blob: 28b447f7aa5d6f30110d3853fb48583e7c491d3c [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdint.h>
#include <sys/types.h>
#include <algorithm>
#include <errno.h>
#include <math.h>
#include <mutex>
#include <dlfcn.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <optional>
#include <cutils/properties.h>
#include <log/log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <dvr/vr_flinger.h>
#include <ui/ColorSpace.h>
#include <ui/DebugUtils.h>
#include <ui/DisplayInfo.h>
#include <ui/DisplayStatInfo.h>
#include <gui/BufferQueue.h>
#include <gui/GuiConfig.h>
#include <gui/IDisplayEventConnection.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/PixelFormat.h>
#include <ui/UiConfig.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <private/android_filesystem_config.h>
#include <private/gui/SyncFeatures.h>
#include "BufferLayer.h"
#include "Client.h"
#include "ColorLayer.h"
#include "Colorizer.h"
#include "ContainerLayer.h"
#include "DdmConnection.h"
#include "DispSync.h"
#include "DisplayDevice.h"
#include "EventControlThread.h"
#include "EventThread.h"
#include "Layer.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "SurfaceFlinger.h"
#include "clz.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/FramebufferSurface.h"
#include "DisplayHardware/HWComposer.h"
#include "DisplayHardware/VirtualDisplaySurface.h"
#include "Effects/Daltonizer.h"
#include "RenderEngine/RenderEngine.h"
#include <cutils/compiler.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/types.h>
#include <configstore/Utils.h>
#include <layerproto/LayerProtoParser.h>
#define DISPLAY_COUNT 1
/*
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
* black pixels.
*/
#define DEBUG_SCREENSHOTS false
namespace android {
using namespace android::hardware::configstore;
using namespace android::hardware::configstore::V1_0;
using ui::ColorMode;
using ui::Dataspace;
using ui::Hdr;
using ui::RenderIntent;
namespace {
class ConditionalLock {
public:
ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
if (lock) {
mMutex.lock();
}
}
~ConditionalLock() { if (mLocked) mMutex.unlock(); }
private:
Mutex& mMutex;
bool mLocked;
};
} // namespace anonymous
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
int64_t SurfaceFlinger::vsyncPhaseOffsetNs;
int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs;
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
bool SurfaceFlinger::useHwcForRgbToYuv;
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
bool SurfaceFlinger::hasSyncFramework;
bool SurfaceFlinger::useVrFlinger;
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
// TODO(courtneygo): Rename hasWideColorDisplay to clarify its actual meaning.
bool SurfaceFlinger::hasWideColorDisplay;
std::string getHwcServiceName() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.hwc_service_name", value, "default");
ALOGI("Using HWComposer service: '%s'", value);
return std::string(value);
}
bool useTrebleTestingOverride() {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.treble_testing_override", value, "false");
ALOGI("Treble testing override: '%s'", value);
return std::string(value) == "true";
}
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
switch(displayColorSetting) {
case DisplayColorSetting::MANAGED:
return std::string("Managed");
case DisplayColorSetting::UNMANAGED:
return std::string("Unmanaged");
case DisplayColorSetting::ENHANCED:
return std::string("Enhanced");
default:
return std::string("Unknown ") +
std::to_string(static_cast<int>(displayColorSetting));
}
}
NativeWindowSurface::~NativeWindowSurface() = default;
namespace impl {
class NativeWindowSurface final : public android::NativeWindowSurface {
public:
static std::unique_ptr<android::NativeWindowSurface> create(
const sp<IGraphicBufferProducer>& producer) {
return std::make_unique<NativeWindowSurface>(producer);
}
explicit NativeWindowSurface(const sp<IGraphicBufferProducer>& producer)
: surface(new Surface(producer, false)) {}
~NativeWindowSurface() override = default;
private:
sp<ANativeWindow> getNativeWindow() const override { return surface; }
void preallocateBuffers() override { surface->allocateBuffers(); }
sp<Surface> surface;
};
} // namespace impl
SurfaceFlingerBE::SurfaceFlingerBE()
: mHwcServiceName(getHwcServiceName()),
mRenderEngine(nullptr),
mFrameBuckets(),
mTotalTime(0),
mLastSwapTime(0),
mComposerSequenceId(0) {
}
SurfaceFlinger::SurfaceFlinger(SurfaceFlinger::SkipInitializationTag)
: BnSurfaceComposer(),
mTransactionFlags(0),
mTransactionPending(false),
mAnimTransactionPending(false),
mLayersRemoved(false),
mLayersAdded(false),
mRepaintEverything(0),
mBootTime(systemTime()),
mBuiltinDisplays(),
mVisibleRegionsDirty(false),
mGeometryInvalid(false),
mAnimCompositionPending(false),
mBootStage(BootStage::BOOTLOADER),
mDebugRegion(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mForceFullDamage(false),
mPrimaryDispSync("PrimaryDispSync"),
mPrimaryHWVsyncEnabled(false),
mHWVsyncAvailable(false),
mHasPoweredOff(false),
mNumLayers(0),
mVrFlingerRequestsDisplay(false),
mMainThreadId(std::this_thread::get_id()),
mCreateBufferQueue(&BufferQueue::createBufferQueue),
mCreateNativeWindowSurface(&impl::NativeWindowSurface::create) {}
SurfaceFlinger::SurfaceFlinger() : SurfaceFlinger(SkipInitialization) {
ALOGI("SurfaceFlinger is starting");
vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000);
sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000);
hasSyncFramework = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::hasSyncFramework>(true);
dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0);
useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false);
maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0);
// Vr flinger is only enabled on Daydream ready devices.
useVrFlinger = getBool< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::useVrFlinger>(false);
maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs,
&ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2);
hasWideColorDisplay =
getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
V1_1::DisplayOrientation primaryDisplayOrientation =
getDisplayOrientation< V1_1::ISurfaceFlingerConfigs, &V1_1::ISurfaceFlingerConfigs::primaryDisplayOrientation>(
V1_1::DisplayOrientation::ORIENTATION_0);
switch (primaryDisplayOrientation) {
case V1_1::DisplayOrientation::ORIENTATION_90:
mPrimaryDisplayOrientation = DisplayState::eOrientation90;
break;
case V1_1::DisplayOrientation::ORIENTATION_180:
mPrimaryDisplayOrientation = DisplayState::eOrientation180;
break;
case V1_1::DisplayOrientation::ORIENTATION_270:
mPrimaryDisplayOrientation = DisplayState::eOrientation270;
break;
default:
mPrimaryDisplayOrientation = DisplayState::eOrientationDefault;
break;
}
ALOGV("Primary Display Orientation is set to %2d.", mPrimaryDisplayOrientation);
mPrimaryDispSync.init(SurfaceFlinger::hasSyncFramework, SurfaceFlinger::dispSyncPresentTimeOffset);
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
mGpuToCpuSupported = !atoi(value);
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
if (!startDdmConnection()) {
// start failed, and DDMS debugging not enabled
mDebugDDMS = 0;
}
}
ALOGI_IF(mDebugRegion, "showupdates enabled");
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
property_get("debug.sf.disable_backpressure", value, "0");
mPropagateBackpressure = !atoi(value);
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
property_get("debug.sf.enable_hwc_vds", value, "0");
mUseHwcVirtualDisplays = atoi(value);
ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
property_get("ro.sf.disable_triple_buffer", value, "1");
mLayerTripleBufferingDisabled = atoi(value);
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
const size_t defaultListSize = MAX_LAYERS;
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
property_get("debug.sf.early_phase_offset_ns", value, "-1");
const int earlySfOffsetNs = atoi(value);
property_get("debug.sf.early_gl_phase_offset_ns", value, "-1");
const int earlyGlSfOffsetNs = atoi(value);
property_get("debug.sf.early_app_phase_offset_ns", value, "-1");
const int earlyAppOffsetNs = atoi(value);
property_get("debug.sf.early_gl_app_phase_offset_ns", value, "-1");
const int earlyGlAppOffsetNs = atoi(value);
const VSyncModulator::Offsets earlyOffsets =
{earlySfOffsetNs != -1 ? earlySfOffsetNs : sfVsyncPhaseOffsetNs,
earlyAppOffsetNs != -1 ? earlyAppOffsetNs : vsyncPhaseOffsetNs};
const VSyncModulator::Offsets earlyGlOffsets =
{earlyGlSfOffsetNs != -1 ? earlyGlSfOffsetNs : sfVsyncPhaseOffsetNs,
earlyGlAppOffsetNs != -1 ? earlyGlAppOffsetNs : vsyncPhaseOffsetNs};
mVsyncModulator.setPhaseOffsets(earlyOffsets, earlyGlOffsets,
{sfVsyncPhaseOffsetNs, vsyncPhaseOffsetNs});
// We should be reading 'persist.sys.sf.color_saturation' here
// but since /data may be encrypted, we need to wait until after vold
// comes online to attempt to read the property. The property is
// instead read after the boot animation
if (useTrebleTestingOverride()) {
// Without the override SurfaceFlinger cannot connect to HIDL
// services that are not listed in the manifests. Considered
// deriving the setting from the set service name, but it
// would be brittle if the name that's not 'default' is used
// for production purposes later on.
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
}
}
void SurfaceFlinger::onFirstRef()
{
mEventQueue->init(this);
}
SurfaceFlinger::~SurfaceFlinger()
{
}
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
{
// the window manager died on us. prepare its eulogy.
// restore initial conditions (default device unblank, etc)
initializeDisplays();
// restart the boot-animation
startBootAnim();
}
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
status_t err = client->initCheck();
if (err == NO_ERROR) {
return client;
}
return nullptr;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
return initClient(new Client(this));
}
sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection(
const sp<IGraphicBufferProducer>& gbp) {
if (authenticateSurfaceTexture(gbp) == false) {
return nullptr;
}
const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
if (layer == nullptr) {
return nullptr;
}
return initClient(new Client(this, layer));
}
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
bool secure)
{
class DisplayToken : public BBinder {
sp<SurfaceFlinger> flinger;
virtual ~DisplayToken() {
// no more references, this display must be terminated
Mutex::Autolock _l(flinger->mStateLock);
flinger->mCurrentState.displays.removeItem(this);
flinger->setTransactionFlags(eDisplayTransactionNeeded);
}
public:
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
: flinger(flinger) {
}
};
sp<BBinder> token = new DisplayToken(this);
Mutex::Autolock _l(mStateLock);
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure);
info.displayName = displayName;
mCurrentState.displays.add(token, info);
mInterceptor->saveDisplayCreation(info);
return token;
}
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
Mutex::Autolock _l(mStateLock);
ssize_t idx = mCurrentState.displays.indexOfKey(display);
if (idx < 0) {
ALOGW("destroyDisplay: invalid display token");
return;
}
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
if (!info.isVirtualDisplay()) {
ALOGE("destroyDisplay called for non-virtual display");
return;
}
mInterceptor->saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
setTransactionFlags(eDisplayTransactionNeeded);
}
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
return nullptr;
}
return mBuiltinDisplays[id];
}
void SurfaceFlinger::bootFinished()
{
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
}
if (mVrFlinger) {
mVrFlinger->OnBootFinished();
}
// stop boot animation
// formerly we would just kill the process, but we now ask it to exit so it
// can choose where to stop the animation.
property_set("service.bootanim.exit", "1");
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
sp<LambdaMessage> readProperties = new LambdaMessage([&]() {
readPersistentProperties();
mBootStage = BootStage::FINISHED;
});
postMessageAsync(readProperties);
}
uint32_t SurfaceFlinger::getNewTexture() {
{
std::lock_guard lock(mTexturePoolMutex);
if (!mTexturePool.empty()) {
uint32_t name = mTexturePool.back();
mTexturePool.pop_back();
ATRACE_INT("TexturePoolSize", mTexturePool.size());
return name;
}
// The pool was too small, so increase it for the future
++mTexturePoolSize;
}
// The pool was empty, so we need to get a new texture name directly using a
// blocking call to the main thread
uint32_t name = 0;
postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); }));
return name;
}
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
class MessageDestroyGLTexture : public MessageBase {
RE::RenderEngine& engine;
uint32_t texture;
public:
MessageDestroyGLTexture(RE::RenderEngine& engine, uint32_t texture)
: engine(engine), texture(texture) {}
virtual bool handler() {
engine.deleteTextures(1, &texture);
return true;
}
};
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
}
class DispSyncSource final : public VSyncSource, private DispSync::Callback {
public:
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
const char* name) :
mName(name),
mValue(0),
mTraceVsync(traceVsync),
mVsyncOnLabel(String8::format("VsyncOn-%s", name)),
mVsyncEventLabel(String8::format("VSYNC-%s", name)),
mDispSync(dispSync),
mCallbackMutex(),
mVsyncMutex(),
mPhaseOffset(phaseOffset),
mEnabled(false) {}
~DispSyncSource() override = default;
void setVSyncEnabled(bool enable) override {
Mutex::Autolock lock(mVsyncMutex);
if (enable) {
status_t err = mDispSync->addEventListener(mName, mPhaseOffset,
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error registering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 1);
} else {
status_t err = mDispSync->removeEventListener(
static_cast<DispSync::Callback*>(this));
if (err != NO_ERROR) {
ALOGE("error unregistering vsync callback: %s (%d)",
strerror(-err), err);
}
//ATRACE_INT(mVsyncOnLabel.string(), 0);
}
mEnabled = enable;
}
void setCallback(VSyncSource::Callback* callback) override{
Mutex::Autolock lock(mCallbackMutex);
mCallback = callback;
}
void setPhaseOffset(nsecs_t phaseOffset) override {
Mutex::Autolock lock(mVsyncMutex);
// Normalize phaseOffset to [0, period)
auto period = mDispSync->getPeriod();
phaseOffset %= period;
if (phaseOffset < 0) {
// If we're here, then phaseOffset is in (-period, 0). After this
// operation, it will be in (0, period)
phaseOffset += period;
}
mPhaseOffset = phaseOffset;
// If we're not enabled, we don't need to mess with the listeners
if (!mEnabled) {
return;
}
status_t err = mDispSync->changePhaseOffset(static_cast<DispSync::Callback*>(this),
mPhaseOffset);
if (err != NO_ERROR) {
ALOGE("error changing vsync offset: %s (%d)",
strerror(-err), err);
}
}
private:
virtual void onDispSyncEvent(nsecs_t when) {
VSyncSource::Callback* callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != nullptr) {
callback->onVSyncEvent(when);
}
}
const char* const mName;
int mValue;
const bool mTraceVsync;
const String8 mVsyncOnLabel;
const String8 mVsyncEventLabel;
DispSync* mDispSync;
Mutex mCallbackMutex; // Protects the following
VSyncSource::Callback* mCallback = nullptr;
Mutex mVsyncMutex; // Protects the following
nsecs_t mPhaseOffset;
bool mEnabled;
};
class InjectVSyncSource final : public VSyncSource {
public:
InjectVSyncSource() = default;
~InjectVSyncSource() override = default;
void setCallback(VSyncSource::Callback* callback) override {
std::lock_guard<std::mutex> lock(mCallbackMutex);
mCallback = callback;
}
void onInjectSyncEvent(nsecs_t when) {
std::lock_guard<std::mutex> lock(mCallbackMutex);
if (mCallback) {
mCallback->onVSyncEvent(when);
}
}
void setVSyncEnabled(bool) override {}
void setPhaseOffset(nsecs_t) override {}
private:
std::mutex mCallbackMutex; // Protects the following
VSyncSource::Callback* mCallback = nullptr;
};
// Do not call property_set on main thread which will be blocked by init
// Use StartPropertySetThread instead.
void SurfaceFlinger::init() {
ALOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs);
Mutex::Autolock _l(mStateLock);
// start the EventThread
mEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync, SurfaceFlinger::vsyncPhaseOffsetNs,
true, "app");
mEventThread = std::make_unique<impl::EventThread>(mEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
impl::EventThread::InterceptVSyncsCallback(),
"appEventThread");
mSfEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync,
SurfaceFlinger::sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread =
std::make_unique<impl::EventThread>(mSfEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
[this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
},
"sfEventThread");
mEventQueue->setEventThread(mSFEventThread.get());
mVsyncModulator.setEventThreads(mSFEventThread.get(), mEventThread.get());
// Get a RenderEngine for the given display / config (can't fail)
getBE().mRenderEngine =
RE::impl::RenderEngine::create(HAL_PIXEL_FORMAT_RGBA_8888,
hasWideColorDisplay
? RE::RenderEngine::WIDE_COLOR_SUPPORT
: 0);
LOG_ALWAYS_FATAL_IF(getBE().mRenderEngine == nullptr, "couldn't create RenderEngine");
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
"Starting with vr flinger active is not currently supported.");
getBE().mHwc.reset(
new HWComposer(std::make_unique<Hwc2::impl::Composer>(getBE().mHwcServiceName)));
getBE().mHwc->registerCallback(this, getBE().mComposerSequenceId);
// Process any initial hotplug and resulting display changes.
processDisplayHotplugEventsLocked();
LOG_ALWAYS_FATAL_IF(!getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY),
"Registered composer callback but didn't create the default primary display");
// make the default display GLContext current so that we can create textures
// when creating Layers (which may happens before we render something)
getDefaultDisplayDeviceLocked()->makeCurrent();
if (useVrFlinger) {
auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) {
// This callback is called from the vr flinger dispatch thread. We
// need to call signalTransaction(), which requires holding
// mStateLock when we're not on the main thread. Acquiring
// mStateLock from the vr flinger dispatch thread might trigger a
// deadlock in surface flinger (see b/66916578), so post a message
// to be handled on the main thread instead.
sp<LambdaMessage> message = new LambdaMessage([=]() {
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
mVrFlingerRequestsDisplay = requestDisplay;
signalTransaction();
});
postMessageAsync(message);
};
mVrFlinger = dvr::VrFlinger::Create(getBE().mHwc->getComposer(),
getBE().mHwc->getHwcDisplayId(HWC_DISPLAY_PRIMARY).value_or(0),
vrFlingerRequestDisplayCallback);
if (!mVrFlinger) {
ALOGE("Failed to start vrflinger");
}
}
mEventControlThread = std::make_unique<impl::EventControlThread>(
[this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); });
// initialize our drawing state
mDrawingState = mCurrentState;
// set initial conditions (e.g. unblank default device)
initializeDisplays();
getBE().mRenderEngine->primeCache();
// Inform native graphics APIs whether the present timestamp is supported:
if (getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
mStartPropertySetThread = new StartPropertySetThread(false);
} else {
mStartPropertySetThread = new StartPropertySetThread(true);
}
if (mStartPropertySetThread->Start() != NO_ERROR) {
ALOGE("Run StartPropertySetThread failed!");
}
// This is a hack. Per definition of getDataspaceSaturationMatrix, the returned matrix
// is used to saturate legacy sRGB content. However, to make sure the same color under
// Display P3 will be saturated to the same color, we intentionally break the API spec
// and apply this saturation matrix on Display P3 content. Unless the risk of applying
// such saturation matrix on Display P3 is understood fully, the API should always return
// identify matrix.
mEnhancedSaturationMatrix = getBE().mHwc->getDataspaceSaturationMatrix(HWC_DISPLAY_PRIMARY,
Dataspace::SRGB_LINEAR);
// we will apply this on Display P3.
if (mEnhancedSaturationMatrix != mat4()) {
ColorSpace srgb(ColorSpace::sRGB());
ColorSpace displayP3(ColorSpace::DisplayP3());
mat4 srgbToP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform());
mat4 p3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform());
mEnhancedSaturationMatrix = srgbToP3 * mEnhancedSaturationMatrix * p3ToSrgb;
}
ALOGV("Done initializing");
}
void SurfaceFlinger::readPersistentProperties() {
Mutex::Autolock _l(mStateLock);
char value[PROPERTY_VALUE_MAX];
property_get("persist.sys.sf.color_saturation", value, "1.0");
mGlobalSaturationFactor = atof(value);
updateColorMatrixLocked();
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
property_get("persist.sys.sf.native_mode", value, "0");
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
}
void SurfaceFlinger::startBootAnim() {
// Start boot animation service by setting a property mailbox
// if property setting thread is already running, Start() will be just a NOP
mStartPropertySetThread->Start();
// Wait until property was set
if (mStartPropertySetThread->join() != NO_ERROR) {
ALOGE("Join StartPropertySetThread failed!");
}
}
size_t SurfaceFlinger::getMaxTextureSize() const {
return getBE().mRenderEngine->getMaxTextureSize();
}
size_t SurfaceFlinger::getMaxViewportDims() const {
return getBE().mRenderEngine->getMaxViewportDims();
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<IGraphicBufferProducer>& bufferProducer) const {
Mutex::Autolock _l(mStateLock);
return authenticateSurfaceTextureLocked(bufferProducer);
}
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
const sp<IGraphicBufferProducer>& bufferProducer) const {
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
}
status_t SurfaceFlinger::getSupportedFrameTimestamps(
std::vector<FrameEvent>* outSupported) const {
*outSupported = {
FrameEvent::REQUESTED_PRESENT,
FrameEvent::ACQUIRE,
FrameEvent::LATCH,
FrameEvent::FIRST_REFRESH_START,
FrameEvent::LAST_REFRESH_START,
FrameEvent::GPU_COMPOSITION_DONE,
FrameEvent::DEQUEUE_READY,
FrameEvent::RELEASE,
};
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
if (!getHwComposer().hasCapability(
HWC2::Capability::PresentFenceIsNotReliable)) {
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
Vector<DisplayInfo>* configs) {
if (configs == nullptr || display.get() == nullptr) {
return BAD_VALUE;
}
if (!display.get())
return NAME_NOT_FOUND;
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
// TODO: Not sure if display density should handled by SF any longer
class Density {
static int getDensityFromProperty(char const* propName) {
char property[PROPERTY_VALUE_MAX];
int density = 0;
if (property_get(propName, property, nullptr) > 0) {
density = atoi(property);
}
return density;
}
public:
static int getEmuDensity() {
return getDensityFromProperty("qemu.sf.lcd_density"); }
static int getBuildDensity() {
return getDensityFromProperty("ro.sf.lcd_density"); }
};
configs->clear();
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
for (const auto& hwConfig : getHwComposer().getConfigs(type)) {
DisplayInfo info = DisplayInfo();
float xdpi = hwConfig->getDpiX();
float ydpi = hwConfig->getDpiY();
if (type == DisplayDevice::DISPLAY_PRIMARY) {
// The density of the device is provided by a build property
float density = Density::getBuildDensity() / 160.0f;
if (density == 0) {
// the build doesn't provide a density -- this is wrong!
// use xdpi instead
ALOGE("ro.sf.lcd_density must be defined as a build property");
density = xdpi / 160.0f;
}
if (Density::getEmuDensity()) {
// if "qemu.sf.lcd_density" is specified, it overrides everything
xdpi = ydpi = density = Density::getEmuDensity();
density /= 160.0f;
}
info.density = density;
// TODO: this needs to go away (currently needed only by webkit)
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
info.orientation = hw ? hw->getOrientation() : 0;
} else {
// TODO: where should this value come from?
static const int TV_DENSITY = 213;
info.density = TV_DENSITY / 160.0f;
info.orientation = 0;
}
info.w = hwConfig->getWidth();
info.h = hwConfig->getHeight();
info.xdpi = xdpi;
info.ydpi = ydpi;
info.fps = 1e9 / hwConfig->getVsyncPeriod();
info.appVsyncOffset = vsyncPhaseOffsetNs;
// This is how far in advance a buffer must be queued for
// presentation at a given time. If you want a buffer to appear
// on the screen at time N, you must submit the buffer before
// (N - presentationDeadline).
//
// Normally it's one full refresh period (to give SF a chance to
// latch the buffer), but this can be reduced by configuring a
// DispSync offset. Any additional delays introduced by the hardware
// composer or panel must be accounted for here.
//
// We add an additional 1ms to allow for processing time and
// differences between the ideal and actual refresh rate.
info.presentationDeadline = hwConfig->getVsyncPeriod() -
sfVsyncPhaseOffsetNs + 1000000;
// All non-virtual displays are currently considered secure.
info.secure = true;
if (type == DisplayDevice::DISPLAY_PRIMARY &&
mPrimaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
std::swap(info.w, info.h);
}
configs->push_back(info);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */,
DisplayStatInfo* stats) {
if (stats == nullptr) {
return BAD_VALUE;
}
// FIXME for now we always return stats for the primary display
memset(stats, 0, sizeof(*stats));
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayViewport(const sp<IBinder>& display, Rect* outViewport) {
if (outViewport == nullptr || display.get() == nullptr) {
return BAD_VALUE;
}
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device == nullptr) {
return BAD_VALUE;
}
*outViewport = device->getViewport();
return NO_ERROR;
}
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
if (display == nullptr) {
ALOGE("%s : display is nullptr", __func__);
return BAD_VALUE;
}
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != nullptr) {
return device->getActiveConfig();
}
return BAD_VALUE;
}
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getActiveConfig();
if (mode == currentMode) {
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveConfig(mode);
getHwComposer().setActiveConfig(type, mode);
}
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
class MessageSetActiveConfig: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
int mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<DisplayInfo> configs;
mFlinger.getDisplayConfigs(mDisplay, &configs);
if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
ALOGE("Attempt to set active config = %d for display with %zu configs",
mMode, configs.size());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set active config = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active config = %d for virtual display",
mMode);
} else {
mFlinger.setActiveConfigInternal(hw, mMode);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display,
Vector<ColorMode>* outColorModes) {
if ((outColorModes == nullptr) || (display.get() == nullptr)) {
return BAD_VALUE;
}
if (!display.get()) {
return NAME_NOT_FOUND;
}
int32_t type = NAME_NOT_FOUND;
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
if (display == mBuiltinDisplays[i]) {
type = i;
break;
}
}
if (type < 0) {
return type;
}
std::vector<ColorMode> modes;
{
ConditionalLock _l(mStateLock,
std::this_thread::get_id() != mMainThreadId);
modes = getHwComposer().getColorModes(type);
}
outColorModes->clear();
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
return NO_ERROR;
}
ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) {
sp<const DisplayDevice> device(getDisplayDevice(display));
if (device != nullptr) {
return device->getActiveColorMode();
}
return static_cast<ColorMode>(BAD_VALUE);
}
void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw,
ColorMode mode, Dataspace dataSpace,
RenderIntent renderIntent) {
int32_t type = hw->getDisplayType();
ColorMode currentMode = hw->getActiveColorMode();
Dataspace currentDataSpace = hw->getCompositionDataSpace();
RenderIntent currentRenderIntent = hw->getActiveRenderIntent();
if (mode == currentMode && dataSpace == currentDataSpace &&
renderIntent == currentRenderIntent) {
return;
}
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set config for virtual display");
return;
}
hw->setActiveColorMode(mode);
hw->setCompositionDataSpace(dataSpace);
hw->setActiveRenderIntent(renderIntent);
getHwComposer().setActiveColorMode(type, mode, renderIntent);
ALOGV("Set active color mode: %s (%d), active render intent: %s (%d), type=%d",
decodeColorMode(mode).c_str(), mode,
decodeRenderIntent(renderIntent).c_str(), renderIntent,
hw->getDisplayType());
}
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display,
ColorMode colorMode) {
class MessageSetActiveColorMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
ColorMode mMode;
public:
MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp,
ColorMode mode) :
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
virtual bool handler() {
Vector<ColorMode> modes;
mFlinger.getDisplayColorModes(mDisplay, &modes);
bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes);
if (mMode < ColorMode::NATIVE || !exists) {
ALOGE("Attempt to set invalid active color mode %s (%d) for display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
return true;
}
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set active color mode %s (%d) for null display %p",
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set active color mode %s %d for virtual display",
decodeColorMode(mMode).c_str(), mMode);
} else {
mFlinger.setActiveColorModeInternal(hw, mMode, Dataspace::UNKNOWN,
RenderIntent::COLORIMETRIC);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode);
postMessageSync(msg);
return NO_ERROR;
}
status_t SurfaceFlinger::clearAnimationFrameStats() {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.clearStats();
return NO_ERROR;
}
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
Mutex::Autolock _l(mStateLock);
mAnimFrameTracker.getStats(outStats);
return NO_ERROR;
}
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display,
HdrCapabilities* outCapabilities) const {
Mutex::Autolock _l(mStateLock);
sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display));
if (displayDevice == nullptr) {
ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get());
return BAD_VALUE;
}
// At this point the DisplayDeivce should already be set up,
// meaning the luminance information is already queried from
// hardware composer and stored properly.
const HdrCapabilities& capabilities = displayDevice->getHdrCapabilities();
*outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
capabilities.getDesiredMaxLuminance(),
capabilities.getDesiredMaxAverageLuminance(),
capabilities.getDesiredMinLuminance());
return NO_ERROR;
}
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
sp<LambdaMessage> enableVSyncInjections = new LambdaMessage([&]() {
Mutex::Autolock _l(mStateLock);
if (mInjectVSyncs == enable) {
return;
}
if (enable) {
ALOGV("VSync Injections enabled");
if (mVSyncInjector.get() == nullptr) {
mVSyncInjector = std::make_unique<InjectVSyncSource>();
mInjectorEventThread = std::make_unique<
impl::EventThread>(mVSyncInjector.get(),
[this]() { resyncWithRateLimit(); },
impl::EventThread::InterceptVSyncsCallback(),
"injEventThread");
}
mEventQueue->setEventThread(mInjectorEventThread.get());
} else {
ALOGV("VSync Injections disabled");
mEventQueue->setEventThread(mSFEventThread.get());
}
mInjectVSyncs = enable;
});
postMessageSync(enableVSyncInjections);
return NO_ERROR;
}
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
Mutex::Autolock _l(mStateLock);
if (!mInjectVSyncs) {
ALOGE("VSync Injections not enabled");
return BAD_VALUE;
}
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
ALOGV("Injecting VSync inside SurfaceFlinger");
mVSyncInjector->onInjectSyncEvent(when);
}
return NO_ERROR;
}
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const
NO_THREAD_SAFETY_ANALYSIS {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
// Try to acquire a lock for 1s, fail gracefully
const status_t err = mStateLock.timedLock(s2ns(1));
const bool locked = (err == NO_ERROR);
if (!locked) {
ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err);
return TIMED_OUT;
}
outLayers->clear();
mCurrentState.traverseInZOrder([&](Layer* layer) {
outLayers->push_back(layer->getLayerDebugInfo());
});
mStateLock.unlock();
return NO_ERROR;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource) {
if (vsyncSource == eVsyncSourceSurfaceFlinger) {
return mSFEventThread->createEventConnection();
} else {
return mEventThread->createEventConnection();
}
}
// ----------------------------------------------------------------------------
void SurfaceFlinger::waitForEvent() {
mEventQueue->waitMessage();
}
void SurfaceFlinger::signalTransaction() {
mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {
mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {
mRefreshPending = true;
mEventQueue->refresh();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
return mEventQueue->postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t /* flags */) {
status_t res = mEventQueue->postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::enableHardwareVsync() {
Mutex::Autolock _l(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::resyncWithRateLimit() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
// No explicit locking is needed here since EventThread holds a lock while calling this method
static nsecs_t sLastResyncAttempted = 0;
const nsecs_t now = systemTime();
if (now - sLastResyncAttempted > kIgnoreDelay) {
resyncToHardwareVsync(false);
}
sLastResyncAttempted = now;
}
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId,
hwc2_display_t displayId, int64_t timestamp) {
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from a previous hardware composer.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
int32_t type;
if (!getBE().mHwc->onVsync(displayId, timestamp, &type)) {
return;
}
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
*compositorTiming = getBE().mCompositorTiming;
}
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t display,
HWC2::Connection connection) {
ALOGV("onHotplugReceived(%d, %" PRIu64 ", %s)", sequenceId, display,
connection == HWC2::Connection::Connected ? "connected" : "disconnected");
// Ignore events that do not have the right sequenceId.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
// Only lock if we're not on the main thread. This function is normally
// called on a hwbinder thread, but for the primary display it's called on
// the main thread with the state lock already held, so don't attempt to
// acquire it here.
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
mPendingHotplugEvents.emplace_back(HotplugEvent{display, connection});
if (std::this_thread::get_id() == mMainThreadId) {
// Process all pending hot plug events immediately if we are on the main thread.
processDisplayHotplugEventsLocked();
}
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onRefreshReceived(int sequenceId,
hwc2_display_t /*display*/) {
Mutex::Autolock lock(mStateLock);
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
repaintEverything();
}
void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) {
ATRACE_CALL();
Mutex::Autolock lock(mStateLock);
getHwComposer().setVsyncEnabled(disp,
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
}
// Note: it is assumed the caller holds |mStateLock| when this is called
void SurfaceFlinger::resetDisplayState() {
disableHardwareVsync(true);
// Clear the drawing state so that the logic inside of
// handleTransactionLocked will fire. It will determine the delta between
// mCurrentState and mDrawingState and re-apply all changes when we make the
// transition.
mDrawingState.displays.clear();
getRenderEngine().resetCurrentSurface();
mDisplays.clear();
}
void SurfaceFlinger::updateVrFlinger() {
if (!mVrFlinger)
return;
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
if (vrFlingerRequestsDisplay == getBE().mHwc->isUsingVrComposer()) {
return;
}
if (vrFlingerRequestsDisplay && !getBE().mHwc->getComposer()->isRemote()) {
ALOGE("Vr flinger is only supported for remote hardware composer"
" service connections. Ignoring request to transition to vr"
" flinger.");
mVrFlingerRequestsDisplay = false;
return;
}
Mutex::Autolock _l(mStateLock);
int currentDisplayPowerMode = getDisplayDeviceLocked(
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])->getPowerMode();
if (!vrFlingerRequestsDisplay) {
mVrFlinger->SeizeDisplayOwnership();
}
resetDisplayState();
getBE().mHwc.reset(); // Delete the current instance before creating the new one
getBE().mHwc.reset(new HWComposer(std::make_unique<Hwc2::impl::Composer>(
vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName)));
getBE().mHwc->registerCallback(this, ++getBE().mComposerSequenceId);
LOG_ALWAYS_FATAL_IF(!getBE().mHwc->getComposer()->isRemote(),
"Switched to non-remote hardware composer");
if (vrFlingerRequestsDisplay) {
mVrFlinger->GrantDisplayOwnership();
} else {
enableHardwareVsync();
}
mVisibleRegionsDirty = true;
invalidateHwcGeometry();
// Re-enable default display.
sp<DisplayDevice> hw(getDisplayDeviceLocked(
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY]));
setPowerModeInternal(hw, currentDisplayPowerMode, /*stateLockHeld*/ true);
// Reset the timing values to account for the period of the swapped in HWC
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(period);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
setCompositorTimingSnapped(0, period, 0);
android_atomic_or(1, &mRepaintEverything);
setTransactionFlags(eDisplayTransactionNeeded);
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
bool frameMissed = !mHadClientComposition &&
mPreviousPresentFence != Fence::NO_FENCE &&
(mPreviousPresentFence->getSignalTime() ==
Fence::SIGNAL_TIME_PENDING);
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
if (frameMissed) {
mTimeStats.incrementMissedFrames();
if (mPropagateBackpressure) {
signalLayerUpdate();
break;
}
}
// Now that we're going to make it to the handleMessageTransaction()
// call below it's safe to call updateVrFlinger(), which will
// potentially trigger a display handoff.
updateVrFlinger();
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
bool SurfaceFlinger::handleMessageTransaction() {
uint32_t transactionFlags = peekTransactionFlags();
if (transactionFlags) {
handleTransaction(transactionFlags);
return true;
}
return false;
}
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
return handlePageFlip();
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doTracing("handleRefresh");
logLayerStats();
doComposition();
postComposition(refreshStartTime);
mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
mHadClientComposition = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
mHadClientComposition = mHadClientComposition ||
getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
}
mVsyncModulator.onRefreshed(mHadClientComposition);
mLayersWithQueuedFrames.clear();
}
void SurfaceFlinger::doDebugFlashRegions()
{
// is debugging enabled
if (CC_LIKELY(!mDebugRegion))
return;
const bool repaintEverything = mRepaintEverything;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
if (!dirtyRegion.isEmpty()) {
// redraw the whole screen
doComposeSurfaces(hw);
// and draw the dirty region
const int32_t height = hw->getHeight();
auto& engine(getRenderEngine());
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
hw->swapBuffers(getHwComposer());
}
}
}
postFramebuffer();
if (mDebugRegion > 1) {
usleep(mDebugRegion * 1000);
}
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*getBE().mHwc);
ALOGE_IF(result != NO_ERROR,
"prepareFrame for display %zd failed:"
" %d (%s)",
displayId, result, strerror(-result));
}
}
void SurfaceFlinger::doTracing(const char* where) {
ATRACE_CALL();
ATRACE_NAME(where);
if (CC_UNLIKELY(mTracing.isEnabled())) {
mTracing.traceLayers(where, dumpProtoInfo(LayerVector::StateSet::Drawing));
}
}
void SurfaceFlinger::logLayerStats() {
ATRACE_CALL();
if (CC_UNLIKELY(mLayerStats.isEnabled())) {
int32_t hwcId = -1;
for (size_t dpy = 0; dpy < mDisplays.size(); ++dpy) {
const sp<const DisplayDevice>& displayDevice(mDisplays[dpy]);
if (displayDevice->isPrimary()) {
hwcId = displayDevice->getHwcDisplayId();
break;
}
}
if (hwcId < 0) {
ALOGE("LayerStats: Hmmm, no primary display?");
return;
}
mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(hwcId));
}
}
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("preComposition");
bool needExtraInvalidate = false;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->onPreComposition(refreshStartTime)) {
needExtraInvalidate = true;
}
});
if (needExtraInvalidate) {
signalLayerUpdate();
}
}
void SurfaceFlinger::updateCompositorTiming(
nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime,
std::shared_ptr<FenceTime>& presentFenceTime) {
// Update queue of past composite+present times and determine the
// most recently known composite to present latency.
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
nsecs_t compositeToPresentLatency = -1;
while (!getBE().mCompositePresentTimes.empty()) {
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
// Cached values should have been updated before calling this method,
// which helps avoid duplicate syscalls.
nsecs_t displayTime = cpt.display->getCachedSignalTime();
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
break;
}
compositeToPresentLatency = displayTime - cpt.composite;
getBE().mCompositePresentTimes.pop();
}
// Don't let mCompositePresentTimes grow unbounded, just in case.
while (getBE().mCompositePresentTimes.size() > 16) {
getBE().mCompositePresentTimes.pop();
}
setCompositorTimingSnapped(
vsyncPhase, vsyncInterval, compositeToPresentLatency);
}
void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase,
nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) {
// Integer division and modulo round toward 0 not -inf, so we need to
// treat negative and positive offsets differently.
nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ?
(vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) :
((-sfVsyncPhaseOffsetNs) % vsyncInterval);
// Just in case sfVsyncPhaseOffsetNs == -vsyncInterval.
if (idealLatency <= 0) {
idealLatency = vsyncInterval;
}
// Snap the latency to a value that removes scheduling jitter from the
// composition and present times, which often have >1ms of jitter.
// Reducing jitter is important if an app attempts to extrapolate
// something (such as user input) to an accurate diasplay time.
// Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs
// with (presentLatency % interval).
nsecs_t bias = vsyncInterval / 2;
int64_t extraVsyncs =
(compositeToPresentLatency - idealLatency + bias) / vsyncInterval;
nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ?
idealLatency + (extraVsyncs * vsyncInterval) : idealLatency;
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
getBE().mCompositorTiming.deadline = vsyncPhase - idealLatency;
getBE().mCompositorTiming.interval = vsyncInterval;
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
}
void SurfaceFlinger::postComposition(nsecs_t refreshStartTime)
{
ATRACE_CALL();
ALOGV("postComposition");
// Release any buffers which were replaced this frame
nsecs_t dequeueReadyTime = systemTime();
for (auto& layer : mLayersWithQueuedFrames) {
layer->releasePendingBuffer(dequeueReadyTime);
}
// |mStateLock| not needed as we are on the main thread
const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
getBE().mGlCompositionDoneTimeline.updateSignalTimes();
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
if (hw && getBE().mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) {
glCompositionDoneFenceTime =
std::make_shared<FenceTime>(hw->getClientTargetAcquireFence());
getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
} else {
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
}
getBE().mDisplayTimeline.updateSignalTimes();
sp<Fence> presentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
auto presentFenceTime = std::make_shared<FenceTime>(presentFence);
getBE().mDisplayTimeline.push(presentFenceTime);
nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0);
nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod();
// We use the refreshStartTime which might be sampled a little later than
// when we started doing work for this frame, but that should be okay
// since updateCompositorTiming has snapping logic.
updateCompositorTiming(
vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime);
CompositorTiming compositorTiming;
{
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
compositorTiming = getBE().mCompositorTiming;
}
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime,
presentFenceTime, compositorTiming);
if (frameLatched) {
recordBufferingStats(layer->getName().string(),
layer->getOccupancyHistory(false));
}
});
if (presentFenceTime->isValid()) {
if (mPrimaryDispSync.addPresentFence(presentFenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
if (!hasSyncFramework) {
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) && hw->isDisplayOn()) {
enableHardwareVsync();
}
}
if (mAnimCompositionPending) {
mAnimCompositionPending = false;
if (presentFenceTime->isValid()) {
mAnimFrameTracker.setActualPresentFence(
std::move(presentFenceTime));
} else if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime =
getBE().mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mAnimFrameTracker.setActualPresentTime(presentTime);
}
mAnimFrameTracker.advanceFrame();
}
mTimeStats.incrementTotalFrames();
if (mHadClientComposition) {
mTimeStats.incrementClientCompositionFrames();
}
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY) &&
hw->getPowerMode() == HWC_POWER_MODE_OFF) {
return;
}
nsecs_t currentTime = systemTime();
if (mHasPoweredOff) {
mHasPoweredOff = false;
} else {
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval);
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
getBE().mFrameBuckets[numPeriods] += elapsedTime;
} else {
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
}
getBE().mTotalTime += elapsedTime;
}
getBE().mLastSwapTime = currentTime;
{
std::lock_guard lock(mTexturePoolMutex);
const size_t refillCount = mTexturePoolSize - mTexturePool.size();
if (refillCount > 0) {
const size_t offset = mTexturePool.size();
mTexturePool.resize(mTexturePoolSize);
getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
ATRACE_INT("TexturePoolSize", mTexturePool.size());
}
}
}
void SurfaceFlinger::rebuildLayerStacks() {
ATRACE_CALL();
ALOGV("rebuildLayerStacks");
// rebuild the visible layer list per screen
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
ATRACE_NAME("rebuildLayerStacks VR Dirty");
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
Region opaqueRegion;
Region dirtyRegion;
Vector<sp<Layer>> layersSortedByZ;
Vector<sp<Layer>> layersNeedingFences;
const sp<DisplayDevice>& displayDevice(mDisplays[dpy]);
const Transform& tr(displayDevice->getTransform());
const Rect bounds(displayDevice->getBounds());
if (displayDevice->isDisplayOn()) {
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
mDrawingState.traverseInZOrder([&](Layer* layer) {
bool hwcLayerDestroyed = false;
if (layer->belongsToDisplay(displayDevice->getLayerStack(),
displayDevice->isPrimary())) {
Region drawRegion(tr.transform(
layer->visibleNonTransparentRegion));
drawRegion.andSelf(bounds);
if (!drawRegion.isEmpty()) {
layersSortedByZ.add(layer);
} else {
// Clear out the HWC layer if this layer was
// previously visible, but no longer is
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
} else {
// WM changes displayDevice->layerStack upon sleep/awake.
// Here we make sure we delete the HWC layers even if
// WM changed their layer stack.
hwcLayerDestroyed = layer->destroyHwcLayer(
displayDevice->getHwcDisplayId());
}
// If a layer is not going to get a release fence because
// it is invisible, but it is also going to release its
// old buffer, add it to the list of layers needing
// fences.
if (hwcLayerDestroyed) {
auto found = std::find(mLayersWithQueuedFrames.cbegin(),
mLayersWithQueuedFrames.cend(), layer);
if (found != mLayersWithQueuedFrames.cend()) {
layersNeedingFences.add(layer);
}
}
});
}
displayDevice->setVisibleLayersSortedByZ(layersSortedByZ);
displayDevice->setLayersNeedingFences(layersNeedingFences);
displayDevice->undefinedRegion.set(bounds);
displayDevice->undefinedRegion.subtractSelf(
tr.transform(opaqueRegion));
displayDevice->dirtyRegion.orSelf(dirtyRegion);
}
}
}
// Returns a data space that fits all visible layers. The returned data space
// can only be one of
// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
// - Dataspace::DISPLAY_P3
// The returned HDR data space is one of
// - Dataspace::UNKNOWN
// - Dataspace::BT2020_HLG
// - Dataspace::BT2020_PQ
Dataspace SurfaceFlinger::getBestDataspace(
const sp<const DisplayDevice>& displayDevice, Dataspace* outHdrDataSpace) const {
Dataspace bestDataSpace = Dataspace::SRGB;
*outHdrDataSpace = Dataspace::UNKNOWN;
for (const auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
switch (layer->getDataSpace()) {
case Dataspace::V0_SCRGB:
case Dataspace::V0_SCRGB_LINEAR:
case Dataspace::DISPLAY_P3:
bestDataSpace = Dataspace::DISPLAY_P3;
break;
case Dataspace::BT2020_PQ:
case Dataspace::BT2020_ITU_PQ:
*outHdrDataSpace = Dataspace::BT2020_PQ;
break;
case Dataspace::BT2020_HLG:
case Dataspace::BT2020_ITU_HLG:
// When there's mixed PQ content and HLG content, we set the HDR
// data space to be BT2020_PQ and convert HLG to PQ.
if (*outHdrDataSpace == Dataspace::UNKNOWN) {
*outHdrDataSpace = Dataspace::BT2020_HLG;
}
break;
default:
break;
}
}
return bestDataSpace;
}
// Pick the ColorMode / Dataspace for the display device.
void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& displayDevice,
ColorMode* outMode, Dataspace* outDataSpace,
RenderIntent* outRenderIntent) const {
if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) {
*outMode = ColorMode::NATIVE;
*outDataSpace = Dataspace::UNKNOWN;
*outRenderIntent = RenderIntent::COLORIMETRIC;
return;
}
Dataspace hdrDataSpace;
Dataspace bestDataSpace = getBestDataspace(displayDevice, &hdrDataSpace);
// respect hdrDataSpace only when there is no legacy HDR support
const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN &&
!displayDevice->hasLegacyHdrSupport(hdrDataSpace);
if (isHdr) {
bestDataSpace = hdrDataSpace;
}
RenderIntent intent;
switch (mDisplayColorSetting) {
case DisplayColorSetting::MANAGED:
case DisplayColorSetting::UNMANAGED:
intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC;
break;
case DisplayColorSetting::ENHANCED:
intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE;
break;
default: // vendor display color setting
intent = static_cast<RenderIntent>(mDisplayColorSetting);
break;
}
displayDevice->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent);
}
void SurfaceFlinger::setUpHWComposer() {
ATRACE_CALL();
ALOGV("setUpHWComposer");
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
bool dirty = !mDisplays[dpy]->getDirtyRegion(mRepaintEverything).isEmpty();
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
bool mustRecompose = dirty && !(empty && wasEmpty);
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
mustRecompose ? "doing" : "skipping",
dirty ? "+" : "-",
empty ? "+" : "-",
wasEmpty ? "+" : "-");
mDisplays[dpy]->beginFrame(mustRecompose);
if (mustRecompose) {
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
}
}
// build the h/w work list
if (CC_UNLIKELY(mGeometryInvalid)) {
mGeometryInvalid = false;
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> displayDevice(mDisplays[dpy]);
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
const Vector<sp<Layer>>& currentLayers(
displayDevice->getVisibleLayersSortedByZ());
for (size_t i = 0; i < currentLayers.size(); i++) {
const auto& layer = currentLayers[i];
if (!layer->hasHwcLayer(hwcId)) {
if (!layer->createHwcLayer(getBE().mHwc.get(), hwcId)) {
layer->forceClientComposition(hwcId);
continue;
}
}
layer->setGeometry(displayDevice, i);
if (mDebugDisableHWC || mDebugRegion) {
layer->forceClientComposition(hwcId);
}
}
}
}
}
// Set the per-frame data
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId < 0) {
continue;
}
if (mDrawingState.colorMatrixChanged) {
displayDevice->setColorTransform(mDrawingState.colorMatrix);
status_t result = getBE().mHwc->setColorTransform(hwcId, mDrawingState.colorMatrix);
ALOGE_IF(result != NO_ERROR, "Failed to set color transform on "
"display %zd: %d", displayId, result);
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
if (layer->isHdrY410()) {
layer->forceClientComposition(hwcId);
} else if ((layer->getDataSpace() == Dataspace::BT2020_PQ ||
layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) &&
!displayDevice->hasHDR10Support()) {
layer->forceClientComposition(hwcId);
} else if ((layer->getDataSpace() == Dataspace::BT2020_HLG ||
layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) &&
!displayDevice->hasHLGSupport()) {
layer->forceClientComposition(hwcId);
}
if (layer->getForceClientComposition(hwcId)) {
ALOGV("[%s] Requesting Client composition", layer->getName().string());
layer->setCompositionType(hwcId, HWC2::Composition::Client);
continue;
}
layer->setPerFrameData(displayDevice);
}
if (hasWideColorDisplay) {
ColorMode colorMode;
Dataspace dataSpace;
RenderIntent renderIntent;
pickColorMode(displayDevice, &colorMode, &dataSpace, &renderIntent);
setActiveColorModeInternal(displayDevice, colorMode, dataSpace, renderIntent);
}
}
mDrawingState.colorMatrixChanged = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
status_t result = displayDevice->prepareFrame(*getBE().mHwc);
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
" %d (%s)", displayId, result, strerror(-result));
}
}
void SurfaceFlinger::doComposition() {
ATRACE_CALL();
ALOGV("doComposition");
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (hw->isDisplayOn()) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
// repaint the framebuffer (if needed)
doDisplayComposition(hw, dirtyRegion);
hw->dirtyRegion.clear();
hw->flip();
}
}
postFramebuffer();
}
void SurfaceFlinger::postFramebuffer()
{
ATRACE_CALL();
ALOGV("postFramebuffer");
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (!displayDevice->isDisplayOn()) {
continue;
}
const auto hwcId = displayDevice->getHwcDisplayId();
if (hwcId >= 0) {
getBE().mHwc->presentAndGetReleaseFences(hwcId);
}
displayDevice->onSwapBuffersCompleted();
displayDevice->makeCurrent();
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
sp<Fence> releaseFence = Fence::NO_FENCE;
// The layer buffer from the previous frame (if any) is released
// by HWC only when the release fence from this frame (if any) is
// signaled. Always get the release fence from HWC first.
auto hwcLayer = layer->getHwcLayer(hwcId);
if (hwcId >= 0) {
releaseFence = getBE().mHwc->getLayerReleaseFence(hwcId, hwcLayer);
}
// If the layer was client composited in the previous frame, we
// need to merge with the previous client target acquire fence.
// Since we do not track that, always merge with the current
// client target acquire fence when it is available, even though
// this is suboptimal.
if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) {
releaseFence = Fence::merge("LayerRelease", releaseFence,
displayDevice->getClientTargetAcquireFence());
}
layer->onLayerDisplayed(releaseFence);
}
// We've got a list of layers needing fences, that are disjoint with
// displayDevice->getVisibleLayersSortedByZ. The best we can do is to
// supply them with the present fence.
if (!displayDevice->getLayersNeedingFences().isEmpty()) {
sp<Fence> presentFence = getBE().mHwc->getPresentFence(hwcId);
for (auto& layer : displayDevice->getLayersNeedingFences()) {
layer->onLayerDisplayed(presentFence);
}
}
if (hwcId >= 0) {
getBE().mHwc->clearReleaseFences(hwcId);
}
}
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
// |mStateLock| not needed as we are on the main thread
if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) {
uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount();
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
logFrameStats();
}
}
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
ATRACE_CALL();
// here we keep a copy of the drawing state (that is the state that's
// going to be overwritten by handleTransactionLocked()) outside of
// mStateLock so that the side-effects of the State assignment
// don't happen with mStateLock held (which can cause deadlocks).
State drawingState(mDrawingState);
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
mVsyncModulator.onTransactionHandled();
transactionFlags = getTransactionFlags(eTransactionMask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
DisplayDevice::DisplayType SurfaceFlinger::determineDisplayType(hwc2_display_t display,
HWC2::Connection connection) const {
// Figure out whether the event is for the primary display or an
// external display by matching the Hwc display id against one for a
// connected display. If we did not find a match, we then check what
// displays are not already connected to determine the type. If we don't
// have a connected primary display, we assume the new display is meant to
// be the primary display, and then if we don't have an external display,
// we assume it is that.
const auto primaryDisplayId =
getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_PRIMARY);
const auto externalDisplayId =
getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_EXTERNAL);
if (primaryDisplayId && primaryDisplayId == display) {
return DisplayDevice::DISPLAY_PRIMARY;
} else if (externalDisplayId && externalDisplayId == display) {
return DisplayDevice::DISPLAY_EXTERNAL;
} else if (connection == HWC2::Connection::Connected && !primaryDisplayId) {
return DisplayDevice::DISPLAY_PRIMARY;
} else if (connection == HWC2::Connection::Connected && !externalDisplayId) {
return DisplayDevice::DISPLAY_EXTERNAL;
}
return DisplayDevice::DISPLAY_ID_INVALID;
}
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
for (const auto& event : mPendingHotplugEvents) {
auto displayType = determineDisplayType(event.display, event.connection);
if (displayType == DisplayDevice::DISPLAY_ID_INVALID) {
ALOGW("Unable to determine the display type for display %" PRIu64, event.display);
continue;
}
if (getBE().mHwc->isUsingVrComposer() && displayType == DisplayDevice::DISPLAY_EXTERNAL) {
ALOGE("External displays are not supported by the vr hardware composer.");
continue;
}
getBE().mHwc->onHotplug(event.display, displayType, event.connection);
if (event.connection == HWC2::Connection::Connected) {
if (!mBuiltinDisplays[displayType].get()) {
ALOGV("Creating built in display %d", displayType);
mBuiltinDisplays[displayType] = new BBinder();
// All non-virtual displays are currently considered secure.
DisplayDeviceState info(displayType, true);
info.displayName = displayType == DisplayDevice::DISPLAY_PRIMARY ?
"Built-in Screen" : "External Screen";
mCurrentState.displays.add(mBuiltinDisplays[displayType], info);
mInterceptor->saveDisplayCreation(info);
}
} else {
ALOGV("Removing built in display %d", displayType);
ssize_t idx = mCurrentState.displays.indexOfKey(mBuiltinDisplays[displayType]);
if (idx >= 0) {
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
mInterceptor->saveDisplayDeletion(info.displayId);
mCurrentState.displays.removeItemsAt(idx);
}
mBuiltinDisplays[displayType].clear();
}
processDisplayChangesLocked();
}
mPendingHotplugEvents.clear();
}
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
const wp<IBinder>& display, int hwcId, const DisplayDeviceState& state,
const sp<DisplaySurface>& dispSurface, const sp<IGraphicBufferProducer>& producer) {
bool hasWideColorGamut = false;
std::unordered_map<ColorMode, std::vector<RenderIntent>> hwcColorModes;
HdrCapabilities hdrCapabilities;
int32_t supportedPerFrameMetadata = 0;
if (hasWideColorDisplay && hwcId >= 0) {
std::vector<ColorMode> modes = getHwComposer().getColorModes(hwcId);
for (ColorMode colorMode : modes) {
switch (colorMode) {
case ColorMode::DISPLAY_P3:
case ColorMode::ADOBE_RGB:
case ColorMode::DCI_P3:
hasWideColorGamut = true;
break;
default:
break;
}
std::vector<RenderIntent> renderIntents = getHwComposer().getRenderIntents(hwcId,
colorMode);
hwcColorModes.emplace(colorMode, renderIntents);
}
}
if (hwcId >= 0) {
getHwComposer().getHdrCapabilities(hwcId, &hdrCapabilities);
supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(hwcId);
}
auto nativeWindowSurface = mCreateNativeWindowSurface(producer);
auto nativeWindow = nativeWindowSurface->getNativeWindow();
/*
* Create our display's surface
*/
std::unique_ptr<RE::Surface> renderSurface = getRenderEngine().createSurface();
renderSurface->setCritical(state.type == DisplayDevice::DISPLAY_PRIMARY);
renderSurface->setAsync(state.type >= DisplayDevice::DISPLAY_VIRTUAL);
renderSurface->setNativeWindow(nativeWindow.get());
const int displayWidth = renderSurface->queryWidth();
const int displayHeight = renderSurface->queryHeight();
// Make sure that composition can never be stalled by a virtual display
// consumer that isn't processing buffers fast enough. We have to do this
// in two places:
// * Here, in case the display is composed entirely by HWC.
// * In makeCurrent(), using eglSwapInterval. Some EGL drivers set the
// window's swap interval in eglMakeCurrent, so they'll override the
// interval we set here.
if (state.type >= DisplayDevice::DISPLAY_VIRTUAL) {
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
}
// virtual displays are always considered enabled
auto initialPowerMode = (state.type >= DisplayDevice::DISPLAY_VIRTUAL) ? HWC_POWER_MODE_NORMAL
: HWC_POWER_MODE_OFF;
sp<DisplayDevice> hw =
new DisplayDevice(this, state.type, hwcId, state.isSecure, display, nativeWindow,
dispSurface, std::move(renderSurface), displayWidth, displayHeight,
hasWideColorGamut, hdrCapabilities,
supportedPerFrameMetadata, hwcColorModes, initialPowerMode);
if (maxFrameBufferAcquiredBuffers >= 3) {
nativeWindowSurface->preallocateBuffers();
}
ColorMode defaultColorMode = ColorMode::NATIVE;
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
if (hasWideColorGamut) {
defaultColorMode = ColorMode::SRGB;
defaultDataSpace = Dataspace::SRGB;
}
setActiveColorModeInternal(hw, defaultColorMode, defaultDataSpace,
RenderIntent::COLORIMETRIC);
if (state.type < DisplayDevice::DISPLAY_VIRTUAL) {
hw->setActiveConfig(getHwComposer().getActiveConfigIndex(state.type));
}
hw->setLayerStack(state.layerStack);
hw->setProjection(state.orientation, state.viewport, state.frame);
hw->setDisplayName(state.displayName);
return hw;
}
void SurfaceFlinger::processDisplayChangesLocked() {
// here we take advantage of Vector's copy-on-write semantics to
// improve performance by skipping the transaction entirely when
// know that the lists are identical
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
if (!curr.isIdenticalTo(draw)) {
mVisibleRegionsDirty = true;
const size_t cc = curr.size();
size_t dc = draw.size();
// find the displays that were removed
// (ie: in drawing state but not in current state)
// also handle displays that changed
// (ie: displays that are in both lists)
for (size_t i = 0; i < dc;) {
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
if (j < 0) {
// in drawing state but not in current state
// Call makeCurrent() on the primary display so we can
// be sure that nothing associated with this display
// is current.
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked());
if (defaultDisplay != nullptr) defaultDisplay->makeCurrent();
sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i)));
if (hw != nullptr) hw->disconnect(getHwComposer());
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
mEventThread->onHotplugReceived(draw[i].type, false);
mDisplays.removeItem(draw.keyAt(i));
} else {
// this display is in both lists. see if something changed.
const DisplayDeviceState& state(curr[j]);
const wp<IBinder>& display(curr.keyAt(j));
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
if (state_binder != draw_binder) {
// changing the surface is like destroying and
// recreating the DisplayDevice, so we just remove it
// from the drawing state, so that it get re-added
// below.
sp<DisplayDevice> hw(getDisplayDeviceLocked(display));
if (hw != nullptr) hw->disconnect(getHwComposer());
mDisplays.removeItem(display);
mDrawingState.displays.removeItemsAt(i);
dc--;
// at this point we must loop to the next item
continue;
}
const sp<DisplayDevice> disp(getDisplayDeviceLocked(display));
if (disp != nullptr) {
if (state.layerStack != draw[i].layerStack) {
disp->setLayerStack(state.layerStack);
}
if ((state.orientation != draw[i].orientation) ||
(state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) {
disp->setProjection(state.orientation, state.viewport, state.frame);
}
if (state.width != draw[i].width || state.height != draw[i].height) {
disp->setDisplaySize(state.width, state.height);
}
}
}
++i;
}
// find displays that were added
// (ie: in current state but not in drawing state)
for (size_t i = 0; i < cc; i++) {
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
const DisplayDeviceState& state(curr[i]);
sp<DisplaySurface> dispSurface;
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferProducer> bqProducer;
sp<IGraphicBufferConsumer> bqConsumer;
mCreateBufferQueue(&bqProducer, &bqConsumer, false);
int32_t hwcId = -1;
if (state.isVirtualDisplay()) {
// Virtual displays without a surface are dormant:
// they have external state (layer stack, projection,
// etc.) but no internal state (i.e. a DisplayDevice).
if (state.surface != nullptr) {
// Allow VR composer to use virtual displays.
if (mUseHwcVirtualDisplays || getBE().mHwc->isUsingVrComposer()) {
int width = 0;
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
int height = 0;
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
int intFormat = 0;
status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat);
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
auto format = static_cast<ui::PixelFormat>(intFormat);
getBE().mHwc->allocateVirtualDisplay(width, height, &format, &hwcId);
}
// TODO: Plumb requested format back up to consumer
sp<VirtualDisplaySurface> vds =
new VirtualDisplaySurface(*getBE().mHwc, hwcId, state.surface,
bqProducer, bqConsumer,
state.displayName);
dispSurface = vds;
producer = vds;
}
} else {
ALOGE_IF(state.surface != nullptr,
"adding a supported display, but rendering "
"surface is provided (%p), ignoring it",
state.surface.get());
hwcId = state.type;
dispSurface = new FramebufferSurface(*getBE().mHwc, hwcId, bqConsumer);
producer = bqProducer;
}
const wp<IBinder>& display(curr.keyAt(i));
if (dispSurface != nullptr) {
mDisplays.add(display,
setupNewDisplayDeviceInternal(display, hwcId, state, dispSurface,
producer));
if (!state.isVirtualDisplay()) {
mEventThread->onHotplugReceived(state.type, true);
}
}
}
}
}
mDrawingState.displays = mCurrentState.displays;
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
// Notify all layers of available frames
mCurrentState.traverseInZOrder([](Layer* layer) {
layer->notifyAvailableFrames();
});
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
if (transactionFlags & eTraversalNeeded) {
mCurrentState.traverseInZOrder([&](Layer* layer) {
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) return;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
});
}
/*
* Perform display own transactions if needed
*/
if (transactionFlags & eDisplayTransactionNeeded) {
processDisplayChangesLocked();
processDisplayHotplugEventsLocked();
}
if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
// The transform hint might have changed for some layers
// (either because a display has changed, or because a layer
// as changed).
//
// Walk through all the layers in currentLayers,
// and update their transform hint.
//
// If a layer is visible only on a single display, then that
// display is used to calculate the hint, otherwise we use the
// default display.
//
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
// the hint is set before we acquire a buffer from the surface texture.
//
// NOTE: layer transactions have taken place already, so we use their
// drawing state. However, SurfaceFlinger's own transaction has not
// happened yet, so we must use the current state layer list
// (soon to become the drawing state list).
//
sp<const DisplayDevice> disp;
uint32_t currentlayerStack = 0;
bool first = true;
mCurrentState.traverseInZOrder([&](Layer* layer) {
// NOTE: we rely on the fact that layers are sorted by
// layerStack first (so we don't have to traverse the list
// of displays for every layer).
uint32_t layerStack = layer->getLayerStack();
if (first || currentlayerStack != layerStack) {
currentlayerStack = layerStack;
// figure out if this layerstack is mirrored
// (more than one display) if so, pick the default display,
// if not, pick the only display it's on.
disp.clear();
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
sp<const DisplayDevice> hw(mDisplays[dpy]);
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
if (disp == nullptr) {
disp = std::move(hw);
} else {
disp = nullptr;
break;
}
}
}
}
if (disp == nullptr) {
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
// redraw after transform hint changes. See bug 8508397.
// could be null when this layer is using a layerStack
// that is not visible on any display. Also can occur at
// screen off/on times.
disp = getDefaultDisplayDeviceLocked();
}
// disp can be null if there is no display available at all to get
// the transform hint from.
if (disp != nullptr) {
layer->updateTransformHint(disp);
}
first = false;
});
}
/*
* Perform our own transaction if needed
*/
if (mLayersAdded) {
mLayersAdded = false;
// Layers have been added.
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
// this layer is not visible anymore
// TODO: we could traverse the tree from front to back and
// compute the actual visible region
// TODO: we could cache the transformed region
Region visibleReg;
visibleReg.set(layer->computeScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
});
}
commitTransaction();
updateCursorAsync();
}
void SurfaceFlinger::updateCursorAsync()
{
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
auto& displayDevice = mDisplays[displayId];
if (displayDevice->getHwcDisplayId() < 0) {
continue;
}
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
layer->updateCursorPosition(displayDevice);
}
}
}
void SurfaceFlinger::commitTransaction()
{
if (!mLayersPendingRemoval.isEmpty()) {
// Notify removed layers now that they can't be drawn from
for (const auto& l : mLayersPendingRemoval) {
recordBufferingStats(l->getName().string(),
l->getOccupancyHistory(true));
l->onRemoved();
}
mLayersPendingRemoval.clear();
}
// If this transaction is part of a window animation then the next frame
// we composite should be considered an animation as well.
mAnimCompositionPending = mAnimTransactionPending;
mDrawingState = mCurrentState;
// clear the "changed" flags in current state
mCurrentState.colorMatrixChanged = false;
mDrawingState.traverseInZOrder([](Layer* layer) {
layer->commitChildList();
});
mTransactionPending = false;
mAnimTransactionPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
Region& outDirtyRegion, Region& outOpaqueRegion)
{
ATRACE_CALL();
ALOGV("computeVisibleRegions");
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
outDirtyRegion.clear();
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
// start with the whole surface at its current location
const Layer::State& s(layer->getDrawingState());
// only consider the layers on the given layer stack
if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary()))
return;
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible
* non-transparent regions and can be removed from the layer list. It
* does not affect the visibleRegion of this layer or any layers
* beneath it. The hint may not be correct if apps don't respect the
* SurfaceView restrictions (which, sadly, some don't).
*/
Region transparentRegion;
// handle hidden surfaces by setting the visible region to empty
if (CC_LIKELY(layer->isVisible())) {
const bool translucent = !layer->isOpaque(s);
Rect bounds(layer->computeScreenBounds());
visibleRegion.set(bounds);
Transform tr = layer->getTransform();
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(s.activeTransparentRegion);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const int32_t layerOrientation = tr.getOrientation();
if (layer->getAlpha() == 1.0f && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
if (visibleRegion.isEmpty()) {
layer->clearVisibilityRegions();
return;
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegion);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegion;
const Region oldCoveredRegion = layer->coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
outDirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region in screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
layer->setVisibleNonTransparentRegion(
visibleRegion.subtract(transparentRegion));
});
outOpaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<DisplayDevice>& hw(mDisplays[dpy]);
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
hw->dirtyRegion.orSelf(dirty);
}
}
}
bool SurfaceFlinger::handlePageFlip()
{
ALOGV("handlePageFlip");
nsecs_t latchTime = systemTime();
bool visibleRegions = false;
bool frameQueued = false;
bool newDataLatched = false;
// Store the set of layers that need updates. This set must not change as
// buffers are being latched, as this could result in a deadlock.
// Example: Two producers share the same command stream and:
// 1.) Layer 0 is latched
// 2.) Layer 0 gets a new frame
// 2.) Layer 1 gets a new frame
// 3.) Layer 1 is latched.
// Display is now waiting on Layer 1's frame, which is behind layer 0's
// second frame. But layer 0's second frame could be waiting on display.
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (layer->hasQueuedFrame()) {
frameQueued = true;
if (layer->shouldPresentNow(mPrimaryDispSync)) {
mLayersWithQueuedFrames.push_back(layer);
} else {
layer->useEmptyDamage();
}
} else {
layer->useEmptyDamage();
}
});
for (auto& layer : mLayersWithQueuedFrames) {
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
layer->useSurfaceDamage();
invalidateLayerStack(layer, dirty);
if (layer->isBufferLatched()) {
newDataLatched = true;
}
}
mVisibleRegionsDirty |= visibleRegions;
// If we will need to wake up at some time in the future to deal with a
// queued frame that shouldn't be displayed during this vsync period, wake
// up during the next vsync period to check again.
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
signalLayerUpdate();
}
// enter boot animation on first buffer latch
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
ALOGI("Enter boot animation");
mBootStage = BootStage::BOOTANIMATION;
}
// Only continue with the refresh if there is actually new work to do
return !mLayersWithQueuedFrames.empty() && newDataLatched;
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mGeometryInvalid = true;
}
void SurfaceFlinger::doDisplayComposition(
const sp<const DisplayDevice>& displayDevice,
const Region& inDirtyRegion)
{
// We only need to actually compose the display if:
// 1) It is being handled by hardware composer, which may need this to
// keep its virtual display state machine in sync, or
// 2) There is work to be done (the dirty region isn't empty)
bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0;
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
ALOGV("Skipping display composition");
return;
}
ALOGV("doDisplayComposition");
if (!doComposeSurfaces(displayDevice)) return;
// swap buffers (presentation)
displayDevice->swapBuffers(getHwComposer());
}
bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& displayDevice)
{
ALOGV("doComposeSurfaces");
const Region bounds(displayDevice->bounds());
const DisplayRenderArea renderArea(displayDevice);
const auto hwcId = displayDevice->getHwcDisplayId();
const bool hasClientComposition = getBE().mHwc->hasClientComposition(hwcId);
ATRACE_INT("hasClientComposition", hasClientComposition);
bool applyColorMatrix = false;
bool needsEnhancedColorMatrix = false;
if (hasClientComposition) {
ALOGV("hasClientComposition");
Dataspace outputDataspace = Dataspace::UNKNOWN;
if (displayDevice->hasWideColorGamut()) {
outputDataspace = displayDevice->getCompositionDataSpace();
}
getBE().mRenderEngine->setOutputDataSpace(outputDataspace);
getBE().mRenderEngine->setDisplayMaxLuminance(
displayDevice->getHdrCapabilities().getDesiredMaxLuminance());
const bool hasDeviceComposition = getBE().mHwc->hasDeviceComposition(hwcId);
const bool skipClientColorTransform = getBE().mHwc->hasCapability(
HWC2::Capability::SkipClientColorTransform);
mat4 colorMatrix;
applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform;
if (applyColorMatrix) {
colorMatrix = mDrawingState.colorMatrix;
}
// The current enhanced saturation matrix is designed to enhance Display P3,
// thus we only apply this matrix when the render intent is not colorimetric
// and the output color space is Display P3.
needsEnhancedColorMatrix =
(displayDevice->getActiveRenderIntent() >= RenderIntent::ENHANCE &&
outputDataspace == Dataspace::DISPLAY_P3);
if (needsEnhancedColorMatrix) {
colorMatrix *= mEnhancedSaturationMatrix;
}
getRenderEngine().setupColorTransform(colorMatrix);
if (!displayDevice->makeCurrent()) {
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
displayDevice->getDisplayName().string());
getRenderEngine().resetCurrentSurface();
// |mStateLock| not needed as we are on the main thread
if(!getDefaultDisplayDeviceLocked()->makeCurrent()) {
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
}
return false;
}
// Never touch the framebuffer if we don't have any framebuffer layers
if (hasDeviceComposition) {
// when using overlays, we assume a fully transparent framebuffer
// NOTE: we could reduce how much we need to clear, for instance
// remove where there are opaque FB layers. however, on some
// GPUs doing a "clean slate" clear might be more efficient.
// We'll revisit later if needed.
getBE().mRenderEngine->clearWithColor(0, 0, 0, 0);
} else {
// we start with the whole screen area and remove the scissor part
// we're left with the letterbox region
// (common case is that letterbox ends-up being empty)
const Region letterbox(bounds.subtract(displayDevice->getScissor()));
// compute the area to clear
Region region(displayDevice->undefinedRegion.merge(letterbox));
// screen is already cleared here
if (!region.isEmpty()) {
// can happen with SurfaceView
drawWormhole(displayDevice, region);
}
}
const Rect& bounds(displayDevice->getBounds());
const Rect& scissor(displayDevice->getScissor());
if (scissor != bounds) {
// scissor doesn't match the screen's dimensions, so we
// need to clear everything outside of it and enable
// the GL scissor so we don't draw anything where we shouldn't
// enable scissor for this frame
const uint32_t height = displayDevice->getHeight();
getBE().mRenderEngine->setScissor(scissor.left, height - scissor.bottom,
scissor.getWidth(), scissor.getHeight());
}
}
/*
* and then, render the layers targeted at the framebuffer
*/
ALOGV("Rendering client layers");
const Transform& displayTransform = displayDevice->getTransform();
bool firstLayer = true;
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
const Region clip(bounds.intersect(
displayTransform.transform(layer->visibleRegion)));
ALOGV("Layer: %s", layer->getName().string());
ALOGV(" Composition type: %s",
to_string(layer->getCompositionType(hwcId)).c_str());
if (!clip.isEmpty()) {
switch (layer->getCompositionType(hwcId)) {
case HWC2::Composition::Cursor:
case HWC2::Composition::Device:
case HWC2::Composition::Sideband:
case HWC2::Composition::SolidColor: {
const Layer::State& state(layer->getDrawingState());
if (layer->getClearClientTarget(hwcId) && !firstLayer &&
layer->isOpaque(state) && (state.color.a == 1.0f)
&& hasClientComposition) {
// never clear the very first layer since we're
// guaranteed the FB is already cleared
layer->clearWithOpenGL(renderArea);
}
break;
}
case HWC2::Composition::Client: {
layer->draw(renderArea, clip);
break;
}
default:
break;
}
} else {
ALOGV(" Skipping for empty clip");
}
firstLayer = false;
}
if (applyColorMatrix || needsEnhancedColorMatrix) {
getRenderEngine().setupColorTransform(mat4());
}
// disable scissor at the end of the frame
getBE().mRenderEngine->disableScissor();
return true;
}
void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& displayDevice, const Region& region) const {
const int32_t height = displayDevice->getHeight();
auto& engine(getRenderEngine());
engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
}
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<IBinder>& handle,
const sp<IGraphicBufferProducer>& gbc,
const sp<Layer>& lbc,
const sp<Layer>& parent)
{
// add this layer to the current state list
{
Mutex::Autolock _l(mStateLock);
if (mNumLayers >= MAX_LAYERS) {
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers,
MAX_LAYERS);
return NO_MEMORY;
}
if (parent == nullptr) {
mCurrentState.layersSortedByZ.add(lbc);
} else {
if (parent->isPendingRemoval()) {
ALOGE("addClientLayer called with a removed parent");
return NAME_NOT_FOUND;
}
parent->addChild(lbc);
}
if (gbc != nullptr) {
mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
mMaxGraphicBufferProducerListSize,
"Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
mGraphicBufferProducerList.size(),
mMaxGraphicBufferProducerListSize, mNumLayers);
}
mLayersAdded = true;
mNumLayers++;
}
// attach this layer to the client
client->attachLayer(handle, lbc);
return NO_ERROR;
}
status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer, bool topLevelOnly) {
Mutex::Autolock _l(mStateLock);
return removeLayerLocked(mStateLock, layer, topLevelOnly);
}
status_t SurfaceFlinger::removeLayerLocked(const Mutex&, const sp<Layer>& layer,
bool topLevelOnly) {
if (layer->isPendingRemoval()) {
return NO_ERROR;
}
const auto& p = layer->getParent();
ssize_t index;
if (p != nullptr) {
if (topLevelOnly) {
return NO_ERROR;
}
sp<Layer> ancestor = p;
while (ancestor->getParent() != nullptr) {
ancestor = ancestor->getParent();
}
if (mCurrentState.layersSortedByZ.indexOf(ancestor) < 0) {
ALOGE("removeLayer called with a layer whose parent has been removed");
return NAME_NOT_FOUND;
}
index = p->removeChild(layer);
} else {
index = mCurrentState.layersSortedByZ.remove(layer);
}
// As a matter of normal operation, the LayerCleaner will produce a second
// attempt to remove the surface. The Layer will be kept alive in mDrawingState
// so we will succeed in promoting it, but it's already been removed
// from mCurrentState. As long as we can find it in mDrawingState we have no problem
// otherwise something has gone wrong and we are leaking the layer.
if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) {
ALOGE("Failed to find layer (%s) in layer parent (%s).",
layer->getName().string(),
(p != nullptr) ? p->getName().string() : "no-parent");
return BAD_VALUE;
} else if (index < 0) {
return NO_ERROR;
}
layer->onRemovedFromCurrentState();
mLayersPendingRemoval.add(layer);
mLayersRemoved = true;
mNumLayers -= 1 + layer->getChildrenCount();
setTransactionFlags(eTransactionNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags() {
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
return setTransactionFlags(flags, VSyncModulator::TransactionStart::NORMAL);
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags,
VSyncModulator::TransactionStart transactionStart) {
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
mVsyncModulator.setTransactionStart(transactionStart);
if ((old & flags)==0) { // wake the server up
signalTransaction();
}
return old;
}
bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) {
for (const ComposerState& state : states) {
// Here we need to check that the interface we're given is indeed
// one of our own. A malicious client could give us a nullptr
// IInterface, or one of its own or even one of our own but a
// different type. All these situations would cause us to crash.
if (state.client == nullptr) {
return true;
}
sp<IBinder> binder = IInterface::asBinder(state.client);
if (binder == nullptr) {
return true;
}
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) {
return true;
}
}
return false;
}
void SurfaceFlinger::setTransactionState(
const Vector<ComposerState>& states,
const Vector<DisplayState>& displays,
uint32_t flags)
{
ATRACE_CALL();
Mutex::Autolock _l(mStateLock);
uint32_t transactionFlags = 0;
if (containsAnyInvalidClientState(states)) {
return;
}
if (flags & eAnimation) {
// For window updates that are part of an animation we must wait for
// previous animation "frames" to be handled.
while (mAnimTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// caller after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
"waiting for previous animation frame");
mAnimTransactionPending = false;
break;
}
}
}
for (const DisplayState& display : displays) {
transactionFlags |= setDisplayStateLocked(display);
}
for (const ComposerState& state : states) {
transactionFlags |= setClientStateLocked(state);
}
// Iterate through all layers again to determine if any need to be destroyed. Marking layers
// as destroyed should only occur after setting all other states. This is to allow for a
// child re-parent to happen before marking its original parent as destroyed (which would
// then mark the child as destroyed).
for (const ComposerState& state : states) {
setDestroyStateLocked(state);
}
// If a synchronous transaction is explicitly requested without any changes, force a transaction
// anyway. This can be used as a flush mechanism for previous async transactions.
// Empty animation transaction can be used to simulate back-pressure, so also force a
// transaction for empty animation transactions.
if (transactionFlags == 0 &&
((flags & eSynchronous) || (flags & eAnimation))) {
transactionFlags = eTransactionNeeded;
}
if (transactionFlags) {
if (mInterceptor->isEnabled()) {
mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags);
}
// this triggers the transaction
const auto start = (flags & eEarlyWakeup)
? VSyncModulator::TransactionStart::EARLY
: VSyncModulator::TransactionStart::NORMAL;
setTransactionFlags(transactionFlags, start);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransactionPending = true;
}
if (flags & eAnimation) {
mAnimTransactionPending = true;
}
while (mTransactionPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
mTransactionPending = false;
break;
}
}
}
}
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
{
ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
if (dpyIdx < 0)
return 0;
uint32_t flags = 0;
DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
if (disp.isValid()) {
const uint32_t what = s.what;
if (what & DisplayState::eSurfaceChanged) {
if (IInterface::asBinder(disp.surface) != IInterface::asBinder(s.surface)) {
disp.surface = s.surface;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eLayerStackChanged) {
if (disp.layerStack != s.layerStack) {
disp.layerStack = s.layerStack;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplayProjectionChanged) {
if (disp.orientation != s.orientation) {
disp.orientation = s.orientation;
flags |= eDisplayTransactionNeeded;
}
if (disp.frame != s.frame) {
disp.frame = s.frame;
flags |= eDisplayTransactionNeeded;
}
if (disp.viewport != s.viewport) {
disp.viewport = s.viewport;
flags |= eDisplayTransactionNeeded;
}
}
if (what & DisplayState::eDisplaySizeChanged) {
if (disp.width != s.width) {
disp.width = s.width;
flags |= eDisplayTransactionNeeded;
}
if (disp.height != s.height) {
disp.height = s.height;
flags |= eDisplayTransactionNeeded;
}
}
}
return flags;
}
bool callingThreadHasUnscopedSurfaceFlingerAccess() {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
return false;
}
return true;
}
uint32_t SurfaceFlinger::setClientStateLocked(const ComposerState& composerState) {
const layer_state_t& s = composerState.state;
sp<Client> client(static_cast<Client*>(composerState.client.get()));
sp<Layer> layer(client->getLayerUser(s.surface));
if (layer == nullptr) {
return 0;
}
if (layer->isPendingRemoval()) {
ALOGW("Attempting to set client state on removed layer: %s", layer->getName().string());
return 0;
}
uint32_t flags = 0;
const uint32_t what = s.what;
bool geometryAppliesWithResize =
what & layer_state_t::eGeometryAppliesWithResize;
// If we are deferring transaction, make sure to push the pending state, as otherwise the
// pending state will also be deferred.
if (what & layer_state_t::eDeferTransaction) {
layer->pushPendingState();
}
if (what & layer_state_t::ePositionChanged) {
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildLayer(layer, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eRelativeLayerChanged) {
// NOTE: index needs to be calculated before we update the state
const auto& p = layer->getParent();
if (p == nullptr) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
} else {
if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
}
if (what & layer_state_t::eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & layer_state_t::eAlphaChanged) {
if (layer->setAlpha(s.alpha))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eColorChanged) {
if (layer->setColor(s.color))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eMatrixChanged) {
// TODO: b/109894387
//
// SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
// rotation. To see the problem observe that if we have a square parent, and a child
// of the same size, then we rotate the child 45 degrees around it's center, the child
// must now be cropped to a non rectangular 8 sided region.
//
// Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
// private API, and the WindowManager only uses rotation in one case, which is on a top
// level layer in which cropping is not an issue.
//
// However given that abuse of rotation matrices could lead to surfaces extending outside
// of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER
// (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving
// transformations.
if (layer->setMatrix(s.matrix, callingThreadHasUnscopedSurfaceFlingerAccess()))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFlagsChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eCropChanged) {
if (layer->setCrop(s.crop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eFinalCropChanged) {
if (layer->setFinalCrop(s.finalCrop, !geometryAppliesWithResize))
flags |= eTraversalNeeded;
}
if (what & layer_state_t::eLayerStackChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
// We only allow setting layer stacks for top level layers,
// everything else inherits layer stack from its parent.
if (layer->hasParent()) {
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
layer->getName().string());
} else if (idx < 0) {
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
"that also does not appear in the top level layer list. Something"
" has gone wrong.", layer->getName().string());
} else if (layer->setLayerStack(s.layerStack)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged;
}
}
if (what & layer_state_t::eDeferTransaction) {
if (s.barrierHandle != nullptr) {
layer->deferTransactionUntil(s.barrierHandle, s.frameNumber);
} else if (s.barrierGbp != nullptr) {
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp;
if (authenticateSurfaceTextureLocked(gbp)) {
const auto& otherLayer =
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
layer->deferTransactionUntil(otherLayer, s.frameNumber);
} else {
ALOGE("Attempt to defer transaction to to an"
" unrecognized GraphicBufferProducer");
}
}
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
if (what & layer_state_t::eReparent) {
bool hadParent = layer->hasParent();
if (layer->reparent(s.parentHandleForChild)) {
if (!hadParent) {
mCurrentState.layersSortedByZ.remove(layer);
}
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eReparentChildren) {
if (layer->reparentChildren(s.reparentHandle)) {
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & layer_state_t::eDetachChildren) {
layer->detachChildren();
}
if (what & layer_state_t::eOverrideScalingModeChanged) {
layer->setOverrideScalingMode(s.overrideScalingMode);
// We don't trigger a traversal here because if no other state is
// changed, we don't want this to cause any more work
}
return flags;
}
void SurfaceFlinger::setDestroyStateLocked(const ComposerState& composerState) {
const layer_state_t& state = composerState.state;
sp<Client> client(static_cast<Client*>(composerState.client.get()));
sp<Layer> layer(client->getLayerUser(state.surface));
if (layer == nullptr) {
return;
}
if (layer->isPendingRemoval()) {
ALOGW("Attempting to destroy on removed layer: %s", layer->getName().string());
return;
}
if (state.what & layer_state_t::eDestroySurface) {
removeLayerLocked(mStateLock, layer);
}
}
status_t SurfaceFlinger::createLayer(
const String8& name,
const sp<Client>& client,
uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
int32_t windowType, int32_t ownerUid, sp<IBinder>* handle,
sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent)
{
if (int32_t(w|h) < 0) {
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return BAD_VALUE;
}
status_t result = NO_ERROR;
sp<Layer> layer;
String8 uniqueName = getUniqueLayerName(name);
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
case ISurfaceComposerClient::eFXSurfaceNormal:
result = createBufferLayer(client,
uniqueName, w, h, flags, format,
handle, gbp, &layer);
break;
case ISurfaceComposerClient::eFXSurfaceColor:
result = createColorLayer(client,
uniqueName, w, h, flags,
handle, &layer);
break;
default:
result = BAD_VALUE;
break;
}
if (result != NO_ERROR) {
return result;
}
// window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
// TODO b/64227542
if (windowType == 441731) {
windowType = 2024; // TYPE_NAVIGATION_BAR_PANEL
layer->setPrimaryDisplayOnly();
}
layer->setInfo(windowType, ownerUid);
result = addClientLayer(client, *handle, *gbp, layer, *parent);
if (result != NO_ERROR) {
return result;
}
mInterceptor->saveSurfaceCreation(layer);
setTransactionFlags(eTransactionNeeded);
return result;
}
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
{
bool matchFound = true;
uint32_t dupeCounter = 0;
// Tack on our counter whether there is a hit or not, so everyone gets a tag
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
// Grab the state lock since we're accessing mCurrentState
Mutex::Autolock lock(mStateLock);
// Loop over layers until we're sure there is no matching name
while (matchFound) {
matchFound = false;
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (layer->getName() == uniqueName) {
matchFound = true;
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
}
});
}
ALOGD_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), uniqueName.c_str());
return uniqueName;
}
status_t SurfaceFlinger::createBufferLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
{
// initialize the surfaces
switch (format) {
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
format = PIXEL_FORMAT_RGBX_8888;
break;
}
sp<BufferLayer> layer = new BufferLayer(this, client, name, w, h, flags);
status_t err = layer->setBuffers(w, h, format, flags);
if (err == NO_ERROR) {
*handle = layer->getHandle();
*gbp = layer->getProducer();
*outLayer = layer;
}
ALOGE_IF(err, "createBufferLayer() failed (%s)", strerror(-err));
return err;
}
status_t SurfaceFlinger::createColorLayer(const sp<Client>& client,
const String8& name, uint32_t w, uint32_t h, uint32_t flags,
sp<IBinder>* handle, sp<Layer>* outLayer)
{
*outLayer = new ColorLayer(this, client, name, w, h, flags);
*handle = (*outLayer)->getHandle();
return NO_ERROR;
}
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
{
// called by a client when it wants to remove a Layer
status_t err = NO_ERROR;
sp<Layer> l(client->getLayerUser(handle));
if (l != nullptr) {
mInterceptor->saveSurfaceDeletion(l);
err = removeLayer(l);
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
{
// called by ~LayerCleaner() when all references to the IBinder (handle)
// are gone
sp<Layer> l = layer.promote();
if (l == nullptr) {
// The layer has already been removed, carry on
return NO_ERROR;
}
// If we have a parent, then we can continue to live as long as it does.
return removeLayer(l, true);
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::onInitializeDisplays() {
// reset screen orientation and use primary layer stack
Vector<ComposerState> state;
Vector<DisplayState> displays;
DisplayState d;
d.what = DisplayState::eDisplayProjectionChanged |
DisplayState::eLayerStackChanged;
d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
d.layerStack = 0;
d.orientation = DisplayState::eOrientationDefault;
d.frame.makeInvalid();
d.viewport.makeInvalid();
d.width = 0;
d.height = 0;
displays.add(d);
setTransactionState(state, displays, 0);
setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL,
/*stateLockHeld*/ false);
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mAnimFrameTracker.setDisplayRefreshPeriod(period);
// Use phase of 0 since phase is not known.
// Use latency of 0, which will snap to the ideal latency.
setCompositorTimingSnapped(0, period, 0);
}
void SurfaceFlinger::initializeDisplays() {
class MessageScreenInitialized : public MessageBase {
SurfaceFlinger* flinger;
public:
explicit MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
virtual bool handler() {
flinger->onInitializeDisplays();
return true;
}
};
sp<MessageBase> msg = new MessageScreenInitialized(this);
postMessageAsync(msg); // we may be called from main thread, use async message
}
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
int mode, bool stateLockHeld) {
ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
this);
int32_t type = hw->getDisplayType();
int currentMode = hw->getPowerMode();
if (mode == currentMode) {
return;
}
hw->setPowerMode(mode);
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
ALOGW("Trying to set power mode for virtual display");
return;
}
if (mInterceptor->isEnabled()) {
ConditionalLock lock(mStateLock, !stateLockHeld);
ssize_t idx = mCurrentState.displays.indexOfKey(hw->getDisplayToken());
if (idx < 0) {
ALOGW("Surface Interceptor SavePowerMode: invalid display token");
return;
}
mInterceptor->savePowerModeUpdate(mCurrentState.displays.valueAt(idx).displayId, mode);
}
if (currentMode == HWC_POWER_MODE_OFF) {
// Turn on the display
getHwComposer().setPowerMode(type, mode);
if (type == DisplayDevice::DISPLAY_PRIMARY &&
mode != HWC_POWER_MODE_DOZE_SUSPEND) {
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenAcquired();
resyncToHardwareVsync(true);
}
mVisibleRegionsDirty = true;
mHasPoweredOff = true;
repaintEverything();
struct sched_param param = {0};
param.sched_priority = 1;
if (sched_setscheduler(0, SCHED_FIFO, &param) != 0) {
ALOGW("Couldn't set SCHED_FIFO on display on");
}
} else if (mode == HWC_POWER_MODE_OFF) {
// Turn off the display
struct sched_param param = {0};
if (sched_setscheduler(0, SCHED_OTHER, &param) != 0) {
ALOGW("Couldn't set SCHED_OTHER on display off");
}
if (type == DisplayDevice::DISPLAY_PRIMARY &&
currentMode != HWC_POWER_MODE_DOZE_SUSPEND) {
disableHardwareVsync(true); // also cancels any in-progress resync
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenReleased();
}
getHwComposer().setPowerMode(type, mode);
mVisibleRegionsDirty = true;
// from this point on, SF will stop drawing on this display
} else if (mode == HWC_POWER_MODE_DOZE ||
mode == HWC_POWER_MODE_NORMAL) {
// Update display while dozing
getHwComposer().setPowerMode(type, mode);
if (type == DisplayDevice::DISPLAY_PRIMARY &&
currentMode == HWC_POWER_MODE_DOZE_SUSPEND) {
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenAcquired();
resyncToHardwareVsync(true);
}
} else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) {
// Leave display going to doze
if (type == DisplayDevice::DISPLAY_PRIMARY) {
disableHardwareVsync(true); // also cancels any in-progress resync
// FIXME: eventthread only knows about the main display right now
mEventThread->onScreenReleased();
}
getHwComposer().setPowerMode(type, mode);
} else {
ALOGE("Attempting to set unknown power mode: %d\n", mode);
getHwComposer().setPowerMode(type, mode);
}
ALOGD("Finished set power mode=%d, type=%d", mode, hw->getDisplayType());
}
void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) {
class MessageSetPowerMode: public MessageBase {
SurfaceFlinger& mFlinger;
sp<IBinder> mDisplay;
int mMode;
public:
MessageSetPowerMode(SurfaceFlinger& flinger,
const sp<IBinder>& disp, int mode) : mFlinger(flinger),
mDisplay(disp) { mMode = mode; }
virtual bool handler() {
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
if (hw == nullptr) {
ALOGE("Attempt to set power mode = %d for null display %p",
mMode, mDisplay.get());
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
ALOGW("Attempt to set power mode = %d for virtual display",
mMode);
} else {
mFlinger.setPowerModeInternal(
hw, mMode, /*stateLockHeld*/ false);
}
return true;
}
};
sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode);
postMessageSync(msg);
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::doDump(int fd, const Vector<String16>& args, bool asProto)
NO_THREAD_SAFETY_ANALYSIS {
String8 result;
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_SHELL) &&
!PermissionCache::checkPermission(sDump, pid, uid)) {
result.appendFormat("Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
} else {
// Try to get the main lock, but give up after one second
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
status_t err = mStateLock.timedLock(s2ns(1));
bool locked = (err == NO_ERROR);
if (!locked) {
result.appendFormat(
"SurfaceFlinger appears to be unresponsive (%s [%d]), "
"dumping anyways (no locks held)\n", strerror(-err), err);
}
bool dumpAll = true;
size_t index = 0;
size_t numArgs = args.size();
if (numArgs) {
if ((index < numArgs) &&
(args[index] == String16("--list"))) {
index++;
listLayersLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency"))) {
index++;
dumpStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--latency-clear"))) {
index++;
clearStatsLocked(args, index, result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--dispsync"))) {
index++;
mPrimaryDispSync.dump(result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--static-screen"))) {
index++;
dumpStaticScreenStats(result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--frame-events"))) {
index++;
dumpFrameEventsLocked(result);
dumpAll = false;
}
if ((index < numArgs) && (args[index] == String16("--wide-color"))) {
index++;
dumpWideColorInfo(result);
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--enable-layer-stats"))) {
index++;
mLayerStats.enable();
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--disable-layer-stats"))) {
index++;
mLayerStats.disable();
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--clear-layer-stats"))) {
index++;
mLayerStats.clear();
dumpAll = false;
}
if ((index < numArgs) &&
(args[index] == String16("--dump-layer-stats"))) {
index++;
mLayerStats.dump(result);
dumpAll = false;
}
if ((index < numArgs) && (args[index] == String16("--timestats"))) {
index++;
mTimeStats.parseArgs(asProto, args, index, result);
dumpAll = false;
}
}
if (dumpAll) {
if (asProto) {
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize());
} else {
dumpAllLocked(args, index, result);
}
}
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */,
size_t& /* index */, String8& result) const
{
mCurrentState.traverseInZOrder([&](Layer* layer) {
result.appendFormat("%s\n", layer->getName().string());
});
}
void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
result.appendFormat("%" PRId64 "\n", period);
if (name.isEmpty()) {
mAnimFrameTracker.dumpStats(result);
} else {
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (name == layer->getName()) {
layer->dumpFrameStats(result);
}
});
}
}
void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
String8& /* result */)
{
String8 name;
if (index < args.size()) {
name = String8(args[index]);
index++;
}
mCurrentState.traverseInZOrder([&](Layer* layer) {
if (name.isEmpty() || (name == layer->getName())) {
layer->clearFrameStats();
}
});
mAnimFrameTracker.clearStats();
}
// This should only be called from the main thread. Otherwise it would need
// the lock and should use mCurrentState rather than mDrawingState.
void SurfaceFlinger::logFrameStats() {
mDrawingState.traverseInZOrder([&](Layer* layer) {
layer->logFrameStats();
});
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
}
void SurfaceFlinger::appendSfConfigString(String8& result) const
{
result.append(" [sf");
if (isLayerTripleBufferingDisabled())
result.append(" DISABLE_TRIPLE_BUFFERING");
result.appendFormat(" PRESENT_TIME_OFFSET=%" PRId64 , dispSyncPresentTimeOffset);
result.appendFormat(" FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
result.appendFormat(" MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
result.appendFormat(" RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
result.appendFormat(" NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
maxFrameBufferAcquiredBuffers);
result.append("]");
}
void SurfaceFlinger::dumpStaticScreenStats(String8& result) const
{
result.appendFormat("Static screen stats:\n");
for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
result.appendFormat(" < %zd frames: %.3f s (%.1f%%)\n",
b + 1, bucketTimeSec, percent);
}
float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
float percent = 100.0f *
static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
result.appendFormat(" %zd+ frames: %.3f s (%.1f%%)\n",
SurfaceFlingerBE::NUM_BUCKETS - 1, bucketTimeSec, percent);
}
void SurfaceFlinger::recordBufferingStats(const char* layerName,
std::vector<OccupancyTracker::Segment>&& history) {
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
auto& stats = getBE().mBufferingStats[layerName];
for (const auto& segment : history) {
if (!segment.usedThirdBuffer) {
stats.twoBufferTime += segment.totalTime;
}
if (segment.occupancyAverage < 1.0f) {
stats.doubleBufferedTime += segment.totalTime;
} else if (segment.occupancyAverage < 2.0f) {
stats.tripleBufferedTime += segment.totalTime;
}
++stats.numSegments;
stats.totalTime += segment.totalTime;
}
}
void SurfaceFlinger::dumpFrameEventsLocked(String8& result) {
result.appendFormat("Layer frame timestamps:\n");
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
currentLayers[i]->dumpFrameEvents(result);
}
}
void SurfaceFlinger::dumpBufferingStats(String8& result) const {
result.append("Buffering stats:\n");
result.append(" [Layer name] <Active time> <Two buffer> "
"<Double buffered> <Triple buffered>\n");
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
typedef std::tuple<std::string, float, float, float> BufferTuple;
std::map<float, BufferTuple, std::greater<float>> sorted;
for (const auto& statsPair : getBE().mBufferingStats) {
const char* name = statsPair.first.c_str();
const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
if (stats.numSegments == 0) {
continue;
}
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
stats.totalTime;
float doubleBufferRatio = static_cast<float>(
stats.doubleBufferedTime) / stats.totalTime;
float tripleBufferRatio = static_cast<float>(
stats.tripleBufferedTime) / stats.totalTime;
sorted.insert({activeTime, {name, twoBufferRatio,
doubleBufferRatio, tripleBufferRatio}});
}
for (const auto& sortedPair : sorted) {
float activeTime = sortedPair.first;
const BufferTuple& values = sortedPair.second;
result.appendFormat(" [%s] %.2f %.3f %.3f %.3f\n",
std::get<0>(values).c_str(), activeTime,
std::get<1>(values), std::get<2>(values),
std::get<3>(values));
}
result.append("\n");
}
void SurfaceFlinger::dumpWideColorInfo(String8& result) const {
result.appendFormat("hasWideColorDisplay: %d\n", hasWideColorDisplay);
result.appendFormat("DisplayColorSetting: %s\n",
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
// TODO: print out if wide-color mode is active or not
for (size_t d = 0; d < mDisplays.size(); d++) {
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
int32_t hwcId = displayDevice->getHwcDisplayId();
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
continue;
}
result.appendFormat("Display %d color modes:\n", hwcId);
std::vector<ColorMode> modes = getHwComposer().getColorModes(hwcId);
for (auto&& mode : modes) {
result.appendFormat(" %s (%d)\n", decodeColorMode(mode).c_str(), mode);
}
ColorMode currentMode = displayDevice->getActiveColorMode();
result.appendFormat(" Current color mode: %s (%d)\n",
decodeColorMode(currentMode).c_str(), currentMode);
}
result.append("\n");
}
LayersProto SurfaceFlinger::dumpProtoInfo(LayerVector::StateSet stateSet) const {
LayersProto layersProto;
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
const State& state = useDrawing ? mDrawingState : mCurrentState;
state.traverseInZOrder([&](Layer* layer) {
LayerProto* layerProto = layersProto.add_layers();
layer->writeToProto(layerProto, stateSet);
});
return layersProto;
}
LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo(int32_t hwcId) const {
LayersProto layersProto;
const sp<DisplayDevice>& displayDevice(mDisplays[hwcId]);
SizeProto* resolution = layersProto.mutable_resolution();
resolution->set_w(displayDevice->getWidth());
resolution->set_h(displayDevice->getHeight());
layersProto.set_color_mode(decodeColorMode(displayDevice->getActiveColorMode()));
layersProto.set_color_transform(decodeColorTransform(displayDevice->getColorTransform()));
layersProto.set_global_transform(
static_cast<int32_t>(displayDevice->getOrientationTransform()));
mDrawingState.traverseInZOrder([&](Layer* layer) {
if (!layer->visibleRegion.isEmpty() && layer->getBE().mHwcLayers.count(hwcId)) {
LayerProto* layerProto = layersProto.add_layers();
layer->writeToProto(layerProto, hwcId);
}
});
return layersProto;
}
void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
String8& result) const
{
bool colorize = false;
if (index < args.size()
&& (args[index] == String16("--color"))) {
colorize = true;
index++;
}
Colorizer colorizer(colorize);
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
/*
* Dump library configuration.
*/
colorizer.bold(result);
result.append("Build configuration:");
colorizer.reset(result);
appendSfConfigString(result);
appendUiConfigString(result);
appendGuiConfigString(result);
result.append("\n");
result.append("\nWide-Color information:\n");
dumpWideColorInfo(result);
colorizer.bold(result);
result.append("Sync configuration: ");
colorizer.reset(result);
result.append(SyncFeatures::getInstance().toString());
result.append("\n");
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
colorizer.bold(result);
result.append("DispSync configuration: ");
colorizer.reset(result);
const auto [sfEarlyOffset, appEarlyOffset] = mVsyncModulator.getEarlyOffsets();
const auto [sfEarlyGlOffset, appEarlyGlOffset] = mVsyncModulator.getEarlyGlOffsets();
result.appendFormat(
"app phase %" PRId64 " ns, "
"sf phase %" PRId64 " ns, "
"early app phase %" PRId64 " ns, "
"early sf phase %" PRId64 " ns, "
"early app gl phase %" PRId64 " ns, "
"early sf gl phase %" PRId64 " ns, "
"present offset %" PRId64 " ns (refresh %" PRId64 " ns)",
vsyncPhaseOffsetNs,
sfVsyncPhaseOffsetNs,
appEarlyOffset,
sfEarlyOffset,
appEarlyGlOffset,
sfEarlyOffset,
dispSyncPresentTimeOffset, activeConfig->getVsyncPeriod());
result.append("\n");
// Dump static screen stats
result.append("\n");
dumpStaticScreenStats(result);
result.append("\n");
dumpBufferingStats(result);
/*
* Dump the visible layer list
*/
colorizer.bold(result);
result.appendFormat("Visible layers (count = %zu)\n", mNumLayers);
result.appendFormat("GraphicBufferProducers: %zu, max %zu\n",
mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
colorizer.reset(result);
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
result.append(LayerProtoParser::layersToString(std::move(layerTree)).c_str());
result.append("\n");
/*
* Dump Display state
*/
colorizer.bold(result);
result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
colorizer.reset(result);
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
const sp<const DisplayDevice>& hw(mDisplays[dpy]);
hw->dump(result);
}
result.append("\n");
/*
* Dump SurfaceFlinger global state
*/
colorizer.bold(result);
result.append("SurfaceFlinger global state:\n");
colorizer.reset(result);
HWComposer& hwc(getHwComposer());
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
getBE().mRenderEngine->dump(result);
if (hw) {
hw->undefinedRegion.dump(result, "undefinedRegion");
result.appendFormat(" orientation=%d, isDisplayOn=%d\n",
hw->getOrientation(), hw->isDisplayOn());
}
result.appendFormat(
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n"
" transaction-flags : %08x\n"
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n"
" gpu_to_cpu_unsupported : %d\n"
,
mLastSwapBufferTime/1000.0,
mLastTransactionTime/1000.0,
mTransactionFlags,
1e9 / activeConfig->getVsyncPeriod(),
activeConfig->getDpiX(),
activeConfig->getDpiY(),
!mGpuToCpuSupported);
result.appendFormat(" eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.appendFormat(" transaction time: %f us\n",
inTransactionDuration/1000.0);
/*
* VSYNC state
*/
mEventThread->dump(result);
result.append("\n");
/*
* HWC layer minidump
*/
for (size_t d = 0; d < mDisplays.size(); d++) {
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
int32_t hwcId = displayDevice->getHwcDisplayId();
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
continue;
}
result.appendFormat("Display %d HWC layers:\n", hwcId);
Layer::miniDumpHeader(result);
mCurrentState.traverseInZOrder([&](Layer* layer) {
layer->miniDump(result, hwcId);
});
result.append("\n");
}
/*
* Dump HWComposer state
*/
colorizer.bold(result);
result.append("h/w composer state:\n");
colorizer.reset(result);
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
result.appendFormat(" h/w composer %s\n",
hwcDisabled ? "disabled" : "enabled");
hwc.dump(result);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
/*
* Dump VrFlinger state if in use.
*/
if (mVrFlingerRequestsDisplay && mVrFlinger) {
result.append("VrFlinger state:\n");
result.append(mVrFlinger->Dump().c_str());
result.append("\n");
}
}
const Vector< sp<Layer> >&
SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
// Note: mStateLock is held here
wp<IBinder> dpy;
for (size_t i=0 ; i<mDisplays.size() ; i++) {
if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
dpy = mDisplays.keyAt(i);
break;
}
}
if (dpy == nullptr) {
ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
// Just use the primary display so we have something to return
dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
}
return getDisplayDeviceLocked(dpy)->getVisibleLayersSortedByZ();
}
bool SurfaceFlinger::startDdmConnection()
{
void* libddmconnection_dso =
dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
if (!libddmconnection_dso) {
return false;
}
void (*DdmConnection_start)(const char* name);
DdmConnection_start =
(decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start");
if (!DdmConnection_start) {
dlclose(libddmconnection_dso);
return false;
}
(*DdmConnection_start)(getServiceName());
return true;
}
void SurfaceFlinger::updateColorMatrixLocked() {
mat4 colorMatrix;
if (mGlobalSaturationFactor != 1.0f) {
// Rec.709 luma coefficients
float3 luminance{0.213f, 0.715f, 0.072f};
luminance *= 1.0f - mGlobalSaturationFactor;
mat4 saturationMatrix = mat4(
vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f},
vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f},
vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f},
vec4{0.0f, 0.0f, 0.0f, 1.0f}
);
colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer();
} else {
colorMatrix = mClientColorMatrix * mDaltonizer();
}
if (mCurrentState.colorMatrix != colorMatrix) {
mCurrentState.colorMatrix = colorMatrix;
mCurrentState.colorMatrixChanged = true;
setTransactionFlags(eTransactionNeeded);
}
}
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
switch (code) {
case CREATE_CONNECTION:
case CREATE_DISPLAY:
case BOOT_FINISHED:
case CLEAR_ANIMATION_FRAME_STATS:
case GET_ANIMATION_FRAME_STATS:
case SET_POWER_MODE:
case GET_HDR_CAPABILITIES:
case ENABLE_VSYNC_INJECTIONS:
case INJECT_VSYNC:
{
// codes that require permission check
if (!callingThreadHasUnscopedSurfaceFlingerAccess()) {
IPCThreadState* ipc = IPCThreadState::self();
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
ipc->getCallingPid(), ipc->getCallingUid());
return PERMISSION_DENIED;
}
break;
}
/*
* Calling setTransactionState is safe, because you need to have been
* granted a reference to Client* and Handle* to do anything with it.
*
* Creating a scoped connection is safe, as per discussion in ISurfaceComposer.h
*/
case SET_TRANSACTION_STATE:
case CREATE_SCOPED_CONNECTION:
{
return OK;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
case CAPTURE_LAYERS: {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
return OK;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
status_t credentialCheck = CheckTransactCodeCredentials(code);
if (credentialCheck != OK) {
return credentialCheck;
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
IPCThreadState* ipc = IPCThreadState::self();
const int uid = ipc->getCallingUid();
if (CC_UNLIKELY(uid != AID_SYSTEM
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
const int pid = ipc->getCallingPid();
ALOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
Mutex::Autolock _l(mStateLock);
setTransactionFlags(
eTransactionNeeded|
eDisplayTransactionNeeded|
eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // send empty update
signalRefresh();
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(0);
reply->writeInt32(mDebugDisableHWC);
return NO_ERROR;
case 1013: {
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
reply->writeInt32(hw->getPageFlipCount());
return NO_ERROR;
}
case 1014: {
Mutex::Autolock _l(mStateLock);
// daltonize
n = data.readInt32();
switch (n % 10) {
case 1:
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
break;
case 2:
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
break;
case 3:
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
break;
default:
mDaltonizer.setType(ColorBlindnessType::None);
break;
}
if (n >= 10) {
mDaltonizer.setMode(ColorBlindnessMode::Correction);
} else {
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
}
updateColorMatrixLocked();
return NO_ERROR;
}
case 1015: {
Mutex::Autolock _l(mStateLock);
// apply a color matrix
n = data.readInt32();
if (n) {
// color matrix is sent as a column-major mat4 matrix
for (size_t i = 0 ; i < 4; i++) {
for (size_t j = 0; j < 4; j++) {
mClientColorMatrix[i][j] = data.readFloat();
}
}
} else {
mClientColorMatrix = mat4();
}
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
// the division by w in the fragment shader
float4 lastRow(transpose(mClientColorMatrix)[3]);
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
}
updateColorMatrixLocked();
return NO_ERROR;
}
// This is an experimental interface
// Needs to be shifted to proper binder interface when we productize
case 1016: {
n = data.readInt32();
mPrimaryDispSync.setRefreshSkipCount(n);
return NO_ERROR;
}
case 1017: {
n = data.readInt32();
mForceFullDamage = static_cast<bool>(n);
return NO_ERROR;
}
case 1018: { // Modify Choreographer's phase offset
n = data.readInt32();
mEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1019: { // Modify SurfaceFlinger's phase offset
n = data.readInt32();
mSFEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
return NO_ERROR;
}
case 1020: { // Layer updates interceptor
n = data.readInt32();
if (n) {
ALOGV("Interceptor enabled");
mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
}
else{
ALOGV("Interceptor disabled");
mInterceptor->disable();
}
return NO_ERROR;
}
case 1021: { // Disable HWC virtual displays
n = data.readInt32();
mUseHwcVirtualDisplays = !n;
return NO_ERROR;
}
case 1022: { // Set saturation boost
Mutex::Autolock _l(mStateLock);
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
updateColorMatrixLocked();
return NO_ERROR;
}
case 1023: { // Set native mode
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
}
case 1024: { // Is wide color gamut rendering/color management supported?
reply->writeBool(hasWideColorDisplay);
return NO_ERROR;
}
case 1025: { // Set layer tracing
n = data.readInt32();
if (n) {
ALOGV("LayerTracing enabled");
mTracing.enable();
doTracing("tracing.enable");
reply->writeInt32(NO_ERROR);
} else {
ALOGV("LayerTracing disabled");
status_t err = mTracing.disable();
reply->writeInt32(err);
}
return NO_ERROR;
}
case 1026: { // Get layer tracing status
reply->writeBool(mTracing.isEnabled());
return NO_ERROR;
}
// Is a DisplayColorSetting supported?
case 1027: {
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
if (!hw) {
return NAME_NOT_FOUND;
}
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
switch (setting) {
case DisplayColorSetting::MANAGED:
reply->writeBool(hasWideColorDisplay);
break;
case DisplayColorSetting::UNMANAGED:
reply->writeBool(true);
break;
case DisplayColorSetting::ENHANCED:
reply->writeBool(hw->hasRenderIntent(RenderIntent::ENHANCE));
break;
default: // vendor display color setting
reply->writeBool(hw->hasRenderIntent(static_cast<RenderIntent>(setting)));
break;
}
return NO_ERROR;
}
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
android_atomic_or(1, &mRepaintEverything);
signalTransaction();
}
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
class WindowDisconnector {
public:
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector() {
native_window_api_disconnect(mWindow, mApi);
}
private:
ANativeWindow* mWindow;
const int mApi;
};
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display, sp<GraphicBuffer>* outBuffer,
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
int32_t minLayerZ, int32_t maxLayerZ,
bool useIdentityTransform,
ISurfaceComposer::Rotation rotation) {
ATRACE_CALL();
if (CC_UNLIKELY(display == 0)) return BAD_VALUE;
const sp<const DisplayDevice> device(getDisplayDeviceLocked(display));
if (CC_UNLIKELY(device == 0)) return BAD_VALUE;
const Rect& dispScissor = device->getScissor();
if (!dispScissor.isEmpty()) {
sourceCrop.set(dispScissor);
// adb shell screencap will default reqWidth and reqHeight to zeros.
if (reqWidth == 0 || reqHeight == 0) {
reqWidth = uint32_t(device->getViewport().width());
reqHeight = uint32_t(device->getViewport().height());
}
}
DisplayRenderArea renderArea(device, sourceCrop, reqHeight, reqWidth, rotation);
auto traverseLayers = std::bind(std::mem_fn(&SurfaceFlinger::traverseLayersInDisplay), this,
device, minLayerZ, maxLayerZ, std::placeholders::_1);
return captureScreenCommon(renderArea, traverseLayers, outBuffer, useIdentityTransform);
}
status_t SurfaceFlinger::captureLayers(const sp<IBinder>& layerHandleBinder,
sp<GraphicBuffer>* outBuffer, const Rect& sourceCrop,
float frameScale, bool childrenOnly) {
ATRACE_CALL();
class LayerRenderArea : public RenderArea {
public:
LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop,
int32_t reqWidth, int32_t reqHeight, bool childrenOnly)
: RenderArea(reqHeight, reqWidth, CaptureFill::CLEAR),
mLayer(layer),
mCrop(crop),
mFlinger(flinger),
mChildrenOnly(childrenOnly) {}
const Transform& getTransform() const override { return mTransform; }
Rect getBounds() const override {
const Layer::State& layerState(mLayer->getDrawingState());
return Rect(layerState.active.w, layerState.active.h);
}
int getHeight() const override { return mLayer->getDrawingState().active.h; }
int getWidth() const override { return mLayer->getDrawingState().active.w; }
bool isSecure() const override { return false; }
bool needsFiltering() const override { return false; }
Rect getSourceCrop() const override {
if (mCrop.isEmpty()) {
return getBounds();
} else {
return mCrop;
}
}
class ReparentForDrawing {
public:
const sp<Layer>& oldParent;
const sp<Layer>& newParent;
ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent)
: oldParent(oldParent), newParent(newParent) {
oldParent->setChildrenDrawingParent(newParent);
}
~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); }
};
void render(std::function<void()> drawLayers) override {
if (!mChildrenOnly) {
mTransform = mLayer->getTransform().inverse();
drawLayers();
} else {
Rect bounds = getBounds();
screenshotParentLayer =
new ContainerLayer(mFlinger, nullptr, String8("Screenshot Parent"),
bounds.getWidth(), bounds.getHeight(), 0);
ReparentForDrawing reparent(mLayer, screenshotParentLayer);
drawLayers();
}
}
private:
const sp<Layer> mLayer;
const Rect mCrop;
// In the "childrenOnly" case we reparent the children to a screenshot
// layer which has no properties set and which does not draw.
sp<ContainerLayer> screenshotParentLayer;
Transform mTransform;
SurfaceFlinger* mFlinger;
const bool mChildrenOnly;
};
auto layerHandle = reinterpret_cast<Layer::Handle*>(layerHandleBinder.get());
auto parent = layerHandle->owner.promote();
if (parent == nullptr || parent->isPendingRemoval()) {
ALOGE("captureLayers called with a removed parent");
return NAME_NOT_FOUND;
}
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
Rect crop(sourceCrop);
if (sourceCrop.width() <= 0) {
crop.left = 0;
crop.right = parent->getCurrentState().active.w;
}
if (sourceCrop.height() <= 0) {
crop.top = 0;
crop.bottom = parent->getCurrentState().active.h;
}
int32_t reqWidth = crop.width() * frameScale;
int32_t reqHeight = crop.height() * frameScale;
LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, childrenOnly);
auto traverseLayers = [parent, childrenOnly](const LayerVector::Visitor& visitor) {
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->isVisible()) {
return;
} else if (childrenOnly && layer == parent.get()) {
return;
}
visitor(layer);
});
};
return captureScreenCommon(renderArea, traverseLayers, outBuffer, false);
}
status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
sp<GraphicBuffer>* outBuffer,
bool useIdentityTransform) {
ATRACE_CALL();
renderArea.updateDimensions(mPrimaryDisplayOrientation);
const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
*outBuffer = new GraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(),
HAL_PIXEL_FORMAT_RGBA_8888, 1, usage, "screenshot");
// This mutex protects syncFd and captureResult for communication of the return values from the
// main thread back to this Binder thread
std::mutex captureMutex;
std::condition_variable captureCondition;
std::unique_lock<std::mutex> captureLock(captureMutex);
int syncFd = -1;
std::optional<status_t> captureResult;
const int uid = IPCThreadState::self()->getCallingUid();
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
sp<LambdaMessage> message = new LambdaMessage([&]() {
// If there is a refresh pending, bug out early and tell the binder thread to try again
// after the refresh.
if (mRefreshPending) {
ATRACE_NAME("Skipping screenshot for now");
std::unique_lock<std::mutex> captureLock(captureMutex);
captureResult = std::make_optional<status_t>(EAGAIN);
captureCondition.notify_one();
return;
}
status_t result = NO_ERROR;
int fd = -1;
{
Mutex::Autolock _l(mStateLock);
renderArea.render([&]() {
result = captureScreenImplLocked(renderArea, traverseLayers, (*outBuffer).get(),
useIdentityTransform, forSystem, &fd);
});
}
{
std::unique_lock<std::mutex> captureLock(captureMutex);
syncFd = fd;
captureResult = std::make_optional<status_t>(result);
captureCondition.notify_one();
}
});
status_t result = postMessageAsync(message);
if (result == NO_ERROR) {
captureCondition.wait(captureLock, [&]() { return captureResult; });
while (*captureResult == EAGAIN) {
captureResult.reset();
result = postMessageAsync(message);
if (result != NO_ERROR) {
return result;
}
captureCondition.wait(captureLock, [&]() { return captureResult; });
}
result = *captureResult;
}
if (result == NO_ERROR) {
sync_wait(syncFd, -1);
close(syncFd);
}
return result;
}
void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers, bool yswap,
bool useIdentityTransform) {
ATRACE_CALL();
auto& engine(getRenderEngine());
// get screen geometry
const auto raWidth = renderArea.getWidth();
const auto raHeight = renderArea.getHeight();
const auto reqWidth = renderArea.getReqWidth();
const auto reqHeight = renderArea.getReqHeight();
Rect sourceCrop = renderArea.getSourceCrop();
bool filtering = false;
if (mPrimaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
filtering = static_cast<int32_t>(reqWidth) != raHeight ||
static_cast<int32_t>(reqHeight) != raWidth;
} else {
filtering = static_cast<int32_t>(reqWidth) != raWidth ||
static_cast<int32_t>(reqHeight) != raHeight;
}
// if a default or invalid sourceCrop is passed in, set reasonable values
if (sourceCrop.width() == 0 || sourceCrop.height() == 0 || !sourceCrop.isValid()) {
sourceCrop.setLeftTop(Point(0, 0));
sourceCrop.setRightBottom(Point(raWidth, raHeight));
} else if (mPrimaryDisplayOrientation != DisplayState::eOrientationDefault) {
Transform tr;
uint32_t flags = 0x00;
switch (mPrimaryDisplayOrientation) {
case DisplayState::eOrientation90:
flags = Transform::ROT_90;
break;
case DisplayState::eOrientation180:
flags = Transform::ROT_180;
break;
case DisplayState::eOrientation270:
flags = Transform::ROT_270;
break;
}
tr.set(flags, raWidth, raHeight);
sourceCrop = tr.transform(sourceCrop);
}
// ensure that sourceCrop is inside screen
if (sourceCrop.left < 0) {
ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left);
}
if (sourceCrop.right > raWidth) {
ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, raWidth);
}
if (sourceCrop.top < 0) {
ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top);
}
if (sourceCrop.bottom > raHeight) {
ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, raHeight);
}
// assume ColorMode::SRGB / RenderIntent::COLORIMETRIC
engine.setOutputDataSpace(Dataspace::SRGB);
engine.setDisplayMaxLuminance(DisplayDevice::sDefaultMaxLumiance);
// make sure to clear all GL error flags
engine.checkErrors();
Transform::orientation_flags rotation = renderArea.getRotationFlags();
if (mPrimaryDisplayOrientation != DisplayState::eOrientationDefault) {
// convert hw orientation into flag presentation
// here inverse transform needed
uint8_t hw_rot_90 = 0x00;
uint8_t hw_flip_hv = 0x00;
switch (mPrimaryDisplayOrientation) {
case DisplayState::eOrientation90:
hw_rot_90 = Transform::ROT_90;
hw_flip_hv = Transform::ROT_180;
break;
case DisplayState::eOrientation180:
hw_flip_hv = Transform::ROT_180;
break;
case DisplayState::eOrientation270:
hw_rot_90 = Transform::ROT_90;
break;
}
// transform flags operation
// 1) flip H V if both have ROT_90 flag
// 2) XOR these flags
uint8_t rotation_rot_90 = rotation & Transform::ROT_90;
uint8_t rotation_flip_hv = rotation & Transform::ROT_180;
if (rotation_rot_90 & hw_rot_90) {
rotation_flip_hv = (~rotation_flip_hv) & Transform::ROT_180;
}
rotation = static_cast<Transform::orientation_flags>
((rotation_rot_90 ^ hw_rot_90) | (rotation_flip_hv ^ hw_flip_hv));
}
// set-up our viewport
engine.setViewportAndProjection(reqWidth, reqHeight, sourceCrop, raHeight, yswap,
rotation);
engine.disableTexturing();
const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
// redraw the screen entirely...
engine.clearWithColor(0, 0, 0, alpha);
traverseLayers([&](Layer* layer) {
if (filtering) layer->setFiltering(true);
layer->draw(renderArea, useIdentityTransform);
if (filtering) layer->setFiltering(false);
});
}
status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea,
TraverseLayersFunction traverseLayers,
ANativeWindowBuffer* buffer,
bool useIdentityTransform,
bool forSystem,
int* outSyncFd) {
ATRACE_CALL();
bool secureLayerIsVisible = false;
traverseLayers([&](Layer* layer) {
secureLayerIsVisible = secureLayerIsVisible || (layer->isVisible() && layer->isSecure());
});
// We allow the system server to take screenshots of secure layers for
// use in situations like the Screen-rotation animation and place
// the impetus on WindowManager to not persist them.
if (secureLayerIsVisible && !forSystem) {
ALOGW("FB is protected: PERMISSION_DENIED");
return PERMISSION_DENIED;
}
// this binds the given EGLImage as a framebuffer for the
// duration of this scope.
RE::BindNativeBufferAsFramebuffer bufferBond(getRenderEngine(), buffer);
if (bufferBond.getStatus() != NO_ERROR) {
ALOGE("got ANWB binding error while taking screenshot");
return INVALID_OPERATION;
}
// this will in fact render into our dequeued buffer
// via an FBO, which means we didn't have to create
// an EGLSurface and therefore we're not
// dependent on the context's EGLConfig.
renderScreenImplLocked(renderArea, traverseLayers, true, useIdentityTransform);
if (DEBUG_SCREENSHOTS) {
getRenderEngine().finish();
*outSyncFd = -1;
const auto reqWidth = renderArea.getReqWidth();
const auto reqHeight = renderArea.getReqHeight();
uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
checkScreenshot(reqWidth, reqHeight, reqWidth, pixels, traverseLayers);
delete [] pixels;
} else {
base::unique_fd syncFd = getRenderEngine().flush();
if (syncFd < 0) {
getRenderEngine().finish();
}
*outSyncFd = syncFd.release();
}
return NO_ERROR;
}
void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
TraverseLayersFunction traverseLayers) {
if (DEBUG_SCREENSHOTS) {
for (size_t y = 0; y < h; y++) {
uint32_t const* p = (uint32_t const*)vaddr + y * s;
for (size_t x = 0; x < w; x++) {
if (p[x] != 0xFF000000) return;
}
}
ALOGE("*** we just took a black screenshot ***");
size_t i = 0;
traverseLayers([&](Layer* layer) {
const Layer::State& state(layer->getDrawingState());
ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%.3f",
layer->isVisible() ? '+' : '-', i, layer->getName().string(),
layer->getLayerStack(), state.z, layer->isVisible(), state.flags,
static_cast<float>(state.color.a));
i++;
});
}
}
// ---------------------------------------------------------------------------
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInZOrder(stateSet, visitor);
}
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
}
void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& hw, int32_t minLayerZ,
int32_t maxLayerZ,
const LayerVector::Visitor& visitor) {
// We loop through the first level of layers without traversing,
// as we need to interpret min/max layer Z in the top level Z space.
for (const auto& layer : mDrawingState.layersSortedByZ) {
if (!layer->belongsToDisplay(hw->getLayerStack(), false)) {
continue;
}
const Layer::State& state(layer->getDrawingState());
// relative layers are traversed in Layer::traverseInZOrder
if (state.zOrderRelativeOf != nullptr || state.z < minLayerZ || state.z > maxLayerZ) {
continue;
}
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
if (!layer->belongsToDisplay(hw->getLayerStack(), false)) {
return;
}
if (!layer->isVisible()) {
return;
}
visitor(layer);
});
}
}
}; // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif