blob: 56d958c6beff22d72c12f86ca9e063367631d6f3 [file] [log] [blame]
#include <binder/Binder.h>
#include <binder/IBinder.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <iomanip>
#include <iostream>
#include <tuple>
#include <vector>
#include <pthread.h>
#include <sys/wait.h>
#include <unistd.h>
#include <fstream>
using namespace std;
using namespace android;
enum BinderWorkerServiceCode {
BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION,
};
#define ASSERT(cond) \
do { \
if (!(cond)) { \
cerr << __func__ << ":" << __LINE__ << " condition:" << #cond \
<< " failed\n" \
<< endl; \
exit(EXIT_FAILURE); \
} \
} while (0)
vector<sp<IBinder> > workers;
// the ratio that the service is synced on the same cpu beyond
// GOOD_SYNC_MIN is considered as good
#define GOOD_SYNC_MIN (0.6)
#define DUMP_PRESICION 2
string trace_path = "/sys/kernel/debug/tracing";
// the default value
int no_process = 2;
int iterations = 100;
int payload_size = 16;
int no_inherent = 0;
int no_sync = 0;
int verbose = 0;
int trace;
bool traceIsOn() {
fstream file;
file.open(trace_path + "/tracing_on", ios::in);
char on;
file >> on;
file.close();
return on == '1';
}
void traceStop() {
ofstream file;
file.open(trace_path + "/tracing_on", ios::out | ios::trunc);
file << '0' << endl;
file.close();
}
// the deadline latency that we are interested in
uint64_t deadline_us = 2500;
int thread_pri() {
struct sched_param param;
int policy;
ASSERT(!pthread_getschedparam(pthread_self(), &policy, &param));
return param.sched_priority;
}
void thread_dump(const char* prefix) {
struct sched_param param;
int policy;
if (!verbose) return;
cout << "--------------------------------------------------" << endl;
cout << setw(12) << left << prefix << " pid: " << getpid()
<< " tid: " << gettid() << " cpu: " << sched_getcpu() << endl;
ASSERT(!pthread_getschedparam(pthread_self(), &policy, &param));
string s = (policy == SCHED_OTHER)
? "SCHED_OTHER"
: (policy == SCHED_FIFO)
? "SCHED_FIFO"
: (policy == SCHED_RR) ? "SCHED_RR" : "???";
cout << setw(12) << left << s << param.sched_priority << endl;
return;
}
class BinderWorkerService : public BBinder {
public:
BinderWorkerService() {
}
~BinderWorkerService() {
}
virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply,
uint32_t flags = 0) {
(void)flags;
(void)data;
(void)reply;
switch (code) {
// The transaction format is like
//
// data[in]: int32: caller priority
// int32: caller cpu
//
// reply[out]: int32: 1 if caller's priority != callee's priority
// int32: 1 if caller's cpu != callee's cpu
//
// note the caller cpu read here is not always correct
// there're still chances that the caller got switched out
// right after it read the cpu number and still before the transaction.
case BINDER_NOP: {
thread_dump("binder");
int priority = thread_pri();
int priority_caller = data.readInt32();
int h = 0, s = 0;
if (priority_caller != priority) {
h++;
if (verbose) {
cout << "err priority_caller:" << priority_caller
<< ", priority:" << priority << endl;
}
}
if (priority == sched_get_priority_max(SCHED_FIFO)) {
int cpu = sched_getcpu();
int cpu_caller = data.readInt32();
if (cpu != cpu_caller) {
s++;
}
}
reply->writeInt32(h);
reply->writeInt32(s);
return NO_ERROR;
}
default:
return UNKNOWN_TRANSACTION;
};
}
};
class Pipe {
int m_readFd;
int m_writeFd;
Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {
}
Pipe(const Pipe&) = delete;
Pipe& operator=(const Pipe&) = delete;
Pipe& operator=(const Pipe&&) = delete;
public:
Pipe(Pipe&& rval) noexcept {
m_readFd = rval.m_readFd;
m_writeFd = rval.m_writeFd;
rval.m_readFd = 0;
rval.m_writeFd = 0;
}
~Pipe() {
if (m_readFd) close(m_readFd);
if (m_writeFd) close(m_writeFd);
}
void signal() {
bool val = true;
int error = write(m_writeFd, &val, sizeof(val));
ASSERT(error >= 0);
};
void wait() {
bool val = false;
int error = read(m_readFd, &val, sizeof(val));
ASSERT(error >= 0);
}
template <typename T>
void send(const T& v) {
int error = write(m_writeFd, &v, sizeof(T));
ASSERT(error >= 0);
}
template <typename T>
void recv(T& v) {
int error = read(m_readFd, &v, sizeof(T));
ASSERT(error >= 0);
}
static tuple<Pipe, Pipe> createPipePair() {
int a[2];
int b[2];
int error1 = pipe(a);
int error2 = pipe(b);
ASSERT(error1 >= 0);
ASSERT(error2 >= 0);
return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1]));
}
};
typedef chrono::time_point<chrono::high_resolution_clock> Tick;
static inline Tick tickNow() {
return chrono::high_resolution_clock::now();
}
static inline uint64_t tickNano(Tick& sta, Tick& end) {
return uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - sta).count());
}
struct Results {
uint64_t m_best = 0xffffffffffffffffULL;
uint64_t m_worst = 0;
uint64_t m_transactions = 0;
uint64_t m_total_time = 0;
uint64_t m_miss = 0;
bool tracing;
explicit Results(bool _tracing) : tracing(_tracing) {
}
inline bool miss_deadline(uint64_t nano) {
return nano > deadline_us * 1000;
}
void add_time(uint64_t nano) {
m_best = min(nano, m_best);
m_worst = max(nano, m_worst);
m_transactions += 1;
m_total_time += nano;
if (miss_deadline(nano)) m_miss++;
if (miss_deadline(nano) && tracing) {
// There might be multiple process pair running the test concurrently
// each may execute following statements and only the first one actually
// stop the trace and any traceStop() afterthen has no effect.
traceStop();
cout << endl;
cout << "deadline triggered: halt & stop trace" << endl;
cout << "log:" + trace_path + "/trace" << endl;
cout << endl;
exit(1);
}
}
void dump() {
double best = (double)m_best / 1.0E6;
double worst = (double)m_worst / 1.0E6;
double average = (double)m_total_time / m_transactions / 1.0E6;
// TODO: libjson?
int W = DUMP_PRESICION + 2;
cout << setprecision(DUMP_PRESICION) << "{ \"avg\":" << setw(W) << left
<< average << ",\"wst\":" << setw(W) << left << worst
<< ",\"bst\":" << setw(W) << left << best << ",\"miss\":" << left
<< m_miss << ",\"meetR\":" << left << setprecision(DUMP_PRESICION + 3)
<< (1.0 - (double)m_miss / m_transactions) << "}";
}
};
String16 generateServiceName(int num) {
char num_str[32];
snprintf(num_str, sizeof(num_str), "%d", num);
String16 serviceName = String16("binderWorker") + String16(num_str);
return serviceName;
}
static void parcel_fill(Parcel& data, int sz, int priority, int cpu) {
ASSERT(sz >= (int)sizeof(uint32_t) * 2);
data.writeInt32(priority);
data.writeInt32(cpu);
sz -= sizeof(uint32_t);
while (sz > (int)sizeof(uint32_t)) {
data.writeInt32(0);
sz -= sizeof(uint32_t);
}
}
typedef struct {
void* result;
int target;
} thread_priv_t;
static void* thread_start(void* p) {
thread_priv_t* priv = (thread_priv_t*)p;
int target = priv->target;
Results* results_fifo = (Results*)priv->result;
Parcel data, reply;
Tick sta, end;
parcel_fill(data, payload_size, thread_pri(), sched_getcpu());
thread_dump("fifo-caller");
sta = tickNow();
status_t ret = workers[target]->transact(BINDER_NOP, data, &reply);
ASSERT(ret == NO_ERROR);
end = tickNow();
results_fifo->add_time(tickNano(sta, end));
no_inherent += reply.readInt32();
no_sync += reply.readInt32();
return nullptr;
}
// create a fifo thread to transact and wait it to finished
static void thread_transaction(int target, Results* results_fifo) {
thread_priv_t thread_priv;
void* dummy;
pthread_t thread;
pthread_attr_t attr;
struct sched_param param;
thread_priv.target = target;
thread_priv.result = results_fifo;
ASSERT(!pthread_attr_init(&attr));
ASSERT(!pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
param.sched_priority = sched_get_priority_max(SCHED_FIFO);
ASSERT(!pthread_attr_setschedparam(&attr, &param));
ASSERT(!pthread_create(&thread, &attr, &thread_start, &thread_priv));
ASSERT(!pthread_join(thread, &dummy));
}
#define is_client(_num) ((_num) >= (no_process / 2))
void worker_fx(int num, int no_process, int iterations, int payload_size,
Pipe p) {
int dummy;
Results results_other(false), results_fifo(trace);
// Create BinderWorkerService and for go.
ProcessState::self()->startThreadPool();
sp<IServiceManager> serviceMgr = defaultServiceManager();
sp<BinderWorkerService> service = new BinderWorkerService;
serviceMgr->addService(generateServiceName(num), service);
// init done
p.signal();
// wait for kick-off
p.wait();
// If client/server pairs, then half the workers are
// servers and half are clients
int server_count = no_process / 2;
for (int i = 0; i < server_count; i++) {
// self service is in-process so just skip
if (num == i) continue;
workers.push_back(serviceMgr->getService(generateServiceName(i)));
}
// Client for each pair iterates here
// each iterations contains exatcly 2 transactions
for (int i = 0; is_client(num) && i < iterations; i++) {
Parcel data, reply;
Tick sta, end;
// the target is paired to make it easier to diagnose
int target = num % server_count;
// 1. transaction by fifo thread
thread_transaction(target, &results_fifo);
parcel_fill(data, payload_size, thread_pri(), sched_getcpu());
thread_dump("other-caller");
// 2. transaction by other thread
sta = tickNow();
ASSERT(NO_ERROR == workers[target]->transact(BINDER_NOP, data, &reply));
end = tickNow();
results_other.add_time(tickNano(sta, end));
no_inherent += reply.readInt32();
no_sync += reply.readInt32();
}
// Signal completion to master and wait.
p.signal();
p.wait();
p.send(&dummy);
// wait for kill
p.wait();
// Client for each pair dump here
if (is_client(num)) {
int no_trans = iterations * 2;
double sync_ratio = (1.0 - (double)no_sync / no_trans);
// TODO: libjson?
cout << "\"P" << (num - server_count) << "\":{\"SYNC\":\""
<< ((sync_ratio > GOOD_SYNC_MIN) ? "GOOD" : "POOR") << "\","
<< "\"S\":" << (no_trans - no_sync) << ",\"I\":" << no_trans << ","
<< "\"R\":" << sync_ratio << "," << endl;
cout << " \"other_ms\":";
results_other.dump();
cout << "," << endl;
cout << " \"fifo_ms\": ";
results_fifo.dump();
cout << endl;
cout << "}," << endl;
}
exit(no_inherent);
}
Pipe make_process(int num, int iterations, int no_process, int payload_size) {
auto pipe_pair = Pipe::createPipePair();
pid_t pid = fork();
if (pid) {
// parent
return move(get<0>(pipe_pair));
} else {
// child
thread_dump(is_client(num) ? "client" : "server");
worker_fx(num, no_process, iterations, payload_size,
move(get<1>(pipe_pair)));
// never get here
return move(get<0>(pipe_pair));
}
}
void wait_all(vector<Pipe>& v) {
for (size_t i = 0; i < v.size(); i++) {
v[i].wait();
}
}
void signal_all(vector<Pipe>& v) {
for (size_t i = 0; i < v.size(); i++) {
v[i].signal();
}
}
// This test is modified from binderThroughputTest.cpp
int main(int argc, char** argv) {
for (int i = 1; i < argc; i++) {
if (string(argv[i]) == "-i") {
iterations = atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-pair") {
no_process = 2 * atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-deadline_us") {
deadline_us = atoi(argv[i + 1]);
i++;
continue;
}
if (string(argv[i]) == "-v") {
verbose = 1;
}
// The -trace argument is used like that:
//
// First start trace with atrace command as usual
// >atrace --async_start sched freq
//
// then use schd-dbg with -trace arguments
//./schd-dbg -trace -deadline_us 2500
//
// This makes schd-dbg to stop trace once it detects a transaction
// duration over the deadline. By writing '0' to
// /sys/kernel/debug/tracing and halt the process. The tracelog is
// then available on /sys/kernel/debug/trace
if (string(argv[i]) == "-trace") {
trace = 1;
}
}
if (trace && !traceIsOn()) {
cout << "trace is not running" << endl;
cout << "check " << trace_path + "/tracing_on" << endl;
cout << "use atrace --async_start first" << endl;
exit(-1);
}
vector<Pipe> pipes;
thread_dump("main");
// TODO: libjson?
cout << "{" << endl;
cout << "\"cfg\":{\"pair\":" << (no_process / 2)
<< ",\"iterations\":" << iterations << ",\"deadline_us\":" << deadline_us
<< "}," << endl;
// the main process fork 2 processes for each pairs
// 1 server + 1 client
// each has a pipe to communicate with
for (int i = 0; i < no_process; i++) {
pipes.push_back(make_process(i, iterations, no_process, payload_size));
}
// wait for init done
wait_all(pipes);
// kick-off iterations
signal_all(pipes);
// wait for completion
wait_all(pipes);
// start to send result
signal_all(pipes);
for (int i = 0; i < no_process; i++) {
int status;
// kill
pipes[i].signal();
wait(&status);
// the exit status is number of transactions without priority inheritance
// detected in the child process
no_inherent += status;
}
// TODO: libjson?
cout << "\"inheritance\": " << (no_inherent == 0 ? "\"PASS\"" : "\"FAIL\"")
<< endl;
cout << "}" << endl;
return -no_inherent;
}