blob: 9a208593ab42cf3303c7bfc6b23720cd63fd7e55 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "BufferQueue_test"
//#define LOG_NDEBUG 0
#include "DummyConsumer.h"
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/IProducerListener.h>
#include <ui/GraphicBuffer.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/ProcessState.h>
#include <utils/String8.h>
#include <utils/threads.h>
#include <system/window.h>
#include <gtest/gtest.h>
#include <thread>
using namespace std::chrono_literals;
namespace android {
class BufferQueueTest : public ::testing::Test {
public:
protected:
BufferQueueTest() {
const ::testing::TestInfo* const testInfo =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGV("Begin test: %s.%s", testInfo->test_case_name(),
testInfo->name());
}
~BufferQueueTest() {
const ::testing::TestInfo* const testInfo =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGV("End test: %s.%s", testInfo->test_case_name(),
testInfo->name());
}
void GetMinUndequeuedBufferCount(int* bufferCount) {
ASSERT_TRUE(bufferCount != NULL);
ASSERT_EQ(OK, mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
bufferCount));
ASSERT_GE(*bufferCount, 0);
}
void createBufferQueue() {
BufferQueue::createBufferQueue(&mProducer, &mConsumer);
}
void testBufferItem(const IGraphicBufferProducer::QueueBufferInput& input,
const BufferItem& item) {
int64_t timestamp;
bool isAutoTimestamp;
android_dataspace dataSpace;
Rect crop;
int scalingMode;
uint32_t transform;
sp<Fence> fence;
input.deflate(&timestamp, &isAutoTimestamp, &dataSpace, &crop,
&scalingMode, &transform, &fence, NULL);
ASSERT_EQ(timestamp, item.mTimestamp);
ASSERT_EQ(isAutoTimestamp, item.mIsAutoTimestamp);
ASSERT_EQ(dataSpace, item.mDataSpace);
ASSERT_EQ(crop, item.mCrop);
ASSERT_EQ(static_cast<uint32_t>(scalingMode), item.mScalingMode);
ASSERT_EQ(transform, item.mTransform);
ASSERT_EQ(fence, item.mFence);
}
sp<IGraphicBufferProducer> mProducer;
sp<IGraphicBufferConsumer> mConsumer;
};
static const uint32_t TEST_DATA = 0x12345678u;
// XXX: Tests that fork a process to hold the BufferQueue must run before tests
// that use a local BufferQueue, or else Binder will get unhappy
//
// In one instance this was a crash in the createBufferQueue where the
// binder call to create a buffer allocator apparently got garbage back.
// See b/36592665.
TEST_F(BufferQueueTest, DISABLED_BufferQueueInAnotherProcess) {
const String16 PRODUCER_NAME = String16("BQTestProducer");
const String16 CONSUMER_NAME = String16("BQTestConsumer");
pid_t forkPid = fork();
ASSERT_NE(forkPid, -1);
if (forkPid == 0) {
// Child process
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer);
sp<IServiceManager> serviceManager = defaultServiceManager();
serviceManager->addService(PRODUCER_NAME, IInterface::asBinder(producer));
serviceManager->addService(CONSUMER_NAME, IInterface::asBinder(consumer));
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
LOG_ALWAYS_FATAL("Shouldn't be here");
}
sp<IServiceManager> serviceManager = defaultServiceManager();
sp<IBinder> binderProducer =
serviceManager->getService(PRODUCER_NAME);
mProducer = interface_cast<IGraphicBufferProducer>(binderProducer);
EXPECT_TRUE(mProducer != NULL);
sp<IBinder> binderConsumer =
serviceManager->getService(CONSUMER_NAME);
mConsumer = interface_cast<IGraphicBufferConsumer>(binderConsumer);
EXPECT_TRUE(mConsumer != NULL);
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK,
mProducer->connect(NULL, NATIVE_WINDOW_API_CPU, false, &output));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
uint32_t* dataIn;
ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN,
reinterpret_cast<void**>(&dataIn)));
*dataIn = TEST_DATA;
ASSERT_EQ(OK, buffer->unlock());
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
uint32_t* dataOut;
ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN,
reinterpret_cast<void**>(&dataOut)));
ASSERT_EQ(*dataOut, TEST_DATA);
ASSERT_EQ(OK, item.mGraphicBuffer->unlock());
}
TEST_F(BufferQueueTest, AcquireBuffer_ExceedsMaxAcquireCount_Fails) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
mConsumer->consumerConnect(dc, false);
IGraphicBufferProducer::QueueBufferOutput qbo;
mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false,
&qbo);
mProducer->setMaxDequeuedBufferCount(3);
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
IGraphicBufferProducer::QueueBufferInput qbi(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item;
for (int i = 0; i < 2; i++) {
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
}
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo));
// Acquire the third buffer, which should fail.
ASSERT_EQ(INVALID_OPERATION, mConsumer->acquireBuffer(&item, 0));
}
TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithIllegalValues_ReturnsError) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
mConsumer->consumerConnect(dc, false);
EXPECT_EQ(OK, mConsumer->setMaxBufferCount(10));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(10));
IGraphicBufferProducer::QueueBufferOutput qbo;
mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false,
&qbo);
mProducer->setMaxDequeuedBufferCount(3);
int minBufferCount;
ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(
minBufferCount - 1));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(0));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(-3));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(
BufferQueue::MAX_MAX_ACQUIRED_BUFFERS+1));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(100));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
IGraphicBufferProducer::QueueBufferInput qbi(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item;
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3));
for (int i = 0; i < 3; i++) {
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
}
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxAcquiredBufferCount(2));
}
TEST_F(BufferQueueTest, SetMaxAcquiredBufferCountWithLegalValues_Succeeds) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
mConsumer->consumerConnect(dc, false);
IGraphicBufferProducer::QueueBufferOutput qbo;
mProducer->connect(new DummyProducerListener, NATIVE_WINDOW_API_CPU, false,
&qbo);
mProducer->setMaxDequeuedBufferCount(2);
int minBufferCount;
ASSERT_NO_FATAL_FAILURE(GetMinUndequeuedBufferCount(&minBufferCount));
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1));
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(2));
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(minBufferCount));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buf;
IGraphicBufferProducer::QueueBufferInput qbi(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(3));
for (int i = 0; i < 2; i++) {
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 1, 1, 0, GRALLOC_USAGE_SW_READ_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buf));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, qbi, &qbo));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
}
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(
BufferQueue::MAX_MAX_ACQUIRED_BUFFERS));
}
TEST_F(BufferQueueTest, SetMaxBufferCountWithLegalValues_Succeeds) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
mConsumer->consumerConnect(dc, false);
// Test shared buffer mode
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1));
}
TEST_F(BufferQueueTest, SetMaxBufferCountWithIllegalValues_ReturnsError) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
mConsumer->consumerConnect(dc, false);
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(0));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(
BufferQueue::NUM_BUFFER_SLOTS + 1));
EXPECT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(5));
EXPECT_EQ(BAD_VALUE, mConsumer->setMaxBufferCount(3));
}
TEST_F(BufferQueueTest, DetachAndReattachOnProducerSide) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(-1)); // Index too low
ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(
BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high
ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(0)); // Not dequeued
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not requested
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
ASSERT_EQ(OK, mProducer->detachBuffer(slot));
ASSERT_EQ(BAD_VALUE, mProducer->detachBuffer(slot)); // Not dequeued
sp<GraphicBuffer> safeToClobberBuffer;
// Can no longer request buffer from this slot
ASSERT_EQ(BAD_VALUE, mProducer->requestBuffer(slot, &safeToClobberBuffer));
uint32_t* dataIn;
ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN,
reinterpret_cast<void**>(&dataIn)));
*dataIn = TEST_DATA;
ASSERT_EQ(OK, buffer->unlock());
int newSlot;
ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(NULL, safeToClobberBuffer));
ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&newSlot, NULL));
ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, buffer));
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output));
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0)));
uint32_t* dataOut;
ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN,
reinterpret_cast<void**>(&dataOut)));
ASSERT_EQ(*dataOut, TEST_DATA);
ASSERT_EQ(OK, item.mGraphicBuffer->unlock());
}
TEST_F(BufferQueueTest, DetachAndReattachOnConsumerSide) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(-1)); // Index too low
ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(
BufferQueueDefs::NUM_BUFFER_SLOTS)); // Index too high
ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(0)); // Not acquired
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0)));
ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot));
ASSERT_EQ(BAD_VALUE, mConsumer->detachBuffer(item.mSlot)); // Not acquired
uint32_t* dataIn;
ASSERT_EQ(OK, item.mGraphicBuffer->lock(
GraphicBuffer::USAGE_SW_WRITE_OFTEN,
reinterpret_cast<void**>(&dataIn)));
*dataIn = TEST_DATA;
ASSERT_EQ(OK, item.mGraphicBuffer->unlock());
int newSlot;
sp<GraphicBuffer> safeToClobberBuffer;
ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(NULL, safeToClobberBuffer));
ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&newSlot, NULL));
ASSERT_EQ(OK, mConsumer->attachBuffer(&newSlot, item.mGraphicBuffer));
ASSERT_EQ(OK, mConsumer->releaseBuffer(newSlot, 0, EGL_NO_DISPLAY,
EGL_NO_SYNC_KHR, Fence::NO_FENCE));
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
uint32_t* dataOut;
ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN,
reinterpret_cast<void**>(&dataOut)));
ASSERT_EQ(*dataOut, TEST_DATA);
ASSERT_EQ(OK, buffer->unlock());
}
TEST_F(BufferQueueTest, MoveFromConsumerToProducer) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
uint32_t* dataIn;
ASSERT_EQ(OK, buffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN,
reinterpret_cast<void**>(&dataIn)));
*dataIn = TEST_DATA;
ASSERT_EQ(OK, buffer->unlock());
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0)));
ASSERT_EQ(OK, mConsumer->detachBuffer(item.mSlot));
int newSlot;
ASSERT_EQ(OK, mProducer->attachBuffer(&newSlot, item.mGraphicBuffer));
ASSERT_EQ(OK, mProducer->queueBuffer(newSlot, input, &output));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, static_cast<nsecs_t>(0)));
uint32_t* dataOut;
ASSERT_EQ(OK, item.mGraphicBuffer->lock(GraphicBuffer::USAGE_SW_READ_OFTEN,
reinterpret_cast<void**>(&dataOut)));
ASSERT_EQ(*dataOut, TEST_DATA);
ASSERT_EQ(OK, item.mGraphicBuffer->unlock());
}
TEST_F(BufferQueueTest, TestDisallowingAllocation) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
static const uint32_t WIDTH = 320;
static const uint32_t HEIGHT = 240;
ASSERT_EQ(OK, mConsumer->setDefaultBufferSize(WIDTH, HEIGHT));
int slot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
// This should return an error since it would require an allocation
ASSERT_EQ(OK, mProducer->allowAllocation(false));
ASSERT_EQ(WOULD_BLOCK,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
// This should succeed, now that we've lifted the prohibition
ASSERT_EQ(OK, mProducer->allowAllocation(true));
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, GRALLOC_USAGE_SW_WRITE_OFTEN,
nullptr, nullptr));
// Release the previous buffer back to the BufferQueue
mProducer->cancelBuffer(slot, fence);
// This should fail since we're requesting a different size
ASSERT_EQ(OK, mProducer->allowAllocation(false));
ASSERT_EQ(WOULD_BLOCK,
mProducer->dequeueBuffer(&slot, &fence, WIDTH * 2, HEIGHT * 2, 0,
GRALLOC_USAGE_SW_WRITE_OFTEN, nullptr, nullptr));
}
TEST_F(BufferQueueTest, TestGenerationNumbers) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
ASSERT_EQ(OK, mProducer->setGenerationNumber(1));
// Get one buffer to play with
int slot;
sp<Fence> fence;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
sp<GraphicBuffer> buffer;
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
// Ensure that the generation number we set propagates to allocated buffers
ASSERT_EQ(1U, buffer->getGenerationNumber());
ASSERT_EQ(OK, mProducer->detachBuffer(slot));
ASSERT_EQ(OK, mProducer->setGenerationNumber(2));
// These should fail, since we've changed the generation number on the queue
int outSlot;
ASSERT_EQ(BAD_VALUE, mProducer->attachBuffer(&outSlot, buffer));
ASSERT_EQ(BAD_VALUE, mConsumer->attachBuffer(&outSlot, buffer));
buffer->setGenerationNumber(2);
// This should succeed now that we've changed the buffer's generation number
ASSERT_EQ(OK, mProducer->attachBuffer(&outSlot, buffer));
ASSERT_EQ(OK, mProducer->detachBuffer(outSlot));
// This should also succeed with the new generation number
ASSERT_EQ(OK, mConsumer->attachBuffer(&outSlot, buffer));
}
TEST_F(BufferQueueTest, TestSharedBufferModeWithoutAutoRefresh) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
ASSERT_EQ(OK, mProducer->setSharedBufferMode(true));
// Get a buffer
int sharedSlot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer));
// Queue the buffer
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
// Repeatedly queue and dequeue a buffer from the producer side, it should
// always return the same one. And we won't run out of buffers because it's
// always the same one and because async mode gets enabled.
int slot;
for (int i = 0; i < 5; i++) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(sharedSlot, slot);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
}
// acquire the buffer
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(sharedSlot, item.mSlot);
testBufferItem(input, item);
ASSERT_EQ(true, item.mQueuedBuffer);
ASSERT_EQ(false, item.mAutoRefresh);
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// attempt to acquire a second time should return no buffer available
ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE,
mConsumer->acquireBuffer(&item, 0));
}
TEST_F(BufferQueueTest, TestSharedBufferModeWithAutoRefresh) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
ASSERT_EQ(OK, mProducer->setSharedBufferMode(true));
ASSERT_EQ(OK, mProducer->setAutoRefresh(true));
// Get a buffer
int sharedSlot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer));
// Queue the buffer
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
// Repeatedly acquire and release a buffer from the consumer side, it should
// always return the same one.
BufferItem item;
for (int i = 0; i < 5; i++) {
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(sharedSlot, item.mSlot);
testBufferItem(input, item);
ASSERT_EQ(i == 0, item.mQueuedBuffer);
ASSERT_EQ(true, item.mAutoRefresh);
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
}
// Repeatedly queue and dequeue a buffer from the producer side, it should
// always return the same one.
int slot;
for (int i = 0; i < 5; i++) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(sharedSlot, slot);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
}
// Repeatedly acquire and release a buffer from the consumer side, it should
// always return the same one. First grabbing them from the queue and then
// when the queue is empty, returning the shared buffer.
for (int i = 0; i < 10; i++) {
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(sharedSlot, item.mSlot);
ASSERT_EQ(0, item.mTimestamp);
ASSERT_EQ(false, item.mIsAutoTimestamp);
ASSERT_EQ(HAL_DATASPACE_UNKNOWN, item.mDataSpace);
ASSERT_EQ(Rect(0, 0, 1, 1), item.mCrop);
ASSERT_EQ(NATIVE_WINDOW_SCALING_MODE_FREEZE, item.mScalingMode);
ASSERT_EQ(0u, item.mTransform);
ASSERT_EQ(Fence::NO_FENCE, item.mFence);
ASSERT_EQ(i == 0, item.mQueuedBuffer);
ASSERT_EQ(true, item.mAutoRefresh);
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
}
}
TEST_F(BufferQueueTest, TestSharedBufferModeUsingAlreadyDequeuedBuffer) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
// Dequeue a buffer
int sharedSlot;
sp<Fence> fence;
sp<GraphicBuffer> buffer;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&sharedSlot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(sharedSlot, &buffer));
// Enable shared buffer mode
ASSERT_EQ(OK, mProducer->setSharedBufferMode(true));
// Queue the buffer
IGraphicBufferProducer::QueueBufferInput input(0, false,
HAL_DATASPACE_UNKNOWN, Rect(0, 0, 1, 1),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
// Repeatedly queue and dequeue a buffer from the producer side, it should
// always return the same one. And we won't run out of buffers because it's
// always the same one and because async mode gets enabled.
int slot;
for (int i = 0; i < 5; i++) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(sharedSlot, slot);
ASSERT_EQ(OK, mProducer->queueBuffer(sharedSlot, input, &output));
}
// acquire the buffer
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(sharedSlot, item.mSlot);
testBufferItem(input, item);
ASSERT_EQ(true, item.mQueuedBuffer);
ASSERT_EQ(false, item.mAutoRefresh);
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// attempt to acquire a second time should return no buffer available
ASSERT_EQ(IGraphicBufferConsumer::NO_BUFFER_AVAILABLE,
mConsumer->acquireBuffer(&item, 0));
}
TEST_F(BufferQueueTest, TestTimeouts) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
// Fill up the queue. Since the controlledByApp flags are set to true, this
// queue should be in non-blocking mode, and we should be recycling the same
// two buffers
for (int i = 0; i < 5; ++i) {
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
auto result = mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr);
if (i < 2) {
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
result);
} else {
ASSERT_EQ(OK, result);
}
sp<GraphicBuffer> buffer;
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
IGraphicBufferProducer::QueueBufferOutput output{};
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
}
const auto TIMEOUT = ms2ns(250);
mProducer->setDequeueTimeout(TIMEOUT);
// Setting a timeout will change the BufferQueue into blocking mode (with
// one droppable buffer in the queue and one free from the previous
// dequeue/queues), so dequeue and queue two more buffers: one to replace
// the current droppable buffer, and a second to max out the buffer count
sp<GraphicBuffer> buffer; // Save a buffer to attach later
for (int i = 0; i < 2; ++i) {
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
}
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
auto startTime = systemTime();
ASSERT_EQ(TIMED_OUT, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_GE(systemTime() - startTime, TIMEOUT);
// We're technically attaching the same buffer multiple times (since we
// queued it previously), but that doesn't matter for this test
startTime = systemTime();
ASSERT_EQ(TIMED_OUT, mProducer->attachBuffer(&slot, buffer));
ASSERT_GE(systemTime() - startTime, TIMEOUT);
}
TEST_F(BufferQueueTest, CanAttachWhileDisallowingAllocation) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> sourceFence;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &sourceFence, 0, 0, 0, 0, nullptr, nullptr));
sp<GraphicBuffer> buffer;
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
ASSERT_EQ(OK, mProducer->detachBuffer(slot));
ASSERT_EQ(OK, mProducer->allowAllocation(false));
slot = BufferQueue::INVALID_BUFFER_SLOT;
ASSERT_EQ(OK, mProducer->attachBuffer(&slot, buffer));
}
TEST_F(BufferQueueTest, CanRetrieveLastQueuedBuffer) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
// Dequeue and queue the first buffer, storing the handle
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
sp<GraphicBuffer> firstBuffer;
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &firstBuffer));
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Dequeue a second buffer
slot = BufferQueue::INVALID_BUFFER_SLOT;
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION,
mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
sp<GraphicBuffer> secondBuffer;
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &secondBuffer));
// Ensure it's a new buffer
ASSERT_NE(firstBuffer->getNativeBuffer()->handle,
secondBuffer->getNativeBuffer()->handle);
// Queue the second buffer
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Acquire and release both buffers
for (size_t i = 0; i < 2; ++i) {
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
}
// Make sure we got the second buffer back
sp<GraphicBuffer> returnedBuffer;
sp<Fence> returnedFence;
float transform[16];
ASSERT_EQ(OK,
mProducer->getLastQueuedBuffer(&returnedBuffer, &returnedFence,
transform));
ASSERT_EQ(secondBuffer->getNativeBuffer()->handle,
returnedBuffer->getNativeBuffer()->handle);
}
TEST_F(BufferQueueTest, TestOccupancyHistory) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
sp<GraphicBuffer> buffer = nullptr;
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item{};
// Preallocate, dequeue, request, and cancel 3 buffers so we don't get
// BUFFER_NEEDS_REALLOCATION below
int slots[3] = {};
mProducer->setMaxDequeuedBufferCount(3);
for (size_t i = 0; i < 3; ++i) {
status_t result =
mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result);
ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer));
}
for (size_t i = 0; i < 3; ++i) {
ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE));
}
// Create 3 segments
// The first segment is a two-buffer segment, so we only put one buffer into
// the queue at a time
for (size_t i = 0; i < 5; ++i) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
std::this_thread::sleep_for(16ms);
}
// Sleep between segments
std::this_thread::sleep_for(500ms);
// The second segment is a double-buffer segment. It starts the same as the
// two-buffer segment, but then at the end, we put two buffers in the queue
// at the same time before draining it.
for (size_t i = 0; i < 5; ++i) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
std::this_thread::sleep_for(16ms);
}
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
std::this_thread::sleep_for(16ms);
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// Sleep between segments
std::this_thread::sleep_for(500ms);
// The third segment is a triple-buffer segment, so the queue is switching
// between one buffer and two buffers deep.
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
for (size_t i = 0; i < 5; ++i) {
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
std::this_thread::sleep_for(16ms);
}
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// Now we read the segments
std::vector<OccupancyTracker::Segment> history;
ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history));
// Since we didn't force a flush, we should only get the first two segments
// (since the third segment hasn't been closed out by the appearance of a
// new segment yet)
ASSERT_EQ(2u, history.size());
// The first segment (which will be history[1], since the newest segment
// should be at the front of the vector) should be a two-buffer segment,
// which implies that the occupancy average should be between 0 and 1, and
// usedThirdBuffer should be false
const auto& firstSegment = history[1];
ASSERT_EQ(5u, firstSegment.numFrames);
ASSERT_LT(0, firstSegment.occupancyAverage);
ASSERT_GT(1, firstSegment.occupancyAverage);
ASSERT_EQ(false, firstSegment.usedThirdBuffer);
// The second segment should be a double-buffered segment, which implies that
// the occupancy average should be between 0 and 1, but usedThirdBuffer
// should be true
const auto& secondSegment = history[0];
ASSERT_EQ(7u, secondSegment.numFrames);
ASSERT_LT(0, secondSegment.occupancyAverage);
ASSERT_GT(1, secondSegment.occupancyAverage);
ASSERT_EQ(true, secondSegment.usedThirdBuffer);
// If we read the segments again without flushing, we shouldn't get any new
// segments
ASSERT_EQ(OK, mConsumer->getOccupancyHistory(false, &history));
ASSERT_EQ(0u, history.size());
// Read the segments again, this time forcing a flush so we get the third
// segment
ASSERT_EQ(OK, mConsumer->getOccupancyHistory(true, &history));
ASSERT_EQ(1u, history.size());
// This segment should be a triple-buffered segment, which implies that the
// occupancy average should be between 1 and 2, and usedThirdBuffer should
// be true
const auto& thirdSegment = history[0];
ASSERT_EQ(6u, thirdSegment.numFrames);
ASSERT_LT(1, thirdSegment.occupancyAverage);
ASSERT_GT(2, thirdSegment.occupancyAverage);
ASSERT_EQ(true, thirdSegment.usedThirdBuffer);
}
TEST_F(BufferQueueTest, TestDiscardFreeBuffers) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, false));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, false, &output));
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
sp<GraphicBuffer> buffer = nullptr;
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item{};
// Preallocate, dequeue, request, and cancel 4 buffers so we don't get
// BUFFER_NEEDS_REALLOCATION below
int slots[4] = {};
mProducer->setMaxDequeuedBufferCount(4);
for (size_t i = 0; i < 4; ++i) {
status_t result =
mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result);
ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer));
}
for (size_t i = 0; i < 4; ++i) {
ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE));
}
// Get buffers in all states: dequeued, filled, acquired, free
// Fill 3 buffers
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Dequeue 1 buffer
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
// Acquire and free 1 buffer
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// Acquire 1 buffer, leaving 1 filled buffer in queue
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
// Now discard the free buffers
ASSERT_EQ(OK, mConsumer->discardFreeBuffers());
// Check no free buffers in dump
String8 dumpString;
mConsumer->dumpState(String8{}, &dumpString);
// Parse the dump to ensure that all buffer slots that are FREE also
// have a null GraphicBuffer
// Fragile - assumes the following format for the dump for a buffer entry:
// ":%p\][^:]*state=FREE" where %p is the buffer pointer in hex.
ssize_t idx = dumpString.find("state=FREE");
while (idx != -1) {
ssize_t bufferPtrIdx = idx - 1;
while (bufferPtrIdx > 0) {
if (dumpString[bufferPtrIdx] == ':') {
bufferPtrIdx++;
break;
}
bufferPtrIdx--;
}
ASSERT_GT(bufferPtrIdx, 0) << "Can't parse queue dump to validate";
ssize_t nullPtrIdx = dumpString.find("0x0]", bufferPtrIdx);
ASSERT_EQ(bufferPtrIdx, nullPtrIdx) << "Free buffer not discarded";
idx = dumpString.find("FREE", idx + 1);
}
}
TEST_F(BufferQueueTest, TestBufferReplacedInQueueBuffer) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
ASSERT_EQ(OK, mProducer->connect(new DummyProducerListener,
NATIVE_WINDOW_API_CPU, true, &output));
ASSERT_EQ(OK, mConsumer->setMaxAcquiredBufferCount(1));
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
sp<GraphicBuffer> buffer = nullptr;
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
BufferItem item{};
// Preallocate, dequeue, request, and cancel 2 buffers so we don't get
// BUFFER_NEEDS_REALLOCATION below
int slots[2] = {};
ASSERT_EQ(OK, mProducer->setMaxDequeuedBufferCount(2));
for (size_t i = 0; i < 2; ++i) {
status_t result =
mProducer->dequeueBuffer(&slots[i], &fence, 0, 0, 0, 0, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result);
ASSERT_EQ(OK, mProducer->requestBuffer(slots[i], &buffer));
}
for (size_t i = 0; i < 2; ++i) {
ASSERT_EQ(OK, mProducer->cancelBuffer(slots[i], Fence::NO_FENCE));
}
// Fill 2 buffers without consumer consuming them. Verify that all
// queued buffer returns proper bufferReplaced flag
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(false, output.bufferReplaced);
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
ASSERT_EQ(true, output.bufferReplaced);
}
TEST_F(BufferQueueTest, TestStaleBufferHandleSentAfterDisconnect) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
sp<IProducerListener> dummyListener(new DummyProducerListener);
ASSERT_EQ(OK, mProducer->connect(dummyListener, NATIVE_WINDOW_API_CPU,
true, &output));
int slot = BufferQueue::INVALID_BUFFER_SLOT;
sp<Fence> fence = Fence::NO_FENCE;
sp<GraphicBuffer> buffer = nullptr;
IGraphicBufferProducer::QueueBufferInput input(0ull, true,
HAL_DATASPACE_UNKNOWN, Rect::INVALID_RECT,
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0, Fence::NO_FENCE);
// Dequeue, request, and queue one buffer
status_t result = mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr);
ASSERT_EQ(IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION, result);
ASSERT_EQ(OK, mProducer->requestBuffer(slot, &buffer));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Acquire and release the buffer. Upon acquiring, the buffer handle should
// be non-null since this is the first time we've acquired this slot.
BufferItem item;
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(slot, item.mSlot);
ASSERT_NE(nullptr, item.mGraphicBuffer.get());
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// Dequeue and queue the buffer again
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Acquire and release the buffer again. Upon acquiring, the buffer handle
// should be null since this is not the first time we've acquired this slot.
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(slot, item.mSlot);
ASSERT_EQ(nullptr, item.mGraphicBuffer.get());
ASSERT_EQ(OK, mConsumer->releaseBuffer(item.mSlot, item.mFrameNumber,
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR, Fence::NO_FENCE));
// Dequeue and queue the buffer again
ASSERT_EQ(OK, mProducer->dequeueBuffer(&slot, &fence, 0, 0, 0, 0, nullptr, nullptr));
ASSERT_EQ(OK, mProducer->queueBuffer(slot, input, &output));
// Disconnect the producer end. This should clear all of the slots and mark
// the buffer in the queue as stale.
ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU));
// Acquire the buffer again. Upon acquiring, the buffer handle should not be
// null since the queued buffer should have been marked as stale, which
// should trigger the BufferQueue to resend the buffer handle.
ASSERT_EQ(OK, mConsumer->acquireBuffer(&item, 0));
ASSERT_EQ(slot, item.mSlot);
ASSERT_NE(nullptr, item.mGraphicBuffer.get());
}
TEST_F(BufferQueueTest, TestProducerConnectDisconnect) {
createBufferQueue();
sp<DummyConsumer> dc(new DummyConsumer);
ASSERT_EQ(OK, mConsumer->consumerConnect(dc, true));
IGraphicBufferProducer::QueueBufferOutput output;
sp<IProducerListener> dummyListener(new DummyProducerListener);
ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU));
ASSERT_EQ(OK, mProducer->connect(
dummyListener, NATIVE_WINDOW_API_CPU, true, &output));
ASSERT_EQ(BAD_VALUE, mProducer->connect(
dummyListener, NATIVE_WINDOW_API_MEDIA, true, &output));
ASSERT_EQ(BAD_VALUE, mProducer->disconnect(NATIVE_WINDOW_API_MEDIA));
ASSERT_EQ(OK, mProducer->disconnect(NATIVE_WINDOW_API_CPU));
ASSERT_EQ(NO_INIT, mProducer->disconnect(NATIVE_WINDOW_API_CPU));
}
} // namespace android