blob: a76f7d477a15bf9221347f48e6b72c0e57e52a54 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <atomic>
#include <chrono>
#include <deque>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <gui/ISurfaceComposer.h>
#include <gui/JankInfo.h>
#include <gui/LayerMetadata.h>
#include <perfetto/trace/android/frame_timeline_event.pbzero.h>
#include <perfetto/tracing.h>
#include <ui/FenceTime.h>
#include <utils/RefBase.h>
#include <utils/String16.h>
#include <utils/Timers.h>
#include <utils/Vector.h>
#include <scheduler/Fps.h>
#include "../TimeStats/TimeStats.h"
namespace android::frametimeline {
class FrameTimelineTest;
using namespace std::chrono_literals;
// Metadata indicating how the frame was presented w.r.t expected present time.
enum class FramePresentMetadata : int8_t {
// Frame was presented on time
OnTimePresent,
// Frame was presented late
LatePresent,
// Frame was presented early
EarlyPresent,
// Unknown/initial state
UnknownPresent,
};
// Metadata comparing the frame's actual finish time to the expected deadline.
enum class FrameReadyMetadata : int8_t {
// App/SF finished on time. Early finish is treated as on time since the goal of any component
// is to finish before the deadline.
OnTimeFinish,
// App/SF finished work later than expected
LateFinish,
// Unknown/initial state
UnknownFinish,
};
// Metadata comparing the frame's actual start time to the expected start time.
enum class FrameStartMetadata : int8_t {
// App/SF started on time
OnTimeStart,
// App/SF started later than expected
LateStart,
// App/SF started earlier than expected
EarlyStart,
// Unknown/initial state
UnknownStart,
};
/*
* Collection of timestamps that can be used for both predictions and actual times.
*/
struct TimelineItem {
TimelineItem(const nsecs_t startTime = 0, const nsecs_t endTime = 0,
const nsecs_t presentTime = 0)
: startTime(startTime), endTime(endTime), presentTime(presentTime) {}
nsecs_t startTime;
nsecs_t endTime;
nsecs_t presentTime;
bool operator==(const TimelineItem& other) const {
return startTime == other.startTime && endTime == other.endTime &&
presentTime == other.presentTime;
}
bool operator!=(const TimelineItem& other) const { return !(*this == other); }
};
struct JankClassificationThresholds {
// The various thresholds for App and SF. If the actual timestamp falls within the threshold
// compared to prediction, we treat it as on time.
nsecs_t presentThreshold = std::chrono::duration_cast<std::chrono::nanoseconds>(2ms).count();
nsecs_t deadlineThreshold = std::chrono::duration_cast<std::chrono::nanoseconds>(0ms).count();
nsecs_t startThreshold = std::chrono::duration_cast<std::chrono::nanoseconds>(2ms).count();
};
/*
* TokenManager generates a running number token for a set of predictions made by VsyncPredictor. It
* saves these predictions for a short period of time and returns the predictions for a given token,
* if it hasn't expired.
*/
class TokenManager {
public:
virtual ~TokenManager() = default;
// Generates a token for the given set of predictions. Stores the predictions for 120ms and
// destroys it later.
virtual int64_t generateTokenForPredictions(TimelineItem&& prediction) = 0;
// Returns the stored predictions for a given token, if the predictions haven't expired.
virtual std::optional<TimelineItem> getPredictionsForToken(int64_t token) const = 0;
};
enum class PredictionState {
Valid, // Predictions obtained successfully from the TokenManager
Expired, // TokenManager no longer has the predictions
None, // Predictions are either not present or didn't come from TokenManager
};
/*
* Trace cookie is used to send start and end timestamps of <Surface/Display>Frames separately
* without needing to resend all the other information. We send all info to perfetto, along with a
* new cookie, in the start of a frame. For the corresponding end, we just send the same cookie.
* This helps in reducing the amount of data emitted by the producer.
*/
class TraceCookieCounter {
public:
int64_t getCookieForTracing();
private:
// Friend class for testing
friend class android::frametimeline::FrameTimelineTest;
std::atomic<int64_t> mTraceCookie = 0;
};
class SurfaceFrame {
public:
enum class PresentState {
Presented, // Buffer was latched and presented by SurfaceFlinger
Dropped, // Buffer was dropped by SurfaceFlinger
Unknown, // Initial state, SurfaceFlinger hasn't seen this buffer yet
};
// Only FrameTimeline can construct a SurfaceFrame as it provides Predictions(through
// TokenManager), Thresholds and TimeStats pointer.
SurfaceFrame(const FrameTimelineInfo& frameTimelineInfo, pid_t ownerPid, uid_t ownerUid,
int32_t layerId, std::string layerName, std::string debugName,
PredictionState predictionState, TimelineItem&& predictions,
std::shared_ptr<TimeStats> timeStats, JankClassificationThresholds thresholds,
TraceCookieCounter* traceCookieCounter, bool isBuffer, GameMode);
~SurfaceFrame() = default;
bool isSelfJanky() const;
// Returns std::nullopt if the frame hasn't been classified yet.
// Used by both SF and FrameTimeline.
std::optional<int32_t> getJankType() const;
std::optional<JankSeverityType> getJankSeverityType() const;
// Functions called by SF
int64_t getToken() const { return mToken; };
int32_t getInputEventId() const { return mInputEventId; };
TimelineItem getPredictions() const { return mPredictions; };
// Actual timestamps of the app are set individually at different functions.
// Start time (if the app provides) and Queue time are accessible after queueing the frame,
// whereas Acquire Fence time is available only during latch. Drop time is available at the time
// the buffer was dropped.
void setActualStartTime(nsecs_t actualStartTime);
void setActualQueueTime(nsecs_t actualQueueTime);
void setAcquireFenceTime(nsecs_t acquireFenceTime);
void setDropTime(nsecs_t dropTime);
void setPresentState(PresentState presentState, nsecs_t lastLatchTime = 0);
void setRenderRate(Fps renderRate);
// Return the render rate if it exists, otherwise returns the DisplayFrame's render rate.
Fps getRenderRate() const;
void setGpuComposition();
// When a bufferless SurfaceFrame is promoted to a buffer SurfaceFrame, we also have to update
// isBuffer.
void promoteToBuffer();
// Functions called by FrameTimeline
// BaseTime is the smallest timestamp in this SurfaceFrame.
// Used for dumping all timestamps relative to the oldest, making it easy to read.
nsecs_t getBaseTime() const;
// Sets the actual present time, appropriate metadata and classifies the jank.
// displayRefreshRate, displayDeadlineDelta, and displayPresentDelta are propagated from the
// display frame.
void onPresent(nsecs_t presentTime, int32_t displayFrameJankType, Fps refreshRate,
Fps displayFrameRenderRate, nsecs_t displayDeadlineDelta,
nsecs_t displayPresentDelta);
// All the timestamps are dumped relative to the baseTime
void dump(std::string& result, const std::string& indent, nsecs_t baseTime) const;
// Dumps only the layer, token, is buffer, jank metadata, prediction and present states.
std::string miniDump() const;
// Emits a packet for perfetto tracing. The function body will be executed only if tracing is
// enabled. The displayFrameToken is needed to link the SurfaceFrame to the corresponding
// DisplayFrame at the trace processor side. monoBootOffset is the difference
// between SYSTEM_TIME_BOOTTIME and SYSTEM_TIME_MONOTONIC.
void trace(int64_t displayFrameToken, nsecs_t monoBootOffset) const;
// Getter functions used only by FrameTimelineTests and SurfaceFrame internally
TimelineItem getActuals() const;
pid_t getOwnerPid() const { return mOwnerPid; };
int32_t getLayerId() const { return mLayerId; };
PredictionState getPredictionState() const;
PresentState getPresentState() const;
FrameReadyMetadata getFrameReadyMetadata() const;
FramePresentMetadata getFramePresentMetadata() const;
nsecs_t getDropTime() const;
bool getIsBuffer() const;
// For prediction expired frames, this delta is subtracted from the actual end time to get a
// start time decent enough to see in traces.
// TODO(b/172587309): Remove this when we have actual start times.
static constexpr nsecs_t kPredictionExpiredStartTimeDelta =
std::chrono::duration_cast<std::chrono::nanoseconds>(2ms).count();
private:
void tracePredictions(int64_t displayFrameToken, nsecs_t monoBootOffset) const;
void traceActuals(int64_t displayFrameToken, nsecs_t monoBootOffset) const;
void classifyJankLocked(int32_t displayFrameJankType, const Fps& refreshRate,
Fps displayFrameRenderRate, nsecs_t& deadlineDelta) REQUIRES(mMutex);
const int64_t mToken;
const int32_t mInputEventId;
const pid_t mOwnerPid;
const uid_t mOwnerUid;
const std::string mLayerName;
const std::string mDebugName;
const int32_t mLayerId;
PresentState mPresentState GUARDED_BY(mMutex);
const PredictionState mPredictionState;
const TimelineItem mPredictions;
TimelineItem mActuals GUARDED_BY(mMutex);
std::shared_ptr<TimeStats> mTimeStats;
const JankClassificationThresholds mJankClassificationThresholds;
nsecs_t mActualQueueTime GUARDED_BY(mMutex) = 0;
nsecs_t mDropTime GUARDED_BY(mMutex) = 0;
mutable std::mutex mMutex;
// Bitmask for the type of jank
int32_t mJankType GUARDED_BY(mMutex) = JankType::None;
// Enum for the severity of jank
JankSeverityType mJankSeverityType GUARDED_BY(mMutex) = JankSeverityType::None;
// Indicates if this frame was composited by the GPU or not
bool mGpuComposition GUARDED_BY(mMutex) = false;
// Refresh rate for this frame.
Fps mDisplayFrameRenderRate GUARDED_BY(mMutex);
// Rendering rate for this frame.
std::optional<Fps> mRenderRate GUARDED_BY(mMutex);
// Enum for the type of present
FramePresentMetadata mFramePresentMetadata GUARDED_BY(mMutex) =
FramePresentMetadata::UnknownPresent;
// Enum for the type of finish
FrameReadyMetadata mFrameReadyMetadata GUARDED_BY(mMutex) = FrameReadyMetadata::UnknownFinish;
// Time when the previous buffer from the same layer was latched by SF. This is used in checking
// for BufferStuffing where the current buffer is expected to be ready but the previous buffer
// was latched instead.
nsecs_t mLastLatchTime GUARDED_BY(mMutex) = 0;
// TraceCookieCounter is used to obtain the cookie for sendig trace packets to perfetto. Using a
// reference here because the counter is owned by FrameTimeline, which outlives SurfaceFrame.
TraceCookieCounter& mTraceCookieCounter;
// Tells if the SurfaceFrame is representing a buffer or a transaction without a
// buffer(animations)
bool mIsBuffer;
// GameMode from the layer. Used in metrics.
GameMode mGameMode = GameMode::Unsupported;
};
/*
* Maintains a history of SurfaceFrames grouped together by the vsync time in which they were
* presented
*/
class FrameTimeline {
public:
virtual ~FrameTimeline() = default;
virtual TokenManager* getTokenManager() = 0;
// Initializes the Perfetto DataSource that emits DisplayFrame and SurfaceFrame events. Test
// classes can avoid double registration by mocking this function.
virtual void onBootFinished() = 0;
// Create a new surface frame, set the predictions based on a token and return it to the caller.
// Debug name is the human-readable debugging string for dumpsys.
virtual std::shared_ptr<SurfaceFrame> createSurfaceFrameForToken(
const FrameTimelineInfo& frameTimelineInfo, pid_t ownerPid, uid_t ownerUid,
int32_t layerId, std::string layerName, std::string debugName, bool isBuffer,
GameMode) = 0;
// Adds a new SurfaceFrame to the current DisplayFrame. Frames from multiple layers can be
// composited into one display frame.
virtual void addSurfaceFrame(std::shared_ptr<SurfaceFrame> surfaceFrame) = 0;
// The first function called by SF for the current DisplayFrame. Fetches SF predictions based on
// the token and sets the actualSfWakeTime for the current DisplayFrame.
virtual void setSfWakeUp(int64_t token, nsecs_t wakeupTime, Fps refreshRate,
Fps renderRate) = 0;
// Sets the sfPresentTime and finalizes the current DisplayFrame. Tracks the
// given present fence until it's signaled, and updates the present timestamps of all presented
// SurfaceFrames in that vsync. If a gpuFence was also provided, its tracked in the
// corresponding DisplayFrame.
virtual void setSfPresent(nsecs_t sfPresentTime, const std::shared_ptr<FenceTime>& presentFence,
const std::shared_ptr<FenceTime>& gpuFence) = 0;
// Args:
// -jank : Dumps only the Display Frames that are either janky themselves
// or contain janky Surface Frames.
// -all : Dumps the entire list of DisplayFrames and the SurfaceFrames contained within
virtual void parseArgs(const Vector<String16>& args, std::string& result) = 0;
// Sets the max number of display frames that can be stored. Called by SF backdoor.
virtual void setMaxDisplayFrames(uint32_t size) = 0;
// Computes the historical fps for the provided set of layer IDs
// The fps is compted from the linear timeline of present timestamps for DisplayFrames
// containing at least one layer ID.
virtual float computeFps(const std::unordered_set<int32_t>& layerIds) = 0;
// Restores the max number of display frames to default. Called by SF backdoor.
virtual void reset() = 0;
};
namespace impl {
class TokenManager : public android::frametimeline::TokenManager {
public:
TokenManager() : mCurrentToken(FrameTimelineInfo::INVALID_VSYNC_ID + 1) {}
~TokenManager() = default;
int64_t generateTokenForPredictions(TimelineItem&& predictions) override;
std::optional<TimelineItem> getPredictionsForToken(int64_t token) const override;
private:
// Friend class for testing
friend class android::frametimeline::FrameTimelineTest;
void flushTokens(nsecs_t flushTime) REQUIRES(mMutex);
std::map<int64_t, TimelineItem> mPredictions GUARDED_BY(mMutex);
int64_t mCurrentToken GUARDED_BY(mMutex);
mutable std::mutex mMutex;
static constexpr size_t kMaxTokens = 500;
};
class FrameTimeline : public android::frametimeline::FrameTimeline {
public:
class FrameTimelineDataSource : public perfetto::DataSource<FrameTimelineDataSource> {
void OnSetup(const SetupArgs&) override{};
void OnStart(const StartArgs&) override{};
void OnStop(const StopArgs&) override{};
};
/*
* DisplayFrame should be used only internally within FrameTimeline. All members and methods are
* guarded by FrameTimeline's mMutex.
*/
class DisplayFrame {
public:
DisplayFrame(std::shared_ptr<TimeStats> timeStats, JankClassificationThresholds thresholds,
TraceCookieCounter* traceCookieCounter);
virtual ~DisplayFrame() = default;
// Dumpsys interface - dumps only if the DisplayFrame itself is janky or is at least one
// SurfaceFrame is janky.
void dumpJank(std::string& result, nsecs_t baseTime, int displayFrameCount) const;
// Dumpsys interface - dumps all data irrespective of jank
void dumpAll(std::string& result, nsecs_t baseTime) const;
// Emits a packet for perfetto tracing. The function body will be executed only if tracing
// is enabled. monoBootOffset is the difference between SYSTEM_TIME_BOOTTIME
// and SYSTEM_TIME_MONOTONIC.
nsecs_t trace(pid_t surfaceFlingerPid, nsecs_t monoBootOffset,
nsecs_t previousPredictionPresentTime) const;
// Sets the token, vsyncPeriod, predictions and SF start time.
void onSfWakeUp(int64_t token, Fps refreshRate, Fps renderRate,
std::optional<TimelineItem> predictions, nsecs_t wakeUpTime);
// Sets the appropriate metadata and classifies the jank.
void onPresent(nsecs_t signalTime, nsecs_t previousPresentTime);
// Adds the provided SurfaceFrame to the current display frame.
void addSurfaceFrame(std::shared_ptr<SurfaceFrame> surfaceFrame);
void setPredictions(PredictionState predictionState, TimelineItem predictions);
void setActualStartTime(nsecs_t actualStartTime);
void setActualEndTime(nsecs_t actualEndTime);
void setGpuFence(const std::shared_ptr<FenceTime>& gpuFence);
// BaseTime is the smallest timestamp in a DisplayFrame.
// Used for dumping all timestamps relative to the oldest, making it easy to read.
nsecs_t getBaseTime() const;
// Functions to be used only in testing.
TimelineItem getActuals() const { return mSurfaceFlingerActuals; };
TimelineItem getPredictions() const { return mSurfaceFlingerPredictions; };
FrameStartMetadata getFrameStartMetadata() const { return mFrameStartMetadata; };
FramePresentMetadata getFramePresentMetadata() const { return mFramePresentMetadata; };
FrameReadyMetadata getFrameReadyMetadata() const { return mFrameReadyMetadata; };
int32_t getJankType() const { return mJankType; }
JankSeverityType getJankSeverityType() const { return mJankSeverityType; }
const std::vector<std::shared_ptr<SurfaceFrame>>& getSurfaceFrames() const {
return mSurfaceFrames;
}
private:
void dump(std::string& result, nsecs_t baseTime) const;
void tracePredictions(pid_t surfaceFlingerPid, nsecs_t monoBootOffset) const;
void traceActuals(pid_t surfaceFlingerPid, nsecs_t monoBootOffset) const;
void addSkippedFrame(pid_t surfaceFlingerPid, nsecs_t monoBootOffset,
nsecs_t previousActualPresentTime) const;
void classifyJank(nsecs_t& deadlineDelta, nsecs_t& deltaToVsync,
nsecs_t previousPresentTime);
int64_t mToken = FrameTimelineInfo::INVALID_VSYNC_ID;
/* Usage of TimelineItem w.r.t SurfaceFlinger
* startTime Time when SurfaceFlinger wakes up to handle transactions and buffer updates
* endTime Time when SurfaceFlinger sends a composited frame to Display
* presentTime Time when the composited frame was presented on screen
*/
TimelineItem mSurfaceFlingerPredictions;
TimelineItem mSurfaceFlingerActuals;
std::shared_ptr<TimeStats> mTimeStats;
const JankClassificationThresholds mJankClassificationThresholds;
// Collection of predictions and actual values sent over by Layers
std::vector<std::shared_ptr<SurfaceFrame>> mSurfaceFrames;
PredictionState mPredictionState = PredictionState::None;
// Bitmask for the type of jank
int32_t mJankType = JankType::None;
// Enum for the severity of jank
JankSeverityType mJankSeverityType = JankSeverityType::None;
// A valid gpu fence indicates that the DisplayFrame was composited by the GPU
std::shared_ptr<FenceTime> mGpuFence = FenceTime::NO_FENCE;
// Enum for the type of present
FramePresentMetadata mFramePresentMetadata = FramePresentMetadata::UnknownPresent;
// Enum for the type of finish
FrameReadyMetadata mFrameReadyMetadata = FrameReadyMetadata::UnknownFinish;
// Enum for the type of start
FrameStartMetadata mFrameStartMetadata = FrameStartMetadata::UnknownStart;
// The refresh rate (vsync period) in nanoseconds as seen by SF during this DisplayFrame's
// timeline
Fps mRefreshRate;
// The current render rate for this DisplayFrame.
Fps mRenderRate;
// TraceCookieCounter is used to obtain the cookie for sendig trace packets to perfetto.
// Using a reference here because the counter is owned by FrameTimeline, which outlives
// DisplayFrame.
TraceCookieCounter& mTraceCookieCounter;
};
FrameTimeline(std::shared_ptr<TimeStats> timeStats, pid_t surfaceFlingerPid,
JankClassificationThresholds thresholds = {}, bool useBootTimeClock = true);
~FrameTimeline() = default;
frametimeline::TokenManager* getTokenManager() override { return &mTokenManager; }
std::shared_ptr<SurfaceFrame> createSurfaceFrameForToken(
const FrameTimelineInfo& frameTimelineInfo, pid_t ownerPid, uid_t ownerUid,
int32_t layerId, std::string layerName, std::string debugName, bool isBuffer,
GameMode) override;
void addSurfaceFrame(std::shared_ptr<frametimeline::SurfaceFrame> surfaceFrame) override;
void setSfWakeUp(int64_t token, nsecs_t wakeupTime, Fps refreshRate, Fps renderRate) override;
void setSfPresent(nsecs_t sfPresentTime, const std::shared_ptr<FenceTime>& presentFence,
const std::shared_ptr<FenceTime>& gpuFence = FenceTime::NO_FENCE) override;
void parseArgs(const Vector<String16>& args, std::string& result) override;
void setMaxDisplayFrames(uint32_t size) override;
float computeFps(const std::unordered_set<int32_t>& layerIds) override;
void reset() override;
// Sets up the perfetto tracing backend and data source.
void onBootFinished() override;
// Registers the data source with the perfetto backend. Called as part of onBootFinished()
// and should not be called manually outside of tests.
void registerDataSource();
static constexpr char kFrameTimelineDataSource[] = "android.surfaceflinger.frametimeline";
private:
// Friend class for testing
friend class android::frametimeline::FrameTimelineTest;
void flushPendingPresentFences() REQUIRES(mMutex);
std::optional<size_t> getFirstSignalFenceIndex() const REQUIRES(mMutex);
void finalizeCurrentDisplayFrame() REQUIRES(mMutex);
void dumpAll(std::string& result);
void dumpJank(std::string& result);
// Sliding window of display frames. TODO(b/168072834): compare perf with fixed size array
std::deque<std::shared_ptr<DisplayFrame>> mDisplayFrames GUARDED_BY(mMutex);
std::vector<std::pair<std::shared_ptr<FenceTime>, std::shared_ptr<DisplayFrame>>>
mPendingPresentFences GUARDED_BY(mMutex);
std::shared_ptr<DisplayFrame> mCurrentDisplayFrame GUARDED_BY(mMutex);
TokenManager mTokenManager;
TraceCookieCounter mTraceCookieCounter;
mutable std::mutex mMutex;
const bool mUseBootTimeClock;
uint32_t mMaxDisplayFrames;
std::shared_ptr<TimeStats> mTimeStats;
const pid_t mSurfaceFlingerPid;
nsecs_t mPreviousActualPresentTime = 0;
nsecs_t mPreviousPredictionPresentTime = 0;
const JankClassificationThresholds mJankClassificationThresholds;
static constexpr uint32_t kDefaultMaxDisplayFrames = 64;
// The initial container size for the vector<SurfaceFrames> inside display frame. Although
// this number doesn't represent any bounds on the number of surface frames that can go in a
// display frame, this is a good starting size for the vector so that we can avoid the
// internal vector resizing that happens with push_back.
static constexpr uint32_t kNumSurfaceFramesInitial = 10;
};
} // namespace impl
} // namespace android::frametimeline