blob: 186a2d6740f37fecf38b1c4d82fe52dbd100c51b [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#undef LOG_TAG
#define LOG_TAG "VSyncReactor"
//#define LOG_NDEBUG 0
#include <assert.h>
#include <cutils/properties.h>
#include <ftl/concat.h>
#include <gui/TraceUtils.h>
#include <log/log.h>
#include <utils/Trace.h>
#include "../TracedOrdinal.h"
#include "VSyncDispatch.h"
#include "VSyncReactor.h"
#include "VSyncTracker.h"
namespace android::scheduler {
using base::StringAppendF;
VsyncController::~VsyncController() = default;
nsecs_t SystemClock::now() const {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
VSyncReactor::VSyncReactor(PhysicalDisplayId id, std::unique_ptr<Clock> clock,
VSyncTracker& tracker, size_t pendingFenceLimit,
bool supportKernelIdleTimer)
: mId(id),
mClock(std::move(clock)),
mTracker(tracker),
mPendingLimit(pendingFenceLimit),
mSupportKernelIdleTimer(supportKernelIdleTimer) {}
VSyncReactor::~VSyncReactor() = default;
bool VSyncReactor::addPresentFence(std::shared_ptr<FenceTime> fence) {
ATRACE_CALL();
if (!fence) {
return false;
}
nsecs_t const signalTime = fence->getCachedSignalTime();
if (signalTime == Fence::SIGNAL_TIME_INVALID) {
return true;
}
std::lock_guard lock(mMutex);
if (mExternalIgnoreFences || mInternalIgnoreFences) {
ATRACE_FORMAT_INSTANT("mExternalIgnoreFences=%d mInternalIgnoreFences=%d",
mExternalIgnoreFences, mInternalIgnoreFences);
return true;
}
bool timestampAccepted = true;
for (auto it = mUnfiredFences.begin(); it != mUnfiredFences.end();) {
auto const time = (*it)->getCachedSignalTime();
if (time == Fence::SIGNAL_TIME_PENDING) {
it++;
} else if (time == Fence::SIGNAL_TIME_INVALID) {
it = mUnfiredFences.erase(it);
} else {
timestampAccepted &= mTracker.addVsyncTimestamp(time);
it = mUnfiredFences.erase(it);
}
}
if (signalTime == Fence::SIGNAL_TIME_PENDING) {
if (mPendingLimit == mUnfiredFences.size()) {
mUnfiredFences.erase(mUnfiredFences.begin());
}
mUnfiredFences.push_back(std::move(fence));
} else {
timestampAccepted &= mTracker.addVsyncTimestamp(signalTime);
}
if (!timestampAccepted) {
mMoreSamplesNeeded = true;
setIgnorePresentFencesInternal(true);
mPeriodConfirmationInProgress = true;
}
return mMoreSamplesNeeded;
}
void VSyncReactor::setIgnorePresentFences(bool ignore) {
std::lock_guard lock(mMutex);
mExternalIgnoreFences = ignore;
updateIgnorePresentFencesInternal();
}
void VSyncReactor::setIgnorePresentFencesInternal(bool ignore) {
mInternalIgnoreFences = ignore;
updateIgnorePresentFencesInternal();
}
void VSyncReactor::updateIgnorePresentFencesInternal() {
if (mExternalIgnoreFences || mInternalIgnoreFences) {
mUnfiredFences.clear();
}
}
void VSyncReactor::startPeriodTransitionInternal(ftl::NonNull<DisplayModePtr> modePtr) {
ATRACE_FORMAT("%s %" PRIu64, __func__, mId.value);
mPeriodConfirmationInProgress = true;
mModePtrTransitioningTo = modePtr.get();
mMoreSamplesNeeded = true;
setIgnorePresentFencesInternal(true);
}
void VSyncReactor::endPeriodTransition() {
ATRACE_FORMAT("%s %" PRIu64, __func__, mId.value);
mModePtrTransitioningTo.reset();
mPeriodConfirmationInProgress = false;
mLastHwVsync.reset();
}
void VSyncReactor::onDisplayModeChanged(ftl::NonNull<DisplayModePtr> modePtr, bool force) {
ATRACE_INT64(ftl::Concat("VSR-", __func__, " ", mId.value).c_str(),
modePtr->getVsyncRate().getPeriodNsecs());
std::lock_guard lock(mMutex);
mLastHwVsync.reset();
if (!mSupportKernelIdleTimer &&
modePtr->getVsyncRate().getPeriodNsecs() == mTracker.currentPeriod() && !force) {
endPeriodTransition();
setIgnorePresentFencesInternal(false);
mMoreSamplesNeeded = false;
} else {
startPeriodTransitionInternal(modePtr);
}
}
bool VSyncReactor::periodConfirmed(nsecs_t vsync_timestamp, std::optional<nsecs_t> HwcVsyncPeriod) {
if (!mPeriodConfirmationInProgress) {
return false;
}
if (mDisplayPowerMode == hal::PowerMode::DOZE ||
mDisplayPowerMode == hal::PowerMode::DOZE_SUSPEND) {
return true;
}
if (!mLastHwVsync && !HwcVsyncPeriod) {
return false;
}
const std::optional<Period> newPeriod = mModePtrTransitioningTo
? mModePtrTransitioningTo->getVsyncRate().getPeriod()
: std::optional<Period>{};
const bool periodIsChanging = newPeriod && (newPeriod->ns() != mTracker.currentPeriod());
if (mSupportKernelIdleTimer && !periodIsChanging) {
// Clear out the Composer-provided period and use the allowance logic below
HwcVsyncPeriod = {};
}
auto const period = newPeriod ? newPeriod->ns() : mTracker.currentPeriod();
static constexpr int allowancePercent = 10;
static constexpr std::ratio<allowancePercent, 100> allowancePercentRatio;
auto const allowance = period * allowancePercentRatio.num / allowancePercentRatio.den;
if (HwcVsyncPeriod) {
return std::abs(*HwcVsyncPeriod - period) < allowance;
}
auto const distance = vsync_timestamp - *mLastHwVsync;
return std::abs(distance - period) < allowance;
}
bool VSyncReactor::addHwVsyncTimestamp(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
bool* periodFlushed) {
assert(periodFlushed);
std::lock_guard lock(mMutex);
if (periodConfirmed(timestamp, hwcVsyncPeriod)) {
ATRACE_FORMAT("VSR %" PRIu64 ": period confirmed", mId.value);
if (mModePtrTransitioningTo) {
mTracker.setDisplayModePtr(ftl::as_non_null(mModePtrTransitioningTo));
*periodFlushed = true;
}
if (mLastHwVsync) {
mTracker.addVsyncTimestamp(*mLastHwVsync);
}
mTracker.addVsyncTimestamp(timestamp);
endPeriodTransition();
mMoreSamplesNeeded = mTracker.needsMoreSamples();
} else if (mPeriodConfirmationInProgress) {
ATRACE_FORMAT("VSR %" PRIu64 ": still confirming period", mId.value);
mLastHwVsync = timestamp;
mMoreSamplesNeeded = true;
*periodFlushed = false;
} else {
ATRACE_FORMAT("VSR %" PRIu64 ": adding sample", mId.value);
*periodFlushed = false;
mTracker.addVsyncTimestamp(timestamp);
mMoreSamplesNeeded = mTracker.needsMoreSamples();
}
if (!mMoreSamplesNeeded) {
setIgnorePresentFencesInternal(false);
}
return mMoreSamplesNeeded;
}
void VSyncReactor::setDisplayPowerMode(hal::PowerMode powerMode) {
std::scoped_lock lock(mMutex);
mDisplayPowerMode = powerMode;
}
void VSyncReactor::dump(std::string& result) const {
std::lock_guard lock(mMutex);
StringAppendF(&result, "VsyncReactor in use\n");
StringAppendF(&result, "Has %zu unfired fences\n", mUnfiredFences.size());
StringAppendF(&result, "mInternalIgnoreFences=%d mExternalIgnoreFences=%d\n",
mInternalIgnoreFences, mExternalIgnoreFences);
StringAppendF(&result, "mMoreSamplesNeeded=%d mPeriodConfirmationInProgress=%d\n",
mMoreSamplesNeeded, mPeriodConfirmationInProgress);
if (mModePtrTransitioningTo) {
StringAppendF(&result, "mModePtrTransitioningTo=%s\n",
to_string(*mModePtrTransitioningTo).c_str());
} else {
StringAppendF(&result, "mModePtrTransitioningTo=nullptr\n");
}
if (mLastHwVsync) {
StringAppendF(&result, "Last HW vsync was %.2fms ago\n",
(mClock->now() - *mLastHwVsync) / 1e6f);
} else {
StringAppendF(&result, "No Last HW vsync\n");
}
StringAppendF(&result, "VSyncTracker:\n");
mTracker.dump(result);
}
} // namespace android::scheduler