blob: 9dc6858566bc7e6c729d2e9547d55b580ecbeffe [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <utils/String8.h>
#include <utils/Trace.h>
#include "Description.h"
#include "Program.h"
#include "ProgramCache.h"
namespace android {
// -----------------------------------------------------------------------------------------------
/*
* A simple formatter class to automatically add the endl and
* manage the indentation.
*/
class Formatter;
static Formatter& indent(Formatter& f);
static Formatter& dedent(Formatter& f);
class Formatter {
String8 mString;
int mIndent;
typedef Formatter& (*FormaterManipFunc)(Formatter&);
friend Formatter& indent(Formatter& f);
friend Formatter& dedent(Formatter& f);
public:
Formatter() : mIndent(0) {}
String8 getString() const { return mString; }
friend Formatter& operator<<(Formatter& out, const char* in) {
for (int i = 0; i < out.mIndent; i++) {
out.mString.append(" ");
}
out.mString.append(in);
out.mString.append("\n");
return out;
}
friend inline Formatter& operator<<(Formatter& out, const String8& in) {
return operator<<(out, in.string());
}
friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) {
return (*func)(to);
}
};
Formatter& indent(Formatter& f) {
f.mIndent++;
return f;
}
Formatter& dedent(Formatter& f) {
f.mIndent--;
return f;
}
// -----------------------------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(ProgramCache)
ProgramCache::ProgramCache() {}
ProgramCache::~ProgramCache() {}
void ProgramCache::primeCache(bool hasWideColor) {
uint32_t shaderCount = 0;
uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK;
// Prime the cache for all combinations of the above masks,
// leaving off the experimental color matrix mask options.
nsecs_t timeBefore = systemTime();
for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) {
Key shaderKey;
shaderKey.set(keyMask, keyVal);
uint32_t tex = shaderKey.getTextureTarget();
if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) {
continue;
}
Program* program = mCache.valueFor(shaderKey);
if (program == nullptr) {
program = generateProgram(shaderKey);
mCache.add(shaderKey, program);
shaderCount++;
}
}
// Prime for sRGB->P3 conversion
if (hasWideColor) {
Key shaderKey;
shaderKey.set(Key::BLEND_MASK | Key::TEXTURE_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK |
Key::INPUT_TF_MASK | Key::OUTPUT_TF_MASK,
Key::BLEND_PREMULT | Key::TEXTURE_EXT | Key::OUTPUT_TRANSFORM_MATRIX_ON |
Key::INPUT_TF_SRGB | Key::OUTPUT_TF_SRGB);
for (int i = 0; i < 4; i++) {
shaderKey.set(Key::OPACITY_MASK,
(i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT);
shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE);
Program* program = mCache.valueFor(shaderKey);
if (program == nullptr) {
program = generateProgram(shaderKey);
mCache.add(shaderKey, program);
shaderCount++;
}
}
}
nsecs_t timeAfter = systemTime();
float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6;
ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs);
}
ProgramCache::Key ProgramCache::computeKey(const Description& description) {
Key needs;
needs.set(Key::TEXTURE_MASK,
!description.mTextureEnabled
? Key::TEXTURE_OFF
: description.mTexture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES
? Key::TEXTURE_EXT
: description.mTexture.getTextureTarget() == GL_TEXTURE_2D
? Key::TEXTURE_2D
: Key::TEXTURE_OFF)
.set(Key::ALPHA_MASK,
(description.mColor.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE)
.set(Key::BLEND_MASK,
description.mPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL)
.set(Key::OPACITY_MASK,
description.mOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT)
.set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK,
description.hasInputTransformMatrix() ?
Key::INPUT_TRANSFORM_MATRIX_ON : Key::INPUT_TRANSFORM_MATRIX_OFF)
.set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK,
description.hasOutputTransformMatrix() || description.hasColorMatrix() ?
Key::OUTPUT_TRANSFORM_MATRIX_ON : Key::OUTPUT_TRANSFORM_MATRIX_OFF);
needs.set(Key::Y410_BT2020_MASK,
description.mY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF);
if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
switch (description.mInputTransferFunction) {
case Description::TransferFunction::LINEAR:
default:
needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR);
break;
case Description::TransferFunction::SRGB:
needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB);
break;
case Description::TransferFunction::ST2084:
needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084);
break;
case Description::TransferFunction::HLG:
needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG);
break;
}
switch (description.mOutputTransferFunction) {
case Description::TransferFunction::LINEAR:
default:
needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR);
break;
case Description::TransferFunction::SRGB:
needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB);
break;
case Description::TransferFunction::ST2084:
needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084);
break;
case Description::TransferFunction::HLG:
needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG);
break;
}
}
return needs;
}
// Generate EOTF that converts signal values to relative display light,
// both normalized to [0, 1].
void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) {
switch (needs.getInputTF()) {
case Key::INPUT_TF_SRGB:
fs << R"__SHADER__(
float EOTF_sRGB(float srgb) {
return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
}
vec3 EOTF_sRGB(const vec3 srgb) {
return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b));
}
vec3 EOTF(const vec3 srgb) {
return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb));
}
)__SHADER__";
break;
case Key::INPUT_TF_ST2084:
fs << R"__SHADER__(
vec3 EOTF(const highp vec3 color) {
const highp float m1 = (2610.0 / 4096.0) / 4.0;
const highp float m2 = (2523.0 / 4096.0) * 128.0;
const highp float c1 = (3424.0 / 4096.0);
const highp float c2 = (2413.0 / 4096.0) * 32.0;
const highp float c3 = (2392.0 / 4096.0) * 32.0;
highp vec3 tmp = pow(color, 1.0 / vec3(m2));
tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp);
return pow(tmp, 1.0 / vec3(m1));
}
)__SHADER__";
break;
case Key::INPUT_TF_HLG:
fs << R"__SHADER__(
highp float EOTF_channel(const highp float channel) {
const highp float a = 0.17883277;
const highp float b = 0.28466892;
const highp float c = 0.55991073;
return channel <= 0.5 ? channel * channel / 3.0 :
(exp((channel - c) / a) + b) / 12.0;
}
vec3 EOTF(const highp vec3 color) {
return vec3(EOTF_channel(color.r), EOTF_channel(color.g),
EOTF_channel(color.b));
}
)__SHADER__";
break;
default:
fs << R"__SHADER__(
vec3 EOTF(const vec3 linear) {
return linear;
}
)__SHADER__";
break;
}
}
void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) {
// Convert relative light to absolute light.
switch (needs.getInputTF()) {
case Key::INPUT_TF_ST2084:
fs << R"__SHADER__(
highp vec3 ScaleLuminance(highp vec3 color) {
return color * 10000.0;
}
)__SHADER__";
break;
case Key::INPUT_TF_HLG:
fs << R"__SHADER__(
highp vec3 ScaleLuminance(highp vec3 color) {
// The formula is:
// alpha * pow(Y, gamma - 1.0) * color + beta;
// where alpha is 1000.0, gamma is 1.2, beta is 0.0.
return color * 1000.0 * pow(color.y, 0.2);
}
)__SHADER__";
break;
default:
fs << R"__SHADER__(
highp vec3 ScaleLuminance(highp vec3 color) {
return color * displayMaxLuminance;
}
)__SHADER__";
break;
}
// Tone map absolute light to display luminance range.
switch (needs.getInputTF()) {
case Key::INPUT_TF_ST2084:
case Key::INPUT_TF_HLG:
switch (needs.getOutputTF()) {
case Key::OUTPUT_TF_HLG:
// Right now when mixed PQ and HLG contents are presented,
// HLG content will always be converted to PQ. However, for
// completeness, we simply clamp the value to [0.0, 1000.0].
fs << R"__SHADER__(
highp vec3 ToneMap(highp vec3 color) {
return clamp(color, 0.0, 1000.0);
}
)__SHADER__";
break;
case Key::OUTPUT_TF_ST2084:
fs << R"__SHADER__(
highp vec3 ToneMap(highp vec3 color) {
return color;
}
)__SHADER__";
break;
default:
fs << R"__SHADER__(
highp vec3 ToneMap(highp vec3 color) {
const float maxMasteringLumi = 1000.0;
const float maxContentLumi = 1000.0;
const float maxInLumi = min(maxMasteringLumi, maxContentLumi);
float maxOutLumi = displayMaxLuminance;
float nits = color.y;
// clamp to max input luminance
nits = clamp(nits, 0.0, maxInLumi);
// scale [0.0, maxInLumi] to [0.0, maxOutLumi]
if (maxInLumi <= maxOutLumi) {
nits *= maxOutLumi / maxInLumi;
} else {
// three control points
const float x0 = 10.0;
const float y0 = 17.0;
float x1 = maxOutLumi * 0.75;
float y1 = x1;
float x2 = x1 + (maxInLumi - x1) / 2.0;
float y2 = y1 + (maxOutLumi - y1) * 0.75;
// horizontal distances between the last three control points
float h12 = x2 - x1;
float h23 = maxInLumi - x2;
// tangents at the last three control points
float m1 = (y2 - y1) / h12;
float m3 = (maxOutLumi - y2) / h23;
float m2 = (m1 + m3) / 2.0;
if (nits < x0) {
// scale [0.0, x0] to [0.0, y0] linearly
float slope = y0 / x0;
nits *= slope;
} else if (nits < x1) {
// scale [x0, x1] to [y0, y1] linearly
float slope = (y1 - y0) / (x1 - x0);
nits = y0 + (nits - x0) * slope;
} else if (nits < x2) {
// scale [x1, x2] to [y1, y2] using Hermite interp
float t = (nits - x1) / h12;
nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) +
(y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t;
} else {
// scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp
float t = (nits - x2) / h23;
nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) +
(maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t;
}
}
return color * (nits / max(1e-6, color.y));
}
)__SHADER__";
break;
}
break;
default:
// inverse tone map; the output luminance can be up to maxOutLumi.
fs << R"__SHADER__(
highp vec3 ToneMap(highp vec3 color) {
const float maxOutLumi = 3000.0;
const float x0 = 5.0;
const float y0 = 2.5;
float x1 = displayMaxLuminance * 0.7;
float y1 = maxOutLumi * 0.15;
float x2 = displayMaxLuminance * 0.9;
float y2 = maxOutLumi * 0.45;
float x3 = displayMaxLuminance;
float y3 = maxOutLumi;
float c1 = y1 / 3.0;
float c2 = y2 / 2.0;
float c3 = y3 / 1.5;
float nits = color.y;
float scale;
if (nits <= x0) {
// scale [0.0, x0] to [0.0, y0] linearly
const float slope = y0 / x0;
nits *= slope;
} else if (nits <= x1) {
// scale [x0, x1] to [y0, y1] using a curve
float t = (nits - x0) / (x1 - x0);
nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1;
} else if (nits <= x2) {
// scale [x1, x2] to [y1, y2] using a curve
float t = (nits - x1) / (x2 - x1);
nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2;
} else {
// scale [x2, x3] to [y2, y3] using a curve
float t = (nits - x2) / (x3 - x2);
nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3;
}
return color * (nits / max(1e-6, color.y));
}
)__SHADER__";
break;
}
// convert absolute light to relative light.
switch (needs.getOutputTF()) {
case Key::OUTPUT_TF_ST2084:
fs << R"__SHADER__(
highp vec3 NormalizeLuminance(highp vec3 color) {
return color / 10000.0;
}
)__SHADER__";
break;
case Key::OUTPUT_TF_HLG:
fs << R"__SHADER__(
highp vec3 NormalizeLuminance(highp vec3 color) {
return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2);
}
)__SHADER__";
break;
default:
fs << R"__SHADER__(
highp vec3 NormalizeLuminance(highp vec3 color) {
return color / displayMaxLuminance;
}
)__SHADER__";
break;
}
}
// Generate OOTF that modifies the relative scence light to relative display light.
void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) {
if (!needs.needsToneMapping()) {
fs << R"__SHADER__(
highp vec3 OOTF(const highp vec3 color) {
return color;
}
)__SHADER__";
} else {
generateToneMappingProcess(fs, needs);
fs << R"__SHADER__(
highp vec3 OOTF(const highp vec3 color) {
return NormalizeLuminance(ToneMap(ScaleLuminance(color)));
}
)__SHADER__";
}
}
// Generate OETF that converts relative display light to signal values,
// both normalized to [0, 1]
void ProgramCache::generateOETF(Formatter& fs, const Key& needs) {
switch (needs.getOutputTF()) {
case Key::OUTPUT_TF_SRGB:
fs << R"__SHADER__(
float OETF_sRGB(const float linear) {
return linear <= 0.0031308 ?
linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
}
vec3 OETF_sRGB(const vec3 linear) {
return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
}
vec3 OETF(const vec3 linear) {
return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb));
}
)__SHADER__";
break;
case Key::OUTPUT_TF_ST2084:
fs << R"__SHADER__(
vec3 OETF(const vec3 linear) {
const highp float m1 = (2610.0 / 4096.0) / 4.0;
const highp float m2 = (2523.0 / 4096.0) * 128.0;
const highp float c1 = (3424.0 / 4096.0);
const highp float c2 = (2413.0 / 4096.0) * 32.0;
const highp float c3 = (2392.0 / 4096.0) * 32.0;
highp vec3 tmp = pow(linear, vec3(m1));
tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp);
return pow(tmp, vec3(m2));
}
)__SHADER__";
break;
case Key::OUTPUT_TF_HLG:
fs << R"__SHADER__(
highp float OETF_channel(const highp float channel) {
const highp float a = 0.17883277;
const highp float b = 0.28466892;
const highp float c = 0.55991073;
return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) :
a * log(12.0 * channel - b) + c;
}
vec3 OETF(const highp vec3 color) {
return vec3(OETF_channel(color.r), OETF_channel(color.g),
OETF_channel(color.b));
}
)__SHADER__";
break;
default:
fs << R"__SHADER__(
vec3 OETF(const vec3 linear) {
return linear;
}
)__SHADER__";
break;
}
}
String8 ProgramCache::generateVertexShader(const Key& needs) {
Formatter vs;
if (needs.isTexturing()) {
vs << "attribute vec4 texCoords;"
<< "varying vec2 outTexCoords;";
}
vs << "attribute vec4 position;"
<< "uniform mat4 projection;"
<< "uniform mat4 texture;"
<< "void main(void) {" << indent << "gl_Position = projection * position;";
if (needs.isTexturing()) {
vs << "outTexCoords = (texture * texCoords).st;";
}
vs << dedent << "}";
return vs.getString();
}
String8 ProgramCache::generateFragmentShader(const Key& needs) {
Formatter fs;
if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
fs << "#extension GL_OES_EGL_image_external : require";
}
// default precision is required-ish in fragment shaders
fs << "precision mediump float;";
if (needs.getTextureTarget() == Key::TEXTURE_EXT) {
fs << "uniform samplerExternalOES sampler;"
<< "varying vec2 outTexCoords;";
} else if (needs.getTextureTarget() == Key::TEXTURE_2D) {
fs << "uniform sampler2D sampler;"
<< "varying vec2 outTexCoords;";
}
if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) {
fs << "uniform vec4 color;";
}
if (needs.isY410BT2020()) {
fs << R"__SHADER__(
vec3 convertY410BT2020(const vec3 color) {
const vec3 offset = vec3(0.0625, 0.5, 0.5);
const mat3 transform = mat3(
vec3(1.1678, 1.1678, 1.1678),
vec3( 0.0, -0.1878, 2.1481),
vec3(1.6836, -0.6523, 0.0));
// Y is in G, U is in R, and V is in B
return clamp(transform * (color.grb - offset), 0.0, 1.0);
}
)__SHADER__";
}
if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
// Currently, display maximum luminance is needed when doing tone mapping.
if (needs.needsToneMapping()) {
fs << "uniform float displayMaxLuminance;";
}
if (needs.hasInputTransformMatrix()) {
fs << "uniform mat4 inputTransformMatrix;";
fs << R"__SHADER__(
highp vec3 InputTransform(const highp vec3 color) {
return vec3(inputTransformMatrix * vec4(color, 1.0));
}
)__SHADER__";
} else {
fs << R"__SHADER__(
highp vec3 InputTransform(const highp vec3 color) {
return color;
}
)__SHADER__";
}
// the transformation from a wider colorspace to a narrower one can
// result in >1.0 or <0.0 pixel values
if (needs.hasOutputTransformMatrix()) {
fs << "uniform mat4 outputTransformMatrix;";
fs << R"__SHADER__(
highp vec3 OutputTransform(const highp vec3 color) {
return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0);
}
)__SHADER__";
} else {
fs << R"__SHADER__(
highp vec3 OutputTransform(const highp vec3 color) {
return clamp(color, 0.0, 1.0);
}
)__SHADER__";
}
generateEOTF(fs, needs);
generateOOTF(fs, needs);
generateOETF(fs, needs);
}
fs << "void main(void) {" << indent;
if (needs.isTexturing()) {
fs << "gl_FragColor = texture2D(sampler, outTexCoords);";
if (needs.isY410BT2020()) {
fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);";
}
} else {
fs << "gl_FragColor.rgb = color.rgb;";
fs << "gl_FragColor.a = 1.0;";
}
if (needs.isOpaque()) {
fs << "gl_FragColor.a = 1.0;";
}
if (needs.hasAlpha()) {
// modulate the current alpha value with alpha set
if (needs.isPremultiplied()) {
// ... and the color too if we're premultiplied
fs << "gl_FragColor *= color.a;";
} else {
fs << "gl_FragColor.a *= color.a;";
}
}
if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF())) {
if (!needs.isOpaque() && needs.isPremultiplied()) {
// un-premultiply if needed before linearization
// avoid divide by 0 by adding 0.5/256 to the alpha channel
fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);";
}
fs << "gl_FragColor.rgb = OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))));";
if (!needs.isOpaque() && needs.isPremultiplied()) {
// and re-premultiply if needed after gamma correction
fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);";
}
}
fs << dedent << "}";
return fs.getString();
}
Program* ProgramCache::generateProgram(const Key& needs) {
ATRACE_CALL();
// vertex shader
String8 vs = generateVertexShader(needs);
// fragment shader
String8 fs = generateFragmentShader(needs);
Program* program = new Program(needs, vs.string(), fs.string());
return program;
}
void ProgramCache::useProgram(const Description& description) {
// generate the key for the shader based on the description
Key needs(computeKey(description));
// look-up the program in the cache
Program* program = mCache.valueFor(needs);
if (program == nullptr) {
// we didn't find our program, so generate one...
nsecs_t time = -systemTime();
program = generateProgram(needs);
mCache.add(needs, program);
time += systemTime();
ALOGV(">>> generated new program: needs=%08X, time=%u ms (%zu programs)", needs.mKey,
uint32_t(ns2ms(time)), mCache.size());
}
// here we have a suitable program for this description
if (program->isValid()) {
program->use();
program->setUniforms(description);
}
}
} /* namespace android */