blob: d17476e2168008aab799751ae4042ec76c0e8ce8 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "TfLiteMotionPredictor"
#include <input/TfLiteMotionPredictor.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <span>
#include <type_traits>
#include <utility>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/mapped_file.h>
#define ATRACE_TAG ATRACE_TAG_INPUT
#include <cutils/trace.h>
#include <log/log.h>
#include <utils/Timers.h>
#include "tensorflow/lite/core/api/error_reporter.h"
#include "tensorflow/lite/core/api/op_resolver.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/builtin_op_kernels.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/mutable_op_resolver.h"
#include "tinyxml2.h"
namespace android {
namespace {
constexpr char SIGNATURE_KEY[] = "serving_default";
// Input tensor names.
constexpr char INPUT_R[] = "r";
constexpr char INPUT_PHI[] = "phi";
constexpr char INPUT_PRESSURE[] = "pressure";
constexpr char INPUT_TILT[] = "tilt";
constexpr char INPUT_ORIENTATION[] = "orientation";
// Output tensor names.
constexpr char OUTPUT_R[] = "r";
constexpr char OUTPUT_PHI[] = "phi";
constexpr char OUTPUT_PRESSURE[] = "pressure";
// Ideally, we would just use std::filesystem::exists here, but it requires libc++fs, which causes
// build issues in other parts of the system.
#if defined(__ANDROID__)
bool fileExists(const char* filename) {
struct stat buffer;
return stat(filename, &buffer) == 0;
}
#endif
std::string getModelPath() {
#if defined(__ANDROID__)
static const char* oemModel = "/vendor/etc/motion_predictor_model.tflite";
if (fileExists(oemModel)) {
return oemModel;
}
return "/system/etc/motion_predictor_model.tflite";
#else
return base::GetExecutableDirectory() + "/motion_predictor_model.tflite";
#endif
}
std::string getConfigPath() {
// The config file should be alongside the model file.
return base::Dirname(getModelPath()) + "/motion_predictor_config.xml";
}
int64_t parseXMLInt64(const tinyxml2::XMLElement& configRoot, const char* elementName) {
const tinyxml2::XMLElement* element = configRoot.FirstChildElement(elementName);
LOG_ALWAYS_FATAL_IF(!element, "Could not find '%s' element", elementName);
int64_t value = 0;
LOG_ALWAYS_FATAL_IF(element->QueryInt64Text(&value) != tinyxml2::XML_SUCCESS,
"Failed to parse %s: %s", elementName, element->GetText());
return value;
}
float parseXMLFloat(const tinyxml2::XMLElement& configRoot, const char* elementName) {
const tinyxml2::XMLElement* element = configRoot.FirstChildElement(elementName);
LOG_ALWAYS_FATAL_IF(!element, "Could not find '%s' element", elementName);
float value = 0;
LOG_ALWAYS_FATAL_IF(element->QueryFloatText(&value) != tinyxml2::XML_SUCCESS,
"Failed to parse %s: %s", elementName, element->GetText());
return value;
}
// A TFLite ErrorReporter that logs to logcat.
class LoggingErrorReporter : public tflite::ErrorReporter {
public:
int Report(const char* format, va_list args) override {
return LOG_PRI_VA(ANDROID_LOG_ERROR, LOG_TAG, format, args);
}
};
// Searches a runner for an input tensor.
TfLiteTensor* findInputTensor(const char* name, tflite::SignatureRunner* runner) {
TfLiteTensor* tensor = runner->input_tensor(name);
LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find input tensor '%s'", name);
return tensor;
}
// Searches a runner for an output tensor.
const TfLiteTensor* findOutputTensor(const char* name, tflite::SignatureRunner* runner) {
const TfLiteTensor* tensor = runner->output_tensor(name);
LOG_ALWAYS_FATAL_IF(!tensor, "Failed to find output tensor '%s'", name);
return tensor;
}
// Returns the buffer for a tensor of type T.
template <typename T>
std::span<T> getTensorBuffer(typename std::conditional<std::is_const<T>::value, const TfLiteTensor*,
TfLiteTensor*>::type tensor) {
LOG_ALWAYS_FATAL_IF(!tensor);
const TfLiteType type = tflite::typeToTfLiteType<typename std::remove_cv<T>::type>();
LOG_ALWAYS_FATAL_IF(tensor->type != type, "Unexpected type for '%s' tensor: %s (expected %s)",
tensor->name, TfLiteTypeGetName(tensor->type), TfLiteTypeGetName(type));
LOG_ALWAYS_FATAL_IF(!tensor->data.data);
return std::span<T>(reinterpret_cast<T*>(tensor->data.data), tensor->bytes / sizeof(T));
}
// Verifies that a tensor exists and has an underlying buffer of type T.
template <typename T>
void checkTensor(const TfLiteTensor* tensor) {
LOG_ALWAYS_FATAL_IF(!tensor);
const auto buffer = getTensorBuffer<const T>(tensor);
LOG_ALWAYS_FATAL_IF(buffer.empty(), "No buffer for tensor '%s'", tensor->name);
}
std::unique_ptr<tflite::OpResolver> createOpResolver() {
auto resolver = std::make_unique<tflite::MutableOpResolver>();
resolver->AddBuiltin(::tflite::BuiltinOperator_CONCATENATION,
::tflite::ops::builtin::Register_CONCATENATION());
resolver->AddBuiltin(::tflite::BuiltinOperator_FULLY_CONNECTED,
::tflite::ops::builtin::Register_FULLY_CONNECTED());
resolver->AddBuiltin(::tflite::BuiltinOperator_GELU, ::tflite::ops::builtin::Register_GELU());
return resolver;
}
} // namespace
TfLiteMotionPredictorBuffers::TfLiteMotionPredictorBuffers(size_t inputLength)
: mInputR(inputLength, 0),
mInputPhi(inputLength, 0),
mInputPressure(inputLength, 0),
mInputTilt(inputLength, 0),
mInputOrientation(inputLength, 0) {
LOG_ALWAYS_FATAL_IF(inputLength == 0, "Buffer input size must be greater than 0");
}
void TfLiteMotionPredictorBuffers::reset() {
std::fill(mInputR.begin(), mInputR.end(), 0);
std::fill(mInputPhi.begin(), mInputPhi.end(), 0);
std::fill(mInputPressure.begin(), mInputPressure.end(), 0);
std::fill(mInputTilt.begin(), mInputTilt.end(), 0);
std::fill(mInputOrientation.begin(), mInputOrientation.end(), 0);
mAxisFrom.reset();
mAxisTo.reset();
}
void TfLiteMotionPredictorBuffers::copyTo(TfLiteMotionPredictorModel& model) const {
LOG_ALWAYS_FATAL_IF(mInputR.size() != model.inputLength(),
"Buffer length %zu doesn't match model input length %zu", mInputR.size(),
model.inputLength());
LOG_ALWAYS_FATAL_IF(!isReady(), "Buffers are incomplete");
std::copy(mInputR.begin(), mInputR.end(), model.inputR().begin());
std::copy(mInputPhi.begin(), mInputPhi.end(), model.inputPhi().begin());
std::copy(mInputPressure.begin(), mInputPressure.end(), model.inputPressure().begin());
std::copy(mInputTilt.begin(), mInputTilt.end(), model.inputTilt().begin());
std::copy(mInputOrientation.begin(), mInputOrientation.end(), model.inputOrientation().begin());
}
void TfLiteMotionPredictorBuffers::pushSample(int64_t timestamp,
const TfLiteMotionPredictorSample sample) {
// Convert the sample (x, y) into polar (r, φ) based on a reference axis
// from the preceding two points (mAxisFrom/mAxisTo).
mTimestamp = timestamp;
if (!mAxisTo) { // First point.
mAxisTo = sample;
return;
}
// Vector from the last point to the current sample point.
const TfLiteMotionPredictorSample::Point v = sample.position - mAxisTo->position;
const float r = std::hypot(v.x, v.y);
float phi = 0;
float orientation = 0;
if (!mAxisFrom && r > 0) { // Second point.
// We can only determine the distance from the first point, and not any
// angle. However, if the second point forms an axis, the orientation can
// be transformed relative to that axis.
const float axisPhi = std::atan2(v.y, v.x);
// A MotionEvent's orientation is measured clockwise from the vertical
// axis, but axisPhi is measured counter-clockwise from the horizontal
// axis.
orientation = M_PI_2 - sample.orientation - axisPhi;
} else {
const TfLiteMotionPredictorSample::Point axis = mAxisTo->position - mAxisFrom->position;
const float axisPhi = std::atan2(axis.y, axis.x);
phi = std::atan2(v.y, v.x) - axisPhi;
if (std::hypot(axis.x, axis.y) > 0) {
// See note above.
orientation = M_PI_2 - sample.orientation - axisPhi;
}
}
// Update the axis for the next point.
if (r > 0) {
mAxisFrom = mAxisTo;
mAxisTo = sample;
}
// Push the current sample onto the end of the input buffers.
mInputR.pushBack(r);
mInputPhi.pushBack(phi);
mInputPressure.pushBack(sample.pressure);
mInputTilt.pushBack(sample.tilt);
mInputOrientation.pushBack(orientation);
}
std::unique_ptr<TfLiteMotionPredictorModel> TfLiteMotionPredictorModel::create() {
const std::string modelPath = getModelPath();
android::base::unique_fd fd(open(modelPath.c_str(), O_RDONLY));
if (fd == -1) {
PLOG(FATAL) << "Could not read model from " << modelPath;
}
const off_t fdSize = lseek(fd, 0, SEEK_END);
if (fdSize == -1) {
PLOG(FATAL) << "Failed to determine file size";
}
std::unique_ptr<android::base::MappedFile> modelBuffer =
android::base::MappedFile::FromFd(fd, /*offset=*/0, fdSize, PROT_READ);
if (!modelBuffer) {
PLOG(FATAL) << "Failed to mmap model";
}
const std::string configPath = getConfigPath();
tinyxml2::XMLDocument configDocument;
LOG_ALWAYS_FATAL_IF(configDocument.LoadFile(configPath.c_str()) != tinyxml2::XML_SUCCESS,
"Failed to load config file from %s", configPath.c_str());
// Parse configuration file.
const tinyxml2::XMLElement* configRoot = configDocument.FirstChildElement("motion-predictor");
LOG_ALWAYS_FATAL_IF(!configRoot);
Config config{
.predictionInterval = parseXMLInt64(*configRoot, "prediction-interval"),
.distanceNoiseFloor = parseXMLFloat(*configRoot, "distance-noise-floor"),
};
return std::unique_ptr<TfLiteMotionPredictorModel>(
new TfLiteMotionPredictorModel(std::move(modelBuffer), std::move(config)));
}
TfLiteMotionPredictorModel::TfLiteMotionPredictorModel(
std::unique_ptr<android::base::MappedFile> model, Config config)
: mFlatBuffer(std::move(model)), mConfig(std::move(config)) {
CHECK(mFlatBuffer);
mErrorReporter = std::make_unique<LoggingErrorReporter>();
mModel = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(mFlatBuffer->data(),
mFlatBuffer->size(),
/*extra_verifier=*/nullptr,
mErrorReporter.get());
LOG_ALWAYS_FATAL_IF(!mModel);
auto resolver = createOpResolver();
tflite::InterpreterBuilder builder(*mModel, *resolver);
if (builder(&mInterpreter) != kTfLiteOk || !mInterpreter) {
LOG_ALWAYS_FATAL("Failed to build interpreter");
}
mRunner = mInterpreter->GetSignatureRunner(SIGNATURE_KEY);
LOG_ALWAYS_FATAL_IF(!mRunner, "Failed to find runner for signature '%s'", SIGNATURE_KEY);
allocateTensors();
}
TfLiteMotionPredictorModel::~TfLiteMotionPredictorModel() {}
void TfLiteMotionPredictorModel::allocateTensors() {
if (mRunner->AllocateTensors() != kTfLiteOk) {
LOG_ALWAYS_FATAL("Failed to allocate tensors");
}
attachInputTensors();
attachOutputTensors();
checkTensor<float>(mInputR);
checkTensor<float>(mInputPhi);
checkTensor<float>(mInputPressure);
checkTensor<float>(mInputTilt);
checkTensor<float>(mInputOrientation);
checkTensor<float>(mOutputR);
checkTensor<float>(mOutputPhi);
checkTensor<float>(mOutputPressure);
const auto checkInputTensorSize = [this](const TfLiteTensor* tensor) {
const size_t size = getTensorBuffer<const float>(tensor).size();
LOG_ALWAYS_FATAL_IF(size != inputLength(),
"Tensor '%s' length %zu does not match input length %zu", tensor->name,
size, inputLength());
};
checkInputTensorSize(mInputR);
checkInputTensorSize(mInputPhi);
checkInputTensorSize(mInputPressure);
checkInputTensorSize(mInputTilt);
checkInputTensorSize(mInputOrientation);
}
void TfLiteMotionPredictorModel::attachInputTensors() {
mInputR = findInputTensor(INPUT_R, mRunner);
mInputPhi = findInputTensor(INPUT_PHI, mRunner);
mInputPressure = findInputTensor(INPUT_PRESSURE, mRunner);
mInputTilt = findInputTensor(INPUT_TILT, mRunner);
mInputOrientation = findInputTensor(INPUT_ORIENTATION, mRunner);
}
void TfLiteMotionPredictorModel::attachOutputTensors() {
mOutputR = findOutputTensor(OUTPUT_R, mRunner);
mOutputPhi = findOutputTensor(OUTPUT_PHI, mRunner);
mOutputPressure = findOutputTensor(OUTPUT_PRESSURE, mRunner);
}
bool TfLiteMotionPredictorModel::invoke() {
ATRACE_BEGIN("TfLiteMotionPredictorModel::invoke");
TfLiteStatus result = mRunner->Invoke();
ATRACE_END();
if (result != kTfLiteOk) {
return false;
}
// Invoke() might reallocate tensors, so they need to be reattached.
attachInputTensors();
attachOutputTensors();
if (outputR().size() != outputPhi().size() || outputR().size() != outputPressure().size()) {
LOG_ALWAYS_FATAL("Output size mismatch: (r: %zu, phi: %zu, pressure: %zu)",
outputR().size(), outputPhi().size(), outputPressure().size());
}
return true;
}
size_t TfLiteMotionPredictorModel::inputLength() const {
return getTensorBuffer<const float>(mInputR).size();
}
size_t TfLiteMotionPredictorModel::outputLength() const {
return getTensorBuffer<const float>(mOutputR).size();
}
std::span<float> TfLiteMotionPredictorModel::inputR() {
return getTensorBuffer<float>(mInputR);
}
std::span<float> TfLiteMotionPredictorModel::inputPhi() {
return getTensorBuffer<float>(mInputPhi);
}
std::span<float> TfLiteMotionPredictorModel::inputPressure() {
return getTensorBuffer<float>(mInputPressure);
}
std::span<float> TfLiteMotionPredictorModel::inputTilt() {
return getTensorBuffer<float>(mInputTilt);
}
std::span<float> TfLiteMotionPredictorModel::inputOrientation() {
return getTensorBuffer<float>(mInputOrientation);
}
std::span<const float> TfLiteMotionPredictorModel::outputR() const {
return getTensorBuffer<const float>(mOutputR);
}
std::span<const float> TfLiteMotionPredictorModel::outputPhi() const {
return getTensorBuffer<const float>(mOutputPhi);
}
std::span<const float> TfLiteMotionPredictorModel::outputPressure() const {
return getTensorBuffer<const float>(mOutputPressure);
}
} // namespace android