blob: dff0752b59e619dfc640e1c31f183a3ac12a3b41 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "../dispatcher/InputDispatcher.h"
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include <binder/Binder.h>
#include <gtest/gtest.h>
#include <input/Input.h>
#include <linux/input.h>
#include <cinttypes>
#include <thread>
#include <unordered_set>
#include <vector>
using android::base::StringPrintf;
using android::os::InputEventInjectionResult;
using android::os::InputEventInjectionSync;
using android::os::TouchOcclusionMode;
using namespace android::flag_operators;
namespace android::inputdispatcher {
// An arbitrary time value.
static const nsecs_t ARBITRARY_TIME = 1234;
// An arbitrary device id.
static const int32_t DEVICE_ID = 1;
// An arbitrary display id.
static const int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT;
// An arbitrary injector pid / uid pair that has permission to inject events.
static const int32_t INJECTOR_PID = 999;
static const int32_t INJECTOR_UID = 1001;
// An arbitrary pid of the gesture monitor window
static constexpr int32_t MONITOR_PID = 2001;
struct PointF {
float x;
float y;
};
/**
* Return a DOWN key event with KEYCODE_A.
*/
static KeyEvent getTestKeyEvent() {
KeyEvent event;
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
return event;
}
// --- FakeInputDispatcherPolicy ---
class FakeInputDispatcherPolicy : public InputDispatcherPolicyInterface {
InputDispatcherConfiguration mConfig;
protected:
virtual ~FakeInputDispatcherPolicy() {}
public:
FakeInputDispatcherPolicy() {}
void assertFilterInputEventWasCalled(const NotifyKeyArgs& args) {
assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_KEY, args.eventTime, args.action,
args.displayId);
}
void assertFilterInputEventWasCalled(const NotifyMotionArgs& args) {
assertFilterInputEventWasCalled(AINPUT_EVENT_TYPE_MOTION, args.eventTime, args.action,
args.displayId);
}
void assertFilterInputEventWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_EQ(nullptr, mFilteredEvent);
}
void assertNotifyConfigurationChangedWasCalled(nsecs_t when) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mConfigurationChangedTime)
<< "Timed out waiting for configuration changed call";
ASSERT_EQ(*mConfigurationChangedTime, when);
mConfigurationChangedTime = std::nullopt;
}
void assertNotifySwitchWasCalled(const NotifySwitchArgs& args) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mLastNotifySwitch);
// We do not check id because it is not exposed to the policy
EXPECT_EQ(args.eventTime, mLastNotifySwitch->eventTime);
EXPECT_EQ(args.policyFlags, mLastNotifySwitch->policyFlags);
EXPECT_EQ(args.switchValues, mLastNotifySwitch->switchValues);
EXPECT_EQ(args.switchMask, mLastNotifySwitch->switchMask);
mLastNotifySwitch = std::nullopt;
}
void assertOnPointerDownEquals(const sp<IBinder>& touchedToken) {
std::scoped_lock lock(mLock);
ASSERT_EQ(touchedToken, mOnPointerDownToken);
mOnPointerDownToken.clear();
}
void assertOnPointerDownWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mOnPointerDownToken == nullptr)
<< "Expected onPointerDownOutsideFocus to not have been called";
}
// This function must be called soon after the expected ANR timer starts,
// because we are also checking how much time has passed.
void assertNotifyNoFocusedWindowAnrWasCalled(
std::chrono::nanoseconds timeout,
const std::shared_ptr<InputApplicationHandle>& expectedApplication) {
std::shared_ptr<InputApplicationHandle> application;
{ // acquire lock
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
ASSERT_NO_FATAL_FAILURE(
application = getAnrTokenLockedInterruptible(timeout, mAnrApplications, lock));
} // release lock
ASSERT_EQ(expectedApplication, application);
}
void assertNotifyWindowUnresponsiveWasCalled(std::chrono::nanoseconds timeout,
const sp<IBinder>& expectedConnectionToken) {
sp<IBinder> connectionToken = getUnresponsiveWindowToken(timeout);
ASSERT_EQ(expectedConnectionToken, connectionToken);
}
void assertNotifyWindowResponsiveWasCalled(const sp<IBinder>& expectedConnectionToken) {
sp<IBinder> connectionToken = getResponsiveWindowToken();
ASSERT_EQ(expectedConnectionToken, connectionToken);
}
void assertNotifyMonitorUnresponsiveWasCalled(std::chrono::nanoseconds timeout) {
int32_t pid = getUnresponsiveMonitorPid(timeout);
ASSERT_EQ(MONITOR_PID, pid);
}
void assertNotifyMonitorResponsiveWasCalled() {
int32_t pid = getResponsiveMonitorPid();
ASSERT_EQ(MONITOR_PID, pid);
}
sp<IBinder> getUnresponsiveWindowToken(std::chrono::nanoseconds timeout) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
return getAnrTokenLockedInterruptible(timeout, mAnrWindowTokens, lock);
}
sp<IBinder> getResponsiveWindowToken() {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
return getAnrTokenLockedInterruptible(0s, mResponsiveWindowTokens, lock);
}
int32_t getUnresponsiveMonitorPid(std::chrono::nanoseconds timeout) {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
return getAnrTokenLockedInterruptible(timeout, mAnrMonitorPids, lock);
}
int32_t getResponsiveMonitorPid() {
std::unique_lock lock(mLock);
android::base::ScopedLockAssertion assumeLocked(mLock);
return getAnrTokenLockedInterruptible(0s, mResponsiveMonitorPids, lock);
}
// All three ANR-related callbacks behave the same way, so we use this generic function to wait
// for a specific container to become non-empty. When the container is non-empty, return the
// first entry from the container and erase it.
template <class T>
T getAnrTokenLockedInterruptible(std::chrono::nanoseconds timeout, std::queue<T>& storage,
std::unique_lock<std::mutex>& lock) REQUIRES(mLock) {
const std::chrono::time_point start = std::chrono::steady_clock::now();
std::chrono::duration timeToWait = timeout + 100ms; // provide some slack
// If there is an ANR, Dispatcher won't be idle because there are still events
// in the waitQueue that we need to check on. So we can't wait for dispatcher to be idle
// before checking if ANR was called.
// Since dispatcher is not guaranteed to call notifyNoFocusedWindowAnr right away, we need
// to provide it some time to act. 100ms seems reasonable.
mNotifyAnr.wait_for(lock, timeToWait,
[&storage]() REQUIRES(mLock) { return !storage.empty(); });
const std::chrono::duration waited = std::chrono::steady_clock::now() - start;
if (storage.empty()) {
ADD_FAILURE() << "Did not receive the ANR callback";
return {};
}
// Ensure that the ANR didn't get raised too early. We can't be too strict here because
// the dispatcher started counting before this function was called
if (std::chrono::abs(timeout - waited) > 100ms) {
ADD_FAILURE() << "ANR was raised too early or too late. Expected "
<< std::chrono::duration_cast<std::chrono::milliseconds>(timeout).count()
<< "ms, but waited "
<< std::chrono::duration_cast<std::chrono::milliseconds>(waited).count()
<< "ms instead";
}
T token = storage.front();
storage.pop();
return token;
}
void assertNotifyAnrWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mAnrApplications.empty());
ASSERT_TRUE(mAnrWindowTokens.empty());
ASSERT_TRUE(mAnrMonitorPids.empty());
ASSERT_TRUE(mResponsiveWindowTokens.empty())
<< "ANR was not called, but please also consume the 'connection is responsive' "
"signal";
ASSERT_TRUE(mResponsiveMonitorPids.empty())
<< "Monitor ANR was not called, but please also consume the 'monitor is responsive'"
" signal";
}
void setKeyRepeatConfiguration(nsecs_t timeout, nsecs_t delay) {
mConfig.keyRepeatTimeout = timeout;
mConfig.keyRepeatDelay = delay;
}
void waitForSetPointerCapture(bool enabled) {
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
if (!mPointerCaptureChangedCondition.wait_for(lock, 100ms,
[this, enabled]() REQUIRES(mLock) {
return mPointerCaptureEnabled &&
*mPointerCaptureEnabled ==
enabled;
})) {
FAIL() << "Timed out waiting for setPointerCapture(" << enabled << ") to be called.";
}
mPointerCaptureEnabled.reset();
}
void assertSetPointerCaptureNotCalled() {
std::unique_lock lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
if (mPointerCaptureChangedCondition.wait_for(lock, 100ms) != std::cv_status::timeout) {
FAIL() << "Expected setPointerCapture(enabled) to not be called, but was called. "
"enabled = "
<< *mPointerCaptureEnabled;
}
mPointerCaptureEnabled.reset();
}
void assertDropTargetEquals(const sp<IBinder>& targetToken) {
std::scoped_lock lock(mLock);
ASSERT_TRUE(mNotifyDropWindowWasCalled);
ASSERT_EQ(targetToken, mDropTargetWindowToken);
mNotifyDropWindowWasCalled = false;
}
private:
std::mutex mLock;
std::unique_ptr<InputEvent> mFilteredEvent GUARDED_BY(mLock);
std::optional<nsecs_t> mConfigurationChangedTime GUARDED_BY(mLock);
sp<IBinder> mOnPointerDownToken GUARDED_BY(mLock);
std::optional<NotifySwitchArgs> mLastNotifySwitch GUARDED_BY(mLock);
std::condition_variable mPointerCaptureChangedCondition;
std::optional<bool> mPointerCaptureEnabled GUARDED_BY(mLock);
// ANR handling
std::queue<std::shared_ptr<InputApplicationHandle>> mAnrApplications GUARDED_BY(mLock);
std::queue<sp<IBinder>> mAnrWindowTokens GUARDED_BY(mLock);
std::queue<sp<IBinder>> mResponsiveWindowTokens GUARDED_BY(mLock);
std::queue<int32_t> mAnrMonitorPids GUARDED_BY(mLock);
std::queue<int32_t> mResponsiveMonitorPids GUARDED_BY(mLock);
std::condition_variable mNotifyAnr;
sp<IBinder> mDropTargetWindowToken GUARDED_BY(mLock);
bool mNotifyDropWindowWasCalled GUARDED_BY(mLock) = false;
void notifyConfigurationChanged(nsecs_t when) override {
std::scoped_lock lock(mLock);
mConfigurationChangedTime = when;
}
void notifyWindowUnresponsive(const sp<IBinder>& connectionToken, const std::string&) override {
std::scoped_lock lock(mLock);
mAnrWindowTokens.push(connectionToken);
mNotifyAnr.notify_all();
}
void notifyMonitorUnresponsive(int32_t pid, const std::string&) override {
std::scoped_lock lock(mLock);
mAnrMonitorPids.push(pid);
mNotifyAnr.notify_all();
}
void notifyWindowResponsive(const sp<IBinder>& connectionToken) override {
std::scoped_lock lock(mLock);
mResponsiveWindowTokens.push(connectionToken);
mNotifyAnr.notify_all();
}
void notifyMonitorResponsive(int32_t pid) override {
std::scoped_lock lock(mLock);
mResponsiveMonitorPids.push(pid);
mNotifyAnr.notify_all();
}
void notifyNoFocusedWindowAnr(
const std::shared_ptr<InputApplicationHandle>& applicationHandle) override {
std::scoped_lock lock(mLock);
mAnrApplications.push(applicationHandle);
mNotifyAnr.notify_all();
}
void notifyInputChannelBroken(const sp<IBinder>&) override {}
void notifyFocusChanged(const sp<IBinder>&, const sp<IBinder>&) override {}
void notifyUntrustedTouch(const std::string& obscuringPackage) override {}
void notifySensorEvent(int32_t deviceId, InputDeviceSensorType sensorType,
InputDeviceSensorAccuracy accuracy, nsecs_t timestamp,
const std::vector<float>& values) override {}
void notifySensorAccuracy(int deviceId, InputDeviceSensorType sensorType,
InputDeviceSensorAccuracy accuracy) override {}
void notifyVibratorState(int32_t deviceId, bool isOn) override {}
void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) override {
*outConfig = mConfig;
}
bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
switch (inputEvent->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(inputEvent);
mFilteredEvent = std::make_unique<KeyEvent>(*keyEvent);
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(inputEvent);
mFilteredEvent = std::make_unique<MotionEvent>(*motionEvent);
break;
}
}
return true;
}
void interceptKeyBeforeQueueing(const KeyEvent*, uint32_t&) override {}
void interceptMotionBeforeQueueing(int32_t, nsecs_t, uint32_t&) override {}
nsecs_t interceptKeyBeforeDispatching(const sp<IBinder>&, const KeyEvent*, uint32_t) override {
return 0;
}
bool dispatchUnhandledKey(const sp<IBinder>&, const KeyEvent*, uint32_t, KeyEvent*) override {
return false;
}
void notifySwitch(nsecs_t when, uint32_t switchValues, uint32_t switchMask,
uint32_t policyFlags) override {
std::scoped_lock lock(mLock);
/** We simply reconstruct NotifySwitchArgs in policy because InputDispatcher is
* essentially a passthrough for notifySwitch.
*/
mLastNotifySwitch = NotifySwitchArgs(1 /*id*/, when, policyFlags, switchValues, switchMask);
}
void pokeUserActivity(nsecs_t, int32_t, int32_t) override {}
bool checkInjectEventsPermissionNonReentrant(int32_t pid, int32_t uid) override {
return pid == INJECTOR_PID && uid == INJECTOR_UID;
}
void onPointerDownOutsideFocus(const sp<IBinder>& newToken) override {
std::scoped_lock lock(mLock);
mOnPointerDownToken = newToken;
}
void setPointerCapture(bool enabled) override {
std::scoped_lock lock(mLock);
mPointerCaptureEnabled = {enabled};
mPointerCaptureChangedCondition.notify_all();
}
void notifyDropWindow(const sp<IBinder>& token, float x, float y) override {
std::scoped_lock lock(mLock);
mNotifyDropWindowWasCalled = true;
mDropTargetWindowToken = token;
}
void assertFilterInputEventWasCalled(int type, nsecs_t eventTime, int32_t action,
int32_t displayId) {
std::scoped_lock lock(mLock);
ASSERT_NE(nullptr, mFilteredEvent) << "Expected filterInputEvent() to have been called.";
ASSERT_EQ(mFilteredEvent->getType(), type);
if (type == AINPUT_EVENT_TYPE_KEY) {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(*mFilteredEvent);
EXPECT_EQ(keyEvent.getEventTime(), eventTime);
EXPECT_EQ(keyEvent.getAction(), action);
EXPECT_EQ(keyEvent.getDisplayId(), displayId);
} else if (type == AINPUT_EVENT_TYPE_MOTION) {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*mFilteredEvent);
EXPECT_EQ(motionEvent.getEventTime(), eventTime);
EXPECT_EQ(motionEvent.getAction(), action);
EXPECT_EQ(motionEvent.getDisplayId(), displayId);
} else {
FAIL() << "Unknown type: " << type;
}
mFilteredEvent = nullptr;
}
};
// --- InputDispatcherTest ---
class InputDispatcherTest : public testing::Test {
protected:
sp<FakeInputDispatcherPolicy> mFakePolicy;
sp<InputDispatcher> mDispatcher;
void SetUp() override {
mFakePolicy = new FakeInputDispatcherPolicy();
mDispatcher = new InputDispatcher(mFakePolicy);
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
// Start InputDispatcher thread
ASSERT_EQ(OK, mDispatcher->start());
}
void TearDown() override {
ASSERT_EQ(OK, mDispatcher->stop());
mFakePolicy.clear();
mDispatcher.clear();
}
/**
* Used for debugging when writing the test
*/
void dumpDispatcherState() {
std::string dump;
mDispatcher->dump(dump);
std::stringstream ss(dump);
std::string to;
while (std::getline(ss, to, '\n')) {
ALOGE("%s", to.c_str());
}
}
void setFocusedWindow(const sp<InputWindowHandle>& window,
const sp<InputWindowHandle>& focusedWindow = nullptr) {
FocusRequest request;
request.token = window->getToken();
request.windowName = window->getName();
if (focusedWindow) {
request.focusedToken = focusedWindow->getToken();
}
request.timestamp = systemTime(SYSTEM_TIME_MONOTONIC);
request.displayId = window->getInfo()->displayId;
mDispatcher->setFocusedWindow(request);
}
};
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesKeyEvents) {
KeyEvent event;
// Rejects undefined key actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC,
/*action*/ -1, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0, ARBITRARY_TIME,
ARBITRARY_TIME);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject key events with undefined action.";
// Rejects ACTION_MULTIPLE since it is not supported despite being defined in the API.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, ADISPLAY_ID_NONE,
INVALID_HMAC, AKEY_EVENT_ACTION_MULTIPLE, 0, AKEYCODE_A, KEY_A, AMETA_NONE, 0,
ARBITRARY_TIME, ARBITRARY_TIME);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject key events with ACTION_MULTIPLE.";
}
TEST_F(InputDispatcherTest, InjectInputEvent_ValidatesMotionEvents) {
MotionEvent event;
PointerProperties pointerProperties[MAX_POINTERS + 1];
PointerCoords pointerCoords[MAX_POINTERS + 1];
for (int i = 0; i <= MAX_POINTERS; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
}
// Some constants commonly used below
constexpr int32_t source = AINPUT_SOURCE_TOUCHSCREEN;
constexpr int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE;
constexpr int32_t metaState = AMETA_NONE;
constexpr MotionClassification classification = MotionClassification::NONE;
ui::Transform identityTransform;
// Rejects undefined motion actions.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
/*action*/ -1, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with undefined action.";
// Rejects pointer down with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties,
pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer down index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_DOWN |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties,
pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer down index too small.";
// Rejects pointer up with invalid index.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties,
pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer up index too large.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_POINTER_UP |
(~0U << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
0, 0, edgeFlags, metaState, 0, classification, identityTransform, 0, 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
ARBITRARY_TIME, ARBITRARY_TIME, /*pointerCount*/ 1, pointerProperties,
pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer up index too small.";
// Rejects motion events with invalid number of pointers.
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 0, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with 0 pointers.";
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ MAX_POINTERS + 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with more than MAX_POINTERS pointers.";
// Rejects motion events with invalid pointer ids.
pointerProperties[0].id = -1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer ids less than 0.";
pointerProperties[0].id = MAX_POINTER_ID + 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with pointer ids greater than MAX_POINTER_ID.";
// Rejects motion events with duplicate pointer ids.
pointerProperties[0].id = 1;
pointerProperties[1].id = 1;
event.initialize(InputEvent::nextId(), DEVICE_ID, source, DISPLAY_ID, INVALID_HMAC,
AMOTION_EVENT_ACTION_DOWN, 0, 0, edgeFlags, metaState, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_DISPLAY_SIZE,
AMOTION_EVENT_INVALID_DISPLAY_SIZE, ARBITRARY_TIME, ARBITRARY_TIME,
/*pointerCount*/ 2, pointerProperties, pointerCoords);
ASSERT_EQ(InputEventInjectionResult::FAILED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::NONE, 0ms, 0))
<< "Should reject motion events with duplicate pointer ids.";
}
/* Test InputDispatcher for notifyConfigurationChanged and notifySwitch events */
TEST_F(InputDispatcherTest, NotifyConfigurationChanged_CallsPolicy) {
constexpr nsecs_t eventTime = 20;
NotifyConfigurationChangedArgs args(10 /*id*/, eventTime);
mDispatcher->notifyConfigurationChanged(&args);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyConfigurationChangedWasCalled(eventTime);
}
TEST_F(InputDispatcherTest, NotifySwitch_CallsPolicy) {
NotifySwitchArgs args(10 /*id*/, 20 /*eventTime*/, 0 /*policyFlags*/, 1 /*switchValues*/,
2 /*switchMask*/);
mDispatcher->notifySwitch(&args);
// InputDispatcher adds POLICY_FLAG_TRUSTED because the event went through InputListener
args.policyFlags |= POLICY_FLAG_TRUSTED;
mFakePolicy->assertNotifySwitchWasCalled(args);
}
// --- InputDispatcherTest SetInputWindowTest ---
static constexpr std::chrono::duration INJECT_EVENT_TIMEOUT = 500ms;
static constexpr std::chrono::nanoseconds DISPATCHING_TIMEOUT = 5s;
class FakeApplicationHandle : public InputApplicationHandle {
public:
FakeApplicationHandle() {
mInfo.name = "Fake Application";
mInfo.token = new BBinder();
mInfo.dispatchingTimeoutMillis =
std::chrono::duration_cast<std::chrono::milliseconds>(DISPATCHING_TIMEOUT).count();
}
virtual ~FakeApplicationHandle() {}
virtual bool updateInfo() override { return true; }
void setDispatchingTimeout(std::chrono::milliseconds timeout) {
mInfo.dispatchingTimeoutMillis = timeout.count();
}
};
class FakeInputReceiver {
public:
explicit FakeInputReceiver(std::unique_ptr<InputChannel> clientChannel, const std::string name)
: mName(name) {
mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel));
}
InputEvent* consume() {
InputEvent* event;
std::optional<uint32_t> consumeSeq = receiveEvent(&event);
if (!consumeSeq) {
return nullptr;
}
finishEvent(*consumeSeq);
return event;
}
/**
* Receive an event without acknowledging it.
* Return the sequence number that could later be used to send finished signal.
*/
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
uint32_t consumeSeq;
InputEvent* event;
std::chrono::time_point start = std::chrono::steady_clock::now();
status_t status = WOULD_BLOCK;
while (status == WOULD_BLOCK) {
status = mConsumer->consume(&mEventFactory, true /*consumeBatches*/, -1, &consumeSeq,
&event);
std::chrono::duration elapsed = std::chrono::steady_clock::now() - start;
if (elapsed > 100ms) {
break;
}
}
if (status == WOULD_BLOCK) {
// Just means there's no event available.
return std::nullopt;
}
if (status != OK) {
ADD_FAILURE() << mName.c_str() << ": consumer consume should return OK.";
return std::nullopt;
}
if (event == nullptr) {
ADD_FAILURE() << "Consumed correctly, but received NULL event from consumer";
return std::nullopt;
}
if (outEvent != nullptr) {
*outEvent = event;
}
return consumeSeq;
}
/**
* To be used together with "receiveEvent" to complete the consumption of an event.
*/
void finishEvent(uint32_t consumeSeq) {
const status_t status = mConsumer->sendFinishedSignal(consumeSeq, true);
ASSERT_EQ(OK, status) << mName.c_str() << ": consumer sendFinishedSignal should return OK.";
}
void sendTimeline(int32_t inputEventId, std::array<nsecs_t, GraphicsTimeline::SIZE> timeline) {
const status_t status = mConsumer->sendTimeline(inputEventId, timeline);
ASSERT_EQ(OK, status);
}
void consumeEvent(int32_t expectedEventType, int32_t expectedAction,
std::optional<int32_t> expectedDisplayId,
std::optional<int32_t> expectedFlags) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(expectedEventType, event->getType())
<< mName.c_str() << " expected " << inputEventTypeToString(expectedEventType)
<< " event, got " << inputEventTypeToString(event->getType()) << " event";
if (expectedDisplayId.has_value()) {
EXPECT_EQ(expectedDisplayId, event->getDisplayId());
}
switch (expectedEventType) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(*event);
EXPECT_EQ(expectedAction, keyEvent.getAction());
if (expectedFlags.has_value()) {
EXPECT_EQ(expectedFlags.value(), keyEvent.getFlags());
}
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
EXPECT_EQ(expectedAction, motionEvent.getAction());
if (expectedFlags.has_value()) {
EXPECT_EQ(expectedFlags.value(), motionEvent.getFlags());
}
break;
}
case AINPUT_EVENT_TYPE_FOCUS: {
FAIL() << "Use 'consumeFocusEvent' for FOCUS events";
}
case AINPUT_EVENT_TYPE_CAPTURE: {
FAIL() << "Use 'consumeCaptureEvent' for CAPTURE events";
}
case AINPUT_EVENT_TYPE_DRAG: {
FAIL() << "Use 'consumeDragEvent' for DRAG events";
}
default: {
FAIL() << mName.c_str() << ": invalid event type: " << expectedEventType;
}
}
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode) {
InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_FOCUS, event->getType())
<< "Got " << inputEventTypeToString(event->getType())
<< " event instead of FOCUS event";
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
FocusEvent* focusEvent = static_cast<FocusEvent*>(event);
EXPECT_EQ(hasFocus, focusEvent->getHasFocus());
EXPECT_EQ(inTouchMode, focusEvent->getInTouchMode());
}
void consumeCaptureEvent(bool hasCapture) {
const InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_CAPTURE, event->getType())
<< "Got " << inputEventTypeToString(event->getType())
<< " event instead of CAPTURE event";
ASSERT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
const auto& captureEvent = static_cast<const CaptureEvent&>(*event);
EXPECT_EQ(hasCapture, captureEvent.getPointerCaptureEnabled());
}
void consumeDragEvent(bool isExiting, float x, float y) {
const InputEvent* event = consume();
ASSERT_NE(nullptr, event) << mName.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_DRAG, event->getType())
<< "Got " << inputEventTypeToString(event->getType())
<< " event instead of DRAG event";
EXPECT_EQ(ADISPLAY_ID_NONE, event->getDisplayId())
<< mName.c_str() << ": event displayId should always be NONE.";
const auto& dragEvent = static_cast<const DragEvent&>(*event);
EXPECT_EQ(isExiting, dragEvent.isExiting());
EXPECT_EQ(x, dragEvent.getX());
EXPECT_EQ(y, dragEvent.getY());
}
void assertNoEvents() {
InputEvent* event = consume();
if (event == nullptr) {
return;
}
if (event->getType() == AINPUT_EVENT_TYPE_KEY) {
KeyEvent& keyEvent = static_cast<KeyEvent&>(*event);
ADD_FAILURE() << "Received key event "
<< KeyEvent::actionToString(keyEvent.getAction());
} else if (event->getType() == AINPUT_EVENT_TYPE_MOTION) {
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
ADD_FAILURE() << "Received motion event "
<< MotionEvent::actionToString(motionEvent.getAction());
} else if (event->getType() == AINPUT_EVENT_TYPE_FOCUS) {
FocusEvent& focusEvent = static_cast<FocusEvent&>(*event);
ADD_FAILURE() << "Received focus event, hasFocus = "
<< (focusEvent.getHasFocus() ? "true" : "false");
} else if (event->getType() == AINPUT_EVENT_TYPE_CAPTURE) {
const auto& captureEvent = static_cast<CaptureEvent&>(*event);
ADD_FAILURE() << "Received capture event, pointerCaptureEnabled = "
<< (captureEvent.getPointerCaptureEnabled() ? "true" : "false");
}
FAIL() << mName.c_str()
<< ": should not have received any events, so consume() should return NULL";
}
sp<IBinder> getToken() { return mConsumer->getChannel()->getConnectionToken(); }
protected:
std::unique_ptr<InputConsumer> mConsumer;
PreallocatedInputEventFactory mEventFactory;
std::string mName;
};
class FakeWindowHandle : public InputWindowHandle {
public:
static const int32_t WIDTH = 600;
static const int32_t HEIGHT = 800;
FakeWindowHandle(const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle,
const sp<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId, std::optional<sp<IBinder>> token = std::nullopt)
: mName(name) {
if (token == std::nullopt) {
base::Result<std::unique_ptr<InputChannel>> channel =
dispatcher->createInputChannel(name);
token = (*channel)->getConnectionToken();
mInputReceiver = std::make_unique<FakeInputReceiver>(std::move(*channel), name);
}
inputApplicationHandle->updateInfo();
mInfo.applicationInfo = *inputApplicationHandle->getInfo();
mInfo.token = *token;
mInfo.id = sId++;
mInfo.name = name;
mInfo.type = InputWindowInfo::Type::APPLICATION;
mInfo.dispatchingTimeout = DISPATCHING_TIMEOUT;
mInfo.alpha = 1.0;
mInfo.frameLeft = 0;
mInfo.frameTop = 0;
mInfo.frameRight = WIDTH;
mInfo.frameBottom = HEIGHT;
mInfo.transform.set(0, 0);
mInfo.globalScaleFactor = 1.0;
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(Rect(0, 0, WIDTH, HEIGHT));
mInfo.visible = true;
mInfo.focusable = false;
mInfo.hasWallpaper = false;
mInfo.paused = false;
mInfo.ownerPid = INJECTOR_PID;
mInfo.ownerUid = INJECTOR_UID;
mInfo.displayId = displayId;
}
virtual bool updateInfo() { return true; }
void setFocusable(bool focusable) { mInfo.focusable = focusable; }
void setVisible(bool visible) { mInfo.visible = visible; }
void setDispatchingTimeout(std::chrono::nanoseconds timeout) {
mInfo.dispatchingTimeout = timeout;
}
void setPaused(bool paused) { mInfo.paused = paused; }
void setAlpha(float alpha) { mInfo.alpha = alpha; }
void setTouchOcclusionMode(android::os::TouchOcclusionMode mode) {
mInfo.touchOcclusionMode = mode;
}
void setApplicationToken(sp<IBinder> token) { mInfo.applicationInfo.token = token; }
void setFrame(const Rect& frame) {
mInfo.frameLeft = frame.left;
mInfo.frameTop = frame.top;
mInfo.frameRight = frame.right;
mInfo.frameBottom = frame.bottom;
mInfo.transform.set(-frame.left, -frame.top);
mInfo.touchableRegion.clear();
mInfo.addTouchableRegion(frame);
}
void addFlags(Flags<InputWindowInfo::Flag> flags) { mInfo.flags |= flags; }
void setFlags(Flags<InputWindowInfo::Flag> flags) { mInfo.flags = flags; }
void setInputFeatures(InputWindowInfo::Feature features) { mInfo.inputFeatures = features; }
void setWindowTransform(float dsdx, float dtdx, float dtdy, float dsdy) {
mInfo.transform.set(dsdx, dtdx, dtdy, dsdy);
}
void setWindowScale(float xScale, float yScale) { setWindowTransform(xScale, 0, 0, yScale); }
void setWindowOffset(float offsetX, float offsetY) { mInfo.transform.set(offsetX, offsetY); }
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
void consumeKeyUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, expectedDisplayId, expectedFlags);
}
void consumeMotionCancel(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, expectedDisplayId,
expectedFlags);
}
void consumeMotionMove(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, expectedDisplayId,
expectedFlags);
}
void consumeMotionDown(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeAnyMotionDown(expectedDisplayId, expectedFlags);
}
void consumeAnyMotionDown(std::optional<int32_t> expectedDisplayId = std::nullopt,
std::optional<int32_t> expectedFlags = std::nullopt) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN, expectedDisplayId,
expectedFlags);
}
void consumeMotionPointerDown(int32_t pointerIdx,
int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_DOWN |
(pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionPointerUp(int32_t pointerIdx, int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
int32_t action = AMOTION_EVENT_ACTION_POINTER_UP |
(pointerIdx << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
consumeEvent(AINPUT_EVENT_TYPE_MOTION, action, expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP, expectedDisplayId,
expectedFlags);
}
void consumeMotionOutside(int32_t expectedDisplayId = ADISPLAY_ID_DEFAULT,
int32_t expectedFlags = 0) {
consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE, expectedDisplayId,
expectedFlags);
}
void consumeFocusEvent(bool hasFocus, bool inTouchMode = true) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeFocusEvent(hasFocus, inTouchMode);
}
void consumeCaptureEvent(bool hasCapture) {
ASSERT_NE(mInputReceiver, nullptr)
<< "Cannot consume events from a window with no receiver";
mInputReceiver->consumeCaptureEvent(hasCapture);
}
void consumeEvent(int32_t expectedEventType, int32_t expectedAction,
std::optional<int32_t> expectedDisplayId,
std::optional<int32_t> expectedFlags) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid consume event on window with no receiver";
mInputReceiver->consumeEvent(expectedEventType, expectedAction, expectedDisplayId,
expectedFlags);
}
void consumeDragEvent(bool isExiting, float x, float y) {
mInputReceiver->consumeDragEvent(isExiting, x, y);
}
std::optional<uint32_t> receiveEvent(InputEvent** outEvent = nullptr) {
if (mInputReceiver == nullptr) {
ADD_FAILURE() << "Invalid receive event on window with no receiver";
return std::nullopt;
}
return mInputReceiver->receiveEvent(outEvent);
}
void finishEvent(uint32_t sequenceNum) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver";
mInputReceiver->finishEvent(sequenceNum);
}
void sendTimeline(int32_t inputEventId, std::array<nsecs_t, GraphicsTimeline::SIZE> timeline) {
ASSERT_NE(mInputReceiver, nullptr) << "Invalid receive event on window with no receiver";
mInputReceiver->sendTimeline(inputEventId, timeline);
}
InputEvent* consume() {
if (mInputReceiver == nullptr) {
return nullptr;
}
return mInputReceiver->consume();
}
MotionEvent* consumeMotion() {
InputEvent* event = consume();
if (event == nullptr) {
ADD_FAILURE() << "Consume failed : no event";
return nullptr;
}
if (event->getType() != AINPUT_EVENT_TYPE_MOTION) {
ADD_FAILURE() << "Instead of motion event, got "
<< inputEventTypeToString(event->getType());
return nullptr;
}
return static_cast<MotionEvent*>(event);
}
void assertNoEvents() {
if (mInputReceiver == nullptr &&
mInfo.inputFeatures.test(InputWindowInfo::Feature::NO_INPUT_CHANNEL)) {
return; // Can't receive events if the window does not have input channel
}
ASSERT_NE(nullptr, mInputReceiver)
<< "Window without InputReceiver must specify feature NO_INPUT_CHANNEL";
mInputReceiver->assertNoEvents();
}
sp<IBinder> getToken() { return mInfo.token; }
const std::string& getName() { return mName; }
void setOwnerInfo(int32_t ownerPid, int32_t ownerUid) {
mInfo.ownerPid = ownerPid;
mInfo.ownerUid = ownerUid;
}
private:
const std::string mName;
std::unique_ptr<FakeInputReceiver> mInputReceiver;
static std::atomic<int32_t> sId; // each window gets a unique id, like in surfaceflinger
};
std::atomic<int32_t> FakeWindowHandle::sId{1};
static InputEventInjectionResult injectKey(
const sp<InputDispatcher>& dispatcher, int32_t action, int32_t repeatCount,
int32_t displayId = ADISPLAY_ID_NONE,
InputEventInjectionSync syncMode = InputEventInjectionSync::WAIT_FOR_RESULT,
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
bool allowKeyRepeat = true) {
KeyEvent event;
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key down event.
event.initialize(InputEvent::nextId(), DEVICE_ID, AINPUT_SOURCE_KEYBOARD, displayId,
INVALID_HMAC, action, /* flags */ 0, AKEYCODE_A, KEY_A, AMETA_NONE,
repeatCount, currentTime, currentTime);
int32_t policyFlags = POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER;
if (!allowKeyRepeat) {
policyFlags |= POLICY_FLAG_DISABLE_KEY_REPEAT;
}
// Inject event until dispatch out.
return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, syncMode,
injectionTimeout, policyFlags);
}
static InputEventInjectionResult injectKeyDown(const sp<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /* repeatCount */ 0, displayId);
}
// Inject a down event that has key repeat disabled. This allows InputDispatcher to idle without
// sending a subsequent key up. When key repeat is enabled, the dispatcher cannot idle because it
// has to be woken up to process the repeating key.
static InputEventInjectionResult injectKeyDownNoRepeat(const sp<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_DOWN, /* repeatCount */ 0, displayId,
InputEventInjectionSync::WAIT_FOR_RESULT, INJECT_EVENT_TIMEOUT,
/* allowKeyRepeat */ false);
}
static InputEventInjectionResult injectKeyUp(const sp<InputDispatcher>& dispatcher,
int32_t displayId = ADISPLAY_ID_NONE) {
return injectKey(dispatcher, AKEY_EVENT_ACTION_UP, /* repeatCount */ 0, displayId);
}
class PointerBuilder {
public:
PointerBuilder(int32_t id, int32_t toolType) {
mProperties.clear();
mProperties.id = id;
mProperties.toolType = toolType;
mCoords.clear();
}
PointerBuilder& x(float x) { return axis(AMOTION_EVENT_AXIS_X, x); }
PointerBuilder& y(float y) { return axis(AMOTION_EVENT_AXIS_Y, y); }
PointerBuilder& axis(int32_t axis, float value) {
mCoords.setAxisValue(axis, value);
return *this;
}
PointerProperties buildProperties() const { return mProperties; }
PointerCoords buildCoords() const { return mCoords; }
private:
PointerProperties mProperties;
PointerCoords mCoords;
};
class MotionEventBuilder {
public:
MotionEventBuilder(int32_t action, int32_t source) {
mAction = action;
mSource = source;
mEventTime = systemTime(SYSTEM_TIME_MONOTONIC);
}
MotionEventBuilder& eventTime(nsecs_t eventTime) {
mEventTime = eventTime;
return *this;
}
MotionEventBuilder& displayId(int32_t displayId) {
mDisplayId = displayId;
return *this;
}
MotionEventBuilder& actionButton(int32_t actionButton) {
mActionButton = actionButton;
return *this;
}
MotionEventBuilder& buttonState(int32_t buttonState) {
mButtonState = buttonState;
return *this;
}
MotionEventBuilder& rawXCursorPosition(float rawXCursorPosition) {
mRawXCursorPosition = rawXCursorPosition;
return *this;
}
MotionEventBuilder& rawYCursorPosition(float rawYCursorPosition) {
mRawYCursorPosition = rawYCursorPosition;
return *this;
}
MotionEventBuilder& pointer(PointerBuilder pointer) {
mPointers.push_back(pointer);
return *this;
}
MotionEventBuilder& addFlag(uint32_t flags) {
mFlags |= flags;
return *this;
}
MotionEvent build() {
std::vector<PointerProperties> pointerProperties;
std::vector<PointerCoords> pointerCoords;
for (const PointerBuilder& pointer : mPointers) {
pointerProperties.push_back(pointer.buildProperties());
pointerCoords.push_back(pointer.buildCoords());
}
// Set mouse cursor position for the most common cases to avoid boilerplate.
if (mSource == AINPUT_SOURCE_MOUSE &&
!MotionEvent::isValidCursorPosition(mRawXCursorPosition, mRawYCursorPosition) &&
mPointers.size() == 1) {
mRawXCursorPosition = pointerCoords[0].getX();
mRawYCursorPosition = pointerCoords[0].getY();
}
MotionEvent event;
ui::Transform identityTransform;
event.initialize(InputEvent::nextId(), DEVICE_ID, mSource, mDisplayId, INVALID_HMAC,
mAction, mActionButton, mFlags, /* edgeFlags */ 0, AMETA_NONE,
mButtonState, MotionClassification::NONE, identityTransform,
/* xPrecision */ 0, /* yPrecision */ 0, mRawXCursorPosition,
mRawYCursorPosition, mDisplayWidth, mDisplayHeight, mEventTime, mEventTime,
mPointers.size(), pointerProperties.data(), pointerCoords.data());
return event;
}
private:
int32_t mAction;
int32_t mSource;
nsecs_t mEventTime;
int32_t mDisplayId{ADISPLAY_ID_DEFAULT};
int32_t mActionButton{0};
int32_t mButtonState{0};
int32_t mFlags{0};
float mRawXCursorPosition{AMOTION_EVENT_INVALID_CURSOR_POSITION};
float mRawYCursorPosition{AMOTION_EVENT_INVALID_CURSOR_POSITION};
int32_t mDisplayWidth{AMOTION_EVENT_INVALID_DISPLAY_SIZE};
int32_t mDisplayHeight{AMOTION_EVENT_INVALID_DISPLAY_SIZE};
std::vector<PointerBuilder> mPointers;
};
static InputEventInjectionResult injectMotionEvent(
const sp<InputDispatcher>& dispatcher, const MotionEvent& event,
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT) {
return dispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID, injectionMode,
injectionTimeout,
POLICY_FLAG_FILTERED | POLICY_FLAG_PASS_TO_USER);
}
static InputEventInjectionResult injectMotionEvent(
const sp<InputDispatcher>& dispatcher, int32_t action, int32_t source, int32_t displayId,
const PointF& position,
const PointF& cursorPosition = {AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
std::chrono::milliseconds injectionTimeout = INJECT_EVENT_TIMEOUT,
InputEventInjectionSync injectionMode = InputEventInjectionSync::WAIT_FOR_RESULT,
nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC)) {
MotionEvent event = MotionEventBuilder(action, source)
.displayId(displayId)
.eventTime(eventTime)
.rawXCursorPosition(cursorPosition.x)
.rawYCursorPosition(cursorPosition.y)
.pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER)
.x(position.x)
.y(position.y))
.build();
// Inject event until dispatch out.
return injectMotionEvent(dispatcher, event, injectionTimeout, injectionMode);
}
static InputEventInjectionResult injectMotionDown(const sp<InputDispatcher>& dispatcher,
int32_t source, int32_t displayId,
const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_DOWN, source, displayId, location);
}
static InputEventInjectionResult injectMotionUp(const sp<InputDispatcher>& dispatcher,
int32_t source, int32_t displayId,
const PointF& location = {100, 200}) {
return injectMotionEvent(dispatcher, AMOTION_EVENT_ACTION_UP, source, displayId, location);
}
static NotifyKeyArgs generateKeyArgs(int32_t action, int32_t displayId = ADISPLAY_ID_NONE) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid key event.
NotifyKeyArgs args(/* id */ 0, currentTime, 0 /*readTime*/, DEVICE_ID, AINPUT_SOURCE_KEYBOARD,
displayId, POLICY_FLAG_PASS_TO_USER, action, /* flags */ 0, AKEYCODE_A,
KEY_A, AMETA_NONE, currentTime);
return args;
}
static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId,
const std::vector<PointF>& points) {
size_t pointerCount = points.size();
if (action == AMOTION_EVENT_ACTION_DOWN || action == AMOTION_EVENT_ACTION_UP) {
EXPECT_EQ(1U, pointerCount) << "Actions DOWN and UP can only contain a single pointer";
}
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER;
pointerCoords[i].clear();
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, points[i].x);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, points[i].y);
}
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
// Define a valid motion event.
NotifyMotionArgs args(/* id */ 0, currentTime, 0 /*readTime*/, DEVICE_ID, source, displayId,
POLICY_FLAG_PASS_TO_USER, action, /* actionButton */ 0, /* flags */ 0,
AMETA_NONE, /* buttonState */ 0, MotionClassification::NONE,
AMOTION_EVENT_EDGE_FLAG_NONE, pointerCount, pointerProperties,
pointerCoords, /* xPrecision */ 0, /* yPrecision */ 0,
AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, currentTime, /* videoFrames */ {});
return args;
}
static NotifyMotionArgs generateMotionArgs(int32_t action, int32_t source, int32_t displayId) {
return generateMotionArgs(action, source, displayId, {PointF{100, 200}});
}
static NotifyPointerCaptureChangedArgs generatePointerCaptureChangedArgs(bool enabled) {
return NotifyPointerCaptureChangedArgs(/* id */ 0, systemTime(SYSTEM_TIME_MONOTONIC), enabled);
}
TEST_F(InputDispatcherTest, SetInputWindow_SingleWindowTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows once with FLAG_NOT_TOUCH_MODAL should not cause any issues.
* To ensure that window receives only events that were directly inside of it, add
* FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input
* when finding touched windows.
* This test serves as a sanity check for the next test, where setInputWindows is
* called twice.
*/
TEST_F(InputDispatcherTest, SetInputWindowOnce_SingleWindowTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
window->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
/**
* Calling setInputWindows twice, with the same info, should not cause any issues.
* To ensure that window receives only events that were directly inside of it, add
* FLAG_NOT_TOUCH_MODAL. This will enforce using the touchableRegion of the input
* when finding touched windows.
*/
TEST_F(InputDispatcherTest, SetInputWindowTwice_SingleWindowTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 100, 100));
window->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
// The foreground window should receive the first touch down event.
TEST_F(InputDispatcherTest, SetInputWindow_MultiWindowsTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Top window should receive the touch down event. Second window should not receive anything.
windowTop->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowSecond->assertNoEvents();
}
TEST_F(InputDispatcherTest, HoverMoveEnterMouseClickAndHoverMoveExit) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowLeft =
new FakeWindowHandle(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
windowLeft->setFrame(Rect(0, 0, 600, 800));
windowLeft->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
sp<FakeWindowHandle> windowRight =
new FakeWindowHandle(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
windowRight->setFrame(Rect(600, 0, 1200, 800));
windowRight->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}});
// Start cursor position in right window so that we can move the cursor to left window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(900)
.y(400))
.build()));
windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
// Move cursor into left window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
// Inject a series of mouse events for a mouse click
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS,
AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_PRESS,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE,
AINPUT_SOURCE_MOUSE)
.buttonState(0)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_RELEASE,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE)
.buttonState(0)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
windowLeft->consumeMotionUp(ADISPLAY_ID_DEFAULT);
// Move mouse cursor back to right window
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_MOVE,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(900)
.y(400))
.build()));
windowLeft->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
windowRight->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_MOVE,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
}
// This test is different from the test above that HOVER_ENTER and HOVER_EXIT events are injected
// directly in this test.
TEST_F(InputDispatcherTest, HoverEnterMouseClickAndHoverExit) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
window->setFrame(Rect(0, 0, 1200, 800));
window->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_ENTER,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_ENTER,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
// Inject a series of mouse events for a mouse click
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_PRESS,
AINPUT_SOURCE_MOUSE)
.buttonState(AMOTION_EVENT_BUTTON_PRIMARY)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_PRESS,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_BUTTON_RELEASE,
AINPUT_SOURCE_MOUSE)
.buttonState(0)
.actionButton(AMOTION_EVENT_BUTTON_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_BUTTON_RELEASE,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_MOUSE)
.buttonState(0)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeMotionUp(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_HOVER_EXIT,
AINPUT_SOURCE_MOUSE)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_MOUSE)
.x(300)
.y(400))
.build()));
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_HOVER_EXIT,
ADISPLAY_ID_DEFAULT, 0 /* expectedFlag */);
}
TEST_F(InputDispatcherTest, DispatchMouseEventsUnderCursor) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowLeft =
new FakeWindowHandle(application, mDispatcher, "Left", ADISPLAY_ID_DEFAULT);
windowLeft->setFrame(Rect(0, 0, 600, 800));
windowLeft->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
sp<FakeWindowHandle> windowRight =
new FakeWindowHandle(application, mDispatcher, "Right", ADISPLAY_ID_DEFAULT);
windowRight->setFrame(Rect(600, 0, 1200, 800));
windowRight->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowLeft, windowRight}}});
// Inject an event with coordinate in the area of right window, with mouse cursor in the area of
// left window. This event should be dispatched to the left window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE,
ADISPLAY_ID_DEFAULT, {610, 400}, {599, 400}));
windowLeft->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowRight->assertNoEvents();
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsKeyStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that key stream should be terminated with FLAG_CANCELED
// on the app side.
NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID);
mDispatcher->notifyDeviceReset(&args);
window->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
AKEY_EVENT_FLAG_CANCELED);
}
TEST_F(InputDispatcherTest, NotifyDeviceReset_CancelsMotionStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// When device reset happens, that motion stream should be terminated with ACTION_CANCEL
// on the app side.
NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID);
mDispatcher->notifyDeviceReset(&args);
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
using TransferFunction =
std::function<bool(sp<InputDispatcher> dispatcher, sp<IBinder>, sp<IBinder>)>;
class TransferTouchFixture : public InputDispatcherTest,
public ::testing::WithParamInterface<TransferFunction> {};
TEST_P(TransferTouchFixture, TransferTouch_OnePointer) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a couple of windows
sp<FakeWindowHandle> firstWindow =
new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> secondWindow =
new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
// Send down to the first window
NotifyMotionArgs downMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&downMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Transfer touch to the second window
TransferFunction f = GetParam();
const bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
// Send up event to the second window
NotifyMotionArgs upMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets no events and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
TEST_P(TransferTouchFixture, TransferTouch_TwoPointersNonSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
PointF touchPoint = {10, 10};
// Create a couple of windows
sp<FakeWindowHandle> firstWindow =
new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> secondWindow =
new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
// Send down to the first window
NotifyMotionArgs downMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchPoint});
mDispatcher->notifyMotion(&downMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send pointer down to the first window
NotifyMotionArgs pointerDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{touchPoint, touchPoint});
mDispatcher->notifyMotion(&pointerDownMotionArgs);
// Only the first window should get the pointer down event
firstWindow->consumeMotionPointerDown(1);
secondWindow->assertNoEvents();
// Transfer touch focus to the second window
TransferFunction f = GetParam();
bool success = f(mDispatcher, firstWindow->getToken(), secondWindow->getToken());
ASSERT_TRUE(success);
// The first window gets cancel and the second gets down and pointer down
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionDown();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
NotifyMotionArgs pointerUpMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{touchPoint, touchPoint});
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
NotifyMotionArgs upMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
// For the cases of single pointer touch and two pointers non-split touch, the api's
// 'transferTouch' and 'transferTouchFocus' are equivalent in behaviour. They only differ
// for the case where there are multiple pointers split across several windows.
INSTANTIATE_TEST_SUITE_P(TransferFunctionTests, TransferTouchFixture,
::testing::Values(
[&](sp<InputDispatcher> dispatcher, sp<IBinder> /*ignored*/,
sp<IBinder> destChannelToken) {
return dispatcher->transferTouch(destChannelToken);
},
[&](sp<InputDispatcher> dispatcher, sp<IBinder> from,
sp<IBinder> to) {
return dispatcher->transferTouchFocus(from, to,
false /*isDragAndDrop*/);
}));
TEST_F(InputDispatcherTest, TransferTouchFocus_TwoPointersSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> firstWindow =
new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
firstWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> secondWindow =
new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
secondWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
NotifyMotionArgs firstDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {pointInFirst});
mDispatcher->notifyMotion(&firstDownMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
NotifyMotionArgs secondDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&secondDownMotionArgs);
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Transfer touch focus to the second window
mDispatcher->transferTouchFocus(firstWindow->getToken(), secondWindow->getToken());
// The first window gets cancel and the new gets pointer down (it already saw down)
firstWindow->consumeMotionCancel();
secondWindow->consumeMotionPointerDown(1);
// Send pointer up to the second window
NotifyMotionArgs pointerUpMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets nothing and the second gets pointer up
firstWindow->assertNoEvents();
secondWindow->consumeMotionPointerUp(1);
// Send up event to the second window
NotifyMotionArgs upMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets nothing and the second gets up
firstWindow->assertNoEvents();
secondWindow->consumeMotionUp();
}
// Same as TransferTouchFocus_TwoPointersSplitTouch, but using 'transferTouch' api.
// Unlike 'transferTouchFocus', calling 'transferTouch' when there are two windows receiving
// touch is not supported, so the touch should continue on those windows and the transferred-to
// window should get nothing.
TEST_F(InputDispatcherTest, TransferTouch_TwoPointersSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> firstWindow =
new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
firstWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Create a non touch modal window that supports split touch
sp<FakeWindowHandle> secondWindow =
new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
secondWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
NotifyMotionArgs firstDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {pointInFirst});
mDispatcher->notifyMotion(&firstDownMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
NotifyMotionArgs secondDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&secondDownMotionArgs);
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Transfer touch focus to the second window
const bool transferred = mDispatcher->transferTouch(secondWindow->getToken());
// The 'transferTouch' call should not succeed, because there are 2 touched windows
ASSERT_FALSE(transferred);
firstWindow->assertNoEvents();
secondWindow->assertNoEvents();
// The rest of the dispatch should proceed as normal
// Send pointer up to the second window
NotifyMotionArgs pointerUpMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets MOVE and the second gets pointer up
firstWindow->consumeMotionMove();
secondWindow->consumeMotionUp();
// Send up event to the first window
NotifyMotionArgs upMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets nothing and the second gets up
firstWindow->consumeMotionUp();
secondWindow->assertNoEvents();
}
TEST_F(InputDispatcherTest, FocusedWindow_ReceivesFocusEventAndKeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, UnfocusedWindow_DoesNotReceiveFocusEventOrKeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
mDispatcher->waitForIdle();
window->assertNoEvents();
}
// If a window is touchable, but does not have focus, it should receive motion events, but not keys
TEST_F(InputDispatcherTest, UnfocusedWindow_ReceivesMotionsButNotKeys) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Send key
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyKey(&keyArgs);
// Send motion
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive only the motion event
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->assertNoEvents(); // Key event or focus event will not be received
}
TEST_F(InputDispatcherTest, PointerCancel_SendCancelWhenSplitTouch) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
// Create first non touch modal window that supports split touch
sp<FakeWindowHandle> firstWindow =
new FakeWindowHandle(application, mDispatcher, "First Window", ADISPLAY_ID_DEFAULT);
firstWindow->setFrame(Rect(0, 0, 600, 400));
firstWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Create second non touch modal window that supports split touch
sp<FakeWindowHandle> secondWindow =
new FakeWindowHandle(application, mDispatcher, "Second Window", ADISPLAY_ID_DEFAULT);
secondWindow->setFrame(Rect(0, 400, 600, 800));
secondWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Add the windows to the dispatcher
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {firstWindow, secondWindow}}});
PointF pointInFirst = {300, 200};
PointF pointInSecond = {300, 600};
// Send down to the first window
NotifyMotionArgs firstDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {pointInFirst});
mDispatcher->notifyMotion(&firstDownMotionArgs);
// Only the first window should get the down event
firstWindow->consumeMotionDown();
secondWindow->assertNoEvents();
// Send down to the second window
NotifyMotionArgs secondDownMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_DOWN |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
mDispatcher->notifyMotion(&secondDownMotionArgs);
// The first window gets a move and the second a down
firstWindow->consumeMotionMove();
secondWindow->consumeMotionDown();
// Send pointer cancel to the second window
NotifyMotionArgs pointerUpMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_POINTER_UP |
(1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{pointInFirst, pointInSecond});
pointerUpMotionArgs.flags |= AMOTION_EVENT_FLAG_CANCELED;
mDispatcher->notifyMotion(&pointerUpMotionArgs);
// The first window gets move and the second gets cancel.
firstWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
secondWindow->consumeMotionCancel(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_CANCELED);
// Send up event.
NotifyMotionArgs upMotionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&upMotionArgs);
// The first window gets up and the second gets nothing.
firstWindow->consumeMotionUp();
secondWindow->assertNoEvents();
}
TEST_F(InputDispatcherTest, SendTimeline_DoesNotCrashDispatcher) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline;
graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME] = 2;
graphicsTimeline[GraphicsTimeline::PRESENT_TIME] = 3;
window->sendTimeline(1 /*inputEventId*/, graphicsTimeline);
window->assertNoEvents();
mDispatcher->waitForIdle();
}
class FakeMonitorReceiver {
public:
FakeMonitorReceiver(const sp<InputDispatcher>& dispatcher, const std::string name,
int32_t displayId, bool isGestureMonitor = false) {
base::Result<std::unique_ptr<InputChannel>> channel =
dispatcher->createInputMonitor(displayId, isGestureMonitor, name, MONITOR_PID);
mInputReceiver = std::make_unique<FakeInputReceiver>(std::move(*channel), name);
}
sp<IBinder> getToken() { return mInputReceiver->getToken(); }
void consumeKeyDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_DOWN,
expectedDisplayId, expectedFlags);
}
std::optional<int32_t> receiveEvent() { return mInputReceiver->receiveEvent(); }
void finishEvent(uint32_t consumeSeq) { return mInputReceiver->finishEvent(consumeSeq); }
void consumeMotionDown(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_DOWN,
expectedDisplayId, expectedFlags);
}
void consumeMotionUp(int32_t expectedDisplayId, int32_t expectedFlags = 0) {
mInputReceiver->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_UP,
expectedDisplayId, expectedFlags);
}
MotionEvent* consumeMotion() {
InputEvent* event = mInputReceiver->consume();
if (!event) {
ADD_FAILURE() << "No event was produced";
return nullptr;
}
if (event->getType() != AINPUT_EVENT_TYPE_MOTION) {
ADD_FAILURE() << "Received event of type " << event->getType() << " instead of motion";
return nullptr;
}
return static_cast<MotionEvent*>(event);
}
void assertNoEvents() { mInputReceiver->assertNoEvents(); }
private:
std::unique_ptr<FakeInputReceiver> mInputReceiver;
};
// Tests for gesture monitors
TEST_F(InputDispatcherTest, GestureMonitor_ReceivesMotionEvents) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, GestureMonitor_DoesNotReceiveKeyEvents) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
monitor.assertNoEvents();
}
TEST_F(InputDispatcherTest, GestureMonitor_CanPilferAfterWindowIsRemovedMidStream) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
window->releaseChannel();
mDispatcher->pilferPointers(monitor.getToken());
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, UnresponsiveGestureMonitor_GetsAnr) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT));
std::optional<uint32_t> consumeSeq = monitor.receiveEvent();
ASSERT_TRUE(consumeSeq);
mFakePolicy->assertNotifyMonitorUnresponsiveWasCalled(DISPATCHING_TIMEOUT);
monitor.finishEvent(*consumeSeq);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyMonitorResponsiveWasCalled();
}
// Tests for gesture monitors
TEST_F(InputDispatcherTest, GestureMonitor_NoWindowTransform) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->setWindowOffset(20, 40);
window->setWindowTransform(0, 1, -1, 0);
FakeMonitorReceiver monitor = FakeMonitorReceiver(mDispatcher, "GM_1", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
MotionEvent* event = monitor.consumeMotion();
// Even though window has transform, gesture monitor must not.
ASSERT_EQ(ui::Transform(), event->getTransform());
}
TEST_F(InputDispatcherTest, TestMoveEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
// Window should receive motion down event.
window->consumeMotionDown(ADISPLAY_ID_DEFAULT);
motionArgs.action = AMOTION_EVENT_ACTION_MOVE;
motionArgs.id += 1;
motionArgs.eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
motionArgs.pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X,
motionArgs.pointerCoords[0].getX() - 10);
mDispatcher->notifyMotion(&motionArgs);
window->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_MOVE, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
/**
* Dispatcher has touch mode enabled by default. Typically, the policy overrides that value to
* the device default right away. In the test scenario, we check both the default value,
* and the action of enabling / disabling.
*/
TEST_F(InputDispatcherTest, TouchModeState_IsSentToApps) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
SCOPED_TRACE("Check default value of touch mode");
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(false /*hasFocus*/, true /*inTouchMode*/);
SCOPED_TRACE("Disable touch mode");
mDispatcher->setInTouchMode(false);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true /*hasFocus*/, false /*inTouchMode*/);
SCOPED_TRACE("Remove the window to trigger focus loss");
window->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
window->consumeFocusEvent(false /*hasFocus*/, false /*inTouchMode*/);
SCOPED_TRACE("Enable touch mode again");
mDispatcher->setInTouchMode(true);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, VerifyInputEvent_KeyEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true /*hasFocus*/, true /*inTouchMode*/);
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(&keyArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::KEY);
ASSERT_EQ(keyArgs.eventTime, verified->eventTimeNanos);
ASSERT_EQ(keyArgs.deviceId, verified->deviceId);
ASSERT_EQ(keyArgs.source, verified->source);
ASSERT_EQ(keyArgs.displayId, verified->displayId);
const VerifiedKeyEvent& verifiedKey = static_cast<const VerifiedKeyEvent&>(*verified);
ASSERT_EQ(keyArgs.action, verifiedKey.action);
ASSERT_EQ(keyArgs.downTime, verifiedKey.downTimeNanos);
ASSERT_EQ(keyArgs.flags & VERIFIED_KEY_EVENT_FLAGS, verifiedKey.flags);
ASSERT_EQ(keyArgs.keyCode, verifiedKey.keyCode);
ASSERT_EQ(keyArgs.scanCode, verifiedKey.scanCode);
ASSERT_EQ(keyArgs.metaState, verifiedKey.metaState);
ASSERT_EQ(0, verifiedKey.repeatCount);
}
TEST_F(InputDispatcherTest, VerifyInputEvent_MotionEvent) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
InputEvent* event = window->consume();
ASSERT_NE(event, nullptr);
std::unique_ptr<VerifiedInputEvent> verified = mDispatcher->verifyInputEvent(*event);
ASSERT_NE(verified, nullptr);
ASSERT_EQ(verified->type, VerifiedInputEvent::Type::MOTION);
EXPECT_EQ(motionArgs.eventTime, verified->eventTimeNanos);
EXPECT_EQ(motionArgs.deviceId, verified->deviceId);
EXPECT_EQ(motionArgs.source, verified->source);
EXPECT_EQ(motionArgs.displayId, verified->displayId);
const VerifiedMotionEvent& verifiedMotion = static_cast<const VerifiedMotionEvent&>(*verified);
EXPECT_EQ(motionArgs.pointerCoords[0].getX(), verifiedMotion.rawX);
EXPECT_EQ(motionArgs.pointerCoords[0].getY(), verifiedMotion.rawY);
EXPECT_EQ(motionArgs.action & AMOTION_EVENT_ACTION_MASK, verifiedMotion.actionMasked);
EXPECT_EQ(motionArgs.downTime, verifiedMotion.downTimeNanos);
EXPECT_EQ(motionArgs.flags & VERIFIED_MOTION_EVENT_FLAGS, verifiedMotion.flags);
EXPECT_EQ(motionArgs.metaState, verifiedMotion.metaState);
EXPECT_EQ(motionArgs.buttonState, verifiedMotion.buttonState);
}
TEST_F(InputDispatcherTest, NonPointerMotionEvent_NotTransformed) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "Test window", ADISPLAY_ID_DEFAULT);
const std::string name = window->getName();
// Window gets transformed by offset values.
window->setWindowOffset(500.0f, 500.0f);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// First, we set focused window so that focusedWindowHandle is not null.
setFocusedWindow(window);
// Second, we consume focus event if it is right or wrong according to onFocusChangedLocked.
window->consumeFocusEvent(true);
constexpr const std::array nonPointerSources = {AINPUT_SOURCE_TRACKBALL,
AINPUT_SOURCE_MOUSE_RELATIVE,
AINPUT_SOURCE_JOYSTICK};
for (const int source : nonPointerSources) {
// Notify motion with a non-pointer source.
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_MOVE, source, ADISPLAY_ID_DEFAULT);
mDispatcher->notifyMotion(&motionArgs);
MotionEvent* event = window->consumeMotion();
ASSERT_NE(event, nullptr);
const MotionEvent& motionEvent = *event;
EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, motionEvent.getAction());
EXPECT_EQ(motionArgs.pointerCount, motionEvent.getPointerCount());
float expectedX = motionArgs.pointerCoords[0].getX();
float expectedY = motionArgs.pointerCoords[0].getY();
// Ensure the axis values from the final motion event are not transformed.
EXPECT_EQ(expectedX, motionEvent.getX(0))
<< "expected " << expectedX << " for x coord of " << name.c_str() << ", got "
<< motionEvent.getX(0);
EXPECT_EQ(expectedY, motionEvent.getY(0))
<< "expected " << expectedY << " for y coord of " << name.c_str() << ", got "
<< motionEvent.getY(0);
// Ensure the raw and transformed axis values for the motion event are the same.
EXPECT_EQ(motionEvent.getRawX(0), motionEvent.getX(0))
<< "expected raw and transformed X-axis values to be equal";
EXPECT_EQ(motionEvent.getRawY(0), motionEvent.getY(0))
<< "expected raw and transformed Y-axis values to be equal";
}
}
/**
* Ensure that separate calls to sign the same data are generating the same key.
* We avoid asserting against INVALID_HMAC. Since the key is random, there is a non-zero chance
* that a specific key and data combination would produce INVALID_HMAC, which would cause flaky
* tests.
*/
TEST_F(InputDispatcherTest, GeneratedHmac_IsConsistent) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> hmac1 = mDispatcher->sign(verifiedEvent);
std::array<uint8_t, 32> hmac2 = mDispatcher->sign(verifiedEvent);
ASSERT_EQ(hmac1, hmac2);
}
/**
* Ensure that changes in VerifiedKeyEvent produce a different hmac.
*/
TEST_F(InputDispatcherTest, GeneratedHmac_ChangesWhenFieldsChange) {
KeyEvent event = getTestKeyEvent();
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEvent(event);
std::array<uint8_t, 32> initialHmac = mDispatcher->sign(verifiedEvent);
verifiedEvent.deviceId += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.source += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.eventTimeNanos += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.displayId += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.action += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.downTimeNanos += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.flags += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.keyCode += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.scanCode += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.metaState += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
verifiedEvent.repeatCount += 1;
ASSERT_NE(initialHmac, mDispatcher->sign(verifiedEvent));
}
TEST_F(InputDispatcherTest, SetFocusedWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// Top window is also focusable but is not granted focus.
windowTop->setFocusable(true);
windowSecond->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowSecond);
windowSecond->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
// Focused window should receive event.
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
windowTop->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestInvalidChannel) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
// Release channel for window is no longer valid.
window->releaseChannel();
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
// Test inject a key down, should timeout.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
// window channel is invalid, so it should not receive any input event.
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestNoFocusableWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// Window is not focusable.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
// Test inject a key down, should timeout.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
// window is invalid, so it should not receive any input event.
window->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_CheckFocusedToken) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
windowTop->setFocusable(true);
windowSecond->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowTop);
windowTop->consumeFocusEvent(true);
setFocusedWindow(windowSecond, windowTop);
windowSecond->consumeFocusEvent(true);
windowTop->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
// Focused window should receive event.
windowSecond->consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DropRequestFocusTokenNotFocused) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> windowTop =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> windowSecond =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
windowTop->setFocusable(true);
windowSecond->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowTop, windowSecond}}});
setFocusedWindow(windowSecond, windowTop);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
// Event should be dropped.
windowTop->assertNoEvents();
windowSecond->assertNoEvents();
}
TEST_F(InputDispatcherTest, SetFocusedWindow_DeferInvisibleWindow) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
sp<FakeWindowHandle> previousFocusedWindow =
new FakeWindowHandle(application, mDispatcher, "previousFocusedWindow",
ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
window->setFocusable(true);
previousFocusedWindow->setFocusable(true);
window->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window, previousFocusedWindow}}});
setFocusedWindow(previousFocusedWindow);
previousFocusedWindow->consumeFocusEvent(true);
// Requesting focus on invisible window takes focus from currently focused window.
setFocusedWindow(window);
previousFocusedWindow->consumeFocusEvent(false);
// Injected key goes to pending queue.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */,
ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE));
// Window does not get focus event or key down.
window->assertNoEvents();
// Window becomes visible.
window->setVisible(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
// Window receives focus event.
window->consumeFocusEvent(true);
// Focused window receives key down.
window->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
TEST_F(InputDispatcherTest, DisplayRemoved) {
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(application, mDispatcher, "window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
// window is granted focus.
window->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {window}}});
setFocusedWindow(window);
window->consumeFocusEvent(true);
// When a display is removed window loses focus.
mDispatcher->displayRemoved(ADISPLAY_ID_DEFAULT);
window->consumeFocusEvent(false);
}
/**
* Launch two windows, with different owners. One window (slipperyExitWindow) has Flag::SLIPPERY,
* and overlaps the other window, slipperyEnterWindow. The window 'slipperyExitWindow' is on top
* of the 'slipperyEnterWindow'.
*
* Inject touch down into the top window. Upon receipt of the DOWN event, move the window in such
* a way so that the touched location is no longer covered by the top window.
*
* Next, inject a MOVE event. Because the top window already moved earlier, this event is now
* positioned over the bottom (slipperyEnterWindow) only. And because the top window had
* Flag::SLIPPERY, this will cause the top window to lose the touch event (it will receive
* ACTION_CANCEL instead), and the bottom window will receive a newly generated gesture (starting
* with ACTION_DOWN).
* Thus, the touch has been transferred from the top window into the bottom window, because the top
* window moved itself away from the touched location and had Flag::SLIPPERY.
*
* Even though the top window moved away from the touched location, it is still obscuring the bottom
* window. It's just not obscuring it at the touched location. That means, FLAG_WINDOW_IS_PARTIALLY_
* OBSCURED should be set for the MotionEvent that reaches the bottom window.
*
* In this test, we ensure that the event received by the bottom window has
* FLAG_WINDOW_IS_PARTIALLY_OBSCURED.
*/
TEST_F(InputDispatcherTest, SlipperyWindow_SetsFlagPartiallyObscured) {
constexpr int32_t SLIPPERY_PID = INJECTOR_PID + 1;
constexpr int32_t SLIPPERY_UID = INJECTOR_UID + 1;
std::shared_ptr<FakeApplicationHandle> application = std::make_shared<FakeApplicationHandle>();
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
sp<FakeWindowHandle> slipperyExitWindow =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
slipperyExitWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SLIPPERY);
// Make sure this one overlaps the bottom window
slipperyExitWindow->setFrame(Rect(25, 25, 75, 75));
// Change the owner uid/pid of the window so that it is considered to be occluding the bottom
// one. Windows with the same owner are not considered to be occluding each other.
slipperyExitWindow->setOwnerInfo(SLIPPERY_PID, SLIPPERY_UID);
sp<FakeWindowHandle> slipperyEnterWindow =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
slipperyExitWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}});
// Use notifyMotion instead of injecting to avoid dealing with injection permissions
NotifyMotionArgs args = generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{50, 50}});
mDispatcher->notifyMotion(&args);
slipperyExitWindow->consumeMotionDown();
slipperyExitWindow->setFrame(Rect(70, 70, 100, 100));
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {slipperyExitWindow, slipperyEnterWindow}}});
args = generateMotionArgs(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {{51, 51}});
mDispatcher->notifyMotion(&args);
slipperyExitWindow->consumeMotionCancel();
slipperyEnterWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT,
AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED);
}
class InputDispatcherKeyRepeatTest : public InputDispatcherTest {
protected:
static constexpr nsecs_t KEY_REPEAT_TIMEOUT = 40 * 1000000; // 40 ms
static constexpr nsecs_t KEY_REPEAT_DELAY = 40 * 1000000; // 40 ms
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
virtual void SetUp() override {
mFakePolicy = new FakeInputDispatcherPolicy();
mFakePolicy->setKeyRepeatConfiguration(KEY_REPEAT_TIMEOUT, KEY_REPEAT_DELAY);
mDispatcher = new InputDispatcher(mFakePolicy);
mDispatcher->setInputDispatchMode(/*enabled*/ true, /*frozen*/ false);
ASSERT_EQ(OK, mDispatcher->start());
setUpWindow();
}
void setUpWindow() {
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = new FakeWindowHandle(mApp, mDispatcher, "Fake Window", ADISPLAY_ID_DEFAULT);
mWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void sendAndConsumeKeyDown(int32_t deviceId) {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN, ADISPLAY_ID_DEFAULT);
keyArgs.deviceId = deviceId;
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Otherwise it won't generate repeat event
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
void expectKeyRepeatOnce(int32_t repeatCount) {
SCOPED_TRACE(StringPrintf("Checking event with repeat count %" PRId32, repeatCount));
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent);
uint32_t eventType = repeatEvent->getType();
ASSERT_EQ(AINPUT_EVENT_TYPE_KEY, eventType);
KeyEvent* repeatKeyEvent = static_cast<KeyEvent*>(repeatEvent);
uint32_t eventAction = repeatKeyEvent->getAction();
EXPECT_EQ(AKEY_EVENT_ACTION_DOWN, eventAction);
EXPECT_EQ(repeatCount, repeatKeyEvent->getRepeatCount());
}
void sendAndConsumeKeyUp(int32_t deviceId) {
NotifyKeyArgs keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT);
keyArgs.deviceId = deviceId;
keyArgs.policyFlags |= POLICY_FLAG_TRUSTED; // Unless it won't generate repeat event
mDispatcher->notifyKey(&keyArgs);
// Window should receive key down event.
mWindow->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_DEFAULT,
0 /*expectedFlags*/);
}
};
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeat) {
sendAndConsumeKeyDown(1 /* deviceId */);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_ReceivesKeyRepeatFromTwoDevices) {
sendAndConsumeKeyDown(1 /* deviceId */);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
sendAndConsumeKeyDown(2 /* deviceId */);
/* repeatCount will start from 1 for deviceId 2 */
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
expectKeyRepeatOnce(repeatCount);
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterUp) {
sendAndConsumeKeyDown(1 /* deviceId */);
expectKeyRepeatOnce(1 /*repeatCount*/);
sendAndConsumeKeyUp(1 /* deviceId */);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatAfterStaleDeviceKeyUp) {
sendAndConsumeKeyDown(1 /* deviceId */);
expectKeyRepeatOnce(1 /*repeatCount*/);
sendAndConsumeKeyDown(2 /* deviceId */);
expectKeyRepeatOnce(1 /*repeatCount*/);
// Stale key up from device 1.
sendAndConsumeKeyUp(1 /* deviceId */);
// Device 2 is still down, keep repeating
expectKeyRepeatOnce(2 /*repeatCount*/);
expectKeyRepeatOnce(3 /*repeatCount*/);
// Device 2 key up
sendAndConsumeKeyUp(2 /* deviceId */);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_KeyRepeatStopsAfterRepeatingKeyUp) {
sendAndConsumeKeyDown(1 /* deviceId */);
expectKeyRepeatOnce(1 /*repeatCount*/);
sendAndConsumeKeyDown(2 /* deviceId */);
expectKeyRepeatOnce(1 /*repeatCount*/);
// Device 2 which holds the key repeating goes up, expect the repeating to stop.
sendAndConsumeKeyUp(2 /* deviceId */);
// Device 1 still holds key down, but the repeating was already stopped
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_StopsKeyRepeatAfterDisableInputDevice) {
sendAndConsumeKeyDown(DEVICE_ID);
expectKeyRepeatOnce(1 /*repeatCount*/);
NotifyDeviceResetArgs args(10 /*id*/, 20 /*eventTime*/, DEVICE_ID);
mDispatcher->notifyDeviceReset(&args);
mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT,
AKEY_EVENT_FLAG_CANCELED | AKEY_EVENT_FLAG_LONG_PRESS);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseEventIdFromInputDispatcher) {
sendAndConsumeKeyDown(1 /* deviceId */);
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
EXPECT_EQ(IdGenerator::Source::INPUT_DISPATCHER,
IdGenerator::getSource(repeatEvent->getId()));
}
}
TEST_F(InputDispatcherKeyRepeatTest, FocusedWindow_RepeatKeyEventsUseUniqueEventId) {
sendAndConsumeKeyDown(1 /* deviceId */);
std::unordered_set<int32_t> idSet;
for (int32_t repeatCount = 1; repeatCount <= 10; ++repeatCount) {
InputEvent* repeatEvent = mWindow->consume();
ASSERT_NE(nullptr, repeatEvent) << "Didn't receive event with repeat count " << repeatCount;
int32_t id = repeatEvent->getId();
EXPECT_EQ(idSet.end(), idSet.find(id));
idSet.insert(id);
}
}
/* Test InputDispatcher for MultiDisplay */
class InputDispatcherFocusOnTwoDisplaysTest : public InputDispatcherTest {
public:
static constexpr int32_t SECOND_DISPLAY_ID = 1;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
application1 = std::make_shared<FakeApplicationHandle>();
windowInPrimary =
new FakeWindowHandle(application1, mDispatcher, "D_1", ADISPLAY_ID_DEFAULT);
// Set focus window for primary display, but focused display would be second one.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application1);
windowInPrimary->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary}}});
setFocusedWindow(windowInPrimary);
windowInPrimary->consumeFocusEvent(true);
application2 = std::make_shared<FakeApplicationHandle>();
windowInSecondary =
new FakeWindowHandle(application2, mDispatcher, "D_2", SECOND_DISPLAY_ID);
// Set focus to second display window.
// Set focus display to second one.
mDispatcher->setFocusedDisplay(SECOND_DISPLAY_ID);
// Set focus window for second display.
mDispatcher->setFocusedApplication(SECOND_DISPLAY_ID, application2);
windowInSecondary->setFocusable(true);
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {windowInSecondary}}});
setFocusedWindow(windowInSecondary);
windowInSecondary->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
application1.reset();
windowInPrimary.clear();
application2.reset();
windowInSecondary.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> application1;
sp<FakeWindowHandle> windowInPrimary;
std::shared_ptr<FakeApplicationHandle> application2;
sp<FakeWindowHandle> windowInSecondary;
};
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayTouch) {
// Test touch down on primary display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, SetInputWindow_MultiDisplayFocus) {
// Test inject a key down with display id specified.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
// Test inject a key down without display id specified.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
// Remove all windows in secondary display.
mDispatcher->setInputWindows({{SECOND_DISPLAY_ID, {}}});
// Old focus should receive a cancel event.
windowInSecondary->consumeEvent(AINPUT_EVENT_TYPE_KEY, AKEY_EVENT_ACTION_UP, ADISPLAY_ID_NONE,
AKEY_EVENT_FLAG_CANCELED);
// Test inject a key down, should timeout because of no target window.
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDownNoRepeat(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
windowInPrimary->assertNoEvents();
windowInSecondary->consumeFocusEvent(false);
windowInSecondary->assertNoEvents();
}
// Test per-display input monitors for motion event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorMotionEvent_MultiDisplay) {
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test touch down on primary display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitorInPrimary.consumeMotionDown(ADISPLAY_ID_DEFAULT);
windowInSecondary->assertNoEvents();
monitorInSecondary.assertNoEvents();
// Test touch down on second display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, SECOND_DISPLAY_ID))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(SECOND_DISPLAY_ID);
monitorInSecondary.consumeMotionDown(SECOND_DISPLAY_ID);
// Test inject a non-pointer motion event.
// If specific a display, it will dispatch to the focused window of particular display,
// or it will dispatch to the focused window of focused display.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_NONE))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeMotionDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeMotionDown(ADISPLAY_ID_NONE);
}
// Test per-display input monitors for key event.
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, MonitorKeyEvent_MultiDisplay) {
// Input monitor per display.
FakeMonitorReceiver monitorInPrimary =
FakeMonitorReceiver(mDispatcher, "M_1", ADISPLAY_ID_DEFAULT);
FakeMonitorReceiver monitorInSecondary =
FakeMonitorReceiver(mDispatcher, "M_2", SECOND_DISPLAY_ID);
// Test inject a key down.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
monitorInPrimary.assertNoEvents();
windowInSecondary->consumeKeyDown(ADISPLAY_ID_NONE);
monitorInSecondary.consumeKeyDown(ADISPLAY_ID_NONE);
}
TEST_F(InputDispatcherFocusOnTwoDisplaysTest, CanFocusWindowOnUnfocusedDisplay) {
sp<FakeWindowHandle> secondWindowInPrimary =
new FakeWindowHandle(application1, mDispatcher, "D_1_W2", ADISPLAY_ID_DEFAULT);
secondWindowInPrimary->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {windowInPrimary, secondWindowInPrimary}}});
setFocusedWindow(secondWindowInPrimary);
windowInPrimary->consumeFocusEvent(false);
secondWindowInPrimary->consumeFocusEvent(true);
// Test inject a key down.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
windowInPrimary->assertNoEvents();
windowInSecondary->assertNoEvents();
secondWindowInPrimary->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
class InputFilterTest : public InputDispatcherTest {
protected:
static constexpr int32_t SECOND_DISPLAY_ID = 1;
void testNotifyMotion(int32_t displayId, bool expectToBeFiltered) {
NotifyMotionArgs motionArgs;
motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(&motionArgs);
motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN, displayId);
mDispatcher->notifyMotion(&motionArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
mFakePolicy->assertFilterInputEventWasCalled(motionArgs);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
void testNotifyKey(bool expectToBeFiltered) {
NotifyKeyArgs keyArgs;
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_DOWN);
mDispatcher->notifyKey(&keyArgs);
keyArgs = generateKeyArgs(AKEY_EVENT_ACTION_UP);
mDispatcher->notifyKey(&keyArgs);
ASSERT_TRUE(mDispatcher->waitForIdle());
if (expectToBeFiltered) {
mFakePolicy->assertFilterInputEventWasCalled(keyArgs);
} else {
mFakePolicy->assertFilterInputEventWasNotCalled();
}
}
};
// Test InputFilter for MotionEvent
TEST_F(InputFilterTest, MotionEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if touch events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Test touch on both primary and second display, and check if both events are filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ true);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Test touch on both primary and second display, and check if both events aren't filtered.
testNotifyMotion(ADISPLAY_ID_DEFAULT, /*expectToBeFiltered*/ false);
testNotifyMotion(SECOND_DISPLAY_ID, /*expectToBeFiltered*/ false);
}
// Test InputFilter for KeyEvent
TEST_F(InputFilterTest, KeyEvent_InputFilter) {
// Since the InputFilter is disabled by default, check if key event aren't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
// Enable InputFilter
mDispatcher->setInputFilterEnabled(true);
// Send a key event, and check if it is filtered.
testNotifyKey(/*expectToBeFiltered*/ true);
// Disable InputFilter
mDispatcher->setInputFilterEnabled(false);
// Send a key event, and check if it isn't filtered.
testNotifyKey(/*expectToBeFiltered*/ false);
}
class InputFilterInjectionPolicyTest : public InputDispatcherTest {
protected:
virtual void SetUp() override {
InputDispatcherTest::SetUp();
/**
* We don't need to enable input filter to test the injected event policy, but we enabled it
* here to make the tests more realistic, since this policy only matters when inputfilter is
* on.
*/
mDispatcher->setInputFilterEnabled(true);
std::shared_ptr<InputApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mWindow =
new FakeWindowHandle(application, mDispatcher, "Test Window", ADISPLAY_ID_DEFAULT);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void testInjectedKey(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId,
int32_t flags) {
KeyEvent event;
const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_KEYBOARD,
ADISPLAY_ID_NONE, INVALID_HMAC, AKEY_EVENT_ACTION_DOWN, 0, AKEYCODE_A,
KEY_A, AMETA_NONE, 0 /*repeatCount*/, eventTime, eventTime);
const int32_t additionalPolicyFlags =
POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_DISABLE_KEY_REPEAT;
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms,
policyFlags | additionalPolicyFlags));
InputEvent* received = mWindow->consume();
ASSERT_NE(nullptr, received);
ASSERT_EQ(resolvedDeviceId, received->getDeviceId());
ASSERT_EQ(received->getType(), AINPUT_EVENT_TYPE_KEY);
KeyEvent& keyEvent = static_cast<KeyEvent&>(*received);
ASSERT_EQ(flags, keyEvent.getFlags());
}
void testInjectedMotion(int32_t policyFlags, int32_t injectedDeviceId, int32_t resolvedDeviceId,
int32_t flags) {
MotionEvent event;
PointerProperties pointerProperties[1];
PointerCoords pointerCoords[1];
pointerProperties[0].clear();
pointerProperties[0].id = 0;
pointerCoords[0].clear();
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 300);
pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 400);
ui::Transform identityTransform;
const nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
event.initialize(InputEvent::nextId(), injectedDeviceId, AINPUT_SOURCE_TOUCHSCREEN,
DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0,
AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, MotionClassification::NONE,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION,
0 /*AMOTION_EVENT_INVALID_DISPLAY_SIZE*/,
0 /*AMOTION_EVENT_INVALID_DISPLAY_SIZE*/, eventTime, eventTime,
/*pointerCount*/ 1, pointerProperties, pointerCoords);
const int32_t additionalPolicyFlags = POLICY_FLAG_PASS_TO_USER;
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
mDispatcher->injectInputEvent(&event, INJECTOR_PID, INJECTOR_UID,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms,
policyFlags | additionalPolicyFlags));
InputEvent* received = mWindow->consume();
ASSERT_NE(nullptr, received);
ASSERT_EQ(resolvedDeviceId, received->getDeviceId());
ASSERT_EQ(received->getType(), AINPUT_EVENT_TYPE_MOTION);
MotionEvent& motionEvent = static_cast<MotionEvent&>(*received);
ASSERT_EQ(flags, motionEvent.getFlags());
}
private:
sp<FakeWindowHandle> mWindow;
};
TEST_F(InputFilterInjectionPolicyTest, TrustedFilteredEvents_KeepOriginalDeviceId) {
// Must have POLICY_FLAG_FILTERED here to indicate that the event has gone through the input
// filter. Without it, the event will no different from a regularly injected event, and the
// injected device id will be overwritten.
testInjectedKey(POLICY_FLAG_FILTERED, 3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/,
0 /*flags*/);
}
TEST_F(InputFilterInjectionPolicyTest, KeyEventsInjectedFromAccessibility_HaveAccessibilityFlag) {
testInjectedKey(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY,
3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/,
AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT);
}
TEST_F(InputFilterInjectionPolicyTest,
MotionEventsInjectedFromAccessibility_HaveAccessibilityFlag) {
testInjectedMotion(POLICY_FLAG_FILTERED | POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY,
3 /*injectedDeviceId*/, 3 /*resolvedDeviceId*/,
AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT);
}
TEST_F(InputFilterInjectionPolicyTest, RegularInjectedEvents_ReceiveVirtualDeviceId) {
testInjectedKey(0 /*policyFlags*/, 3 /*injectedDeviceId*/,
VIRTUAL_KEYBOARD_ID /*resolvedDeviceId*/, 0 /*flags*/);
}
class InputDispatcherOnPointerDownOutsideFocus : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mUnfocusedWindow =
new FakeWindowHandle(application, mDispatcher, "Top", ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
mUnfocusedWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mFocusedWindow =
new FakeWindowHandle(application, mDispatcher, "Second", ADISPLAY_ID_DEFAULT);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
mFocusedWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, application);
mFocusedWindow->setFocusable(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF FOCUSED_WINDOW_TOUCH_POINT = {60, 60};
};
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that doesn't have focus. Ensure the window that didn't have focus received
// the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_Success) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{20, 20}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mUnfocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownEquals(mUnfocusedWindow->getToken());
}
// Have two windows, one with focus. Inject MotionEvent with source TRACKBALL and action
// DOWN on the window that doesn't have focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonPointerSource) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TRACKBALL, ADISPLAY_ID_DEFAULT, {20, 20}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject KeyEvent with action DOWN on the window that doesn't
// have focus. Ensure no window received the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_NonMotionFailure) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDownNoRepeat(mDispatcher, ADISPLAY_ID_DEFAULT))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Inject MotionEvent with source TOUCHSCREEN and action
// DOWN on the window that already has focus. Ensure no window received the
// onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, OnPointerDownOutsideFocus_OnAlreadyFocusedWindow) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_TOUCH_POINT))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
}
// Have two windows, one with focus. Injecting a trusted DOWN MotionEvent with the flag
// NO_FOCUS_CHANGE on the unfocused window should not call the onPointerDownOutsideFocus callback.
TEST_F(InputDispatcherOnPointerDownOutsideFocus, NoFocusChangeFlag) {
const MotionEvent event =
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_MOUSE)
.eventTime(systemTime(SYSTEM_TIME_MONOTONIC))
.pointer(PointerBuilder(/* id */ 0, AMOTION_EVENT_TOOL_TYPE_FINGER).x(20).y(20))
.addFlag(AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE)
.build();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectMotionEvent(mDispatcher, event))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mUnfocusedWindow->consumeAnyMotionDown(ADISPLAY_ID_DEFAULT, AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertOnPointerDownWasNotCalled();
// Ensure that the unfocused window did not receive any FOCUS events.
mUnfocusedWindow->assertNoEvents();
}
// These tests ensures we can send touch events to a single client when there are multiple input
// windows that point to the same client token.
class InputDispatcherMultiWindowSameTokenTests : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
std::shared_ptr<FakeApplicationHandle> application =
std::make_shared<FakeApplicationHandle>();
mWindow1 = new FakeWindowHandle(application, mDispatcher, "Fake Window 1",
ADISPLAY_ID_DEFAULT);
// Adding FLAG_NOT_TOUCH_MODAL otherwise all taps will go to the top most window.
// We also need FLAG_SPLIT_TOUCH or we won't be able to get touches for both windows.
mWindow1->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
mWindow1->setFrame(Rect(0, 0, 100, 100));
mWindow2 = new FakeWindowHandle(application, mDispatcher, "Fake Window 2",
ADISPLAY_ID_DEFAULT, mWindow1->getToken());
mWindow2->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
mWindow2->setFrame(Rect(100, 100, 200, 200));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow1, mWindow2}}});
}
protected:
sp<FakeWindowHandle> mWindow1;
sp<FakeWindowHandle> mWindow2;
// Helper function to convert the point from screen coordinates into the window's space
static PointF getPointInWindow(const InputWindowInfo* windowInfo, const PointF& point) {
vec2 vals = windowInfo->transform.transform(point.x, point.y);
return {vals.x, vals.y};
}
void consumeMotionEvent(const sp<FakeWindowHandle>& window, int32_t expectedAction,
const std::vector<PointF>& points) {
const std::string name = window->getName();
InputEvent* event = window->consume();
ASSERT_NE(nullptr, event) << name.c_str()
<< ": consumer should have returned non-NULL event.";
ASSERT_EQ(AINPUT_EVENT_TYPE_MOTION, event->getType())
<< name.c_str() << "expected " << inputEventTypeToString(AINPUT_EVENT_TYPE_MOTION)
<< " event, got " << inputEventTypeToString(event->getType()) << " event";
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
EXPECT_EQ(expectedAction, motionEvent.getAction());
for (size_t i = 0; i < points.size(); i++) {
float expectedX = points[i].x;
float expectedY = points[i].y;
EXPECT_EQ(expectedX, motionEvent.getX(i))
<< "expected " << expectedX << " for x[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getX(i);
EXPECT_EQ(expectedY, motionEvent.getY(i))
<< "expected " << expectedY << " for y[" << i << "] coord of " << name.c_str()
<< ", got " << motionEvent.getY(i);
}
}
void touchAndAssertPositions(int32_t action, std::vector<PointF> touchedPoints,
std::vector<PointF> expectedPoints) {
NotifyMotionArgs motionArgs = generateMotionArgs(action, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, touchedPoints);
mDispatcher->notifyMotion(&motionArgs);
// Always consume from window1 since it's the window that has the InputReceiver
consumeMotionEvent(mWindow1, action, expectedPoints);
}
};
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchSameScale) {
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
// Release touch on Window 1
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, SingleTouchDifferentTransform) {
// Set scale value for window2
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
PointF touchedPoint = {10, 10};
PointF expectedPoint = getPointInWindow(mWindow1->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
// Release touch on Window 1
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Touch Window 2
touchedPoint = {150, 150};
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
touchAndAssertPositions(AMOTION_EVENT_ACTION_UP, {touchedPoint}, {expectedPoint});
// Update the transform so rotation is set
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoint = getPointInWindow(mWindow2->getInfo(), touchedPoint);
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, {touchedPoint}, {expectedPoint});
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchDifferentTransform) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints);
// Release Window 2
int32_t actionPointerUp =
AMOTION_EVENT_ACTION_POINTER_UP + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchAndAssertPositions(actionPointerUp, touchedPoints, expectedPoints);
expectedPoints.pop_back();
// Update the transform so rotation is set for Window 2
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleTouchMoveDifferentTransform) {
mWindow2->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
// Release Window 2
int32_t actionPointerUp =
AMOTION_EVENT_ACTION_POINTER_UP + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchAndAssertPositions(actionPointerUp, touchedPoints, expectedPoints);
expectedPoints.pop_back();
// Touch Window 2
mWindow2->setWindowTransform(0, -1, 1, 0);
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
}
TEST_F(InputDispatcherMultiWindowSameTokenTests, MultipleWindowsFirstTouchWithScale) {
mWindow1->setWindowScale(0.5f, 0.5f);
// Touch Window 1
std::vector<PointF> touchedPoints = {PointF{10, 10}};
std::vector<PointF> expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_DOWN, touchedPoints, expectedPoints);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
touchedPoints.push_back(PointF{150, 150});
expectedPoints.push_back(getPointInWindow(mWindow2->getInfo(), touchedPoints[1]));
touchAndAssertPositions(actionPointerDown, touchedPoints, expectedPoints);
// Move both windows
touchedPoints = {{20, 20}, {175, 175}};
expectedPoints = {getPointInWindow(mWindow1->getInfo(), touchedPoints[0]),
getPointInWindow(mWindow2->getInfo(), touchedPoints[1])};
touchAndAssertPositions(AMOTION_EVENT_ACTION_MOVE, touchedPoints, expectedPoints);
}
class InputDispatcherSingleWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mApplication->setDispatchingTimeout(20ms);
mWindow =
new FakeWindowHandle(mApplication, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFrame(Rect(0, 0, 30, 30));
mWindow->setDispatchingTimeout(30ms);
mWindow->setFocusable(true);
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
mWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mWindow.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mWindow;
static constexpr PointF WINDOW_LOCATION = {20, 20};
void tapOnWindow() {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
}
};
// Send a tap and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenTouchIsConsumed_NoAnr) {
tapOnWindow();
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send a regular key and respond, which should not cause an ANR.
TEST_F(InputDispatcherSingleWindowAnr, WhenKeyIsConsumed_NoAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher));
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
TEST_F(InputDispatcherSingleWindowAnr, WhenFocusedApplicationChanges_NoAnr) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/,
false /* allowKeyRepeat */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Key will not go to window because we have no focused window.
// The 'no focused window' ANR timer should start instead.
// Now, the focused application goes away.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, nullptr);
// The key should get dropped and there should be no ANR.
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Send an event to the app and have the app not respond right away.
// When ANR is raised, policy will tell the dispatcher to cancel the events for that window.
// So InputDispatcher will enqueue ACTION_CANCEL event as well.
TEST_F(InputDispatcherSingleWindowAnr, OnPointerDown_BasicAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
mWindow->finishEvent(*sequenceNum);
mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
}
// Send a key to the app and have the app not respond right away.
TEST_F(InputDispatcherSingleWindowAnr, OnKeyDown_BasicAnr) {
// Inject a key, and don't respond - expect that ANR is called.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDownNoRepeat(mDispatcher));
std::optional<uint32_t> sequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(sequenceNum);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, FocusedApplication_NoFocusedWindow) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// taps on the window work as normal
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
ASSERT_NO_FATAL_FAILURE(mWindow->consumeMotionDown());
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyAnrWasNotCalled();
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, false /* allowKeyRepeat */);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication);
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
// Make sure that we don't notify policy twice about the same ANR.
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DoesNotSendDuplicateAnr) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// Once a focused event arrives, we get an ANR for this application
// We specify the injection timeout to be smaller than the application timeout, to ensure that
// injection times out (instead of failing).
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms, false /* allowKeyRepeat */);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration appTimeout =
mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(appTimeout, mApplication);
std::this_thread::sleep_for(appTimeout);
// ANR should not be raised again. It is up to policy to do that if it desires.
mFakePolicy->assertNotifyAnrWasNotCalled();
// If we now get a focused window, the ANR should stop, but the policy handles that via
// 'notifyFocusChanged' callback. This is implemented in the policy so we can't test it here.
ASSERT_TRUE(mDispatcher->waitForIdle());
}
// We have a focused application, but no focused window
TEST_F(InputDispatcherSingleWindowAnr, NoFocusedWindow_DropsFocusedEvents) {
mWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
mWindow->consumeFocusEvent(false);
// Once a focused event arrives, we get an ANR for this application
const InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
const std::chrono::duration timeout = mApplication->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyNoFocusedWindowAnrWasCalled(timeout, mApplication);
// Future focused events get dropped right away
ASSERT_EQ(InputEventInjectionResult::FAILED, injectKeyDown(mDispatcher));
ASSERT_TRUE(mDispatcher->waitForIdle());
mWindow->assertNoEvents();
}
/**
* Ensure that the implementation is valid. Since we are using multiset to keep track of the
* ANR timeouts, we are allowing entries with identical timestamps in the same connection.
* If we process 1 of the events, but ANR on the second event with the same timestamp,
* the ANR mechanism should still work.
*
* In this test, we are injecting DOWN and UP events with the same timestamps, and acknowledging the
* DOWN event, while not responding on the second one.
*/
TEST_F(InputDispatcherSingleWindowAnr, Anr_HandlesEventsWithIdenticalTimestamps) {
nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC);
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime);
// Now send ACTION_UP, with identical timestamp
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, WINDOW_LOCATION,
{AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION},
500ms, InputEventInjectionSync::WAIT_FOR_RESULT, currentTime);
// We have now sent down and up. Let's consume first event and then ANR on the second.
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
}
// If an app is not responding to a key event, gesture monitors should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnKey) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKeyDown(mDispatcher, ADISPLAY_ID_DEFAULT));
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher, ADISPLAY_ID_DEFAULT));
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
// New tap will go to the gesture monitor, but not to the window
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeKeyUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
mWindow->assertNoEvents();
monitor.assertNoEvents();
}
// If an app is not responding to a motion event, gesture monitors should continue to receive
// new motion events
TEST_F(InputDispatcherSingleWindowAnr, GestureMonitors_ReceiveEventsDuringAppAnrOnMotion) {
FakeMonitorReceiver monitor =
FakeMonitorReceiver(mDispatcher, "Gesture monitor", ADISPLAY_ID_DEFAULT,
true /*isGestureMonitor*/);
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionDown();
// Stuck on the ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
// New tap will go to the gesture monitor, but not to the window
tapOnWindow();
monitor.consumeMotionDown(ADISPLAY_ID_DEFAULT);
monitor.consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT); // still the previous motion
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
mWindow->assertNoEvents();
monitor.assertNoEvents();
}
// If a window is unresponsive, then you get anr. if the window later catches up and starts to
// process events, you don't get an anr. When the window later becomes unresponsive again, you
// get an ANR again.
// 1. tap -> block on ACTION_UP -> receive ANR
// 2. consume all pending events (= queue becomes healthy again)
// 3. tap again -> block on ACTION_UP again -> receive ANR second time
TEST_F(InputDispatcherSingleWindowAnr, SameWindow_CanReceiveAnrTwice) {
tapOnWindow();
mWindow->consumeMotionDown();
// Block on ACTION_UP
const std::chrono::duration timeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
mWindow->consumeMotionUp(); // Now the connection should be healthy again
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
mWindow->assertNoEvents();
tapOnWindow();
mWindow->consumeMotionDown();
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mWindow->getToken());
mWindow->consumeMotionUp();
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
mFakePolicy->assertNotifyAnrWasNotCalled();
mWindow->assertNoEvents();
}
// If a connection remains unresponsive for a while, make sure policy is only notified once about
// it.
TEST_F(InputDispatcherSingleWindowAnr, Policy_DoesNotGetDuplicateAnr) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
WINDOW_LOCATION));
const std::chrono::duration windowTimeout = mWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(windowTimeout, mWindow->getToken());
std::this_thread::sleep_for(windowTimeout);
// 'notifyConnectionUnresponsive' should only be called once per connection
mFakePolicy->assertNotifyAnrWasNotCalled();
// When the ANR happened, dispatcher should abort the current event stream via ACTION_CANCEL
mWindow->consumeMotionDown();
mWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_CANCEL,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
mWindow->assertNoEvents();
mDispatcher->waitForIdle();
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mWindow->getToken());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherSingleWindowAnr, Key_StaysPendingWhileMotionIsProcessed) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will "succeed" because we will eventually give up and send the key to the focused
// window even if motions are still being processed. But because the injection timeout is short,
// we will receive INJECTION_TIMED_OUT as the result.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::WAIT_FOR_RESULT, 10ms);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
std::this_thread::sleep_for(500ms);
// if we wait long enough though, dispatcher will give up, and still send the key
// to the focused window, even though we have not yet finished the motion event
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mWindow->finishEvent(*downSequenceNum);
mWindow->finishEvent(*upSequenceNum);
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not go to the focused window until the motion is processed.
* If then a new motion comes in, then the pending key event should be going to the currently
* focused window right away.
*/
TEST_F(InputDispatcherSingleWindowAnr,
PendingKey_IsDroppedWhileMotionIsProcessedAndNewTouchComesIn) {
mWindow->setDispatchingTimeout(2s); // Set a long ANR timeout to prevent it from triggering
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow}}});
tapOnWindow();
std::optional<uint32_t> downSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection is async, so it will succeed
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */,
ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE));
// At this point, key is still pending, and should not be sent to the application yet.
std::optional<uint32_t> keySequenceNum = mWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Now tap down again. It should cause the pending key to go to the focused window right away.
tapOnWindow();
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT); // it doesn't matter that we haven't ack'd
// the other events yet. We can finish events in any order.
mWindow->finishEvent(*downSequenceNum); // first tap's ACTION_DOWN
mWindow->finishEvent(*upSequenceNum); // first tap's ACTION_UP
mWindow->consumeMotionDown();
mWindow->consumeMotionUp();
mWindow->assertNoEvents();
}
class InputDispatcherMultiWindowAnr : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mApplication->setDispatchingTimeout(10ms);
mUnfocusedWindow =
new FakeWindowHandle(mApplication, mDispatcher, "Unfocused", ADISPLAY_ID_DEFAULT);
mUnfocusedWindow->setFrame(Rect(0, 0, 30, 30));
// Adding FLAG_NOT_TOUCH_MODAL to ensure taps outside this window are not sent to this
// window.
// Adding FLAG_WATCH_OUTSIDE_TOUCH to receive ACTION_OUTSIDE when another window is tapped
mUnfocusedWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH |
InputWindowInfo::Flag::SPLIT_TOUCH);
mFocusedWindow =
new FakeWindowHandle(mApplication, mDispatcher, "Focused", ADISPLAY_ID_DEFAULT);
mFocusedWindow->setDispatchingTimeout(30ms);
mFocusedWindow->setFrame(Rect(50, 50, 100, 100));
mFocusedWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL |
InputWindowInfo::Flag::SPLIT_TOUCH);
// Set focused application.
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApplication);
mFocusedWindow->setFocusable(true);
// Expect one focus window exist in display.
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mUnfocusedWindow.clear();
mFocusedWindow.clear();
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mUnfocusedWindow;
sp<FakeWindowHandle> mFocusedWindow;
static constexpr PointF UNFOCUSED_WINDOW_LOCATION = {20, 20};
static constexpr PointF FOCUSED_WINDOW_LOCATION = {75, 75};
static constexpr PointF LOCATION_OUTSIDE_ALL_WINDOWS = {40, 40};
void tapOnFocusedWindow() { tap(FOCUSED_WINDOW_LOCATION); }
void tapOnUnfocusedWindow() { tap(UNFOCUSED_WINDOW_LOCATION); }
private:
void tap(const PointF& location) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
location));
}
};
// If we have 2 windows that are both unresponsive, the one with the shortest timeout
// should be ANR'd first.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsive) {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mFocusedWindow->consumeMotionDown();
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// We consumed all events, so no ANR
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::optional<uint32_t> unfocusedSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(unfocusedSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken());
// Because we injected two DOWN events in a row, CANCEL is enqueued for the first event
// sequence to make it consistent
mFocusedWindow->consumeMotionCancel();
mUnfocusedWindow->finishEvent(*unfocusedSequenceNum);
mFocusedWindow->consumeMotionDown();
// This cancel is generated because the connection was unresponsive
mFocusedWindow->consumeMotionCancel();
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If we have 2 windows with identical timeouts that are both unresponsive,
// it doesn't matter which order they should have ANR.
// But we should receive ANR for both.
TEST_F(InputDispatcherMultiWindowAnr, TwoWindows_BothUnresponsiveWithSameTimeout) {
// Set the timeout for unfocused window to match the focused window
mUnfocusedWindow->setDispatchingTimeout(10ms);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
tapOnFocusedWindow();
// we should have ACTION_DOWN/ACTION_UP on focused window and ACTION_OUTSIDE on unfocused window
sp<IBinder> anrConnectionToken1 = mFakePolicy->getUnresponsiveWindowToken(10ms);
sp<IBinder> anrConnectionToken2 = mFakePolicy->getUnresponsiveWindowToken(0ms);
// We don't know which window will ANR first. But both of them should happen eventually.
ASSERT_TRUE(mFocusedWindow->getToken() == anrConnectionToken1 ||
mFocusedWindow->getToken() == anrConnectionToken2);
ASSERT_TRUE(mUnfocusedWindow->getToken() == anrConnectionToken1 ||
mUnfocusedWindow->getToken() == anrConnectionToken2);
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
mFocusedWindow->consumeMotionDown();
mFocusedWindow->consumeMotionUp();
mUnfocusedWindow->consumeMotionOutside();
sp<IBinder> responsiveToken1 = mFakePolicy->getResponsiveWindowToken();
sp<IBinder> responsiveToken2 = mFakePolicy->getResponsiveWindowToken();
// Both applications should be marked as responsive, in any order
ASSERT_TRUE(mFocusedWindow->getToken() == responsiveToken1 ||
mFocusedWindow->getToken() == responsiveToken2);
ASSERT_TRUE(mUnfocusedWindow->getToken() == responsiveToken1 ||
mUnfocusedWindow->getToken() == responsiveToken2);
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If a window is already not responding, the second tap on the same window should be ignored.
// We should also log an error to account for the dropped event (not tested here).
// At the same time, FLAG_WATCH_OUTSIDE_TOUCH targets should not receive any events.
TEST_F(InputDispatcherMultiWindowAnr, DuringAnr_SecondTapIsIgnored) {
tapOnFocusedWindow();
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// Receive the events, but don't respond
std::optional<uint32_t> downEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_DOWN
ASSERT_TRUE(downEventSequenceNum);
std::optional<uint32_t> upEventSequenceNum = mFocusedWindow->receiveEvent(); // ACTION_UP
ASSERT_TRUE(upEventSequenceNum);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken());
// Tap once again
// We cannot use "tapOnFocusedWindow" because it asserts the injection result to be success
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
// Unfocused window does not receive ACTION_OUTSIDE because the tapped window is not a
// valid touch target
mUnfocusedWindow->assertNoEvents();
// Consume the first tap
mFocusedWindow->finishEvent(*downEventSequenceNum);
mFocusedWindow->finishEvent(*upEventSequenceNum);
ASSERT_TRUE(mDispatcher->waitForIdle());
// The second tap did not go to the focused window
mFocusedWindow->assertNoEvents();
// Since all events are finished, connection should be deemed healthy again
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// If you tap outside of all windows, there will not be ANR
TEST_F(InputDispatcherMultiWindowAnr, TapOutsideAllWindows_DoesNotAnr) {
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
LOCATION_OUTSIDE_ALL_WINDOWS));
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// Since the focused window is paused, tapping on it should not produce any events
TEST_F(InputDispatcherMultiWindowAnr, Window_CanBePaused) {
mFocusedWindow->setPaused(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mUnfocusedWindow, mFocusedWindow}}});
ASSERT_EQ(InputEventInjectionResult::FAILED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
FOCUSED_WINDOW_LOCATION));
std::this_thread::sleep_for(mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT));
ASSERT_TRUE(mDispatcher->waitForIdle());
// Should not ANR because the window is paused, and touches shouldn't go to it
mFakePolicy->assertNotifyAnrWasNotCalled();
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
}
/**
* If a window is processing a motion event, and then a key event comes in, the key event should
* not to to the focused window until the motion is processed.
* If a different window becomes focused at this time, the key should go to that window instead.
*
* Warning!!!
* This test depends on the value of android::inputdispatcher::KEY_WAITING_FOR_MOTION_TIMEOUT
* and the injection timeout that we specify when injecting the key.
* We must have the injection timeout (10ms) be smaller than
* KEY_WAITING_FOR_MOTION_TIMEOUT (currently 500ms).
*
* If that value changes, this test should also change.
*/
TEST_F(InputDispatcherMultiWindowAnr, PendingKey_GoesToNewlyFocusedWindow) {
// Set a long ANR timeout to prevent it from triggering
mFocusedWindow->setDispatchingTimeout(2s);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
tapOnUnfocusedWindow();
std::optional<uint32_t> downSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(downSequenceNum);
std::optional<uint32_t> upSequenceNum = mUnfocusedWindow->receiveEvent();
ASSERT_TRUE(upSequenceNum);
// Don't finish the events yet, and send a key
// Injection will succeed because we will eventually give up and send the key to the focused
// window even if motions are still being processed.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Key will not be sent to the window, yet, because the window is still processing events
// and the key remains pending, waiting for the touch events to be processed
std::optional<uint32_t> keySequenceNum = mFocusedWindow->receiveEvent();
ASSERT_FALSE(keySequenceNum);
// Switch the focus to the "unfocused" window that we tapped. Expect the key to go there
mFocusedWindow->setFocusable(false);
mUnfocusedWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
setFocusedWindow(mUnfocusedWindow);
// Focus events should precede the key events
mUnfocusedWindow->consumeFocusEvent(true);
mFocusedWindow->consumeFocusEvent(false);
// Finish the tap events, which should unblock dispatcher
mUnfocusedWindow->finishEvent(*downSequenceNum);
mUnfocusedWindow->finishEvent(*upSequenceNum);
// Now that all queues are cleared and no backlog in the connections, the key event
// can finally go to the newly focused "mUnfocusedWindow".
mUnfocusedWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
mFocusedWindow->assertNoEvents();
mUnfocusedWindow->assertNoEvents();
mFakePolicy->assertNotifyAnrWasNotCalled();
}
// When the touch stream is split across 2 windows, and one of them does not respond,
// then ANR should be raised and the touch should be canceled for the unresponsive window.
// The other window should not be affected by that.
TEST_F(InputDispatcherMultiWindowAnr, SplitTouch_SingleWindowAnr) {
// Touch Window 1
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {FOCUSED_WINDOW_LOCATION});
mDispatcher->notifyMotion(&motionArgs);
mUnfocusedWindow->consumeEvent(AINPUT_EVENT_TYPE_MOTION, AMOTION_EVENT_ACTION_OUTSIDE,
ADISPLAY_ID_DEFAULT, 0 /*flags*/);
// Touch Window 2
int32_t actionPointerDown =
AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
motionArgs =
generateMotionArgs(actionPointerDown, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{FOCUSED_WINDOW_LOCATION, UNFOCUSED_WINDOW_LOCATION});
mDispatcher->notifyMotion(&motionArgs);
const std::chrono::duration timeout =
mFocusedWindow->getDispatchingTimeout(DISPATCHING_TIMEOUT);
mFakePolicy->assertNotifyWindowUnresponsiveWasCalled(timeout, mFocusedWindow->getToken());
mUnfocusedWindow->consumeMotionDown();
mFocusedWindow->consumeMotionDown();
// Focused window may or may not receive ACTION_MOVE
// But it should definitely receive ACTION_CANCEL due to the ANR
InputEvent* event;
std::optional<int32_t> moveOrCancelSequenceNum = mFocusedWindow->receiveEvent(&event);
ASSERT_TRUE(moveOrCancelSequenceNum);
mFocusedWindow->finishEvent(*moveOrCancelSequenceNum);
ASSERT_NE(nullptr, event);
ASSERT_EQ(event->getType(), AINPUT_EVENT_TYPE_MOTION);
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
if (motionEvent.getAction() == AMOTION_EVENT_ACTION_MOVE) {
mFocusedWindow->consumeMotionCancel();
} else {
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionEvent.getAction());
}
ASSERT_TRUE(mDispatcher->waitForIdle());
mFakePolicy->assertNotifyWindowResponsiveWasCalled(mFocusedWindow->getToken());
mUnfocusedWindow->assertNoEvents();
mFocusedWindow->assertNoEvents();
mFakePolicy->assertNotifyAnrWasNotCalled();
}
/**
* If we have no focused window, and a key comes in, we start the ANR timer.
* The focused application should add a focused window before the timer runs out to prevent ANR.
*
* If the user touches another application during this time, the key should be dropped.
* Next, if a new focused window comes in, without toggling the focused application,
* then no ANR should occur.
*
* Normally, we would expect the new focused window to be accompanied by 'setFocusedApplication',
* but in some cases the policy may not update the focused application.
*/
TEST_F(InputDispatcherMultiWindowAnr, FocusedWindowWithoutSetFocusedApplication_NoAnr) {
std::shared_ptr<FakeApplicationHandle> focusedApplication =
std::make_shared<FakeApplicationHandle>();
focusedApplication->setDispatchingTimeout(60ms);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, focusedApplication);
// The application that owns 'mFocusedWindow' and 'mUnfocusedWindow' is not focused.
mFocusedWindow->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
mFocusedWindow->consumeFocusEvent(false);
// Send a key. The ANR timer should start because there is no focused window.
// 'focusedApplication' will get blamed if this timer completes.
// Key will not be sent anywhere because we have no focused window. It will remain pending.
InputEventInjectionResult result =
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /*repeatCount*/, ADISPLAY_ID_DEFAULT,
InputEventInjectionSync::NONE, 10ms /*injectionTimeout*/,
false /* allowKeyRepeat */);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, result);
// Wait until dispatcher starts the "no focused window" timer. If we don't wait here,
// then the injected touches won't cause the focused event to get dropped.
// The dispatcher only checks for whether the queue should be pruned upon queueing.
// If we inject the touch right away and the ANR timer hasn't started, the touch event would
// simply be added to the queue without 'shouldPruneInboundQueueLocked' returning 'true'.
// For this test, it means that the key would get delivered to the window once it becomes
// focused.
std::this_thread::sleep_for(10ms);
// Touch unfocused window. This should force the pending key to get dropped.
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {UNFOCUSED_WINDOW_LOCATION});
mDispatcher->notifyMotion(&motionArgs);
// We do not consume the motion right away, because that would require dispatcher to first
// process (== drop) the key event, and by that time, ANR will be raised.
// Set the focused window first.
mFocusedWindow->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mFocusedWindow, mUnfocusedWindow}}});
setFocusedWindow(mFocusedWindow);
mFocusedWindow->consumeFocusEvent(true);
// We do not call "setFocusedApplication" here, even though the newly focused window belongs
// to another application. This could be a bug / behaviour in the policy.
mUnfocusedWindow->consumeMotionDown();
ASSERT_TRUE(mDispatcher->waitForIdle());
// Should not ANR because we actually have a focused window. It was just added too slowly.
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertNotifyAnrWasNotCalled());
}
// These tests ensure we cannot send touch events to a window that's positioned behind a window
// that has feature NO_INPUT_CHANNEL.
// Layout:
// Top (closest to user)
// mNoInputWindow (above all windows)
// mBottomWindow
// Bottom (furthest from user)
class InputDispatcherMultiWindowOcclusionTests : public InputDispatcherTest {
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApplication = std::make_shared<FakeApplicationHandle>();
mNoInputWindow = new FakeWindowHandle(mApplication, mDispatcher,
"Window without input channel", ADISPLAY_ID_DEFAULT,
std::make_optional<sp<IBinder>>(nullptr) /*token*/);
mNoInputWindow->setInputFeatures(InputWindowInfo::Feature::NO_INPUT_CHANNEL);
mNoInputWindow->setFrame(Rect(0, 0, 100, 100));
// It's perfectly valid for this window to not have an associated input channel
mBottomWindow = new FakeWindowHandle(mApplication, mDispatcher, "Bottom window",
ADISPLAY_ID_DEFAULT);
mBottomWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}});
}
protected:
std::shared_ptr<FakeApplicationHandle> mApplication;
sp<FakeWindowHandle> mNoInputWindow;
sp<FakeWindowHandle> mBottomWindow;
};
TEST_F(InputDispatcherMultiWindowOcclusionTests, NoInputChannelFeature_DropsTouches) {
PointF touchedPoint = {10, 10};
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
mNoInputWindow->assertNoEvents();
// Even though the window 'mNoInputWindow' positioned above 'mBottomWindow' does not have
// an input channel, it is not marked as FLAG_NOT_TOUCHABLE,
// and therefore should prevent mBottomWindow from receiving touches
mBottomWindow->assertNoEvents();
}
/**
* If a window has feature NO_INPUT_CHANNEL, and somehow (by mistake) still has an input channel,
* ensure that this window does not receive any touches, and blocks touches to windows underneath.
*/
TEST_F(InputDispatcherMultiWindowOcclusionTests,
NoInputChannelFeature_DropsTouchesWithValidChannel) {
mNoInputWindow = new FakeWindowHandle(mApplication, mDispatcher,
"Window with input channel and NO_INPUT_CHANNEL",
ADISPLAY_ID_DEFAULT);
mNoInputWindow->setInputFeatures(InputWindowInfo::Feature::NO_INPUT_CHANNEL);
mNoInputWindow->setFrame(Rect(0, 0, 100, 100));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mNoInputWindow, mBottomWindow}}});
PointF touchedPoint = {10, 10};
NotifyMotionArgs motionArgs =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {touchedPoint});
mDispatcher->notifyMotion(&motionArgs);
mNoInputWindow->assertNoEvents();
mBottomWindow->assertNoEvents();
}
class InputDispatcherMirrorWindowFocusTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mMirror;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mMirror = new FakeWindowHandle(mApp, mDispatcher, "TestWindowMirror", ADISPLAY_ID_DEFAULT,
mWindow->getToken());
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mWindow->setFocusable(true);
mMirror->setFocusable(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
}
};
TEST_F(InputDispatcherMirrorWindowFocusTests, CanGetFocus) {
// Request focus on a mirrored window
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
}
// A focused & mirrored window remains focused only if the window and its mirror are both
// focusable.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAllWindowsFocusable) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mMirror->setFocusable(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window loses focus since one of the windows associated with the token in not focusable
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// A focused & mirrored window remains focused until the window and its mirror both become
// invisible.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedIfAnyWindowVisible) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mMirror->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
mWindow->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window loses focus only after all windows associated with the token become invisible.
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// A focused & mirrored window remains focused until both windows are removed.
TEST_F(InputDispatcherMirrorWindowFocusTests, FocusedWhileWindowsAlive) {
setFocusedWindow(mMirror);
// window gets focused
mWindow->consumeFocusEvent(true);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
// single window is removed but the window token remains focused
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mMirror}}});
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyDown(ADISPLAY_ID_NONE);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED, injectKeyUp(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::SUCCEEDED";
mWindow->consumeKeyUp(ADISPLAY_ID_NONE);
// Both windows are removed
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {}}});
mWindow->consumeFocusEvent(false);
ASSERT_EQ(InputEventInjectionResult::TIMED_OUT, injectKeyDown(mDispatcher))
<< "Inject key event should return InputEventInjectionResult::TIMED_OUT";
mWindow->assertNoEvents();
}
// Focus request can be pending until one window becomes visible.
TEST_F(InputDispatcherMirrorWindowFocusTests, DeferFocusWhenInvisible) {
// Request focus on an invisible mirror.
mWindow->setVisible(false);
mMirror->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
setFocusedWindow(mMirror);
// Injected key goes to pending queue.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectKey(mDispatcher, AKEY_EVENT_ACTION_DOWN, 0 /* repeatCount */,
ADISPLAY_ID_DEFAULT, InputEventInjectionSync::NONE));
mMirror->setVisible(true);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mMirror}}});
// window gets focused
mWindow->consumeFocusEvent(true);
// window gets the pending key event
mWindow->consumeKeyDown(ADISPLAY_ID_DEFAULT);
}
class InputDispatcherPointerCaptureTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mSecondWindow;
void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFocusable(true);
mSecondWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT);
mSecondWindow->setFocusable(true);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}}});
setFocusedWindow(mWindow);
mWindow->consumeFocusEvent(true);
}
void notifyPointerCaptureChanged(bool enabled) {
const NotifyPointerCaptureChangedArgs args = generatePointerCaptureChangedArgs(enabled);
mDispatcher->notifyPointerCaptureChanged(&args);
}
void requestAndVerifyPointerCapture(const sp<FakeWindowHandle>& window, bool enabled) {
mDispatcher->requestPointerCapture(window->getToken(), enabled);
mFakePolicy->waitForSetPointerCapture(enabled);
notifyPointerCaptureChanged(enabled);
window->consumeCaptureEvent(enabled);
}
};
TEST_F(InputDispatcherPointerCaptureTests, EnablePointerCaptureWhenFocused) {
// Ensure that capture cannot be obtained for unfocused windows.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true);
mFakePolicy->assertSetPointerCaptureNotCalled();
mSecondWindow->assertNoEvents();
// Ensure that capture can be enabled from the focus window.
requestAndVerifyPointerCapture(mWindow, true);
// Ensure that capture cannot be disabled from a window that does not have capture.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), false);
mFakePolicy->assertSetPointerCaptureNotCalled();
// Ensure that capture can be disabled from the window with capture.
requestAndVerifyPointerCapture(mWindow, false);
}
TEST_F(InputDispatcherPointerCaptureTests, DisablesPointerCaptureAfterWindowLosesFocus) {
requestAndVerifyPointerCapture(mWindow, true);
setFocusedWindow(mSecondWindow);
// Ensure that the capture disabled event was sent first.
mWindow->consumeCaptureEvent(false);
mWindow->consumeFocusEvent(false);
mSecondWindow->consumeFocusEvent(true);
mFakePolicy->waitForSetPointerCapture(false);
// Ensure that additional state changes from InputReader are not sent to the window.
notifyPointerCaptureChanged(false);
notifyPointerCaptureChanged(true);
notifyPointerCaptureChanged(false);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mFakePolicy->assertSetPointerCaptureNotCalled();
}
TEST_F(InputDispatcherPointerCaptureTests, UnexpectedStateChangeDisablesPointerCapture) {
requestAndVerifyPointerCapture(mWindow, true);
// InputReader unexpectedly disables and enables pointer capture.
notifyPointerCaptureChanged(false);
notifyPointerCaptureChanged(true);
// Ensure that Pointer Capture is disabled.
mFakePolicy->waitForSetPointerCapture(false);
mWindow->consumeCaptureEvent(false);
mWindow->assertNoEvents();
}
TEST_F(InputDispatcherPointerCaptureTests, OutOfOrderRequests) {
requestAndVerifyPointerCapture(mWindow, true);
// The first window loses focus.
setFocusedWindow(mSecondWindow);
mFakePolicy->waitForSetPointerCapture(false);
mWindow->consumeCaptureEvent(false);
// Request Pointer Capture from the second window before the notification from InputReader
// arrives.
mDispatcher->requestPointerCapture(mSecondWindow->getToken(), true);
mFakePolicy->waitForSetPointerCapture(true);
// InputReader notifies Pointer Capture was disabled (because of the focus change).
notifyPointerCaptureChanged(false);
// InputReader notifies Pointer Capture was enabled (because of mSecondWindow's request).
notifyPointerCaptureChanged(true);
mSecondWindow->consumeFocusEvent(true);
mSecondWindow->consumeCaptureEvent(true);
}
class InputDispatcherUntrustedTouchesTest : public InputDispatcherTest {
protected:
constexpr static const float MAXIMUM_OBSCURING_OPACITY = 0.8;
constexpr static const float OPACITY_ABOVE_THRESHOLD = 0.9;
static_assert(OPACITY_ABOVE_THRESHOLD > MAXIMUM_OBSCURING_OPACITY);
constexpr static const float OPACITY_BELOW_THRESHOLD = 0.7;
static_assert(OPACITY_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY);
// When combined twice, ie 1 - (1 - 0.5)*(1 - 0.5) = 0.75 < 8, is still below the threshold
constexpr static const float OPACITY_FAR_BELOW_THRESHOLD = 0.5;
static_assert(OPACITY_FAR_BELOW_THRESHOLD < MAXIMUM_OBSCURING_OPACITY);
static_assert(1 - (1 - OPACITY_FAR_BELOW_THRESHOLD) * (1 - OPACITY_FAR_BELOW_THRESHOLD) <
MAXIMUM_OBSCURING_OPACITY);
static const int32_t TOUCHED_APP_UID = 10001;
static const int32_t APP_B_UID = 10002;
static const int32_t APP_C_UID = 10003;
sp<FakeWindowHandle> mTouchWindow;
virtual void SetUp() override {
InputDispatcherTest::SetUp();
mTouchWindow = getWindow(TOUCHED_APP_UID, "Touched");
mDispatcher->setBlockUntrustedTouchesMode(android::os::BlockUntrustedTouchesMode::BLOCK);
mDispatcher->setMaximumObscuringOpacityForTouch(MAXIMUM_OBSCURING_OPACITY);
}
virtual void TearDown() override {
InputDispatcherTest::TearDown();
mTouchWindow.clear();
}
sp<FakeWindowHandle> getOccludingWindow(int32_t uid, std::string name,
os::TouchOcclusionMode mode, float alpha = 1.0f) {
sp<FakeWindowHandle> window = getWindow(uid, name);
window->setFlags(InputWindowInfo::Flag::NOT_TOUCHABLE);
window->setTouchOcclusionMode(mode);
window->setAlpha(alpha);
return window;
}
sp<FakeWindowHandle> getWindow(int32_t uid, std::string name) {
std::shared_ptr<FakeApplicationHandle> app = std::make_shared<FakeApplicationHandle>();
sp<FakeWindowHandle> window =
new FakeWindowHandle(app, mDispatcher, name, ADISPLAY_ID_DEFAULT);
// Generate an arbitrary PID based on the UID
window->setOwnerInfo(1777 + (uid % 10000), uid);
return window;
}
void touch(const std::vector<PointF>& points = {PointF{100, 200}}) {
NotifyMotionArgs args =
generateMotionArgs(AMOTION_EVENT_ACTION_DOWN, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, points);
mDispatcher->notifyMotion(&args);
}
};
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithBlockUntrustedOcclusionMode_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedOcclusionModeWithOpacityBelowThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.7f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedOcclusionMode_DoesNotReceiveTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithAllowOcclusionMode_AllowsTouch) {
const sp<FakeWindowHandle>& w = getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::ALLOW);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, TouchOutsideOccludingWindow_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
w->setFrame(Rect(0, 0, 50, 50));
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch({PointF{100, 100}});
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowFromSameUid_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "A", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithZeroOpacity_DoesNotReceiveTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->assertNoEvents();
}
/**
* This is important to make sure apps can't indirectly learn the position of touches (outside vs
* inside) while letting them pass-through. Note that even though touch passes through the occluding
* window, the occluding window will still receive ACTION_OUTSIDE event.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithZeroOpacityAndWatchOutside_ReceivesOutsideEvent) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
w->addFlags(InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
w->consumeMotionOutside();
}
TEST_F(InputDispatcherUntrustedTouchesTest, OutsideEvent_HasZeroCoordinates) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED, 0.0f);
w->addFlags(InputWindowInfo::Flag::WATCH_OUTSIDE_TOUCH);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
InputEvent* event = w->consume();
ASSERT_EQ(AINPUT_EVENT_TYPE_MOTION, event->getType());
MotionEvent& motionEvent = static_cast<MotionEvent&>(*event);
EXPECT_EQ(0.0f, motionEvent.getRawPointerCoords(0)->getX());
EXPECT_EQ(0.0f, motionEvent.getRawPointerCoords(0)->getY());
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityBelowThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAtThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
MAXIMUM_OBSCURING_OPACITY);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowWithOpacityAboveThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityAboveThreshold_BlocksTouch) {
// Resulting opacity = 1 - (1 - 0.7)*(1 - 0.7) = .91
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsWithCombinedOpacityBelowThreshold_AllowsTouch) {
// Resulting opacity = 1 - (1 - 0.5)*(1 - 0.5) = .75
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B1", TouchOcclusionMode::USE_OPACITY,
OPACITY_FAR_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B2", TouchOcclusionMode::USE_OPACITY,
OPACITY_FAR_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowsFromDifferentAppsEachBelowThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, WindowsFromDifferentAppsOneAboveThreshold_BlocksTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithOpacityAboveThresholdAndSelfWindow_BlocksTouch) {
const sp<FakeWindowHandle>& wA =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithOpacityBelowThresholdAndSelfWindow_AllowsTouch) {
const sp<FakeWindowHandle>& wA =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wA, wB, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithOpacityAboveThreshold_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest, SelfWindowWithBlockUntrustedMode_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(TOUCHED_APP_UID, "T", TouchOcclusionMode::BLOCK_UNTRUSTED);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
OpacityThresholdIs0AndWindowAboveThreshold_BlocksTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(0.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.1f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
TEST_F(InputDispatcherUntrustedTouchesTest, OpacityThresholdIs0AndWindowAtThreshold_AllowsTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(0.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY, 0.0f);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
OpacityThresholdIs1AndWindowBelowThreshold_AllowsTouch) {
mDispatcher->setMaximumObscuringOpacityForTouch(1.0f);
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_ABOVE_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromSameApp_BlocksTouch) {
const sp<FakeWindowHandle>& w1 =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& w2 =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w1, w2, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
/**
* Window B of BLOCK_UNTRUSTED occlusion mode is enough to block the touch, we're testing that the
* addition of another window (C) of USE_OPACITY occlusion mode and opacity below the threshold
* (which alone would result in allowing touches) does not affect the blocking behavior.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithBlockUntrustedModeAndWindowWithOpacityBelowFromDifferentApps_BlocksTouch) {
const sp<FakeWindowHandle>& wB =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED,
OPACITY_BELOW_THRESHOLD);
const sp<FakeWindowHandle>& wC =
getOccludingWindow(APP_C_UID, "C", TouchOcclusionMode::USE_OPACITY,
OPACITY_BELOW_THRESHOLD);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {wB, wC, mTouchWindow}}});
touch();
mTouchWindow->assertNoEvents();
}
/**
* This test is testing that a window from a different UID but with same application token doesn't
* block the touch. Apps can share the application token for close UI collaboration for example.
*/
TEST_F(InputDispatcherUntrustedTouchesTest,
WindowWithSameApplicationTokenFromDifferentApp_AllowsTouch) {
const sp<FakeWindowHandle>& w =
getOccludingWindow(APP_B_UID, "B", TouchOcclusionMode::BLOCK_UNTRUSTED);
w->setApplicationToken(mTouchWindow->getApplicationToken());
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {w, mTouchWindow}}});
touch();
mTouchWindow->consumeAnyMotionDown();
}
class InputDispatcherDragTests : public InputDispatcherTest {
protected:
std::shared_ptr<FakeApplicationHandle> mApp;
sp<FakeWindowHandle> mWindow;
sp<FakeWindowHandle> mSecondWindow;
sp<FakeWindowHandle> mDragWindow;
void SetUp() override {
InputDispatcherTest::SetUp();
mApp = std::make_shared<FakeApplicationHandle>();
mWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow", ADISPLAY_ID_DEFAULT);
mWindow->setFrame(Rect(0, 0, 100, 100));
mWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mSecondWindow = new FakeWindowHandle(mApp, mDispatcher, "TestWindow2", ADISPLAY_ID_DEFAULT);
mSecondWindow->setFrame(Rect(100, 0, 200, 100));
mSecondWindow->setFlags(InputWindowInfo::Flag::NOT_TOUCH_MODAL);
mDispatcher->setFocusedApplication(ADISPLAY_ID_DEFAULT, mApp);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mWindow, mSecondWindow}}});
}
// Start performing drag, we will create a drag window and transfer touch to it.
void performDrag() {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionDown(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
// Window should receive motion event.
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// The drag window covers the entire display
mDragWindow = new FakeWindowHandle(mApp, mDispatcher, "DragWindow", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}});
// Transfer touch focus to the drag window
mDispatcher->transferTouchFocus(mWindow->getToken(), mDragWindow->getToken(),
true /* isDragDrop */);
mWindow->consumeMotionCancel();
mDragWindow->consumeMotionDown();
}
// Start performing drag, we will create a drag window and transfer touch to it.
void performStylusDrag() {
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_DOWN,
AINPUT_SOURCE_STYLUS)
.buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)
.pointer(PointerBuilder(0,
AMOTION_EVENT_TOOL_TYPE_STYLUS)
.x(50)
.y(50))
.build()));
mWindow->consumeMotionDown(ADISPLAY_ID_DEFAULT);
// The drag window covers the entire display
mDragWindow = new FakeWindowHandle(mApp, mDispatcher, "DragWindow", ADISPLAY_ID_DEFAULT);
mDispatcher->setInputWindows(
{{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}});
// Transfer touch focus to the drag window
mDispatcher->transferTouchFocus(mWindow->getToken(), mDragWindow->getToken(),
true /* isDragDrop */);
mWindow->consumeMotionCancel();
mDragWindow->consumeMotionDown();
}
};
TEST_F(InputDispatcherDragTests, DragEnterAndDragExit) {
performDrag();
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// Move back to original window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->consumeDragEvent(true, -50, 50);
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, DragAndDrop) {
performDrag();
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->consumeDragEvent(false, 50, 50);
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(mSecondWindow->getToken());
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, StylusDragAndDrop) {
performStylusDrag();
// Move on window and keep button pressed.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS)
.buttonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS)
.x(50)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window and release button, expect to drop item.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_STYLUS)
.buttonState(0)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS)
.x(150)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
mFakePolicy->assertDropTargetEquals(mSecondWindow->getToken());
// nothing to the window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher,
MotionEventBuilder(AMOTION_EVENT_ACTION_UP, AINPUT_SOURCE_STYLUS)
.buttonState(0)
.pointer(PointerBuilder(0, AMOTION_EVENT_TOOL_TYPE_STYLUS)
.x(150)
.y(50))
.build()))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
TEST_F(InputDispatcherDragTests, DragAndDrop_InvalidWindow) {
performDrag();
// Set second window invisible.
mSecondWindow->setVisible(false);
mDispatcher->setInputWindows({{ADISPLAY_ID_DEFAULT, {mDragWindow, mWindow, mSecondWindow}}});
// Move on window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {50, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(false, 50, 50);
mSecondWindow->assertNoEvents();
// Move to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionEvent(mDispatcher, AMOTION_EVENT_ACTION_MOVE, AINPUT_SOURCE_TOUCHSCREEN,
ADISPLAY_ID_DEFAULT, {150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionMove(ADISPLAY_ID_DEFAULT);
mWindow->consumeDragEvent(true, 150, 50);
mSecondWindow->assertNoEvents();
// drop to another window.
ASSERT_EQ(InputEventInjectionResult::SUCCEEDED,
injectMotionUp(mDispatcher, AINPUT_SOURCE_TOUCHSCREEN, ADISPLAY_ID_DEFAULT,
{150, 50}))
<< "Inject motion event should return InputEventInjectionResult::SUCCEEDED";
mDragWindow->consumeMotionUp(ADISPLAY_ID_DEFAULT);
mFakePolicy->assertDropTargetEquals(nullptr);
mWindow->assertNoEvents();
mSecondWindow->assertNoEvents();
}
} // namespace android::inputdispatcher