blob: 96eccf290f6750c490c7164a11458e06b569c91f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <pthread.h>
#include <sched.h>
#include <sys/types.h>
#include <chrono>
#include <cstdint>
#include <optional>
#include <type_traits>
#include <utility>
#include <android-base/stringprintf.h>
#include <binder/IPCThreadState.h>
#include <cutils/compiler.h>
#include <cutils/sched_policy.h>
#include <gui/DisplayEventReceiver.h>
#include <gui/SchedulingPolicy.h>
#include <utils/Errors.h>
#include <utils/Trace.h>
#include <common/FlagManager.h>
#include <scheduler/VsyncConfig.h>
#include "DisplayHardware/DisplayMode.h"
#include "FrameTimeline.h"
#include "VSyncDispatch.h"
#include "VSyncTracker.h"
#include "EventThread.h"
#undef LOG_TAG
#define LOG_TAG "EventThread"
using namespace std::chrono_literals;
namespace android {
using base::StringAppendF;
using base::StringPrintf;
namespace {
auto vsyncPeriod(VSyncRequest request) {
return static_cast<std::underlying_type_t<VSyncRequest>>(request);
}
std::string toString(VSyncRequest request) {
switch (request) {
case VSyncRequest::None:
return "VSyncRequest::None";
case VSyncRequest::Single:
return "VSyncRequest::Single";
case VSyncRequest::SingleSuppressCallback:
return "VSyncRequest::SingleSuppressCallback";
default:
return StringPrintf("VSyncRequest::Periodic{period=%d}", vsyncPeriod(request));
}
}
std::string toString(const EventThreadConnection& connection) {
return StringPrintf("Connection{%p, %s}", &connection,
toString(connection.vsyncRequest).c_str());
}
std::string toString(const DisplayEventReceiver::Event& event) {
switch (event.header.type) {
case DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG:
return StringPrintf("Hotplug{displayId=%s, %s}",
to_string(event.header.displayId).c_str(),
event.hotplug.connected ? "connected" : "disconnected");
case DisplayEventReceiver::DISPLAY_EVENT_VSYNC:
return StringPrintf("VSync{displayId=%s, count=%u, expectedPresentationTime=%" PRId64
"}",
to_string(event.header.displayId).c_str(), event.vsync.count,
event.vsync.vsyncData.preferredExpectedPresentationTime());
case DisplayEventReceiver::DISPLAY_EVENT_MODE_CHANGE:
return StringPrintf("ModeChanged{displayId=%s, modeId=%u}",
to_string(event.header.displayId).c_str(), event.modeChange.modeId);
case DisplayEventReceiver::DISPLAY_EVENT_HDCP_LEVELS_CHANGE:
return StringPrintf("HdcpLevelsChange{displayId=%s, connectedLevel=%d, maxLevel=%d}",
to_string(event.header.displayId).c_str(),
event.hdcpLevelsChange.connectedLevel,
event.hdcpLevelsChange.maxLevel);
default:
return "Event{}";
}
}
DisplayEventReceiver::Event makeHotplug(PhysicalDisplayId displayId, nsecs_t timestamp,
bool connected) {
DisplayEventReceiver::Event event;
event.header = {DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG, displayId, timestamp};
event.hotplug.connected = connected;
return event;
}
DisplayEventReceiver::Event makeHotplugError(nsecs_t timestamp, int32_t connectionError) {
DisplayEventReceiver::Event event;
PhysicalDisplayId unusedDisplayId;
event.header = {DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG, unusedDisplayId, timestamp};
event.hotplug.connected = false;
event.hotplug.connectionError = connectionError;
return event;
}
DisplayEventReceiver::Event makeVSync(PhysicalDisplayId displayId, nsecs_t timestamp,
uint32_t count, nsecs_t expectedPresentationTime,
nsecs_t deadlineTimestamp) {
DisplayEventReceiver::Event event;
event.header = {DisplayEventReceiver::DISPLAY_EVENT_VSYNC, displayId, timestamp};
event.vsync.count = count;
event.vsync.vsyncData.preferredFrameTimelineIndex = 0;
// Temporarily store the current vsync information in frameTimelines[0], marked as
// platform-preferred. When the event is dispatched later, the frame interval at that time is
// used with this information to generate multiple frame timeline choices.
event.vsync.vsyncData.frameTimelines[0] = {.vsyncId = FrameTimelineInfo::INVALID_VSYNC_ID,
.deadlineTimestamp = deadlineTimestamp,
.expectedPresentationTime =
expectedPresentationTime};
return event;
}
DisplayEventReceiver::Event makeModeChanged(const scheduler::FrameRateMode& mode) {
DisplayEventReceiver::Event event;
event.header = {DisplayEventReceiver::DISPLAY_EVENT_MODE_CHANGE,
mode.modePtr->getPhysicalDisplayId(), systemTime()};
event.modeChange.modeId = ftl::to_underlying(mode.modePtr->getId());
event.modeChange.vsyncPeriod = mode.fps.getPeriodNsecs();
return event;
}
DisplayEventReceiver::Event makeFrameRateOverrideEvent(PhysicalDisplayId displayId,
FrameRateOverride frameRateOverride) {
return DisplayEventReceiver::Event{
.header =
DisplayEventReceiver::Event::Header{
.type = DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE,
.displayId = displayId,
.timestamp = systemTime(),
},
.frameRateOverride = frameRateOverride,
};
}
DisplayEventReceiver::Event makeFrameRateOverrideFlushEvent(PhysicalDisplayId displayId) {
return DisplayEventReceiver::Event{
.header = DisplayEventReceiver::Event::Header{
.type = DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE_FLUSH,
.displayId = displayId,
.timestamp = systemTime(),
}};
}
DisplayEventReceiver::Event makeHdcpLevelsChange(PhysicalDisplayId displayId,
int32_t connectedLevel, int32_t maxLevel) {
return DisplayEventReceiver::Event{
.header =
DisplayEventReceiver::Event::Header{
.type = DisplayEventReceiver::DISPLAY_EVENT_HDCP_LEVELS_CHANGE,
.displayId = displayId,
.timestamp = systemTime(),
},
.hdcpLevelsChange.connectedLevel = connectedLevel,
.hdcpLevelsChange.maxLevel = maxLevel,
};
}
} // namespace
EventThreadConnection::EventThreadConnection(EventThread* eventThread, uid_t callingUid,
EventRegistrationFlags eventRegistration)
: mOwnerUid(callingUid),
mEventRegistration(eventRegistration),
mEventThread(eventThread),
mChannel(gui::BitTube::DefaultSize) {}
EventThreadConnection::~EventThreadConnection() {
// do nothing here -- clean-up will happen automatically
// when the main thread wakes up
}
void EventThreadConnection::onFirstRef() {
// NOTE: mEventThread doesn't hold a strong reference on us
mEventThread->registerDisplayEventConnection(sp<EventThreadConnection>::fromExisting(this));
}
binder::Status EventThreadConnection::stealReceiveChannel(gui::BitTube* outChannel) {
std::scoped_lock lock(mLock);
if (mChannel.initCheck() != NO_ERROR) {
return binder::Status::fromStatusT(NAME_NOT_FOUND);
}
outChannel->setReceiveFd(mChannel.moveReceiveFd());
outChannel->setSendFd(base::unique_fd(dup(mChannel.getSendFd())));
return binder::Status::ok();
}
binder::Status EventThreadConnection::setVsyncRate(int rate) {
mEventThread->setVsyncRate(static_cast<uint32_t>(rate),
sp<EventThreadConnection>::fromExisting(this));
return binder::Status::ok();
}
binder::Status EventThreadConnection::requestNextVsync() {
ATRACE_CALL();
mEventThread->requestNextVsync(sp<EventThreadConnection>::fromExisting(this));
return binder::Status::ok();
}
binder::Status EventThreadConnection::getLatestVsyncEventData(
ParcelableVsyncEventData* outVsyncEventData) {
ATRACE_CALL();
outVsyncEventData->vsync =
mEventThread->getLatestVsyncEventData(sp<EventThreadConnection>::fromExisting(this));
return binder::Status::ok();
}
binder::Status EventThreadConnection::getSchedulingPolicy(gui::SchedulingPolicy* outPolicy) {
return gui::getSchedulingPolicy(outPolicy);
}
status_t EventThreadConnection::postEvent(const DisplayEventReceiver::Event& event) {
constexpr auto toStatus = [](ssize_t size) {
return size < 0 ? status_t(size) : status_t(NO_ERROR);
};
if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE ||
event.header.type == DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE_FLUSH) {
mPendingEvents.emplace_back(event);
if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE) {
return status_t(NO_ERROR);
}
auto size = DisplayEventReceiver::sendEvents(&mChannel, mPendingEvents.data(),
mPendingEvents.size());
mPendingEvents.clear();
return toStatus(size);
}
auto size = DisplayEventReceiver::sendEvents(&mChannel, &event, 1);
return toStatus(size);
}
// ---------------------------------------------------------------------------
EventThread::~EventThread() = default;
namespace impl {
EventThread::EventThread(const char* name, std::shared_ptr<scheduler::VsyncSchedule> vsyncSchedule,
android::frametimeline::TokenManager* tokenManager,
IEventThreadCallback& callback, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration)
: mThreadName(name),
mVsyncTracer(base::StringPrintf("VSYNC-%s", name), 0),
mWorkDuration(base::StringPrintf("VsyncWorkDuration-%s", name), workDuration),
mReadyDuration(readyDuration),
mVsyncSchedule(std::move(vsyncSchedule)),
mVsyncRegistration(mVsyncSchedule->getDispatch(), createDispatchCallback(), name),
mTokenManager(tokenManager),
mCallback(callback) {
mThread = std::thread([this]() NO_THREAD_SAFETY_ANALYSIS {
std::unique_lock<std::mutex> lock(mMutex);
threadMain(lock);
});
pthread_setname_np(mThread.native_handle(), mThreadName);
pid_t tid = pthread_gettid_np(mThread.native_handle());
// Use SCHED_FIFO to minimize jitter
constexpr int EVENT_THREAD_PRIORITY = 2;
struct sched_param param = {0};
param.sched_priority = EVENT_THREAD_PRIORITY;
if (pthread_setschedparam(mThread.native_handle(), SCHED_FIFO, &param) != 0) {
ALOGE("Couldn't set SCHED_FIFO for EventThread");
}
set_sched_policy(tid, SP_FOREGROUND);
}
EventThread::~EventThread() {
{
std::lock_guard<std::mutex> lock(mMutex);
mState = State::Quit;
mCondition.notify_all();
}
mThread.join();
}
void EventThread::setDuration(std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
std::lock_guard<std::mutex> lock(mMutex);
mWorkDuration = workDuration;
mReadyDuration = readyDuration;
mVsyncRegistration.update({.workDuration = mWorkDuration.get().count(),
.readyDuration = mReadyDuration.count(),
.lastVsync = mLastVsyncCallbackTime.ns()});
}
sp<EventThreadConnection> EventThread::createEventConnection(
EventRegistrationFlags eventRegistration) const {
auto connection = sp<EventThreadConnection>::make(const_cast<EventThread*>(this),
IPCThreadState::self()->getCallingUid(),
eventRegistration);
if (FlagManager::getInstance().misc1()) {
const int policy = SCHED_FIFO;
connection->setMinSchedulerPolicy(policy, sched_get_priority_min(policy));
}
return connection;
}
status_t EventThread::registerDisplayEventConnection(const sp<EventThreadConnection>& connection) {
std::lock_guard<std::mutex> lock(mMutex);
// this should never happen
auto it = std::find(mDisplayEventConnections.cbegin(),
mDisplayEventConnections.cend(), connection);
if (it != mDisplayEventConnections.cend()) {
ALOGW("DisplayEventConnection %p already exists", connection.get());
mCondition.notify_all();
return ALREADY_EXISTS;
}
mDisplayEventConnections.push_back(connection);
mCondition.notify_all();
return NO_ERROR;
}
void EventThread::removeDisplayEventConnectionLocked(const wp<EventThreadConnection>& connection) {
auto it = std::find(mDisplayEventConnections.cbegin(),
mDisplayEventConnections.cend(), connection);
if (it != mDisplayEventConnections.cend()) {
mDisplayEventConnections.erase(it);
}
}
void EventThread::setVsyncRate(uint32_t rate, const sp<EventThreadConnection>& connection) {
if (static_cast<std::underlying_type_t<VSyncRequest>>(rate) < 0) {
return;
}
std::lock_guard<std::mutex> lock(mMutex);
const auto request = rate == 0 ? VSyncRequest::None : static_cast<VSyncRequest>(rate);
if (connection->vsyncRequest != request) {
connection->vsyncRequest = request;
mCondition.notify_all();
}
}
void EventThread::requestNextVsync(const sp<EventThreadConnection>& connection) {
mCallback.resync();
std::lock_guard<std::mutex> lock(mMutex);
if (connection->vsyncRequest == VSyncRequest::None) {
connection->vsyncRequest = VSyncRequest::Single;
mCondition.notify_all();
} else if (connection->vsyncRequest == VSyncRequest::SingleSuppressCallback) {
connection->vsyncRequest = VSyncRequest::Single;
}
}
VsyncEventData EventThread::getLatestVsyncEventData(
const sp<EventThreadConnection>& connection) const {
// Resync so that the vsync is accurate with hardware. getLatestVsyncEventData is an alternate
// way to get vsync data (instead of posting callbacks to Choreographer).
mCallback.resync();
VsyncEventData vsyncEventData;
const Period frameInterval = mCallback.getVsyncPeriod(connection->mOwnerUid);
vsyncEventData.frameInterval = frameInterval.ns();
const auto [presentTime, deadline] = [&]() -> std::pair<nsecs_t, nsecs_t> {
std::lock_guard<std::mutex> lock(mMutex);
const auto vsyncTime = mVsyncSchedule->getTracker().nextAnticipatedVSyncTimeFrom(
systemTime() + mWorkDuration.get().count() + mReadyDuration.count());
return {vsyncTime, vsyncTime - mReadyDuration.count()};
}();
generateFrameTimeline(vsyncEventData, frameInterval.ns(), systemTime(SYSTEM_TIME_MONOTONIC),
presentTime, deadline);
if (FlagManager::getInstance().vrr_config()) {
mCallback.onExpectedPresentTimePosted(TimePoint::fromNs(presentTime));
}
return vsyncEventData;
}
void EventThread::enableSyntheticVsync(bool enable) {
std::lock_guard<std::mutex> lock(mMutex);
if (!mVSyncState || mVSyncState->synthetic == enable) {
return;
}
mVSyncState->synthetic = enable;
mCondition.notify_all();
}
void EventThread::onVsync(nsecs_t vsyncTime, nsecs_t wakeupTime, nsecs_t readyTime) {
std::lock_guard<std::mutex> lock(mMutex);
mLastVsyncCallbackTime = TimePoint::fromNs(vsyncTime);
LOG_FATAL_IF(!mVSyncState);
mVsyncTracer = (mVsyncTracer + 1) % 2;
mPendingEvents.push_back(makeVSync(mVSyncState->displayId, wakeupTime, ++mVSyncState->count,
vsyncTime, readyTime));
mCondition.notify_all();
}
void EventThread::onHotplugReceived(PhysicalDisplayId displayId, bool connected) {
std::lock_guard<std::mutex> lock(mMutex);
mPendingEvents.push_back(makeHotplug(displayId, systemTime(), connected));
mCondition.notify_all();
}
void EventThread::onHotplugConnectionError(int32_t errorCode) {
std::lock_guard<std::mutex> lock(mMutex);
mPendingEvents.push_back(makeHotplugError(systemTime(), errorCode));
mCondition.notify_all();
}
void EventThread::onModeChanged(const scheduler::FrameRateMode& mode) {
std::lock_guard<std::mutex> lock(mMutex);
mPendingEvents.push_back(makeModeChanged(mode));
mCondition.notify_all();
}
void EventThread::onFrameRateOverridesChanged(PhysicalDisplayId displayId,
std::vector<FrameRateOverride> overrides) {
std::lock_guard<std::mutex> lock(mMutex);
for (auto frameRateOverride : overrides) {
mPendingEvents.push_back(makeFrameRateOverrideEvent(displayId, frameRateOverride));
}
mPendingEvents.push_back(makeFrameRateOverrideFlushEvent(displayId));
mCondition.notify_all();
}
void EventThread::onHdcpLevelsChanged(PhysicalDisplayId displayId, int32_t connectedLevel,
int32_t maxLevel) {
std::lock_guard<std::mutex> lock(mMutex);
mPendingEvents.push_back(makeHdcpLevelsChange(displayId, connectedLevel, maxLevel));
mCondition.notify_all();
}
void EventThread::threadMain(std::unique_lock<std::mutex>& lock) {
DisplayEventConsumers consumers;
while (mState != State::Quit) {
std::optional<DisplayEventReceiver::Event> event;
// Determine next event to dispatch.
if (!mPendingEvents.empty()) {
event = mPendingEvents.front();
mPendingEvents.pop_front();
if (event->header.type == DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG) {
if (event->hotplug.connectionError == 0) {
if (event->hotplug.connected && !mVSyncState) {
mVSyncState.emplace(event->header.displayId);
} else if (!event->hotplug.connected && mVSyncState &&
mVSyncState->displayId == event->header.displayId) {
mVSyncState.reset();
}
} else {
// Ignore vsync stuff on an error.
}
}
}
bool vsyncRequested = false;
// Find connections that should consume this event.
auto it = mDisplayEventConnections.begin();
while (it != mDisplayEventConnections.end()) {
if (const auto connection = it->promote()) {
if (event && shouldConsumeEvent(*event, connection)) {
consumers.push_back(connection);
}
vsyncRequested |= connection->vsyncRequest != VSyncRequest::None;
++it;
} else {
it = mDisplayEventConnections.erase(it);
}
}
if (!consumers.empty()) {
dispatchEvent(*event, consumers);
consumers.clear();
}
if (mVSyncState && vsyncRequested) {
mState = mVSyncState->synthetic ? State::SyntheticVSync : State::VSync;
} else {
ALOGW_IF(!mVSyncState, "Ignoring VSYNC request while display is disconnected");
mState = State::Idle;
}
if (mState == State::VSync) {
const auto scheduleResult =
mVsyncRegistration.schedule({.workDuration = mWorkDuration.get().count(),
.readyDuration = mReadyDuration.count(),
.lastVsync = mLastVsyncCallbackTime.ns()});
LOG_ALWAYS_FATAL_IF(!scheduleResult, "Error scheduling callback");
} else {
mVsyncRegistration.cancel();
}
if (!mPendingEvents.empty()) {
continue;
}
// Wait for event or client registration/request.
if (mState == State::Idle) {
mCondition.wait(lock);
} else {
// Generate a fake VSYNC after a long timeout in case the driver stalls. When the
// display is off, keep feeding clients at 60 Hz.
const std::chrono::nanoseconds timeout =
mState == State::SyntheticVSync ? 16ms : 1000ms;
if (mCondition.wait_for(lock, timeout) == std::cv_status::timeout) {
if (mState == State::VSync) {
ALOGW("Faking VSYNC due to driver stall for thread %s", mThreadName);
}
LOG_FATAL_IF(!mVSyncState);
const auto now = systemTime(SYSTEM_TIME_MONOTONIC);
const auto deadlineTimestamp = now + timeout.count();
const auto expectedVSyncTime = deadlineTimestamp + timeout.count();
mPendingEvents.push_back(makeVSync(mVSyncState->displayId, now,
++mVSyncState->count, expectedVSyncTime,
deadlineTimestamp));
}
}
}
// cancel any pending vsync event before exiting
mVsyncRegistration.cancel();
}
bool EventThread::shouldConsumeEvent(const DisplayEventReceiver::Event& event,
const sp<EventThreadConnection>& connection) const {
const auto throttleVsync = [&]() REQUIRES(mMutex) {
const auto& vsyncData = event.vsync.vsyncData;
if (connection->frameRate.isValid()) {
return !mVsyncSchedule->getTracker()
.isVSyncInPhase(vsyncData.preferredExpectedPresentationTime(),
connection->frameRate);
}
const auto expectedPresentTime =
TimePoint::fromNs(event.vsync.vsyncData.preferredExpectedPresentationTime());
return mCallback.throttleVsync(expectedPresentTime, connection->mOwnerUid);
};
switch (event.header.type) {
case DisplayEventReceiver::DISPLAY_EVENT_HOTPLUG:
return true;
case DisplayEventReceiver::DISPLAY_EVENT_HDCP_LEVELS_CHANGE:
return true;
case DisplayEventReceiver::DISPLAY_EVENT_MODE_CHANGE: {
return connection->mEventRegistration.test(
gui::ISurfaceComposer::EventRegistration::modeChanged);
}
case DisplayEventReceiver::DISPLAY_EVENT_VSYNC:
switch (connection->vsyncRequest) {
case VSyncRequest::None:
return false;
case VSyncRequest::SingleSuppressCallback:
connection->vsyncRequest = VSyncRequest::None;
return false;
case VSyncRequest::Single: {
if (throttleVsync()) {
return false;
}
connection->vsyncRequest = VSyncRequest::SingleSuppressCallback;
return true;
}
case VSyncRequest::Periodic:
if (throttleVsync()) {
return false;
}
return true;
default:
// We don't throttle vsync if the app set a vsync request rate
// since there is no easy way to do that and this is a very
// rare case
return event.vsync.count % vsyncPeriod(connection->vsyncRequest) == 0;
}
case DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE:
[[fallthrough]];
case DisplayEventReceiver::DISPLAY_EVENT_FRAME_RATE_OVERRIDE_FLUSH:
return connection->mEventRegistration.test(
gui::ISurfaceComposer::EventRegistration::frameRateOverride);
default:
return false;
}
}
int64_t EventThread::generateToken(nsecs_t timestamp, nsecs_t deadlineTimestamp,
nsecs_t expectedPresentationTime) const {
if (mTokenManager != nullptr) {
return mTokenManager->generateTokenForPredictions(
{timestamp, deadlineTimestamp, expectedPresentationTime});
}
return FrameTimelineInfo::INVALID_VSYNC_ID;
}
void EventThread::generateFrameTimeline(VsyncEventData& outVsyncEventData, nsecs_t frameInterval,
nsecs_t timestamp,
nsecs_t preferredExpectedPresentationTime,
nsecs_t preferredDeadlineTimestamp) const {
uint32_t currentIndex = 0;
// Add 1 to ensure the preferredFrameTimelineIndex entry (when multiplier == 0) is included.
for (int64_t multiplier = -VsyncEventData::kFrameTimelinesCapacity + 1;
currentIndex < VsyncEventData::kFrameTimelinesCapacity; multiplier++) {
nsecs_t deadlineTimestamp = preferredDeadlineTimestamp + multiplier * frameInterval;
// Valid possible frame timelines must have future values, so find a later frame timeline.
if (deadlineTimestamp <= timestamp) {
continue;
}
nsecs_t expectedPresentationTime =
preferredExpectedPresentationTime + multiplier * frameInterval;
if (expectedPresentationTime >= preferredExpectedPresentationTime +
scheduler::VsyncConfig::kEarlyLatchMaxThreshold.count()) {
if (currentIndex == 0) {
ALOGW("%s: Expected present time is too far in the future but no timelines are "
"valid. preferred EPT=%" PRId64 ", Calculated EPT=%" PRId64
", multiplier=%" PRId64 ", frameInterval=%" PRId64 ", threshold=%" PRId64,
__func__, preferredExpectedPresentationTime, expectedPresentationTime,
multiplier, frameInterval,
static_cast<int64_t>(
scheduler::VsyncConfig::kEarlyLatchMaxThreshold.count()));
}
break;
}
if (multiplier == 0) {
outVsyncEventData.preferredFrameTimelineIndex = currentIndex;
}
outVsyncEventData.frameTimelines[currentIndex] =
{.vsyncId = generateToken(timestamp, deadlineTimestamp, expectedPresentationTime),
.deadlineTimestamp = deadlineTimestamp,
.expectedPresentationTime = expectedPresentationTime};
currentIndex++;
}
if (currentIndex == 0) {
ALOGW("%s: No timelines are valid. preferred EPT=%" PRId64 ", frameInterval=%" PRId64
", threshold=%" PRId64,
__func__, preferredExpectedPresentationTime, frameInterval,
static_cast<int64_t>(scheduler::VsyncConfig::kEarlyLatchMaxThreshold.count()));
outVsyncEventData.frameTimelines[currentIndex] =
{.vsyncId = generateToken(timestamp, preferredDeadlineTimestamp,
preferredExpectedPresentationTime),
.deadlineTimestamp = preferredDeadlineTimestamp,
.expectedPresentationTime = preferredExpectedPresentationTime};
currentIndex++;
}
outVsyncEventData.frameTimelinesLength = currentIndex;
}
void EventThread::dispatchEvent(const DisplayEventReceiver::Event& event,
const DisplayEventConsumers& consumers) {
for (const auto& consumer : consumers) {
DisplayEventReceiver::Event copy = event;
if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_VSYNC) {
const Period frameInterval = mCallback.getVsyncPeriod(consumer->mOwnerUid);
copy.vsync.vsyncData.frameInterval = frameInterval.ns();
generateFrameTimeline(copy.vsync.vsyncData, frameInterval.ns(), copy.header.timestamp,
event.vsync.vsyncData.preferredExpectedPresentationTime(),
event.vsync.vsyncData.preferredDeadlineTimestamp());
}
switch (consumer->postEvent(copy)) {
case NO_ERROR:
break;
case -EAGAIN:
// TODO: Try again if pipe is full.
ALOGW("Failed dispatching %s for %s", toString(event).c_str(),
toString(*consumer).c_str());
break;
default:
// Treat EPIPE and other errors as fatal.
removeDisplayEventConnectionLocked(consumer);
}
}
if (event.header.type == DisplayEventReceiver::DISPLAY_EVENT_VSYNC &&
FlagManager::getInstance().vrr_config()) {
mCallback.onExpectedPresentTimePosted(
TimePoint::fromNs(event.vsync.vsyncData.preferredExpectedPresentationTime()));
}
}
void EventThread::dump(std::string& result) const {
std::lock_guard<std::mutex> lock(mMutex);
StringAppendF(&result, "%s: state=%s VSyncState=", mThreadName, toCString(mState));
if (mVSyncState) {
StringAppendF(&result, "{displayId=%s, count=%u%s}\n",
to_string(mVSyncState->displayId).c_str(), mVSyncState->count,
mVSyncState->synthetic ? ", synthetic" : "");
} else {
StringAppendF(&result, "none\n");
}
const auto relativeLastCallTime =
ticks<std::milli, float>(mLastVsyncCallbackTime - TimePoint::now());
StringAppendF(&result, "mWorkDuration=%.2f mReadyDuration=%.2f last vsync time ",
mWorkDuration.get().count() / 1e6f, mReadyDuration.count() / 1e6f);
StringAppendF(&result, "%.2fms relative to now\n", relativeLastCallTime);
StringAppendF(&result, " pending events (count=%zu):\n", mPendingEvents.size());
for (const auto& event : mPendingEvents) {
StringAppendF(&result, " %s\n", toString(event).c_str());
}
StringAppendF(&result, " connections (count=%zu):\n", mDisplayEventConnections.size());
for (const auto& ptr : mDisplayEventConnections) {
if (const auto connection = ptr.promote()) {
StringAppendF(&result, " %s\n", toString(*connection).c_str());
}
}
result += '\n';
}
const char* EventThread::toCString(State state) {
switch (state) {
case State::Idle:
return "Idle";
case State::Quit:
return "Quit";
case State::SyntheticVSync:
return "SyntheticVSync";
case State::VSync:
return "VSync";
}
}
void EventThread::onNewVsyncSchedule(std::shared_ptr<scheduler::VsyncSchedule> schedule) {
// Hold onto the old registration until after releasing the mutex to avoid deadlock.
scheduler::VSyncCallbackRegistration oldRegistration =
onNewVsyncScheduleInternal(std::move(schedule));
}
scheduler::VSyncCallbackRegistration EventThread::onNewVsyncScheduleInternal(
std::shared_ptr<scheduler::VsyncSchedule> schedule) {
std::lock_guard<std::mutex> lock(mMutex);
const bool reschedule = mVsyncRegistration.cancel() == scheduler::CancelResult::Cancelled;
mVsyncSchedule = std::move(schedule);
auto oldRegistration =
std::exchange(mVsyncRegistration,
scheduler::VSyncCallbackRegistration(mVsyncSchedule->getDispatch(),
createDispatchCallback(),
mThreadName));
if (reschedule) {
mVsyncRegistration.schedule({.workDuration = mWorkDuration.get().count(),
.readyDuration = mReadyDuration.count(),
.lastVsync = mLastVsyncCallbackTime.ns()});
}
return oldRegistration;
}
scheduler::VSyncDispatch::Callback EventThread::createDispatchCallback() {
return [this](nsecs_t vsyncTime, nsecs_t wakeupTime, nsecs_t readyTime) {
onVsync(vsyncTime, wakeupTime, readyTime);
};
}
} // namespace impl
} // namespace android
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"