blob: 7f7a0437f18e6131d6ac4682f978b5e0bf4500b3 [file] [log] [blame]
/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <pwd.h>
#include <sys/types.h>
#define LOG_TAG "BufferQueueConsumer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#if DEBUG_ONLY_CODE
#define VALIDATE_CONSISTENCY() do { mCore->validateConsistencyLocked(); } while (0)
#else
#define VALIDATE_CONSISTENCY()
#endif
#include <gui/BufferItem.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/IConsumerListener.h>
#include <gui/IProducerListener.h>
#include <private/gui/BufferQueueThreadState.h>
#ifndef __ANDROID_VNDK__
#include <binder/PermissionCache.h>
#include <vndksupport/linker.h>
#endif
#include <system/window.h>
namespace android {
// Macros for include BufferQueueCore information in log messages
#define BQ_LOGV(x, ...) \
ALOGV("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGD(x, ...) \
ALOGD("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGI(x, ...) \
ALOGI("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGW(x, ...) \
ALOGW("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
#define BQ_LOGE(x, ...) \
ALOGE("[%s](id:%" PRIx64 ",api:%d,p:%d,c:%" PRIu64 ") " x, mConsumerName.string(), \
mCore->mUniqueId, mCore->mConnectedApi, mCore->mConnectedPid, (mCore->mUniqueId) >> 32, \
##__VA_ARGS__)
ConsumerListener::~ConsumerListener() = default;
BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
mCore(core),
mSlots(core->mSlots),
mConsumerName() {}
BufferQueueConsumer::~BufferQueueConsumer() {}
status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
nsecs_t expectedPresent, uint64_t maxFrameNumber) {
ATRACE_CALL();
int numDroppedBuffers = 0;
sp<IProducerListener> listener;
{
std::unique_lock<std::mutex> lock(mCore->mMutex);
// Check that the consumer doesn't currently have the maximum number of
// buffers acquired. We allow the max buffer count to be exceeded by one
// buffer so that the consumer can successfully set up the newly acquired
// buffer before releasing the old one.
int numAcquiredBuffers = 0;
for (int s : mCore->mActiveBuffers) {
if (mSlots[s].mBufferState.isAcquired()) {
++numAcquiredBuffers;
}
}
const bool acquireNonDroppableBuffer = mCore->mAllowExtraAcquire &&
numAcquiredBuffers == mCore->mMaxAcquiredBufferCount + 1;
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1 &&
!acquireNonDroppableBuffer) {
BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
bool sharedBufferAvailable = mCore->mSharedBufferMode &&
mCore->mAutoRefresh && mCore->mSharedBufferSlot !=
BufferQueueCore::INVALID_BUFFER_SLOT;
// In asynchronous mode the list is guaranteed to be one buffer deep,
// while in synchronous mode we use the oldest buffer.
if (mCore->mQueue.empty() && !sharedBufferAvailable) {
return NO_BUFFER_AVAILABLE;
}
BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
// If expectedPresent is specified, we may not want to return a buffer yet.
// If it's specified and there's more than one buffer queued, we may want
// to drop a buffer.
// Skip this if we're in shared buffer mode and the queue is empty,
// since in that case we'll just return the shared buffer.
if (expectedPresent != 0 && !mCore->mQueue.empty()) {
// The 'expectedPresent' argument indicates when the buffer is expected
// to be presented on-screen. If the buffer's desired present time is
// earlier (less) than expectedPresent -- meaning it will be displayed
// on time or possibly late if we show it as soon as possible -- we
// acquire and return it. If we don't want to display it until after the
// expectedPresent time, we return PRESENT_LATER without acquiring it.
//
// To be safe, we don't defer acquisition if expectedPresent is more
// than one second in the future beyond the desired present time
// (i.e., we'd be holding the buffer for a long time).
//
// NOTE: Code assumes monotonic time values from the system clock
// are positive.
// Start by checking to see if we can drop frames. We skip this check if
// the timestamps are being auto-generated by Surface. If the app isn't
// generating timestamps explicitly, it probably doesn't want frames to
// be discarded based on them.
while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
const BufferItem& bufferItem(mCore->mQueue[1]);
// If dropping entry[0] would leave us with a buffer that the
// consumer is not yet ready for, don't drop it.
if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
break;
}
// If entry[1] is timely, drop entry[0] (and repeat). We apply an
// additional criterion here: we only drop the earlier buffer if our
// desiredPresent falls within +/- 1 second of the expected present.
// Otherwise, bogus desiredPresent times (e.g., 0 or a small
// relative timestamp), which normally mean "ignore the timestamp
// and acquire immediately", would cause us to drop frames.
//
// We may want to add an additional criterion: don't drop the
// earlier buffer if entry[1]'s fence hasn't signaled yet.
nsecs_t desiredPresent = bufferItem.mTimestamp;
if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
desiredPresent > expectedPresent) {
// This buffer is set to display in the near future, or
// desiredPresent is garbage. Either way we don't want to drop
// the previous buffer just to get this on the screen sooner.
BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
PRId64 " (%" PRId64 ") now=%" PRId64,
desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
break;
}
BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
" size=%zu",
desiredPresent, expectedPresent, mCore->mQueue.size());
if (!front->mIsStale) {
// Front buffer is still in mSlots, so mark the slot as free
mSlots[front->mSlot].mBufferState.freeQueued();
// After leaving shared buffer mode, the shared buffer will
// still be around. Mark it as no longer shared if this
// operation causes it to be free.
if (!mCore->mSharedBufferMode &&
mSlots[front->mSlot].mBufferState.isFree()) {
mSlots[front->mSlot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list
if (!mSlots[front->mSlot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(front->mSlot);
mCore->mFreeBuffers.push_back(front->mSlot);
}
if (mCore->mBufferReleasedCbEnabled) {
listener = mCore->mConnectedProducerListener;
}
++numDroppedBuffers;
}
mCore->mQueue.erase(front);
front = mCore->mQueue.begin();
}
// See if the front buffer is ready to be acquired
nsecs_t desiredPresent = front->mTimestamp;
bool bufferIsDue = desiredPresent <= expectedPresent ||
desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
bool consumerIsReady = maxFrameNumber > 0 ?
front->mFrameNumber <= maxFrameNumber : true;
if (!bufferIsDue || !consumerIsReady) {
BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
" (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64
" consumer=%" PRIu64,
desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC),
front->mFrameNumber, maxFrameNumber);
ATRACE_NAME("PRESENT_LATER");
return PRESENT_LATER;
}
BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
"(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
desiredPresent - expectedPresent,
systemTime(CLOCK_MONOTONIC));
}
int slot = BufferQueueCore::INVALID_BUFFER_SLOT;
if (sharedBufferAvailable && mCore->mQueue.empty()) {
// make sure the buffer has finished allocating before acquiring it
mCore->waitWhileAllocatingLocked(lock);
slot = mCore->mSharedBufferSlot;
// Recreate the BufferItem for the shared buffer from the data that
// was cached when it was last queued.
outBuffer->mGraphicBuffer = mSlots[slot].mGraphicBuffer;
outBuffer->mFence = Fence::NO_FENCE;
outBuffer->mFenceTime = FenceTime::NO_FENCE;
outBuffer->mCrop = mCore->mSharedBufferCache.crop;
outBuffer->mTransform = mCore->mSharedBufferCache.transform &
~static_cast<uint32_t>(
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
outBuffer->mScalingMode = mCore->mSharedBufferCache.scalingMode;
outBuffer->mDataSpace = mCore->mSharedBufferCache.dataspace;
outBuffer->mFrameNumber = mCore->mFrameCounter;
outBuffer->mSlot = slot;
outBuffer->mAcquireCalled = mSlots[slot].mAcquireCalled;
outBuffer->mTransformToDisplayInverse =
(mCore->mSharedBufferCache.transform &
NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
outBuffer->mSurfaceDamage = Region::INVALID_REGION;
outBuffer->mQueuedBuffer = false;
outBuffer->mIsStale = false;
outBuffer->mAutoRefresh = mCore->mSharedBufferMode &&
mCore->mAutoRefresh;
} else if (acquireNonDroppableBuffer && front->mIsDroppable) {
BQ_LOGV("acquireBuffer: front buffer is not droppable");
return NO_BUFFER_AVAILABLE;
} else {
slot = front->mSlot;
*outBuffer = *front;
}
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
slot, outBuffer->mFrameNumber, outBuffer->mGraphicBuffer->handle);
if (!outBuffer->mIsStale) {
mSlots[slot].mAcquireCalled = true;
// Don't decrease the queue count if the BufferItem wasn't
// previously in the queue. This happens in shared buffer mode when
// the queue is empty and the BufferItem is created above.
if (mCore->mQueue.empty()) {
mSlots[slot].mBufferState.acquireNotInQueue();
} else {
mSlots[slot].mBufferState.acquire();
}
mSlots[slot].mFence = Fence::NO_FENCE;
}
// If the buffer has previously been acquired by the consumer, set
// mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
// on the consumer side
if (outBuffer->mAcquireCalled) {
outBuffer->mGraphicBuffer = nullptr;
}
mCore->mQueue.erase(front);
// We might have freed a slot while dropping old buffers, or the producer
// may be blocked waiting for the number of buffers in the queue to
// decrease.
mCore->mDequeueCondition.notify_all();
ATRACE_INT(mCore->mConsumerName.string(),
static_cast<int32_t>(mCore->mQueue.size()));
#ifndef NO_BINDER
mCore->mOccupancyTracker.registerOccupancyChange(mCore->mQueue.size());
#endif
VALIDATE_CONSISTENCY();
}
if (listener != nullptr) {
for (int i = 0; i < numDroppedBuffers; ++i) {
listener->onBufferReleased();
}
}
return NO_ERROR;
}
status_t BufferQueueConsumer::detachBuffer(int slot) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("detachBuffer: slot %d", slot);
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("detachBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mSharedBufferMode || slot == mCore->mSharedBufferSlot) {
BQ_LOGE("detachBuffer: detachBuffer not allowed in shared buffer mode");
return BAD_VALUE;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("detachBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (!mSlots[slot].mBufferState.isAcquired()) {
BQ_LOGE("detachBuffer: slot %d is not owned by the consumer "
"(state = %s)", slot, mSlots[slot].mBufferState.string());
return BAD_VALUE;
}
mSlots[slot].mBufferState.detachConsumer();
mCore->mActiveBuffers.erase(slot);
mCore->mFreeSlots.insert(slot);
mCore->clearBufferSlotLocked(slot);
mCore->mDequeueCondition.notify_all();
VALIDATE_CONSISTENCY();
return NO_ERROR;
}
status_t BufferQueueConsumer::attachBuffer(int* outSlot,
const sp<android::GraphicBuffer>& buffer) {
ATRACE_CALL();
if (outSlot == nullptr) {
BQ_LOGE("attachBuffer: outSlot must not be NULL");
return BAD_VALUE;
} else if (buffer == nullptr) {
BQ_LOGE("attachBuffer: cannot attach NULL buffer");
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mSharedBufferMode) {
BQ_LOGE("attachBuffer: cannot attach a buffer in shared buffer mode");
return BAD_VALUE;
}
// Make sure we don't have too many acquired buffers
int numAcquiredBuffers = 0;
for (int s : mCore->mActiveBuffers) {
if (mSlots[s].mBufferState.isAcquired()) {
++numAcquiredBuffers;
}
}
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
BQ_LOGE("attachBuffer: max acquired buffer count reached: %d "
"(max %d)", numAcquiredBuffers,
mCore->mMaxAcquiredBufferCount);
return INVALID_OPERATION;
}
if (buffer->getGenerationNumber() != mCore->mGenerationNumber) {
BQ_LOGE("attachBuffer: generation number mismatch [buffer %u] "
"[queue %u]", buffer->getGenerationNumber(),
mCore->mGenerationNumber);
return BAD_VALUE;
}
// Find a free slot to put the buffer into
int found = BufferQueueCore::INVALID_BUFFER_SLOT;
if (!mCore->mFreeSlots.empty()) {
auto slot = mCore->mFreeSlots.begin();
found = *slot;
mCore->mFreeSlots.erase(slot);
} else if (!mCore->mFreeBuffers.empty()) {
found = mCore->mFreeBuffers.front();
mCore->mFreeBuffers.remove(found);
}
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("attachBuffer: could not find free buffer slot");
return NO_MEMORY;
}
mCore->mActiveBuffers.insert(found);
*outSlot = found;
ATRACE_BUFFER_INDEX(*outSlot);
BQ_LOGV("attachBuffer: returning slot %d", *outSlot);
mSlots[*outSlot].mGraphicBuffer = buffer;
mSlots[*outSlot].mBufferState.attachConsumer();
mSlots[*outSlot].mNeedsReallocation = true;
mSlots[*outSlot].mFence = Fence::NO_FENCE;
mSlots[*outSlot].mFrameNumber = 0;
// mAcquireCalled tells BufferQueue that it doesn't need to send a valid
// GraphicBuffer pointer on the next acquireBuffer call, which decreases
// Binder traffic by not un/flattening the GraphicBuffer. However, it
// requires that the consumer maintain a cached copy of the slot <--> buffer
// mappings, which is why the consumer doesn't need the valid pointer on
// acquire.
//
// The StreamSplitter is one of the primary users of the attach/detach
// logic, and while it is running, all buffers it acquires are immediately
// detached, and all buffers it eventually releases are ones that were
// attached (as opposed to having been obtained from acquireBuffer), so it
// doesn't make sense to maintain the slot/buffer mappings, which would
// become invalid for every buffer during detach/attach. By setting this to
// false, the valid GraphicBuffer pointer will always be sent with acquire
// for attached buffers.
mSlots[*outSlot].mAcquireCalled = false;
VALIDATE_CONSISTENCY();
return NO_ERROR;
}
status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
EGLSyncKHR eglFence) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
releaseFence == nullptr) {
BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
releaseFence.get());
return BAD_VALUE;
}
sp<IProducerListener> listener;
{ // Autolock scope
std::lock_guard<std::mutex> lock(mCore->mMutex);
// If the frame number has changed because the buffer has been reallocated,
// we can ignore this releaseBuffer for the old buffer.
// Ignore this for the shared buffer where the frame number can easily
// get out of sync due to the buffer being queued and acquired at the
// same time.
if (frameNumber != mSlots[slot].mFrameNumber &&
!mSlots[slot].mBufferState.isShared()) {
return STALE_BUFFER_SLOT;
}
if (!mSlots[slot].mBufferState.isAcquired()) {
BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
"but its state was %s", slot,
mSlots[slot].mBufferState.string());
return BAD_VALUE;
}
mSlots[slot].mEglDisplay = eglDisplay;
mSlots[slot].mEglFence = eglFence;
mSlots[slot].mFence = releaseFence;
mSlots[slot].mBufferState.release();
// After leaving shared buffer mode, the shared buffer will
// still be around. Mark it as no longer shared if this
// operation causes it to be free.
if (!mCore->mSharedBufferMode && mSlots[slot].mBufferState.isFree()) {
mSlots[slot].mBufferState.mShared = false;
}
// Don't put the shared buffer on the free list.
if (!mSlots[slot].mBufferState.isShared()) {
mCore->mActiveBuffers.erase(slot);
mCore->mFreeBuffers.push_back(slot);
}
if (mCore->mBufferReleasedCbEnabled) {
listener = mCore->mConnectedProducerListener;
}
BQ_LOGV("releaseBuffer: releasing slot %d", slot);
mCore->mDequeueCondition.notify_all();
VALIDATE_CONSISTENCY();
} // Autolock scope
// Call back without lock held
if (listener != nullptr) {
listener->onBufferReleased();
}
return NO_ERROR;
}
status_t BufferQueueConsumer::connect(
const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
ATRACE_CALL();
if (consumerListener == nullptr) {
BQ_LOGE("connect: consumerListener may not be NULL");
return BAD_VALUE;
}
BQ_LOGV("connect: controlledByApp=%s",
controlledByApp ? "true" : "false");
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("connect: BufferQueue has been abandoned");
return NO_INIT;
}
mCore->mConsumerListener = consumerListener;
mCore->mConsumerControlledByApp = controlledByApp;
return NO_ERROR;
}
status_t BufferQueueConsumer::disconnect() {
ATRACE_CALL();
BQ_LOGV("disconnect");
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mConsumerListener == nullptr) {
BQ_LOGE("disconnect: no consumer is connected");
return BAD_VALUE;
}
mCore->mIsAbandoned = true;
mCore->mConsumerListener = nullptr;
mCore->mQueue.clear();
mCore->freeAllBuffersLocked();
mCore->mSharedBufferSlot = BufferQueueCore::INVALID_BUFFER_SLOT;
mCore->mDequeueCondition.notify_all();
return NO_ERROR;
}
status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
ATRACE_CALL();
if (outSlotMask == nullptr) {
BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
return NO_INIT;
}
uint64_t mask = 0;
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
if (!mSlots[s].mAcquireCalled) {
mask |= (1ULL << s);
}
}
// Remove from the mask queued buffers for which acquire has been called,
// since the consumer will not receive their buffer addresses and so must
// retain their cached information
BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
while (current != mCore->mQueue.end()) {
if (current->mAcquireCalled) {
mask &= ~(1ULL << current->mSlot);
}
++current;
}
BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
*outSlotMask = mask;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
uint32_t height) {
ATRACE_CALL();
if (width == 0 || height == 0) {
BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
"height=%u)", width, height);
return BAD_VALUE;
}
BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mDefaultWidth = width;
mCore->mDefaultHeight = height;
return NO_ERROR;
}
status_t BufferQueueConsumer::setMaxBufferCount(int bufferCount) {
ATRACE_CALL();
if (bufferCount < 1 || bufferCount > BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("setMaxBufferCount: invalid count %d", bufferCount);
return BAD_VALUE;
}
std::lock_guard<std::mutex> lock(mCore->mMutex);
if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("setMaxBufferCount: producer is already connected");
return INVALID_OPERATION;
}
if (bufferCount < mCore->mMaxAcquiredBufferCount) {
BQ_LOGE("setMaxBufferCount: invalid buffer count (%d) less than"
"mMaxAcquiredBufferCount (%d)", bufferCount,
mCore->mMaxAcquiredBufferCount);
return BAD_VALUE;
}
int delta = mCore->getMaxBufferCountLocked(mCore->mAsyncMode,
mCore->mDequeueBufferCannotBlock, bufferCount) -
mCore->getMaxBufferCountLocked();
if (!mCore->adjustAvailableSlotsLocked(delta)) {
BQ_LOGE("setMaxBufferCount: BufferQueue failed to adjust the number of "
"available slots. Delta = %d", delta);
return BAD_VALUE;
}
mCore->mMaxBufferCount = bufferCount;
return NO_ERROR;
}
status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
int maxAcquiredBuffers) {
ATRACE_CALL();
if (maxAcquiredBuffers < 1 ||
maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
maxAcquiredBuffers);
return BAD_VALUE;
}
sp<IConsumerListener> listener;
{ // Autolock scope
std::unique_lock<std::mutex> lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked(lock);
if (mCore->mIsAbandoned) {
BQ_LOGE("setMaxAcquiredBufferCount: consumer is abandoned");
return NO_INIT;
}
if (maxAcquiredBuffers == mCore->mMaxAcquiredBufferCount) {
return NO_ERROR;
}
// The new maxAcquiredBuffers count should not be violated by the number
// of currently acquired buffers
int acquiredCount = 0;
for (int slot : mCore->mActiveBuffers) {
if (mSlots[slot].mBufferState.isAcquired()) {
acquiredCount++;
}
}
if (acquiredCount > maxAcquiredBuffers) {
BQ_LOGE("setMaxAcquiredBufferCount: the requested maxAcquiredBuffer"
"count (%d) exceeds the current acquired buffer count (%d)",
maxAcquiredBuffers, acquiredCount);
return BAD_VALUE;
}
if ((maxAcquiredBuffers + mCore->mMaxDequeuedBufferCount +
(mCore->mAsyncMode || mCore->mDequeueBufferCannotBlock ? 1 : 0))
> mCore->mMaxBufferCount) {
BQ_LOGE("setMaxAcquiredBufferCount: %d acquired buffers would "
"exceed the maxBufferCount (%d) (maxDequeued %d async %d)",
maxAcquiredBuffers, mCore->mMaxBufferCount,
mCore->mMaxDequeuedBufferCount, mCore->mAsyncMode ||
mCore->mDequeueBufferCannotBlock);
return BAD_VALUE;
}
int delta = maxAcquiredBuffers - mCore->mMaxAcquiredBufferCount;
if (!mCore->adjustAvailableSlotsLocked(delta)) {
return BAD_VALUE;
}
BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
VALIDATE_CONSISTENCY();
if (delta < 0 && mCore->mBufferReleasedCbEnabled) {
listener = mCore->mConsumerListener;
}
}
// Call back without lock held
if (listener != nullptr) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
status_t BufferQueueConsumer::setConsumerName(const String8& name) {
ATRACE_CALL();
BQ_LOGV("setConsumerName: '%s'", name.string());
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mConsumerName = name;
mConsumerName = name;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) {
ATRACE_CALL();
BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mDefaultBufferFormat = defaultFormat;
return NO_ERROR;
}
status_t BufferQueueConsumer::setDefaultBufferDataSpace(
android_dataspace defaultDataSpace) {
ATRACE_CALL();
BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mDefaultBufferDataSpace = defaultDataSpace;
return NO_ERROR;
}
status_t BufferQueueConsumer::setConsumerUsageBits(uint64_t usage) {
ATRACE_CALL();
BQ_LOGV("setConsumerUsageBits: %#" PRIx64, usage);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mConsumerUsageBits = usage;
return NO_ERROR;
}
status_t BufferQueueConsumer::setConsumerIsProtected(bool isProtected) {
ATRACE_CALL();
BQ_LOGV("setConsumerIsProtected: %s", isProtected ? "true" : "false");
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mConsumerIsProtected = isProtected;
return NO_ERROR;
}
status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
ATRACE_CALL();
BQ_LOGV("setTransformHint: %#x", hint);
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mTransformHint = hint;
return NO_ERROR;
}
status_t BufferQueueConsumer::getSidebandStream(sp<NativeHandle>* outStream) const {
std::lock_guard<std::mutex> lock(mCore->mMutex);
*outStream = mCore->mSidebandStream;
return NO_ERROR;
}
status_t BufferQueueConsumer::getOccupancyHistory(bool forceFlush,
std::vector<OccupancyTracker::Segment>* outHistory) {
std::lock_guard<std::mutex> lock(mCore->mMutex);
#ifndef NO_BINDER
*outHistory = mCore->mOccupancyTracker.getSegmentHistory(forceFlush);
#else
(void)forceFlush;
outHistory->clear();
#endif
return NO_ERROR;
}
status_t BufferQueueConsumer::discardFreeBuffers() {
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->discardFreeBuffersLocked();
return NO_ERROR;
}
status_t BufferQueueConsumer::dumpState(const String8& prefix, String8* outResult) const {
struct passwd* pwd = getpwnam("shell");
uid_t shellUid = pwd ? pwd->pw_uid : 0;
if (!shellUid) {
int savedErrno = errno;
BQ_LOGE("Cannot get AID_SHELL");
return savedErrno ? -savedErrno : UNKNOWN_ERROR;
}
bool denied = false;
const uid_t uid = BufferQueueThreadState::getCallingUid();
#if !defined(__ANDROID_VNDK__) && !defined(NO_BINDER)
// permission check can't be done for vendors as vendors have no access to
// the PermissionController. We need to do a runtime check as well, since
// the system variant of libgui can be loaded in a vendor process. For eg:
// if a HAL uses an llndk library that depends on libgui (libmediandk etc).
if (!android_is_in_vendor_process()) {
const pid_t pid = BufferQueueThreadState::getCallingPid();
if ((uid != shellUid) &&
!PermissionCache::checkPermission(String16("android.permission.DUMP"), pid, uid)) {
outResult->appendFormat("Permission Denial: can't dump BufferQueueConsumer "
"from pid=%d, uid=%d\n",
pid, uid);
denied = true;
}
}
#else
if (uid != shellUid) {
denied = true;
}
#endif
if (denied) {
android_errorWriteWithInfoLog(0x534e4554, "27046057",
static_cast<int32_t>(uid), nullptr, 0);
return PERMISSION_DENIED;
}
mCore->dumpState(prefix, outResult);
return NO_ERROR;
}
void BufferQueueConsumer::setAllowExtraAcquire(bool allow) {
std::lock_guard<std::mutex> lock(mCore->mMutex);
mCore->mAllowExtraAcquire = allow;
}
} // namespace android