCCESS, |
| "Failed to parse %s: %s", elementName, element->GetText()); |
| return value; |
| } |
| |
| // A TFLite ErrorReporter that logs to logcat. |
| class LoggingErrorReporter : public tflite::ErrorReporter { |
| public: |
| int Report(const char* format, va_list args) override { |
| return LOG_PRI_VA(ANDROID_LOG_ERROR, LOG_TAG, format, args); |
| } |
| }; |
| |
| // Searches a runner for an input tensor. |
| TfLiteTensor* findInputTensor(const char* name, tflite::SignatureRunner* runner) { |
| TfLiteTensor* tensor = runner->input_tensor(name); |
| LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find input tensor '%s'", name); |
| return tensor; |
| } |
| |
| // Searches a runner for an output tensor. |
| const TfLiteTensor* findOutputTensor(const char* name, tflite::SignatureRunner* runner) { |
| const TfLiteTensor* tensor = runner->output_tensor(name); |
| LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find output tensor '%s'", name); |
| return tensor; |
| } |
| |
| // Returns the buffer for a tensor of type T. |
| template <typename T> |
| std::span<T> getTensorBuffer(typename std::conditional<std::is_const<T>::value, const TfLiteTensor*, |
| TfLiteTensor*>::type tensor) { |
| LOG_ALWAYS_FATAL_IF(!tensor); |
| |
| const TfLiteType type = tflite::typeToTfLiteType<typename std::remove_cv<T>::type>(); |
| LOG_ALWAYS_FATAL_IF(tensor->type != type, "Unexpected type for '%s' tensor: %s (expected %s)", |
| tensor->name, TfLiteTypeGetName(tensor->type), TfLiteTypeGetName(type)); |
| |
| LOG_ALWAYS_FATAL_IF(!tensor->data.data); |
| return std::span<T>(reinterpret_cast<T*>(tensor->data.data), tensor->bytes / sizeof(T)); |
| } |
| |
| // Verifies that a tensor exists and has an underlying buffer of type T. |
| template <typename T> |
| void checkTensor(const TfLiteTensor* tensor) { |
| LOG_ALWAYS_FATAL_IF(!tensor); |
| |
| const auto buffer = getTensorBuffer<const T>(tensor); |
| LOG_ALWAYS_FATAL_IF(buffer.empty(), "No buffer for tensor '%s'", tensor->name); |
| } |
| |
| std::unique_ptr<tflite::OpResolver> createOpResolver() { |
| auto resolver = std::make_unique<tflite::MutableOpResolver>(); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_CONCATENATION, |
| ::tflite::ops::builtin::Register_CONCATENATION()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_FULLY_CONNECTED, |
| ::tflite::ops::builtin::Register_FULLY_CONNECTED()); |
| resolver->AddBuiltin(::tflite::BuiltinOperator_GELU, ::tflite::ops::builtin::Register_GELU()); |
| return resolver; |
| } |
| |
| } // namespace |
| |
| TfLiteMotionPredictorBuffers::TfLiteMotionPredictorBuffers(size_t inputLength) |
| : mInputR(inputLength, 0), |
| mInputPhi(inputLength, 0), |
| mInputPressure(inputLength, 0), |
| mInputTilt(inputLength, 0), |
| mInputOrientation(inputLength, 0) { |
| LOG_ALWAYS_FATAL_IF(inputLength == 0, "Buffer input size must be greater than 0"); |
| } |
| |
| void TfLiteMotionPredictorBuffers::reset() { |
| std::fill(mInputR.begin(), mInputR.end(), 0); |
| std::fill(mInputPhi.begin(), mInputPhi.end(), 0); |
| std::fill(mInputPressure.begin(), mInputPressure.end(), 0); |
| std::fill(mInputTilt.begin(), mInputTilt.end(), 0); |
| std::fill(mInputOrientation.begin(), mInputOrientation.end(), 0); |
| mAxisFrom.reset(); |
| mAxisTo.reset(); |
| } |
| |
| void TfLiteMotionPredictorBuffers::copyTo(TfLiteMotionPredictorModel& model) const { |
| LOG_ALWAYS_FATAL_IF(mInputR.size() != model.inputLength(), |
| "Buffer length %zu doesn't match model input length %zu", mInputR.size(), |
| model.inputLength()); |
| LOG_ALWAYS_FATAL_IF(!isReady(), "Buffers are incomplete"); |
| |
| std::copy(mInputR.begin(), mInputR.end(), model.inputR().begin()); |
| std::copy(mInputPhi.begin(), mInputPhi.end(), model.inputPhi().begin()); |
| std::copy(mInputPressure.begin(), mInputPressure.end(), model.inputPressure().begin()); |
| std::copy(mInputTilt.begin(), mInputTilt.end(), model.inputTilt().begin()); |
| std::copy(mInputOrientation.begin(), mInputOrientation.end(), model.inputOrientation().begin()); |
| } |
| |
| void TfLiteMotionPredictorBuffers::pushSample(int64_t timestamp, |
| const TfLiteMotionPredictorSample sample) { |
| // Convert the sample (x, y) into polar (r, φ) based on a reference axis |
| // from the preceding two points (mAxisFrom/mAxisTo). |
| |
| mTimestamp = timestamp; |
| |
| if (!mAxisTo) { // First point. |
| mAxisTo = sample; |
| return; |
| } |
| |
| // Vector from the last point to the current sample point. |
| const TfLiteMotionPredictorSample::Point v = sample.position - mAxisTo->position; |
| |
| const float r = std::hypot(v.x, v.y); |
| float phi = 0; |
| float orientation = 0; |
| |
| if (!mAxisFrom && r > 0) { // Second point. |
| // We can only determine the distance from the first point, and not any |
| // angle. However, if the second point forms an axis, the orientation can |
| // be transformed relative to that axis. |
| const float axisPhi = std::atan2(v.y, v.x); |
| // A MotionEvent's orientation is measured clockwise from the vertical |
| // axis, but axisPhi is measured counter-clockwise from the horizontal |
| // axis. |
| orientation = M_PI_2 - sample.orientation - axisPhi; |
| } else { |
| const TfLiteMotionPredictorSample::Point axis = mAxisTo->position - mAxisFrom->position; |
| const float axisPhi = std::atan2(axis.y, axis.x); |
| phi = std::atan2(v.y, v.x) - axisPhi; |
| |
| if (std::hypot(axis.x, axis.y) > 0) { |
| // See note above. |
| orientation = M_PI_2 - sample.orientation - axisPhi; |
| } |
| } |
| |
| // Update the axis for the next point. |
| if (r > 0) { |
| mAxisFrom = mAxisTo; |
| mAxisTo = sample; |
| } |
| |
| // Push the current sample onto the end of the input buffers. |
| mInputR.pushBack(r); |
| mInputPhi.pushBack(phi); |
| mInputPressure.pushBack(sample.pressure); |
| mInputTilt.pushBack(sample.tilt); |
| mInputOrientation.pushBack(orientation); |
| } |
| |
| std::unique_ptr<TfLiteMotionPredictorModel> TfLiteMotionPredictorModel::create() { |
| const std::string modelPath = getModelPath(); |
| android::base::unique_fd fd(open(modelPath.c_str(), O_RDONLY)); |
| if (fd == -1) { |
| PLOG(FATAL) << "Could not read model from " << modelPath; |
| } |
| |
| const off_t fdSize = lseek(fd, 0, SEEK_END); |
| if (fdSize == -1) { |
| PLOG(FATAL) << "Failed to determine file size"; |
| } |
| |
| std::unique_ptr<android::base::MappedFile> modelBuffer = |
| android::base::MappedFile::FromFd(fd, /*offset=*/0, fdSize, PROT_READ); |
| if (!modelBuffer) { |
| PLOG(FATAL) << "Failed to mmap model"; |
| } |
| |
| const std::string configPath = getConfigPath(); |
| tinyxml2::XMLDocument configDocument; |
| LOG_ALWAYS_FATAL_IF(configDocument.LoadFile(configPath.c_str()) != tinyxml2::XML_SUCCESS, |
| "Failed to load config file from %s", configPath.c_str()); |
| |
| // Parse configuration file. |
| const tinyxml2::XMLElement* configRoot = configDocument.FirstChildElement("motion-predictor"); |
| LOG_ALWAYS_FATAL_IF(!configRoot); |
| Config config{ |
| .predictionInterval = parseXMLInt64(*configRoot, "prediction-interval"), |
| .distanceNoiseFloor = parseXMLFloat(*configRoot, "distance-noise-floor"), |
| }; |
| |
| return std::unique_ptr<TfLiteMotionPredictorModel>( |
| new TfLiteMotionPredictorModel(std::move(modelBuffer), std::move(config))); |
| } |
| |
| TfLiteMotionPredictorModel::TfLiteMotionPredictorModel( |
| std::unique_ptr<android::base::MappedFile> model, Config config) |
| : mFlatBuffer(std::move(model)), mConfig(std::move(config)) { |
| CHECK(mFlatBuffer); |
| mErrorReporter = std::make_unique<LoggingErrorReporter>(); |
| mModel = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(mFlatBuffer->data(), |
| mFlatBuffer->size(), |
| /*extra_verifier=*/nullptr, |
| mErrorReporter.get()); |
| LOG_ALWAYS_FATAL_IF(!mModel); |
| |
| auto resolver = createOpResolver(); |
| tflite::InterpreterBuilder builder(*mModel, *resolver); |
| |
| if (builder(&mInterpreter) != kTfLiteOk || !mInterpreter) { |
| LOG_ALWAYS_FATAL("Failed to build interpreter"); |
| } |
| |
| mRunner = mInterpreter->GetSignatureRunner(SIGNATURE_KEY); |
| LOG_ALWAYS_FATAL_IF(!mRunner, "Failed to find runner for signature '%s'", SIGNATURE_KEY); |
| |
| allocateTensors(); |
| } |
| |
| TfLiteMotionPredictorModel::~TfLiteMotionPredictorModel() {} |
| |
| void TfLiteMotionPredictorModel::allocateTensors() { |
| if (mRunner->AllocateTensors() != kTfLiteOk) { |
| LOG_ALWAYS_FATAL("Failed to allocate tensors"); |
| } |
| |
| attachInputTensors(); |
| attachOutputTensors(); |
| |
| checkTensor<float>(mInputR); |
| checkTensor<float>(mInputPhi); |
| checkTensor<float>(mInputPressure); |
| checkTensor<float>(mInputTilt); |
| checkTensor<float>(mInputOrientation); |
| checkTensor<float>(mOutputR); |
| checkTensor<float>(mOutputPhi); |
| checkTensor<float>(mOutputPressure); |
| |
| const auto checkInputTensorSize = [this](const TfLiteTensor* tensor) { |
| const size_t size = getTensorBuffer<const float>(tensor).size(); |
| LOG_ALWAYS_FATAL_IF(size != inputLength(), |
| "Tensor '%s' length %zu does not match input length %zu", tensor->name, |
| size, inputLength()); |
| }; |
| |
| checkInputTensorSize(mInputR); |
| checkInputTensorSize(mInputPhi); |
| checkInputTensorSize(mInputPressure); |
| checkInputTensorSize(mInputTilt); |
| checkInputTensorSize(mInputOrientation); |
| } |
| |
| void TfLiteMotionPredictorModel::attachInputTensors() { |
| mInputR = findInputTensor(INPUT_R, mRunner); |
| mInputPhi = findInputTensor(INPUT_PHI, mRunner); |
| mInputPressure = findInputTensor(INPUT_PRESSURE, mRunner); |
| mInputTilt = findInputTensor(INPUT_TILT, mRunner); |
| mInputOrientation = findInputTensor(INPUT_ORIENTATION, mRunner); |
| } |
| |
| void TfLiteMotionPredictorModel::attachOutputTensors() { |
| mOutputR = findOutputTensor(OUTPUT_R, mRunner); |
| mOutputPhi = findOutputTensor(OUTPUT_PHI, mRunner); |
| mOutputPressure = findOutputTensor(OUTPUT_PRESSURE, mRunner); |
| } |
| |
| bool TfLiteMotionPredictorModel::invoke() { |
| ATRACE_BEGIN("TfLiteMotionPredictorModel::invoke"); |
| TfLiteStatus result = mRunner->Invoke(); |
| ATRACE_END(); |
| |
| if (result != kTfLiteOk) { |
| return false; |
| } |
| |
| // Invoke() might reallocate tensors, so they need to be reattached. |
| attachInputTensors(); |
| attachOutputTensors(); |
| |
| if (outputR().size() != outputPhi().size() || outputR().size() != outputPressure().size()) { |
| LOG_ALWAYS_FATAL("Output size mismatch: (r: %zu, phi: %zu, pressure: %zu)", |
| outputR().size(), outputPhi().size(), outputPressure().size()); |
| } |
| |
| return true; |
| } |
| |
| size_t TfLiteMotionPredictorModel::inputLength() const { |
| return getTensorBuffer<const float>(mInputR).size(); |
| } |
| |
| size_t TfLiteMotionPredictorModel::outputLength() const { |
| return getTensorBuffer<const float>(mOutputR).size(); |
| } |
| |
| std::span<float> TfLiteMotionPredictorModel::inputR() { |
| return getTensorBuffer<float>(mInputR); |
| } |
| |
| std::span<float> TfLiteMotionPredictorModel::inputPhi() { |
| return getTensorBuffer<float>(mInputPhi); |
| } |
| |
| std::span<float> TfLiteMotionPredictorModel::inputPressure() { |
| return getTensorBuffer<float>(mInputPressure); |
| } |
| |
| std::span<float> TfLiteMotionPredictorModel::inputTilt() { |
| return getTensorBuffer<float>(mInputTilt); |
| } |
| |
| std::span<float> TfLiteMotionPredictorModel::inputOrientation() { |
| return getTensorBuffer<float>(mInputOrientation); |
| } |
| |
| std::span<const float> TfLiteMotionPredictorModel::outputR() const { |
| return getTensorBuffer<const float>(mOutputR); |
| } |
| |
| std::span<const float> TfLiteMotionPredictorModel::outputPhi() const { |
| return getTensorBuffer<const float>(mOutputPhi); |
| } |
| |
| std::span<const float> TfLiteMotionPredictorModel::outputPressure() const { |
| return getTensorBuffer<const float>(mOutputPressure); |
| } |
| |
| } // namespace android |