| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <android-base/stringprintf.h> |
| #include <com_android_graphics_surfaceflinger_flags.h> |
| #include <compositionengine/LayerFECompositionState.h> |
| #include <compositionengine/impl/Output.h> |
| #include <compositionengine/impl/OutputCompositionState.h> |
| #include <compositionengine/impl/OutputLayerCompositionState.h> |
| #include <compositionengine/mock/CompositionEngine.h> |
| #include <compositionengine/mock/DisplayColorProfile.h> |
| #include <compositionengine/mock/LayerFE.h> |
| #include <compositionengine/mock/OutputLayer.h> |
| #include <compositionengine/mock/RenderSurface.h> |
| #include <ftl/future.h> |
| #include <gtest/gtest.h> |
| #include <renderengine/ExternalTexture.h> |
| #include <renderengine/impl/ExternalTexture.h> |
| #include <renderengine/mock/FakeExternalTexture.h> |
| #include <renderengine/mock/RenderEngine.h> |
| #include <ui/Rect.h> |
| #include <ui/Region.h> |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <variant> |
| |
| #include <common/FlagManager.h> |
| #include <common/test/FlagUtils.h> |
| #include "CallOrderStateMachineHelper.h" |
| #include "MockHWC2.h" |
| #include "RegionMatcher.h" |
| |
| namespace android::compositionengine { |
| namespace { |
| |
| using namespace com::android::graphics::surfaceflinger; |
| |
| using testing::_; |
| using testing::ByMove; |
| using testing::ByRef; |
| using testing::DoAll; |
| using testing::ElementsAre; |
| using testing::ElementsAreArray; |
| using testing::Eq; |
| using testing::InSequence; |
| using testing::Invoke; |
| using testing::IsEmpty; |
| using testing::Mock; |
| using testing::NiceMock; |
| using testing::Pointee; |
| using testing::Property; |
| using testing::Ref; |
| using testing::Return; |
| using testing::ReturnRef; |
| using testing::SetArgPointee; |
| using testing::StrictMock; |
| |
| constexpr auto TR_IDENT = 0u; |
| constexpr auto TR_ROT_90 = HAL_TRANSFORM_ROT_90; |
| constexpr auto MAX_CLIENT_COMPOSITION_CACHE_SIZE = 3; |
| |
| const mat4 kIdentity; |
| const mat4 kNonIdentityHalf = mat4() * 0.5f; |
| const mat4 kNonIdentityQuarter = mat4() * 0.25f; |
| |
| constexpr OutputColorSetting kVendorSpecifiedOutputColorSetting = |
| static_cast<OutputColorSetting>(0x100); |
| |
| using CompositionStrategyPredictionState = android::compositionengine::impl:: |
| OutputCompositionState::CompositionStrategyPredictionState; |
| |
| struct OutputPartialMockBase : public impl::Output { |
| // compositionengine::Output overrides |
| const OutputCompositionState& getState() const override { return mState; } |
| OutputCompositionState& editState() override { return mState; } |
| |
| // Use mocks for all the remaining virtual functions |
| // not implemented by the base implementation class. |
| MOCK_CONST_METHOD0(getOutputLayerCount, size_t()); |
| MOCK_CONST_METHOD1(getOutputLayerOrderedByZByIndex, compositionengine::OutputLayer*(size_t)); |
| MOCK_METHOD2(ensureOutputLayer, |
| compositionengine::OutputLayer*(std::optional<size_t>, const sp<LayerFE>&)); |
| MOCK_METHOD0(finalizePendingOutputLayers, void()); |
| MOCK_METHOD0(clearOutputLayers, void()); |
| MOCK_CONST_METHOD1(dumpState, void(std::string&)); |
| MOCK_CONST_METHOD0(getCompositionEngine, const CompositionEngine&()); |
| MOCK_METHOD1(injectOutputLayerForTest, compositionengine::OutputLayer*(const sp<LayerFE>&)); |
| MOCK_METHOD1(injectOutputLayerForTest, void(std::unique_ptr<OutputLayer>)); |
| |
| impl::OutputCompositionState mState; |
| }; |
| |
| struct InjectedLayer { |
| InjectedLayer() { |
| EXPECT_CALL(*outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE.get())); |
| EXPECT_CALL(*outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| EXPECT_CALL(*outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| |
| EXPECT_CALL(*layerFE, getCompositionState()).WillRepeatedly(Return(&layerFEState)); |
| EXPECT_CALL(*layerFE, getSequence()).WillRepeatedly(Return(0)); |
| EXPECT_CALL(*layerFE, getDebugName()).WillRepeatedly(Return("InjectedLayer")); |
| } |
| |
| mock::OutputLayer* outputLayer = {new StrictMock<mock::OutputLayer>}; |
| sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState layerFEState; |
| impl::OutputLayerCompositionState outputLayerState; |
| }; |
| |
| struct NonInjectedLayer { |
| NonInjectedLayer() { |
| EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE.get())); |
| EXPECT_CALL(outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| EXPECT_CALL(outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| |
| EXPECT_CALL(*layerFE, getCompositionState()).WillRepeatedly(Return(&layerFEState)); |
| EXPECT_CALL(*layerFE, getSequence()).WillRepeatedly(Return(0)); |
| EXPECT_CALL(*layerFE, getDebugName()).WillRepeatedly(Return("NonInjectedLayer")); |
| } |
| |
| mock::OutputLayer outputLayer; |
| sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState layerFEState; |
| impl::OutputLayerCompositionState outputLayerState; |
| }; |
| |
| struct OutputTest : public testing::Test { |
| class Output : public impl::Output { |
| public: |
| using impl::Output::injectOutputLayerForTest; |
| virtual void injectOutputLayerForTest(std::unique_ptr<compositionengine::OutputLayer>) = 0; |
| }; |
| |
| static std::shared_ptr<Output> createOutput( |
| const compositionengine::CompositionEngine& compositionEngine) { |
| return impl::createOutputTemplated<Output>(compositionEngine); |
| } |
| |
| OutputTest() { |
| mOutput->setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| |
| mOutput->editState().displaySpace.setBounds( |
| ui::Size(kDefaultDisplaySize.getWidth(), kDefaultDisplaySize.getHeight())); |
| EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine)); |
| } |
| |
| void injectOutputLayer(InjectedLayer& layer) { |
| mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(layer.outputLayer)); |
| } |
| |
| void injectNullOutputLayer() { |
| mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(nullptr)); |
| } |
| |
| static const Rect kDefaultDisplaySize; |
| |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| StrictMock<renderengine::mock::RenderEngine> mRenderEngine; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| std::shared_ptr<Output> mOutput = createOutput(mCompositionEngine); |
| }; |
| |
| const Rect OutputTest::kDefaultDisplaySize{100, 200}; |
| |
| using ColorProfile = compositionengine::Output::ColorProfile; |
| |
| void dumpColorProfile(ColorProfile profile, std::string& result, const char* name) { |
| android::base::StringAppendF(&result, "%s (%s[%d] %s[%d] %s[%d]) ", name, |
| toString(profile.mode).c_str(), profile.mode, |
| toString(profile.dataspace).c_str(), profile.dataspace, |
| toString(profile.renderIntent).c_str(), profile.renderIntent); |
| } |
| |
| // Checks for a ColorProfile match |
| MATCHER_P(ColorProfileEq, expected, "") { |
| std::string buf; |
| buf.append("ColorProfiles are not equal\n"); |
| dumpColorProfile(expected, buf, "expected value"); |
| dumpColorProfile(arg, buf, "actual value"); |
| *result_listener << buf; |
| |
| return (expected.mode == arg.mode) && (expected.dataspace == arg.dataspace) && |
| (expected.renderIntent == arg.renderIntent); |
| } |
| |
| /* |
| * Basic construction |
| */ |
| |
| TEST_F(OutputTest, canInstantiateOutput) { |
| // The validation check checks each required component. |
| EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isValid()).WillOnce(Return(true)); |
| |
| EXPECT_TRUE(mOutput->isValid()); |
| |
| // If we take away the required components, it is no longer valid. |
| mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>()); |
| |
| EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true)); |
| |
| EXPECT_FALSE(mOutput->isValid()); |
| } |
| |
| /* |
| * Output::setCompositionEnabled() |
| */ |
| |
| TEST_F(OutputTest, setCompositionEnabledDoesNothingIfAlreadyEnabled) { |
| mOutput->editState().isEnabled = true; |
| |
| mOutput->setCompositionEnabled(true); |
| |
| EXPECT_TRUE(mOutput->getState().isEnabled); |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region())); |
| } |
| |
| TEST_F(OutputTest, setCompositionEnabledSetsEnabledAndDirtiesEntireOutput) { |
| mOutput->editState().isEnabled = false; |
| |
| mOutput->setCompositionEnabled(true); |
| |
| EXPECT_TRUE(mOutput->getState().isEnabled); |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| TEST_F(OutputTest, setCompositionEnabledSetsDisabledAndDirtiesEntireOutput) { |
| mOutput->editState().isEnabled = true; |
| |
| mOutput->setCompositionEnabled(false); |
| |
| EXPECT_FALSE(mOutput->getState().isEnabled); |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| /* |
| * Output::setTreat170mAsSrgb() |
| */ |
| |
| TEST_F(OutputTest, setTreat170mAsSrgb) { |
| EXPECT_FALSE(mOutput->getState().treat170mAsSrgb); |
| |
| mOutput->setTreat170mAsSrgb(true); |
| EXPECT_TRUE(mOutput->getState().treat170mAsSrgb); |
| |
| mOutput->setTreat170mAsSrgb(false); |
| EXPECT_FALSE(mOutput->getState().treat170mAsSrgb); |
| } |
| |
| /* |
| * Output::setLayerCachingEnabled() |
| */ |
| |
| TEST_F(OutputTest, setLayerCachingEnabled_enablesCaching) { |
| const auto kSize = ui::Size(1, 1); |
| EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize)); |
| mOutput->setLayerCachingEnabled(false); |
| mOutput->setLayerCachingEnabled(true); |
| |
| EXPECT_TRUE(mOutput->plannerEnabled()); |
| } |
| |
| TEST_F(OutputTest, setLayerCachingEnabled_disablesCaching) { |
| const auto kSize = ui::Size(1, 1); |
| EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize)); |
| mOutput->setLayerCachingEnabled(true); |
| mOutput->setLayerCachingEnabled(false); |
| |
| EXPECT_FALSE(mOutput->plannerEnabled()); |
| } |
| |
| TEST_F(OutputTest, setLayerCachingEnabled_disablesCachingAndResetsOverrideInfo) { |
| renderengine::mock::RenderEngine renderEngine; |
| const auto kSize = ui::Size(1, 1); |
| EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize)); |
| mOutput->setLayerCachingEnabled(true); |
| |
| // Inject some layers |
| InjectedLayer layer; |
| layer.outputLayerState.overrideInfo.buffer = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>::make(), renderEngine, |
| renderengine::impl::ExternalTexture::Usage::READABLE | |
| renderengine::impl::ExternalTexture::Usage::WRITEABLE); |
| injectOutputLayer(layer); |
| // inject a null layer to check for null exceptions |
| injectNullOutputLayer(); |
| |
| EXPECT_NE(nullptr, layer.outputLayerState.overrideInfo.buffer); |
| mOutput->setLayerCachingEnabled(false); |
| EXPECT_EQ(nullptr, layer.outputLayerState.overrideInfo.buffer); |
| } |
| |
| /* |
| * Output::setProjection() |
| */ |
| |
| TEST_F(OutputTest, setProjectionWorks) { |
| const Rect displayRect{0, 0, 1000, 2000}; |
| mOutput->editState().displaySpace.setBounds( |
| ui::Size(displayRect.getWidth(), displayRect.getHeight())); |
| mOutput->editState().framebufferSpace.setBounds( |
| ui::Size(displayRect.getWidth(), displayRect.getHeight())); |
| |
| const ui::Rotation orientation = ui::ROTATION_90; |
| const Rect frame{50, 60, 100, 100}; |
| const Rect viewport{10, 20, 30, 40}; |
| |
| mOutput->setProjection(orientation, viewport, frame); |
| |
| EXPECT_EQ(orientation, mOutput->getState().displaySpace.getOrientation()); |
| EXPECT_EQ(frame, mOutput->getState().orientedDisplaySpace.getContent()); |
| EXPECT_EQ(viewport, mOutput->getState().layerStackSpace.getContent()); |
| |
| const auto state = mOutput->getState(); |
| EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation()); |
| EXPECT_EQ(viewport, state.layerStackSpace.getContent()); |
| EXPECT_EQ(Rect(0, 0, 20, 20), state.layerStackSpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation()); |
| EXPECT_EQ(frame, state.orientedDisplaySpace.getContent()); |
| EXPECT_EQ(Rect(0, 0, 2000, 1000), state.orientedDisplaySpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect()); |
| EXPECT_EQ(Rect(900, 50, 940, 100), state.displaySpace.getContent()); |
| EXPECT_EQ(orientation, state.displaySpace.getOrientation()); |
| |
| EXPECT_EQ(displayRect, state.framebufferSpace.getBoundsAsRect()); |
| EXPECT_EQ(Rect(900, 50, 940, 100), state.framebufferSpace.getContent()); |
| EXPECT_EQ(orientation, state.framebufferSpace.getOrientation()); |
| |
| EXPECT_EQ(state.displaySpace.getContent(), |
| state.transform.transform(state.layerStackSpace.getContent())); |
| |
| EXPECT_EQ(ui::Transform::ROT_90, mOutput->getTransformHint()); |
| } |
| |
| TEST_F(OutputTest, setProjectionWithSmallFramebufferWorks) { |
| const Rect displayRect{0, 0, 1000, 2000}; |
| const Rect framebufferRect{0, 0, 500, 1000}; |
| mOutput->editState().displaySpace.setBounds( |
| ui::Size(displayRect.getWidth(), displayRect.getHeight())); |
| mOutput->editState().framebufferSpace.setBounds( |
| ui::Size(framebufferRect.getWidth(), framebufferRect.getHeight())); |
| |
| const ui::Rotation orientation = ui::ROTATION_90; |
| const Rect frame{50, 60, 100, 100}; |
| const Rect viewport{10, 20, 30, 40}; |
| |
| mOutput->setProjection(orientation, viewport, frame); |
| |
| EXPECT_EQ(orientation, mOutput->getState().displaySpace.getOrientation()); |
| EXPECT_EQ(frame, mOutput->getState().orientedDisplaySpace.getContent()); |
| EXPECT_EQ(viewport, mOutput->getState().layerStackSpace.getContent()); |
| |
| const auto state = mOutput->getState(); |
| EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation()); |
| EXPECT_EQ(viewport, state.layerStackSpace.getContent()); |
| EXPECT_EQ(Rect(0, 0, 20, 20), state.layerStackSpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation()); |
| EXPECT_EQ(frame, state.orientedDisplaySpace.getContent()); |
| EXPECT_EQ(Rect(0, 0, 2000, 1000), state.orientedDisplaySpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect()); |
| EXPECT_EQ(Rect(900, 50, 940, 100), state.displaySpace.getContent()); |
| EXPECT_EQ(orientation, state.displaySpace.getOrientation()); |
| |
| EXPECT_EQ(framebufferRect, state.framebufferSpace.getBoundsAsRect()); |
| EXPECT_EQ(Rect(450, 25, 470, 50), state.framebufferSpace.getContent()); |
| EXPECT_EQ(orientation, state.framebufferSpace.getOrientation()); |
| |
| EXPECT_EQ(state.displaySpace.getContent(), |
| state.transform.transform(state.layerStackSpace.getContent())); |
| } |
| |
| /* |
| * Output::setDisplaySize() |
| */ |
| |
| TEST_F(OutputTest, setDisplaySpaceSizeUpdatesOutputStateAndDirtiesEntireOutput) { |
| mOutput->editState().layerStackSpace.setContent(Rect(0, 0, 2000, 1000)); |
| mOutput->editState().layerStackSpace.setBounds(ui::Size(2000, 1000)); |
| mOutput->editState().orientedDisplaySpace.setContent(Rect(0, 0, 1800, 900)); |
| mOutput->editState().orientedDisplaySpace.setBounds(ui::Size(2000, 1000)); |
| mOutput->editState().framebufferSpace.setContent(Rect(0, 0, 900, 1800)); |
| mOutput->editState().framebufferSpace.setBounds(ui::Size(1000, 2000)); |
| mOutput->editState().framebufferSpace.setOrientation(ui::ROTATION_90); |
| mOutput->editState().displaySpace.setContent(Rect(0, 0, 900, 1800)); |
| mOutput->editState().displaySpace.setBounds(ui::Size(1000, 2000)); |
| mOutput->editState().displaySpace.setOrientation(ui::ROTATION_90); |
| |
| const ui::Size newDisplaySize{500, 1000}; |
| |
| EXPECT_CALL(*mRenderSurface, setDisplaySize(newDisplaySize)).Times(1); |
| |
| mOutput->setDisplaySize(newDisplaySize); |
| |
| const auto state = mOutput->getState(); |
| |
| const Rect displayRect(newDisplaySize); |
| EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation()); |
| EXPECT_EQ(Rect(0, 0, 2000, 1000), state.layerStackSpace.getContent()); |
| EXPECT_EQ(Rect(0, 0, 2000, 1000), state.layerStackSpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation()); |
| EXPECT_EQ(Rect(0, 0, 1000, 500), state.orientedDisplaySpace.getBoundsAsRect()); |
| |
| EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect()); |
| EXPECT_EQ(ui::ROTATION_90, state.displaySpace.getOrientation()); |
| |
| EXPECT_EQ(displayRect, state.framebufferSpace.getBoundsAsRect()); |
| EXPECT_EQ(ui::ROTATION_90, state.framebufferSpace.getOrientation()); |
| |
| EXPECT_EQ(state.displaySpace.getContent(), |
| state.transform.transform(state.layerStackSpace.getContent())); |
| |
| EXPECT_THAT(state.dirtyRegion, RegionEq(Region(displayRect))); |
| } |
| |
| /* |
| * Output::setLayerFilter() |
| */ |
| |
| TEST_F(OutputTest, setLayerFilterSetsFilterAndDirtiesEntireOutput) { |
| constexpr ui::LayerFilter kFilter{ui::LayerStack{123u}, true}; |
| mOutput->setLayerFilter(kFilter); |
| |
| const auto& state = mOutput->getState(); |
| EXPECT_EQ(kFilter.layerStack, state.layerFilter.layerStack); |
| EXPECT_TRUE(state.layerFilter.toInternalDisplay); |
| |
| EXPECT_THAT(state.dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| /* |
| * Output::setColorTransform |
| */ |
| |
| TEST_F(OutputTest, setColorTransformWithNoChangeFlaggedSkipsUpdates) { |
| mOutput->editState().colorTransformMatrix = kIdentity; |
| |
| // If no colorTransformMatrix is set the update should be skipped. |
| CompositionRefreshArgs refreshArgs; |
| refreshArgs.colorTransformMatrix = std::nullopt; |
| |
| mOutput->setColorTransform(refreshArgs); |
| |
| // The internal state should be unchanged |
| EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix); |
| |
| // No dirty region should be set |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region())); |
| } |
| |
| TEST_F(OutputTest, setColorTransformWithNoActualChangeSkipsUpdates) { |
| mOutput->editState().colorTransformMatrix = kIdentity; |
| |
| // Attempting to set the same colorTransformMatrix that is already set should |
| // also skip the update. |
| CompositionRefreshArgs refreshArgs; |
| refreshArgs.colorTransformMatrix = kIdentity; |
| |
| mOutput->setColorTransform(refreshArgs); |
| |
| // The internal state should be unchanged |
| EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix); |
| |
| // No dirty region should be set |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region())); |
| } |
| |
| TEST_F(OutputTest, setColorTransformPerformsUpdateToIdentity) { |
| mOutput->editState().colorTransformMatrix = kNonIdentityHalf; |
| |
| // Setting a different colorTransformMatrix should perform the update. |
| CompositionRefreshArgs refreshArgs; |
| refreshArgs.colorTransformMatrix = kIdentity; |
| |
| mOutput->setColorTransform(refreshArgs); |
| |
| // The internal state should have been updated |
| EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix); |
| |
| // The dirtyRegion should be set to the full display size |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| TEST_F(OutputTest, setColorTransformPerformsUpdateForIdentityToHalf) { |
| mOutput->editState().colorTransformMatrix = kIdentity; |
| |
| // Setting a different colorTransformMatrix should perform the update. |
| CompositionRefreshArgs refreshArgs; |
| refreshArgs.colorTransformMatrix = kNonIdentityHalf; |
| |
| mOutput->setColorTransform(refreshArgs); |
| |
| // The internal state should have been updated |
| EXPECT_EQ(kNonIdentityHalf, mOutput->getState().colorTransformMatrix); |
| |
| // The dirtyRegion should be set to the full display size |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| TEST_F(OutputTest, setColorTransformPerformsUpdateForHalfToQuarter) { |
| mOutput->editState().colorTransformMatrix = kNonIdentityHalf; |
| |
| // Setting a different colorTransformMatrix should perform the update. |
| CompositionRefreshArgs refreshArgs; |
| refreshArgs.colorTransformMatrix = kNonIdentityQuarter; |
| |
| mOutput->setColorTransform(refreshArgs); |
| |
| // The internal state should have been updated |
| EXPECT_EQ(kNonIdentityQuarter, mOutput->getState().colorTransformMatrix); |
| |
| // The dirtyRegion should be set to the full display size |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| /* |
| * Output::setColorProfile |
| */ |
| |
| using OutputSetColorProfileTest = OutputTest; |
| |
| TEST_F(OutputSetColorProfileTest, setsStateAndDirtiesOutputIfChanged) { |
| using ColorProfile = Output::ColorProfile; |
| |
| EXPECT_CALL(*mRenderSurface, setBufferDataspace(ui::Dataspace::DISPLAY_P3)).Times(1); |
| |
| mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3, |
| ui::RenderIntent::TONE_MAP_COLORIMETRIC}); |
| |
| EXPECT_EQ(ui::ColorMode::DISPLAY_P3, mOutput->getState().colorMode); |
| EXPECT_EQ(ui::Dataspace::DISPLAY_P3, mOutput->getState().dataspace); |
| EXPECT_EQ(ui::RenderIntent::TONE_MAP_COLORIMETRIC, mOutput->getState().renderIntent); |
| |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize))); |
| } |
| |
| TEST_F(OutputSetColorProfileTest, doesNothingIfNoChange) { |
| using ColorProfile = Output::ColorProfile; |
| |
| mOutput->editState().colorMode = ui::ColorMode::DISPLAY_P3; |
| mOutput->editState().dataspace = ui::Dataspace::DISPLAY_P3; |
| mOutput->editState().renderIntent = ui::RenderIntent::TONE_MAP_COLORIMETRIC; |
| |
| mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3, |
| ui::RenderIntent::TONE_MAP_COLORIMETRIC}); |
| |
| EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region())); |
| } |
| |
| /* |
| * Output::setRenderSurface() |
| */ |
| |
| TEST_F(OutputTest, setRenderSurfaceResetsBounds) { |
| const ui::Size newDisplaySize{640, 480}; |
| |
| mock::RenderSurface* renderSurface = new StrictMock<mock::RenderSurface>(); |
| EXPECT_CALL(*renderSurface, getSize()).WillOnce(ReturnRef(newDisplaySize)); |
| |
| mOutput->setRenderSurface(std::unique_ptr<RenderSurface>(renderSurface)); |
| |
| EXPECT_EQ(Rect(newDisplaySize), mOutput->getState().framebufferSpace.getBoundsAsRect()); |
| } |
| |
| /** |
| * Output::setDisplayBrightness() |
| */ |
| |
| TEST_F(OutputTest, setNextBrightness) { |
| constexpr float kDisplayBrightness = 0.5f; |
| mOutput->setNextBrightness(kDisplayBrightness); |
| ASSERT_TRUE(mOutput->getState().displayBrightness.has_value()); |
| EXPECT_EQ(kDisplayBrightness, mOutput->getState().displayBrightness); |
| } |
| |
| /* |
| * Output::getDirtyRegion() |
| */ |
| |
| TEST_F(OutputTest, getDirtyRegion) { |
| const Rect viewport{100, 200}; |
| mOutput->editState().layerStackSpace.setContent(viewport); |
| mOutput->editState().dirtyRegion.set(50, 300); |
| |
| // The dirty region should be clipped to the display bounds. |
| EXPECT_THAT(mOutput->getDirtyRegion(), RegionEq(Region(Rect(50, 200)))); |
| } |
| |
| /* |
| * Output::includesLayer() |
| */ |
| |
| TEST_F(OutputTest, layerFiltering) { |
| const ui::LayerStack layerStack1{123u}; |
| const ui::LayerStack layerStack2{456u}; |
| |
| // If the output is associated to layerStack1 and to an internal display... |
| mOutput->setLayerFilter({layerStack1, true}); |
| |
| // It excludes layers with no layer stack, internal-only or not. |
| EXPECT_FALSE(mOutput->includesLayer({ui::INVALID_LAYER_STACK, false})); |
| EXPECT_FALSE(mOutput->includesLayer({ui::INVALID_LAYER_STACK, true})); |
| |
| // It includes layers on layerStack1, internal-only or not. |
| EXPECT_TRUE(mOutput->includesLayer({layerStack1, false})); |
| EXPECT_TRUE(mOutput->includesLayer({layerStack1, true})); |
| EXPECT_FALSE(mOutput->includesLayer({layerStack2, true})); |
| EXPECT_FALSE(mOutput->includesLayer({layerStack2, false})); |
| |
| // If the output is associated to layerStack1 but not to an internal display... |
| mOutput->setLayerFilter({layerStack1, false}); |
| |
| // It includes layers on layerStack1, unless they are internal-only. |
| EXPECT_TRUE(mOutput->includesLayer({layerStack1, false})); |
| EXPECT_FALSE(mOutput->includesLayer({layerStack1, true})); |
| EXPECT_FALSE(mOutput->includesLayer({layerStack2, true})); |
| EXPECT_FALSE(mOutput->includesLayer({layerStack2, false})); |
| } |
| |
| TEST_F(OutputTest, layerFilteringWithoutCompositionState) { |
| NonInjectedLayer layer; |
| sp<LayerFE> layerFE(layer.layerFE); |
| |
| // Layers without composition state are excluded. |
| EXPECT_CALL(*layer.layerFE, getCompositionState).WillOnce(Return(nullptr)); |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| } |
| |
| TEST_F(OutputTest, layerFilteringWithCompositionState) { |
| NonInjectedLayer layer; |
| sp<LayerFE> layerFE(layer.layerFE); |
| |
| const ui::LayerStack layerStack1{123u}; |
| const ui::LayerStack layerStack2{456u}; |
| |
| // If the output is associated to layerStack1 and to an internal display... |
| mOutput->setLayerFilter({layerStack1, true}); |
| |
| // It excludes layers with no layer stack, internal-only or not. |
| layer.layerFEState.outputFilter = {ui::INVALID_LAYER_STACK, false}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {ui::INVALID_LAYER_STACK, true}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| // It includes layers on layerStack1, internal-only or not. |
| layer.layerFEState.outputFilter = {layerStack1, false}; |
| EXPECT_TRUE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack1, true}; |
| EXPECT_TRUE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack2, true}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack2, false}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| // If the output is associated to layerStack1 but not to an internal display... |
| mOutput->setLayerFilter({layerStack1, false}); |
| |
| // It includes layers on layerStack1, unless they are internal-only. |
| layer.layerFEState.outputFilter = {layerStack1, false}; |
| EXPECT_TRUE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack1, true}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack2, true}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| |
| layer.layerFEState.outputFilter = {layerStack2, false}; |
| EXPECT_FALSE(mOutput->includesLayer(layerFE)); |
| } |
| |
| /* |
| * Output::getOutputLayerForLayer() |
| */ |
| |
| TEST_F(OutputTest, getOutputLayerForLayerWorks) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| NonInjectedLayer layer3; |
| |
| injectOutputLayer(layer1); |
| injectNullOutputLayer(); |
| injectOutputLayer(layer2); |
| |
| // If the input layer matches the first OutputLayer, it will be returned. |
| EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get())); |
| EXPECT_EQ(layer1.outputLayer, mOutput->getOutputLayerForLayer(layer1.layerFE)); |
| |
| // If the input layer matches the second OutputLayer, it will be returned. |
| EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get())); |
| EXPECT_CALL(*layer2.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer2.layerFE.get())); |
| EXPECT_EQ(layer2.outputLayer, mOutput->getOutputLayerForLayer(layer2.layerFE)); |
| |
| // If the input layer does not match an output layer, null will be returned. |
| EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get())); |
| EXPECT_CALL(*layer2.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer2.layerFE.get())); |
| EXPECT_EQ(nullptr, mOutput->getOutputLayerForLayer(layer3.layerFE)); |
| } |
| |
| /* |
| * Output::setReleasedLayers() |
| */ |
| |
| using OutputSetReleasedLayersTest = OutputTest; |
| |
| TEST_F(OutputSetReleasedLayersTest, setReleasedLayersTakesGivenLayers) { |
| sp<StrictMock<mock::LayerFE>> layer1FE = sp<StrictMock<mock::LayerFE>>::make(); |
| sp<StrictMock<mock::LayerFE>> layer2FE = sp<StrictMock<mock::LayerFE>>::make(); |
| sp<StrictMock<mock::LayerFE>> layer3FE = sp<StrictMock<mock::LayerFE>>::make(); |
| |
| Output::ReleasedLayers layers; |
| layers.push_back(layer1FE); |
| layers.push_back(layer2FE); |
| layers.push_back(layer3FE); |
| |
| mOutput->setReleasedLayers(std::move(layers)); |
| |
| const auto& setLayers = mOutput->getReleasedLayersForTest(); |
| ASSERT_EQ(3u, setLayers.size()); |
| ASSERT_EQ(layer1FE.get(), setLayers[0].promote().get()); |
| ASSERT_EQ(layer2FE.get(), setLayers[1].promote().get()); |
| ASSERT_EQ(layer3FE.get(), setLayers[2].promote().get()); |
| } |
| |
| /* |
| * Output::updateAndWriteCompositionState() |
| */ |
| |
| using OutputUpdateAndWriteCompositionStateTest = OutputTest; |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfLayers) { |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfOutputNotEnabled) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| mOutput->editState().isEnabled = false; |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| CompositionRefreshArgs args; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerContentForAllLayers) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| uint32_t z = 0; |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180)); |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = false; |
| args.devOptForceClientComposition = false; |
| args.internalDisplayRotationFlags = ui::Transform::ROT_180; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerGeometryAndContentForAllLayers) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| uint32_t z = 0; |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = true; |
| args.devOptForceClientComposition = false; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, forcesClientCompositionForAllLayers) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| uint32_t z = 0; |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = false; |
| args.devOptForceClientComposition = true; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, peekThroughLayerChangesOrder) { |
| renderengine::mock::RenderEngine renderEngine; |
| InjectedLayer layer0; |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| InSequence seq; |
| EXPECT_CALL(*layer0.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0)); |
| |
| uint32_t z = 0; |
| EXPECT_CALL(*layer0.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer0.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| // After calling planComposition (which clears overrideInfo), this test sets |
| // layer3 to be the peekThroughLayer for layer1 and layer2. As a result, it |
| // comes first, setting isPeekingThrough to true and zIsOverridden to true |
| // for it and the following layers. |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ true, /*isPeekingThrough*/ |
| true)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ true, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ true, z++, |
| /*zIsOverridden*/ true, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| injectOutputLayer(layer0); |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = true; |
| args.devOptForceClientComposition = false; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| |
| std::shared_ptr<renderengine::ExternalTexture> buffer = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>::make(), renderEngine, |
| renderengine::impl::ExternalTexture::Usage::READABLE | |
| renderengine::impl::ExternalTexture::Usage::WRITEABLE); |
| layer1.outputLayerState.overrideInfo.buffer = buffer; |
| layer2.outputLayerState.overrideInfo.buffer = buffer; |
| layer1.outputLayerState.overrideInfo.peekThroughLayer = layer3.outputLayer; |
| layer2.outputLayerState.overrideInfo.peekThroughLayer = layer3.outputLayer; |
| |
| mOutput->writeCompositionState(args); |
| } |
| |
| /* |
| * Output::prepareFrame() |
| */ |
| |
| struct OutputPrepareFrameTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD1(chooseCompositionStrategy, |
| bool(std::optional<android::HWComposer::DeviceRequestedChanges>*)); |
| MOCK_METHOD0(resetCompositionStrategy, void()); |
| }; |
| |
| OutputPrepareFrameTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| } |
| |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| }; |
| |
| TEST_F(OutputPrepareFrameTest, takesEarlyOutIfNotEnabled) { |
| mOutput.editState().isEnabled = false; |
| |
| mOutput.prepareFrame(); |
| } |
| |
| TEST_F(OutputPrepareFrameTest, delegatesToChooseCompositionStrategyAndRenderSurface) { |
| mOutput.editState().isEnabled = true; |
| mOutput.editState().usesClientComposition = false; |
| mOutput.editState().usesDeviceComposition = true; |
| |
| EXPECT_CALL(mOutput, chooseCompositionStrategy(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(1); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)); |
| |
| mOutput.prepareFrame(); |
| EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::DISABLED); |
| } |
| |
| // Note: Use OutputTest and not OutputPrepareFrameTest, so the real |
| // base chooseCompositionStrategy() is invoked. |
| TEST_F(OutputTest, prepareFrameSetsClientCompositionOnlyByDefault) { |
| mOutput->editState().isEnabled = true; |
| mOutput->editState().usesClientComposition = false; |
| mOutput->editState().usesDeviceComposition = true; |
| |
| EXPECT_CALL(*mRenderSurface, prepareFrame(true, false)); |
| |
| mOutput->prepareFrame(); |
| |
| EXPECT_TRUE(mOutput->getState().usesClientComposition); |
| EXPECT_FALSE(mOutput->getState().usesDeviceComposition); |
| EXPECT_EQ(mOutput->getState().strategyPrediction, CompositionStrategyPredictionState::DISABLED); |
| } |
| |
| struct OutputPrepareFrameAsyncTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD1(chooseCompositionStrategy, |
| bool(std::optional<android::HWComposer::DeviceRequestedChanges>*)); |
| MOCK_METHOD0(updateProtectedContentState, void()); |
| MOCK_METHOD2(dequeueRenderBuffer, |
| bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*)); |
| MOCK_METHOD1( |
| chooseCompositionStrategyAsync, |
| std::future<bool>(std::optional<android::HWComposer::DeviceRequestedChanges>*)); |
| MOCK_METHOD3(composeSurfaces, |
| std::optional<base::unique_fd>(const Region&, |
| std::shared_ptr<renderengine::ExternalTexture>, |
| base::unique_fd&)); |
| MOCK_METHOD0(resetCompositionStrategy, void()); |
| }; |
| |
| OutputPrepareFrameAsyncTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| } |
| |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| CompositionRefreshArgs mRefreshArgs; |
| }; |
| |
| TEST_F(OutputPrepareFrameAsyncTest, delegatesToChooseCompositionStrategyAndRenderSurface) { |
| mOutput.editState().isEnabled = true; |
| mOutput.editState().usesClientComposition = false; |
| mOutput.editState().usesDeviceComposition = true; |
| mOutput.editState().previousDeviceRequestedChanges = |
| std::make_optional<android::HWComposer::DeviceRequestedChanges>({}); |
| std::promise<bool> p; |
| p.set_value(true); |
| |
| EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(1); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true)); |
| EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(1); |
| EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)) |
| .WillOnce(DoAll(SetArgPointee<0>(mOutput.editState().previousDeviceRequestedChanges), |
| Return(ByMove(p.get_future())))); |
| EXPECT_CALL(mOutput, composeSurfaces(_, _, _)); |
| |
| impl::GpuCompositionResult result = mOutput.prepareFrameAsync(); |
| EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::SUCCESS); |
| EXPECT_FALSE(result.bufferAvailable()); |
| } |
| |
| TEST_F(OutputPrepareFrameAsyncTest, skipCompositionOnDequeueFailure) { |
| mOutput.editState().isEnabled = true; |
| mOutput.editState().usesClientComposition = false; |
| mOutput.editState().usesDeviceComposition = true; |
| mOutput.editState().previousDeviceRequestedChanges = |
| std::make_optional<android::HWComposer::DeviceRequestedChanges>({}); |
| std::promise<bool> p; |
| p.set_value(true); |
| |
| EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(false)); |
| EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2); |
| EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)) |
| .WillOnce(DoAll(SetArgPointee<0>(mOutput.editState().previousDeviceRequestedChanges), |
| Return(ByMove(p.get_future())))); |
| |
| impl::GpuCompositionResult result = mOutput.prepareFrameAsync(); |
| EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL); |
| EXPECT_FALSE(result.bufferAvailable()); |
| } |
| |
| // Tests that in the event of hwc error when choosing composition strategy, we would fall back |
| // client composition |
| TEST_F(OutputPrepareFrameAsyncTest, chooseCompositionStrategyFailureCallsPrepareFrame) { |
| mOutput.editState().isEnabled = true; |
| mOutput.editState().usesClientComposition = false; |
| mOutput.editState().usesDeviceComposition = true; |
| mOutput.editState().previousDeviceRequestedChanges = |
| std::make_optional<android::HWComposer::DeviceRequestedChanges>({}); |
| std::promise<bool> p; |
| p.set_value(false); |
| std::shared_ptr<renderengine::ExternalTexture> tex = |
| std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1, |
| HAL_PIXEL_FORMAT_RGBA_8888, 1, |
| 2); |
| EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)) |
| .WillOnce(DoAll(SetArgPointee<1>(tex), Return(true))); |
| EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2); |
| EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)).WillOnce([&] { |
| return p.get_future(); |
| }); |
| EXPECT_CALL(mOutput, composeSurfaces(_, _, _)); |
| |
| impl::GpuCompositionResult result = mOutput.prepareFrameAsync(); |
| EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL); |
| EXPECT_TRUE(result.bufferAvailable()); |
| } |
| |
| TEST_F(OutputPrepareFrameAsyncTest, predictionMiss) { |
| mOutput.editState().isEnabled = true; |
| mOutput.editState().usesClientComposition = false; |
| mOutput.editState().usesDeviceComposition = true; |
| mOutput.editState().previousDeviceRequestedChanges = |
| std::make_optional<android::HWComposer::DeviceRequestedChanges>({}); |
| auto newDeviceRequestedChanges = |
| std::make_optional<android::HWComposer::DeviceRequestedChanges>({}); |
| newDeviceRequestedChanges->displayRequests = static_cast<hal::DisplayRequest>(0); |
| std::promise<bool> p; |
| p.set_value(false); |
| std::shared_ptr<renderengine::ExternalTexture> tex = |
| std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1, |
| HAL_PIXEL_FORMAT_RGBA_8888, 1, |
| 2); |
| |
| EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)) |
| .WillOnce(DoAll(SetArgPointee<1>(tex), Return(true))); |
| EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2); |
| EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)).WillOnce([&] { |
| return p.get_future(); |
| }); |
| EXPECT_CALL(mOutput, composeSurfaces(_, _, _)); |
| |
| impl::GpuCompositionResult result = mOutput.prepareFrameAsync(); |
| EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL); |
| EXPECT_TRUE(result.bufferAvailable()); |
| } |
| |
| /* |
| * Output::prepare() |
| */ |
| |
| struct OutputPrepareTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD2(rebuildLayerStacks, |
| void(const compositionengine::CompositionRefreshArgs&, |
| compositionengine::LayerFESet&)); |
| }; |
| |
| OutputPrepareTest() { |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0)) |
| .WillRepeatedly(Return(&mLayer1.outputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1)) |
| .WillRepeatedly(Return(&mLayer2.outputLayer)); |
| |
| mRefreshArgs.layers.push_back(mLayer1.layerFE); |
| mRefreshArgs.layers.push_back(mLayer2.layerFE); |
| } |
| |
| struct Layer { |
| StrictMock<mock::OutputLayer> outputLayer; |
| sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| }; |
| |
| StrictMock<OutputPartialMock> mOutput; |
| CompositionRefreshArgs mRefreshArgs; |
| LayerFESet mGeomSnapshots; |
| Layer mLayer1; |
| Layer mLayer2; |
| }; |
| |
| TEST_F(OutputPrepareTest, callsUncacheBuffersOnEachOutputLayerAndThenRebuildsLayerStacks) { |
| InSequence seq; |
| |
| mRefreshArgs.bufferIdsToUncache = {1, 3, 5}; |
| |
| EXPECT_CALL(mOutput, rebuildLayerStacks(Ref(mRefreshArgs), Ref(mGeomSnapshots))); |
| EXPECT_CALL(mLayer1.outputLayer, uncacheBuffers(Ref(mRefreshArgs.bufferIdsToUncache))); |
| EXPECT_CALL(mLayer2.outputLayer, uncacheBuffers(Ref(mRefreshArgs.bufferIdsToUncache))); |
| |
| mOutput.prepare(mRefreshArgs, mGeomSnapshots); |
| } |
| |
| TEST_F(OutputPrepareTest, skipsUncacheBuffersIfEmptyAndThenRebuildsLayerStacks) { |
| InSequence seq; |
| |
| mRefreshArgs.bufferIdsToUncache = {}; |
| |
| EXPECT_CALL(mOutput, rebuildLayerStacks(Ref(mRefreshArgs), Ref(mGeomSnapshots))); |
| EXPECT_CALL(mLayer1.outputLayer, uncacheBuffers(_)).Times(0); |
| EXPECT_CALL(mLayer2.outputLayer, uncacheBuffers(_)).Times(0); |
| |
| mOutput.prepare(mRefreshArgs, mGeomSnapshots); |
| } |
| |
| /* |
| * Output::rebuildLayerStacks() |
| */ |
| |
| struct OutputRebuildLayerStacksTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD2(collectVisibleLayers, |
| void(const compositionengine::CompositionRefreshArgs&, |
| compositionengine::Output::CoverageState&)); |
| }; |
| |
| OutputRebuildLayerStacksTest() { |
| mOutput.mState.isEnabled = true; |
| mOutput.mState.transform = kIdentityTransform; |
| mOutput.mState.displaySpace.setBounds( |
| ui::Size(kOutputBounds.getWidth(), kOutputBounds.getHeight())); |
| |
| mRefreshArgs.updatingOutputGeometryThisFrame = true; |
| |
| mCoverageAboveCoveredLayersToSet = Region(Rect(0, 0, 10, 10)); |
| |
| EXPECT_CALL(mOutput, collectVisibleLayers(Ref(mRefreshArgs), _)) |
| .WillRepeatedly(Invoke(this, &OutputRebuildLayerStacksTest::setTestCoverageValues)); |
| } |
| |
| void setTestCoverageValues(const CompositionRefreshArgs&, |
| compositionengine::Output::CoverageState& state) { |
| state.aboveCoveredLayers = mCoverageAboveCoveredLayersToSet; |
| state.aboveOpaqueLayers = mCoverageAboveOpaqueLayersToSet; |
| state.dirtyRegion = mCoverageDirtyRegionToSet; |
| } |
| |
| static const ui::Transform kIdentityTransform; |
| static const ui::Transform kRotate90Transform; |
| static const Rect kOutputBounds; |
| |
| StrictMock<OutputPartialMock> mOutput; |
| CompositionRefreshArgs mRefreshArgs; |
| LayerFESet mGeomSnapshots; |
| Region mCoverageAboveCoveredLayersToSet; |
| Region mCoverageAboveOpaqueLayersToSet; |
| Region mCoverageDirtyRegionToSet; |
| }; |
| |
| const ui::Transform OutputRebuildLayerStacksTest::kIdentityTransform{TR_IDENT, 1920, 1080}; |
| const ui::Transform OutputRebuildLayerStacksTest::kRotate90Transform{TR_ROT_90, 1920, 1080}; |
| const Rect OutputRebuildLayerStacksTest::kOutputBounds{0, 0, 1920, 1080}; |
| |
| TEST_F(OutputRebuildLayerStacksTest, doesNothingIfNotEnabled) { |
| mOutput.mState.isEnabled = false; |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, doesNothingIfNotUpdatingGeometryThisFrame) { |
| mRefreshArgs.updatingOutputGeometryThisFrame = false; |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWithNoRotationAndFullCoverage) { |
| mOutput.mState.transform = kIdentityTransform; |
| |
| mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1920, 1080)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 0, 0)))); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWithNoRotationAndPartialCoverage) { |
| mOutput.mState.transform = kIdentityTransform; |
| |
| mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 960, 1080)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(960, 0, 1920, 1080)))); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWith90RotationAndFullCoverage) { |
| mOutput.mState.transform = kRotate90Transform; |
| |
| mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1080, 1920)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 0, 0)))); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWith90RotationAndPartialCoverage) { |
| mOutput.mState.transform = kRotate90Transform; |
| |
| mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1080, 960)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 960, 1080)))); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, addsToDirtyRegionWithNoRotation) { |
| mOutput.mState.transform = kIdentityTransform; |
| mOutput.mState.dirtyRegion = Region(Rect(960, 0, 1920, 1080)); |
| |
| mCoverageDirtyRegionToSet = Region(Rect(0, 0, 960, 1080)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.dirtyRegion, RegionEq(Region(Rect(0, 0, 1920, 1080)))); |
| } |
| |
| TEST_F(OutputRebuildLayerStacksTest, addsToDirtyRegionWith90Rotation) { |
| mOutput.mState.transform = kRotate90Transform; |
| mOutput.mState.dirtyRegion = Region(Rect(0, 960, 1080, 1920)); |
| |
| mCoverageDirtyRegionToSet = Region(Rect(0, 0, 1080, 960)); |
| |
| mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots); |
| |
| EXPECT_THAT(mOutput.mState.dirtyRegion, RegionEq(Region(Rect(0, 0, 1080, 1920)))); |
| } |
| |
| /* |
| * Output::collectVisibleLayers() |
| */ |
| |
| struct OutputCollectVisibleLayersTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD2(ensureOutputLayerIfVisible, |
| void(sp<compositionengine::LayerFE>&, |
| compositionengine::Output::CoverageState&)); |
| MOCK_METHOD1(setReleasedLayers, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD0(finalizePendingOutputLayers, void()); |
| }; |
| |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| EXPECT_CALL(outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState)); |
| } |
| |
| StrictMock<mock::OutputLayer> outputLayer; |
| impl::OutputLayerCompositionState outputLayerState; |
| sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| }; |
| |
| OutputCollectVisibleLayersTest() { |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0)) |
| .WillRepeatedly(Return(&mLayer1.outputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1)) |
| .WillRepeatedly(Return(&mLayer2.outputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2)) |
| .WillRepeatedly(Return(&mLayer3.outputLayer)); |
| |
| mRefreshArgs.layers.push_back(mLayer1.layerFE); |
| mRefreshArgs.layers.push_back(mLayer2.layerFE); |
| mRefreshArgs.layers.push_back(mLayer3.layerFE); |
| } |
| |
| StrictMock<OutputPartialMock> mOutput; |
| CompositionRefreshArgs mRefreshArgs; |
| LayerFESet mGeomSnapshots; |
| Output::CoverageState mCoverageState{mGeomSnapshots}; |
| Layer mLayer1; |
| Layer mLayer2; |
| Layer mLayer3; |
| }; |
| |
| TEST_F(OutputCollectVisibleLayersTest, doesMinimalWorkIfNoLayers) { |
| mRefreshArgs.layers.clear(); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| |
| EXPECT_CALL(mOutput, setReleasedLayers(Ref(mRefreshArgs))); |
| EXPECT_CALL(mOutput, finalizePendingOutputLayers()); |
| |
| mOutput.collectVisibleLayers(mRefreshArgs, mCoverageState); |
| } |
| |
| TEST_F(OutputCollectVisibleLayersTest, processesCandidateLayersReversedAndSetsOutputLayerZ) { |
| // Enforce a call order sequence for this test. |
| InSequence seq; |
| |
| // Layer coverage is evaluated from front to back! |
| EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer3.layerFE), Ref(mCoverageState))); |
| EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer2.layerFE), Ref(mCoverageState))); |
| EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer1.layerFE), Ref(mCoverageState))); |
| |
| EXPECT_CALL(mOutput, setReleasedLayers(Ref(mRefreshArgs))); |
| EXPECT_CALL(mOutput, finalizePendingOutputLayers()); |
| |
| mOutput.collectVisibleLayers(mRefreshArgs, mCoverageState); |
| } |
| |
| /* |
| * Output::ensureOutputLayerIfVisible() |
| */ |
| |
| struct OutputEnsureOutputLayerIfVisibleTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD(bool, includesLayer, (const sp<compositionengine::LayerFE>&), |
| (const, override)); |
| MOCK_CONST_METHOD1(getOutputLayerOrderedByZByIndex, OutputLayer*(size_t)); |
| MOCK_METHOD2(ensureOutputLayer, |
| compositionengine::OutputLayer*(std::optional<size_t>, const sp<LayerFE>&)); |
| }; |
| |
| OutputEnsureOutputLayerIfVisibleTest() { |
| EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE))) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u)) |
| .WillRepeatedly(Return(&mLayer.outputLayer)); |
| |
| mOutput.mState.displaySpace.setBounds(ui::Size(200, 300)); |
| mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 200, 300)); |
| mOutput.mState.transform = ui::Transform(TR_IDENT, 200, 300); |
| |
| mLayer.layerFEState.isVisible = true; |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 100, 200}; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| mLayer.layerFEState.transparentRegionHint = kTransparentRegionHint; |
| |
| mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 50, 200)); |
| mLayer.outputLayerState.coveredRegion = Region(Rect(50, 0, 100, 200)); |
| |
| mGeomSnapshots.insert(mLayer.layerFE); |
| } |
| |
| void ensureOutputLayerIfVisible() { |
| sp<LayerFE> layerFE(mLayer.layerFE); |
| mOutput.ensureOutputLayerIfVisible(layerFE, mCoverageState); |
| } |
| |
| static const Region kEmptyRegion; |
| static const Region kFullBoundsNoRotation; |
| static const Region kRightHalfBoundsNoRotation; |
| static const Region kLowerHalfBoundsNoRotation; |
| static const Region kFullBounds90Rotation; |
| static const Region kTransparentRegionHint; |
| static const Region kTransparentRegionHintTwo; |
| static const Region kTransparentRegionHintTwo90Rotation; |
| static const Region kTransparentRegionHintNegative; |
| static const Region kTransparentRegionHintNegativeIntersectsBounds; |
| |
| StrictMock<OutputPartialMock> mOutput; |
| LayerFESet mGeomSnapshots; |
| Output::CoverageState mCoverageState{mGeomSnapshots}; |
| |
| NonInjectedLayer mLayer; |
| }; |
| |
| const Region OutputEnsureOutputLayerIfVisibleTest::kEmptyRegion = Region(Rect(0, 0, 0, 0)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kFullBoundsNoRotation = |
| Region(Rect(0, 0, 100, 200)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kRightHalfBoundsNoRotation = |
| Region(Rect(0, 100, 100, 200)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kLowerHalfBoundsNoRotation = |
| Region(Rect(50, 0, 100, 200)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kFullBounds90Rotation = |
| Region(Rect(0, 0, 200, 100)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHint = |
| Region(Rect(0, 0, 100, 100)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintTwo = |
| Region(Rect(25, 20, 50, 75)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintTwo90Rotation = |
| Region(Rect(125, 25, 180, 50)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintNegative = |
| Region(Rect(INT32_MIN, INT32_MIN, INT32_MIN + 100, INT32_MIN + 200)); |
| const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintNegativeIntersectsBounds = |
| Region(Rect(INT32_MIN, INT32_MIN, 100, 100)); |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, performsGeomLatchBeforeCheckingIfLayerIncluded) { |
| EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE))).WillOnce(Return(false)); |
| mGeomSnapshots.clear(); |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| skipsLatchIfAlreadyLatchedBeforeCheckingIfLayerIncluded) { |
| EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE))).WillOnce(Return(false)); |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerHasNoCompositionState) { |
| EXPECT_CALL(*mLayer.layerFE, getCompositionState()).WillOnce(Return(nullptr)); |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerNotVisible) { |
| mLayer.layerFEState.isVisible = false; |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerHasEmptyVisibleRegion) { |
| mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 0, 0}; |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesNotSoEarlyOutifDrawRegionEmpty) { |
| mOutput.mState.displaySpace.setBounds(ui::Size(0, 0)); |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForOpaqueDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesUpdatingOutputLayerForOpaqueDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForTransparentDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kRightHalfBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesUpdatingOutputLayerForTransparentDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kRightHalfBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForOpaqueNonDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = false; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesUpdatingOutputLayerForOpaqueNonDirtyNotRotatedLayer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = false; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kLowerHalfBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForOpaqueDirtyRotated90Layer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 200, 100}; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_ROT_90, 100, 200); |
| mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 100, 100)); |
| mLayer.outputLayerState.coveredRegion = Region(Rect(100, 0, 200, 100)); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesUpdatingOutputLayerForOpaqueDirtyRotated90Layer) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 200, 100}; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_ROT_90, 100, 200); |
| mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 100, 100)); |
| mLayer.outputLayerState.coveredRegion = Region(Rect(100, 0, 200, 100)); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForOpaqueDirtyNotRotatedLayerRotatedOutput) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200)); |
| mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBounds90Rotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesUpdatingOutputLayerForOpaqueDirtyNotRotatedLayerRotatedOutput) { |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200)); |
| mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kFullBoundsNoRotation)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBounds90Rotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, |
| handlesCreatingOutputLayerForOpaqueDirtyArbitraryTransformLayer) { |
| ui::Transform arbitraryTransform; |
| arbitraryTransform.set(1, 1, -1, 1); |
| arbitraryTransform.set(0, 100); |
| |
| mLayer.layerFEState.isOpaque = true; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 100, 200}; |
| mLayer.layerFEState.geomLayerTransform = arbitraryTransform; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| const Region kRegion = Region(Rect(0, 0, 300, 300)); |
| const Region kRegionClipped = Region(Rect(0, 0, 200, 300)); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kRegion)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kRegion)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, RegionEq(kRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kRegionClipped)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, coverageAccumulatesTest) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200); |
| |
| mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500)); |
| mCoverageState.aboveCoveredLayers = Region(Rect(50, 0, 150, 200)); |
| mCoverageState.aboveOpaqueLayers = Region(Rect(50, 0, 150, 200)); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| const Region kExpectedDirtyRegion = Region(Rect(0, 0, 500, 500)); |
| const Region kExpectedAboveCoveredRegion = Region(Rect(0, 0, 150, 200)); |
| const Region kExpectedAboveOpaqueRegion = Region(Rect(50, 0, 150, 200)); |
| const Region kExpectedLayerVisibleRegion = Region(Rect(0, 0, 50, 200)); |
| const Region kExpectedLayerCoveredRegion = Region(Rect(50, 0, 100, 200)); |
| const Region kExpectedLayerVisibleNonTransparentRegion = Region(Rect(0, 100, 50, 200)); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kExpectedDirtyRegion)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kExpectedAboveCoveredRegion)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kExpectedAboveOpaqueRegion)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kExpectedLayerVisibleNonTransparentRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kExpectedLayerCoveredRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, |
| RegionEq(kExpectedLayerVisibleRegion)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, coverageAccumulatesWithShadowsTest) { |
| ui::Transform translate; |
| translate.set(50, 50); |
| mLayer.layerFEState.geomLayerTransform = translate; |
| mLayer.layerFEState.shadowSettings.length = 10.0f; |
| |
| mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500)); |
| // half of the layer including the casting shadow is covered and opaque |
| mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 100, 260)); |
| mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 100, 260)); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| const Region kExpectedDirtyRegion = Region(Rect(0, 0, 500, 500)); |
| const Region kExpectedAboveCoveredRegion = Region(Rect(40, 40, 160, 260)); |
| // add starting opaque region to the opaque half of the casting layer bounds |
| const Region kExpectedAboveOpaqueRegion = |
| Region(Rect(40, 40, 100, 260)).orSelf(Rect(100, 50, 150, 250)); |
| const Region kExpectedLayerVisibleRegion = Region(Rect(100, 40, 160, 260)); |
| const Region kExpectedoutputSpaceLayerVisibleRegion = Region(Rect(100, 50, 150, 250)); |
| const Region kExpectedLayerCoveredRegion = Region(Rect(40, 40, 100, 260)); |
| const Region kExpectedLayerVisibleNonTransparentRegion = Region(Rect(100, 40, 160, 260)); |
| const Region kExpectedLayerShadowRegion = |
| Region(Rect(40, 40, 160, 260)).subtractSelf(Rect(50, 50, 150, 250)); |
| |
| EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kExpectedDirtyRegion)); |
| EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kExpectedAboveCoveredRegion)); |
| EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kExpectedAboveOpaqueRegion)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, |
| RegionEq(kExpectedLayerVisibleNonTransparentRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kExpectedLayerCoveredRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, |
| RegionEq(kExpectedoutputSpaceLayerVisibleRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.shadowRegion, RegionEq(kExpectedLayerShadowRegion)); |
| EXPECT_FALSE(kExpectedLayerVisibleRegion.subtract(kExpectedLayerShadowRegion).isEmpty()); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, shadowRegionOnlyTest) { |
| ui::Transform translate; |
| translate.set(50, 50); |
| mLayer.layerFEState.geomLayerTransform = translate; |
| mLayer.layerFEState.shadowSettings.length = 10.0f; |
| |
| mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500)); |
| // Casting layer is covered by an opaque region leaving only part of its shadow to be drawn |
| mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 150, 260)); |
| mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 150, 260)); |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| |
| ensureOutputLayerIfVisible(); |
| |
| const Region kExpectedLayerVisibleRegion = Region(Rect(150, 40, 160, 260)); |
| const Region kExpectedLayerShadowRegion = |
| Region(Rect(40, 40, 160, 260)).subtractSelf(Rect(50, 50, 150, 250)); |
| |
| EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion)); |
| EXPECT_THAT(mLayer.outputLayerState.shadowRegion, RegionEq(kExpectedLayerShadowRegion)); |
| EXPECT_TRUE(kExpectedLayerVisibleRegion.subtract(kExpectedLayerShadowRegion).isEmpty()); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesNotSoEarlyOutifLayerWithShadowIsCovered) { |
| ui::Transform translate; |
| translate.set(50, 50); |
| mLayer.layerFEState.geomLayerTransform = translate; |
| mLayer.layerFEState.shadowSettings.length = 10.0f; |
| |
| mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500)); |
| // Casting layer and its shadows are covered by an opaque region |
| mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 160, 260)); |
| mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 160, 260)); |
| |
| ensureOutputLayerIfVisible(); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, displayDecorSetsBlockingFromTransparentRegion) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.compositionType = |
| aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint, |
| RegionEq(kTransparentRegionHint)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, normalLayersDoNotSetBlockingRegion) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint, RegionEq(Region())); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, blockingRegionIsInOutputSpace) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.compositionType = |
| aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION; |
| mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintTwo; |
| |
| mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200)); |
| mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| ensureOutputLayerIfVisible(); |
| |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint, |
| RegionEq(kTransparentRegionHintTwo90Rotation)); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionExcludesOutputLayer) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = kFullBoundsNoRotation.bounds().toFloatRect(); |
| mLayer.layerFEState.transparentRegionHint = kFullBoundsNoRotation; |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(_, _)).Times(0); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionIgnoredWhenOutsideBounds) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.geomLayerBounds = kFullBoundsNoRotation.bounds().toFloatRect(); |
| mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintNegative; |
| |
| EXPECT_CALL(mOutput, ensureOutputLayer(_, _)).Times(0); |
| } |
| |
| TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionClipsWhenOutsideBounds) { |
| mLayer.layerFEState.isOpaque = false; |
| mLayer.layerFEState.contentDirty = true; |
| mLayer.layerFEState.compositionType = |
| aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION; |
| mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintNegativeIntersectsBounds; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE))) |
| .WillOnce(Return(&mLayer.outputLayer)); |
| ensureOutputLayerIfVisible(); |
| |
| // Check that the blocking region clips an out-of-bounds transparent region. |
| EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint, |
| RegionEq(kTransparentRegionHint)); |
| } |
| |
| /* |
| * Output::present() |
| */ |
| |
| struct OutputPresentTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD1(updateColorProfile, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD1(updateCompositionState, |
| void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD0(planComposition, void()); |
| MOCK_METHOD1(writeCompositionState, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD1(setColorTransform, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD0(beginFrame, void()); |
| MOCK_METHOD0(prepareFrame, void()); |
| MOCK_METHOD0(prepareFrameAsync, GpuCompositionResult()); |
| MOCK_METHOD1(devOptRepaintFlash, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD1(finishFrame, void(GpuCompositionResult&&)); |
| MOCK_METHOD0(presentFrameAndReleaseLayers, void()); |
| MOCK_METHOD1(renderCachedSets, void(const compositionengine::CompositionRefreshArgs&)); |
| MOCK_METHOD1(canPredictCompositionStrategy, bool(const CompositionRefreshArgs&)); |
| }; |
| |
| StrictMock<OutputPartialMock> mOutput; |
| }; |
| |
| TEST_F(OutputPresentTest, justInvokesChildFunctionsInSequence) { |
| CompositionRefreshArgs args; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, updateColorProfile(Ref(args))); |
| EXPECT_CALL(mOutput, updateCompositionState(Ref(args))); |
| EXPECT_CALL(mOutput, planComposition()); |
| EXPECT_CALL(mOutput, writeCompositionState(Ref(args))); |
| EXPECT_CALL(mOutput, setColorTransform(Ref(args))); |
| EXPECT_CALL(mOutput, beginFrame()); |
| EXPECT_CALL(mOutput, canPredictCompositionStrategy(Ref(args))).WillOnce(Return(false)); |
| EXPECT_CALL(mOutput, prepareFrame()); |
| EXPECT_CALL(mOutput, devOptRepaintFlash(Ref(args))); |
| EXPECT_CALL(mOutput, finishFrame(_)); |
| EXPECT_CALL(mOutput, presentFrameAndReleaseLayers()); |
| EXPECT_CALL(mOutput, renderCachedSets(Ref(args))); |
| |
| mOutput.present(args); |
| } |
| |
| TEST_F(OutputPresentTest, predictingCompositionStrategyInvokesPrepareFrameAsync) { |
| CompositionRefreshArgs args; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, updateColorProfile(Ref(args))); |
| EXPECT_CALL(mOutput, updateCompositionState(Ref(args))); |
| EXPECT_CALL(mOutput, planComposition()); |
| EXPECT_CALL(mOutput, writeCompositionState(Ref(args))); |
| EXPECT_CALL(mOutput, setColorTransform(Ref(args))); |
| EXPECT_CALL(mOutput, beginFrame()); |
| EXPECT_CALL(mOutput, canPredictCompositionStrategy(Ref(args))).WillOnce(Return(true)); |
| EXPECT_CALL(mOutput, prepareFrameAsync()); |
| EXPECT_CALL(mOutput, devOptRepaintFlash(Ref(args))); |
| EXPECT_CALL(mOutput, finishFrame(_)); |
| EXPECT_CALL(mOutput, presentFrameAndReleaseLayers()); |
| EXPECT_CALL(mOutput, renderCachedSets(Ref(args))); |
| |
| mOutput.present(args); |
| } |
| |
| /* |
| * Output::updateColorProfile() |
| */ |
| |
| struct OutputUpdateColorProfileTest : public testing::Test { |
| using TestType = OutputUpdateColorProfileTest; |
| |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD1(setColorProfile, void(const ColorProfile&)); |
| }; |
| |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE)); |
| EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState)); |
| } |
| |
| StrictMock<mock::OutputLayer> mOutputLayer; |
| sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState mLayerFEState; |
| }; |
| |
| OutputUpdateColorProfileTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| mOutput.editState().isEnabled = true; |
| |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0)) |
| .WillRepeatedly(Return(&mLayer1.mOutputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1)) |
| .WillRepeatedly(Return(&mLayer2.mOutputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2)) |
| .WillRepeatedly(Return(&mLayer3.mOutputLayer)); |
| } |
| |
| struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> { |
| void execute() { getInstance()->mOutput.updateColorProfile(getInstance()->mRefreshArgs); } |
| }; |
| |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| |
| Layer mLayer1; |
| Layer mLayer2; |
| Layer mLayer3; |
| |
| CompositionRefreshArgs mRefreshArgs; |
| }; |
| |
| // TODO(b/144522012): Refactor Output::updateColorProfile and the related code |
| // to make it easier to write unit tests. |
| |
| TEST_F(OutputUpdateColorProfileTest, setsAColorProfileWhenUnmanaged) { |
| // When the outputColorSetting is set to kUnmanaged, the implementation sets |
| // a simple default color profile without looking at anything else. |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u)); |
| EXPECT_CALL(mOutput, |
| setColorProfile( |
| ColorProfileEq(ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, |
| ui::RenderIntent::COLORIMETRIC}))); |
| |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kUnmanaged; |
| |
| mOutput.updateColorProfile(mRefreshArgs); |
| } |
| |
| struct OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile |
| : public OutputUpdateColorProfileTest { |
| OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile() { |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u)); |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced; |
| } |
| |
| struct ExpectBestColorModeCallResultUsedToSetColorProfileState |
| : public CallOrderStateMachineHelper< |
| TestType, ExpectBestColorModeCallResultUsedToSetColorProfileState> { |
| [[nodiscard]] auto expectBestColorModeCallResultUsedToSetColorProfile( |
| ui::ColorMode colorMode, ui::Dataspace dataspace, ui::RenderIntent renderIntent) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, |
| getBestColorMode(ui::Dataspace::V0_SRGB, ui::RenderIntent::ENHANCE, _, _, |
| _)) |
| .WillOnce(DoAll(SetArgPointee<2>(dataspace), SetArgPointee<3>(colorMode), |
| SetArgPointee<4>(renderIntent))); |
| EXPECT_CALL(getInstance()->mOutput, |
| setColorProfile( |
| ColorProfileEq(ColorProfile{colorMode, dataspace, renderIntent}))); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { |
| return ExpectBestColorModeCallResultUsedToSetColorProfileState::make(this); |
| } |
| }; |
| |
| TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile, |
| Native_Unknown_Colorimetric_Set) { |
| verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::NATIVE, |
| ui::Dataspace::UNKNOWN, |
| ui::RenderIntent::COLORIMETRIC) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile, |
| DisplayP3_DisplayP3_Enhance_Set) { |
| verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::DISPLAY_P3, |
| ui::Dataspace::DISPLAY_P3, |
| ui::RenderIntent::ENHANCE) |
| .execute(); |
| } |
| |
| struct OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference |
| : public OutputUpdateColorProfileTest { |
| // Internally the implementation looks through the dataspaces of all the |
| // visible layers. The topmost one that also has an actual dataspace |
| // preference set is used to drive subsequent choices. |
| |
| OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference() { |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u)); |
| EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return()); |
| } |
| |
| struct IfTopLayerDataspaceState |
| : public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> { |
| [[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer3.mLayerFEState.dataspace = dataspace; |
| return nextState<AndIfMiddleLayerDataspaceState>(); |
| } |
| [[nodiscard]] auto ifTopLayerHasNoPreference() { |
| return ifTopLayerIs(ui::Dataspace::UNKNOWN); |
| } |
| }; |
| |
| struct AndIfMiddleLayerDataspaceState |
| : public CallOrderStateMachineHelper<TestType, AndIfMiddleLayerDataspaceState> { |
| [[nodiscard]] auto andIfMiddleLayerIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer2.mLayerFEState.dataspace = dataspace; |
| return nextState<AndIfBottomLayerDataspaceState>(); |
| } |
| [[nodiscard]] auto andIfMiddleLayerHasNoPreference() { |
| return andIfMiddleLayerIs(ui::Dataspace::UNKNOWN); |
| } |
| }; |
| |
| struct AndIfBottomLayerDataspaceState |
| : public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> { |
| [[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer1.mLayerFEState.dataspace = dataspace; |
| return nextState<ThenExpectBestColorModeCallUsesState>(); |
| } |
| [[nodiscard]] auto andIfBottomLayerHasNoPreference() { |
| return andIfBottomLayerIs(ui::Dataspace::UNKNOWN); |
| } |
| }; |
| |
| struct ThenExpectBestColorModeCallUsesState |
| : public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> { |
| [[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, |
| getBestColorMode(dataspace, _, _, _, _)); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); } |
| }; |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| noStrongLayerPrefenceUses_V0_SRGB) { |
| // If none of the layers indicate a preference, then V0_SRGB is the |
| // preferred choice (subject to additional checks). |
| verify().ifTopLayerHasNoPreference() |
| .andIfMiddleLayerHasNoPreference() |
| .andIfBottomLayerHasNoPreference() |
| .thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| ifTopmostUses_DisplayP3_Then_DisplayP3_Chosen) { |
| // If only the topmost layer has a preference, then that is what is chosen. |
| verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3) |
| .andIfMiddleLayerHasNoPreference() |
| .andIfBottomLayerHasNoPreference() |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| ifMiddleUses_DisplayP3_Then_DisplayP3_Chosen) { |
| // If only the middle layer has a preference, that that is what is chosen. |
| verify().ifTopLayerHasNoPreference() |
| .andIfMiddleLayerIs(ui::Dataspace::DISPLAY_P3) |
| .andIfBottomLayerHasNoPreference() |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| ifBottomUses_DisplayP3_Then_DisplayP3_Chosen) { |
| // If only the middle layer has a preference, that that is what is chosen. |
| verify().ifTopLayerHasNoPreference() |
| .andIfMiddleLayerHasNoPreference() |
| .andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3) |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| ifTopUses_DisplayBT2020_AndBottomUses_DisplayP3_Then_DisplayBT2020_Chosen) { |
| // If multiple layers have a preference, the topmost value is what is used. |
| verify().ifTopLayerIs(ui::Dataspace::DISPLAY_BT2020) |
| .andIfMiddleLayerHasNoPreference() |
| .andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3) |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference, |
| ifTopUses_DisplayP3_AndBottomUses_V0_SRGB_Then_DisplayP3_Chosen) { |
| // If multiple layers have a preference, the topmost value is what is used. |
| verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3) |
| .andIfMiddleLayerHasNoPreference() |
| .andIfBottomLayerIs(ui::Dataspace::DISPLAY_BT2020) |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3) |
| .execute(); |
| } |
| |
| struct OutputUpdateColorProfileTest_ForceOutputColorOverrides |
| : public OutputUpdateColorProfileTest { |
| // If CompositionRefreshArgs::forceOutputColorMode is set to some specific |
| // values, it overrides the layer dataspace choice. |
| |
| OutputUpdateColorProfileTest_ForceOutputColorOverrides() { |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced; |
| |
| mLayer1.mLayerFEState.dataspace = ui::Dataspace::DISPLAY_BT2020; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u)); |
| EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return()); |
| } |
| |
| struct IfForceOutputColorModeState |
| : public CallOrderStateMachineHelper<TestType, IfForceOutputColorModeState> { |
| [[nodiscard]] auto ifForceOutputColorMode(ui::ColorMode colorMode) { |
| getInstance()->mRefreshArgs.forceOutputColorMode = colorMode; |
| return nextState<ThenExpectBestColorModeCallUsesState>(); |
| } |
| [[nodiscard]] auto ifNoOverride() { return ifForceOutputColorMode(ui::ColorMode::NATIVE); } |
| }; |
| |
| struct ThenExpectBestColorModeCallUsesState |
| : public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> { |
| [[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, |
| getBestColorMode(dataspace, _, _, _, _)); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { return IfForceOutputColorModeState::make(this); } |
| }; |
| |
| TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, NoOverride_DoesNotOverride) { |
| // By default the layer state is used to set the preferred dataspace |
| verify().ifNoOverride() |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, SRGB_Override_USES_V0_SRGB) { |
| // Setting ui::ColorMode::SRGB overrides it with ui::Dataspace::V0_SRGB |
| verify().ifForceOutputColorMode(ui::ColorMode::SRGB) |
| .thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, DisplayP3_Override_Uses_DisplayP3) { |
| // Setting ui::ColorMode::DISPLAY_P3 overrides it with ui::Dataspace::DISPLAY_P3 |
| verify().ifForceOutputColorMode(ui::ColorMode::DISPLAY_P3) |
| .thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3) |
| .execute(); |
| } |
| |
| // HDR output requires all layers to be compatible with the chosen HDR |
| // dataspace, along with there being proper support. |
| struct OutputUpdateColorProfileTest_Hdr : public OutputUpdateColorProfileTest { |
| OutputUpdateColorProfileTest_Hdr() { |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced; |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u)); |
| EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return()); |
| } |
| |
| static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3; |
| static constexpr ui::Dataspace BT2020_PQ = ui::Dataspace::BT2020_PQ; |
| static constexpr ui::Dataspace BT2020_HLG = ui::Dataspace::BT2020_HLG; |
| static constexpr ui::Dataspace DISPLAY_P3 = ui::Dataspace::DISPLAY_P3; |
| |
| struct IfTopLayerDataspaceState |
| : public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> { |
| [[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer2.mLayerFEState.dataspace = dataspace; |
| return nextState<AndTopLayerCompositionTypeState>(); |
| } |
| [[nodiscard]] auto ifTopLayerIsNotHdr() { return ifTopLayerIs(kNonHdrDataspace); } |
| }; |
| |
| struct AndTopLayerCompositionTypeState |
| : public CallOrderStateMachineHelper<TestType, AndTopLayerCompositionTypeState> { |
| [[nodiscard]] auto andTopLayerIsREComposed(bool renderEngineComposed) { |
| getInstance()->mLayer2.mLayerFEState.forceClientComposition = renderEngineComposed; |
| return nextState<AndIfBottomLayerDataspaceState>(); |
| } |
| }; |
| |
| struct AndIfBottomLayerDataspaceState |
| : public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> { |
| [[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer1.mLayerFEState.dataspace = dataspace; |
| return nextState<AndBottomLayerCompositionTypeState>(); |
| } |
| [[nodiscard]] auto andIfBottomLayerIsNotHdr() { |
| return andIfBottomLayerIs(kNonHdrDataspace); |
| } |
| }; |
| |
| struct AndBottomLayerCompositionTypeState |
| : public CallOrderStateMachineHelper<TestType, AndBottomLayerCompositionTypeState> { |
| [[nodiscard]] auto andBottomLayerIsREComposed(bool renderEngineComposed) { |
| getInstance()->mLayer1.mLayerFEState.forceClientComposition = renderEngineComposed; |
| return nextState<AndIfHasLegacySupportState>(); |
| } |
| }; |
| |
| struct AndIfHasLegacySupportState |
| : public CallOrderStateMachineHelper<TestType, AndIfHasLegacySupportState> { |
| [[nodiscard]] auto andIfLegacySupportFor(ui::Dataspace dataspace, bool legacySupport) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, hasLegacyHdrSupport(dataspace)) |
| .WillOnce(Return(legacySupport)); |
| return nextState<ThenExpectBestColorModeCallUsesState>(); |
| } |
| }; |
| |
| struct ThenExpectBestColorModeCallUsesState |
| : public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> { |
| [[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, |
| getBestColorMode(dataspace, _, _, _, _)); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); } |
| }; |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_Uses_PQ) { |
| // If all layers use BT2020_PQ, and there are no other special conditions, |
| // BT2020_PQ is used. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) { |
| // BT2020_PQ is not used if there is only legacy support for it. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, true) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_RE_Uses_PQ) { |
| // BT2020_PQ is still used if the bottom layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(true) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_PQ_HW_Uses_DisplayP3) { |
| // BT2020_PQ is not used if the top layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(true) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_Uses_PQ) { |
| // If there is mixed HLG/PQ use, and the topmost layer is PQ, then PQ is used if there |
| // are no other special conditions. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) { |
| // BT2020_PQ is not used if there is only legacy support for it. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, true) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_RE_Uses_PQ) { |
| // BT2020_PQ is used if the bottom HLG layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(true) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_HLG_HW_Uses_DisplayP3) { |
| // BT2020_PQ is not used if the top PQ layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(true) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_Uses_PQ) { |
| // If there is mixed HLG/PQ use, and the topmost layer is HLG, then PQ is |
| // used if there are no other special conditions. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) { |
| // BT2020_PQ is not used if there is only legacy support for it. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, true) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_RE_Uses_DisplayP3) { |
| // BT2020_PQ is not used if the bottom PQ layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(true) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_PQ_HW_Uses_PQ) { |
| // BT2020_PQ is still used if the top HLG layer is RenderEngine composed. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(true) |
| .andIfBottomLayerIs(BT2020_PQ) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_Uses_HLG) { |
| // If all layers use HLG then HLG is used if there are no other special |
| // conditions. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_HLG, false) |
| .thenExpectBestColorModeCallUses(BT2020_HLG) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) { |
| // BT2020_HLG is not used if there is legacy support for it. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_HLG, true) |
| .thenExpectBestColorModeCallUses(DISPLAY_P3) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_RE_Uses_HLG) { |
| // BT2020_HLG is used even if the bottom layer is client composed. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(true) |
| .andIfLegacySupportFor(BT2020_HLG, false) |
| .thenExpectBestColorModeCallUses(BT2020_HLG) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_HLG_HW_Uses_HLG) { |
| // BT2020_HLG is used even if the top layer is client composed. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(true) |
| .andIfBottomLayerIs(BT2020_HLG) |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_HLG, false) |
| .thenExpectBestColorModeCallUses(BT2020_HLG) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_NonHdr_HW_Uses_PQ) { |
| // Even if there are non-HDR layers present, BT2020_PQ can still be used. |
| verify().ifTopLayerIs(BT2020_PQ) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIsNotHdr() |
| .andBottomLayerIsREComposed(false) |
| .andIfLegacySupportFor(BT2020_PQ, false) |
| .thenExpectBestColorModeCallUses(BT2020_PQ) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_NonHdr_RE_Uses_HLG) { |
| // If all layers use HLG then HLG is used if there are no other special |
| // conditions. |
| verify().ifTopLayerIs(BT2020_HLG) |
| .andTopLayerIsREComposed(false) |
| .andIfBottomLayerIsNotHdr() |
| .andBottomLayerIsREComposed(true) |
| .andIfLegacySupportFor(BT2020_HLG, false) |
| .thenExpectBestColorModeCallUses(BT2020_HLG) |
| .execute(); |
| } |
| |
| struct OutputUpdateColorProfile_AffectsChosenRenderIntentTest |
| : public OutputUpdateColorProfileTest { |
| // The various values for CompositionRefreshArgs::outputColorSetting affect |
| // the chosen renderIntent, along with whether the preferred dataspace is an |
| // HDR dataspace or not. |
| |
| OutputUpdateColorProfile_AffectsChosenRenderIntentTest() { |
| mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced; |
| mLayer1.mLayerFEState.dataspace = ui::Dataspace::BT2020_PQ; |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u)); |
| EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return()); |
| EXPECT_CALL(*mDisplayColorProfile, hasLegacyHdrSupport(ui::Dataspace::BT2020_PQ)) |
| .WillRepeatedly(Return(false)); |
| } |
| |
| // The tests here involve enough state and GMock setup that using a mini-DSL |
| // makes the tests much more readable, and allows the test to focus more on |
| // the intent than on some of the details. |
| |
| static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3; |
| static constexpr ui::Dataspace kHdrDataspace = ui::Dataspace::BT2020_PQ; |
| |
| struct IfDataspaceChosenState |
| : public CallOrderStateMachineHelper<TestType, IfDataspaceChosenState> { |
| [[nodiscard]] auto ifDataspaceChosenIs(ui::Dataspace dataspace) { |
| getInstance()->mLayer1.mLayerFEState.dataspace = dataspace; |
| return nextState<AndOutputColorSettingState>(); |
| } |
| [[nodiscard]] auto ifDataspaceChosenIsNonHdr() { |
| return ifDataspaceChosenIs(kNonHdrDataspace); |
| } |
| [[nodiscard]] auto ifDataspaceChosenIsHdr() { return ifDataspaceChosenIs(kHdrDataspace); } |
| }; |
| |
| struct AndOutputColorSettingState |
| : public CallOrderStateMachineHelper<TestType, AndOutputColorSettingState> { |
| [[nodiscard]] auto andOutputColorSettingIs(OutputColorSetting setting) { |
| getInstance()->mRefreshArgs.outputColorSetting = setting; |
| return nextState<ThenExpectBestColorModeCallUsesState>(); |
| } |
| }; |
| |
| struct ThenExpectBestColorModeCallUsesState |
| : public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> { |
| [[nodiscard]] auto thenExpectBestColorModeCallUses(ui::RenderIntent intent) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, |
| getBestColorMode(getInstance()->mLayer1.mLayerFEState.dataspace, intent, _, |
| _, _)); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Tests call one of these two helper member functions to start using the |
| // mini-DSL defined above. |
| [[nodiscard]] auto verify() { return IfDataspaceChosenState::make(this); } |
| }; |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, |
| Managed_NonHdr_Prefers_Colorimetric) { |
| verify().ifDataspaceChosenIsNonHdr() |
| .andOutputColorSettingIs(OutputColorSetting::kManaged) |
| .thenExpectBestColorModeCallUses(ui::RenderIntent::COLORIMETRIC) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, |
| Managed_Hdr_Prefers_ToneMapColorimetric) { |
| verify().ifDataspaceChosenIsHdr() |
| .andOutputColorSettingIs(OutputColorSetting::kManaged) |
| .thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_COLORIMETRIC) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Enhanced_NonHdr_Prefers_Enhance) { |
| verify().ifDataspaceChosenIsNonHdr() |
| .andOutputColorSettingIs(OutputColorSetting::kEnhanced) |
| .thenExpectBestColorModeCallUses(ui::RenderIntent::ENHANCE) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, |
| Enhanced_Hdr_Prefers_ToneMapEnhance) { |
| verify().ifDataspaceChosenIsHdr() |
| .andOutputColorSettingIs(OutputColorSetting::kEnhanced) |
| .thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_ENHANCE) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_NonHdr_Prefers_Vendor) { |
| verify().ifDataspaceChosenIsNonHdr() |
| .andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting) |
| .thenExpectBestColorModeCallUses( |
| static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting)) |
| .execute(); |
| } |
| |
| TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_Hdr_Prefers_Vendor) { |
| verify().ifDataspaceChosenIsHdr() |
| .andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting) |
| .thenExpectBestColorModeCallUses( |
| static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting)) |
| .execute(); |
| } |
| |
| /* |
| * Output::beginFrame() |
| */ |
| |
| struct OutputBeginFrameTest : public ::testing::Test { |
| using TestType = OutputBeginFrameTest; |
| |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD(Region, getDirtyRegion, (), (const)); |
| }; |
| |
| OutputBeginFrameTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| } |
| |
| struct IfGetDirtyRegionExpectationState |
| : public CallOrderStateMachineHelper<TestType, IfGetDirtyRegionExpectationState> { |
| [[nodiscard]] auto ifGetDirtyRegionReturns(Region dirtyRegion) { |
| EXPECT_CALL(getInstance()->mOutput, getDirtyRegion()).WillOnce(Return(dirtyRegion)); |
| return nextState<AndIfGetOutputLayerCountExpectationState>(); |
| } |
| }; |
| |
| struct AndIfGetOutputLayerCountExpectationState |
| : public CallOrderStateMachineHelper<TestType, AndIfGetOutputLayerCountExpectationState> { |
| [[nodiscard]] auto andIfGetOutputLayerCountReturns(size_t layerCount) { |
| EXPECT_CALL(getInstance()->mOutput, getOutputLayerCount()).WillOnce(Return(layerCount)); |
| return nextState<AndIfLastCompositionHadVisibleLayersState>(); |
| } |
| }; |
| |
| struct AndIfLastCompositionHadVisibleLayersState |
| : public CallOrderStateMachineHelper<TestType, |
| AndIfLastCompositionHadVisibleLayersState> { |
| [[nodiscard]] auto andIfLastCompositionHadVisibleLayersIs(bool hadOutputLayers) { |
| getInstance()->mOutput.mState.lastCompositionHadVisibleLayers = hadOutputLayers; |
| return nextState<ThenExpectRenderSurfaceBeginFrameCallState>(); |
| } |
| }; |
| |
| struct ThenExpectRenderSurfaceBeginFrameCallState |
| : public CallOrderStateMachineHelper<TestType, |
| ThenExpectRenderSurfaceBeginFrameCallState> { |
| [[nodiscard]] auto thenExpectRenderSurfaceBeginFrameCall(bool mustRecompose) { |
| EXPECT_CALL(*getInstance()->mRenderSurface, beginFrame(mustRecompose)); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> { |
| [[nodiscard]] auto execute() { |
| getInstance()->mOutput.beginFrame(); |
| return nextState<CheckPostconditionHadVisibleLayersState>(); |
| } |
| }; |
| |
| struct CheckPostconditionHadVisibleLayersState |
| : public CallOrderStateMachineHelper<TestType, CheckPostconditionHadVisibleLayersState> { |
| void checkPostconditionHadVisibleLayers(bool expected) { |
| EXPECT_EQ(expected, getInstance()->mOutput.mState.lastCompositionHadVisibleLayers); |
| } |
| }; |
| |
| // Tests call one of these two helper member functions to start using the |
| // mini-DSL defined above. |
| [[nodiscard]] auto verify() { return IfGetDirtyRegionExpectationState::make(this); } |
| |
| static const Region kEmptyRegion; |
| static const Region kNotEmptyRegion; |
| |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| }; |
| |
| const Region OutputBeginFrameTest::kEmptyRegion{Rect{0, 0, 0, 0}}; |
| const Region OutputBeginFrameTest::kNotEmptyRegion{Rect{0, 0, 1, 1}}; |
| |
| TEST_F(OutputBeginFrameTest, hasDirtyHasLayersHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kNotEmptyRegion) |
| .andIfGetOutputLayerCountReturns(1u) |
| .andIfLastCompositionHadVisibleLayersIs(true) |
| .thenExpectRenderSurfaceBeginFrameCall(true) |
| .execute() |
| .checkPostconditionHadVisibleLayers(true); |
| } |
| |
| TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kNotEmptyRegion) |
| .andIfGetOutputLayerCountReturns(0u) |
| .andIfLastCompositionHadVisibleLayersIs(true) |
| .thenExpectRenderSurfaceBeginFrameCall(true) |
| .execute() |
| .checkPostconditionHadVisibleLayers(false); |
| } |
| |
| TEST_F(OutputBeginFrameTest, hasDirtyHasLayersNotHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kNotEmptyRegion) |
| .andIfGetOutputLayerCountReturns(1u) |
| .andIfLastCompositionHadVisibleLayersIs(false) |
| .thenExpectRenderSurfaceBeginFrameCall(true) |
| .execute() |
| .checkPostconditionHadVisibleLayers(true); |
| } |
| |
| TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersNotHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kNotEmptyRegion) |
| .andIfGetOutputLayerCountReturns(0u) |
| .andIfLastCompositionHadVisibleLayersIs(false) |
| .thenExpectRenderSurfaceBeginFrameCall(false) |
| .execute() |
| .checkPostconditionHadVisibleLayers(false); |
| } |
| |
| TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kEmptyRegion) |
| .andIfGetOutputLayerCountReturns(1u) |
| .andIfLastCompositionHadVisibleLayersIs(true) |
| .thenExpectRenderSurfaceBeginFrameCall(false) |
| .execute() |
| .checkPostconditionHadVisibleLayers(true); |
| } |
| |
| TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kEmptyRegion) |
| .andIfGetOutputLayerCountReturns(0u) |
| .andIfLastCompositionHadVisibleLayersIs(true) |
| .thenExpectRenderSurfaceBeginFrameCall(false) |
| .execute() |
| .checkPostconditionHadVisibleLayers(true); |
| } |
| |
| TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersNotHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kEmptyRegion) |
| .andIfGetOutputLayerCountReturns(1u) |
| .andIfLastCompositionHadVisibleLayersIs(false) |
| .thenExpectRenderSurfaceBeginFrameCall(false) |
| .execute() |
| .checkPostconditionHadVisibleLayers(false); |
| } |
| |
| TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersNotHadLayersLastFrame) { |
| verify().ifGetDirtyRegionReturns(kEmptyRegion) |
| .andIfGetOutputLayerCountReturns(0u) |
| .andIfLastCompositionHadVisibleLayersIs(false) |
| .thenExpectRenderSurfaceBeginFrameCall(false) |
| .execute() |
| .checkPostconditionHadVisibleLayers(false); |
| } |
| |
| /* |
| * Output::devOptRepaintFlash() |
| */ |
| |
| struct OutputDevOptRepaintFlashTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD(Region, getDirtyRegion, (), (const)); |
| MOCK_METHOD3(composeSurfaces, |
| std::optional<base::unique_fd>(const Region&, |
| std::shared_ptr<renderengine::ExternalTexture>, |
| base::unique_fd&)); |
| MOCK_METHOD0(presentFrameAndReleaseLayers, void()); |
| MOCK_METHOD0(prepareFrame, void()); |
| MOCK_METHOD0(updateProtectedContentState, void()); |
| MOCK_METHOD2(dequeueRenderBuffer, |
| bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*)); |
| }; |
| |
| OutputDevOptRepaintFlashTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| } |
| |
| static const Region kEmptyRegion; |
| static const Region kNotEmptyRegion; |
| |
| StrictMock<OutputPartialMock> mOutput; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| CompositionRefreshArgs mRefreshArgs; |
| }; |
| |
| const Region OutputDevOptRepaintFlashTest::kEmptyRegion{Rect{0, 0, 0, 0}}; |
| const Region OutputDevOptRepaintFlashTest::kNotEmptyRegion{Rect{0, 0, 1, 1}}; |
| |
| TEST_F(OutputDevOptRepaintFlashTest, doesNothingIfFlashDelayNotSet) { |
| mRefreshArgs.devOptFlashDirtyRegionsDelay = {}; |
| mOutput.mState.isEnabled = true; |
| |
| mOutput.devOptRepaintFlash(mRefreshArgs); |
| } |
| |
| TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfNotEnabled) { |
| mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1); |
| mOutput.mState.isEnabled = false; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, presentFrameAndReleaseLayers()); |
| EXPECT_CALL(mOutput, prepareFrame()); |
| |
| mOutput.devOptRepaintFlash(mRefreshArgs); |
| } |
| |
| TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfEnabled) { |
| mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1); |
| mOutput.mState.isEnabled = true; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, getDirtyRegion()).WillOnce(Return(kEmptyRegion)); |
| EXPECT_CALL(mOutput, presentFrameAndReleaseLayers()); |
| EXPECT_CALL(mOutput, prepareFrame()); |
| |
| mOutput.devOptRepaintFlash(mRefreshArgs); |
| } |
| |
| TEST_F(OutputDevOptRepaintFlashTest, alsoComposesSurfacesAndQueuesABufferIfDirty) { |
| mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1); |
| mOutput.mState.isEnabled = true; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, getDirtyRegion()).WillOnce(Return(kNotEmptyRegion)); |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)); |
| EXPECT_CALL(mOutput, composeSurfaces(RegionEq(kNotEmptyRegion), _, _)); |
| EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f)); |
| EXPECT_CALL(mOutput, presentFrameAndReleaseLayers()); |
| EXPECT_CALL(mOutput, prepareFrame()); |
| |
| mOutput.devOptRepaintFlash(mRefreshArgs); |
| } |
| |
| /* |
| * Output::finishFrame() |
| */ |
| |
| struct OutputFinishFrameTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD3(composeSurfaces, |
| std::optional<base::unique_fd>(const Region&, |
| std::shared_ptr<renderengine::ExternalTexture>, |
| base::unique_fd&)); |
| MOCK_METHOD0(presentFrameAndReleaseLayers, void()); |
| MOCK_METHOD0(updateProtectedContentState, void()); |
| MOCK_METHOD2(dequeueRenderBuffer, |
| bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*)); |
| }; |
| |
| OutputFinishFrameTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine)); |
| EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine)); |
| } |
| |
| StrictMock<OutputPartialMock> mOutput; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| StrictMock<renderengine::mock::RenderEngine> mRenderEngine; |
| }; |
| |
| TEST_F(OutputFinishFrameTest, ifNotEnabledDoesNothing) { |
| mOutput.mState.isEnabled = false; |
| |
| impl::GpuCompositionResult result; |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| TEST_F(OutputFinishFrameTest, takesEarlyOutifComposeSurfacesReturnsNoFence) { |
| mOutput.mState.isEnabled = true; |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true)); |
| EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _)); |
| |
| impl::GpuCompositionResult result; |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| TEST_F(OutputFinishFrameTest, queuesBufferIfComposeSurfacesReturnsAFence) { |
| mOutput.mState.isEnabled = true; |
| |
| InSequence seq; |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true)); |
| EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _)) |
| .WillOnce(Return(ByMove(base::unique_fd()))); |
| EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f)); |
| |
| impl::GpuCompositionResult result; |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| TEST_F(OutputFinishFrameTest, queuesBufferWithHdrSdrRatio) { |
| SET_FLAG_FOR_TEST(flags::fp16_client_target, true); |
| mOutput.mState.isEnabled = true; |
| |
| InSequence seq; |
| auto texture = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>::make(1u, 1u, PIXEL_FORMAT_RGBA_FP16, |
| GRALLOC_USAGE_SW_WRITE_OFTEN | |
| GRALLOC_USAGE_SW_READ_OFTEN), |
| mRenderEngine, |
| renderengine::impl::ExternalTexture::Usage::READABLE | |
| renderengine::impl::ExternalTexture::Usage::WRITEABLE); |
| mOutput.mState.displayBrightnessNits = 400.f; |
| mOutput.mState.sdrWhitePointNits = 200.f; |
| mOutput.mState.dataspace = ui::Dataspace::V0_SCRGB; |
| EXPECT_CALL(mOutput, updateProtectedContentState()); |
| EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)) |
| .WillOnce(DoAll(SetArgPointee<1>(texture), Return(true))); |
| EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _)) |
| .WillOnce(Return(ByMove(base::unique_fd()))); |
| EXPECT_CALL(*mRenderSurface, queueBuffer(_, 2.f)); |
| |
| impl::GpuCompositionResult result; |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| TEST_F(OutputFinishFrameTest, predictionSucceeded) { |
| mOutput.mState.isEnabled = true; |
| mOutput.mState.strategyPrediction = CompositionStrategyPredictionState::SUCCESS; |
| InSequence seq; |
| EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f)); |
| |
| impl::GpuCompositionResult result; |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| TEST_F(OutputFinishFrameTest, predictionFailedAndBufferIsReused) { |
| mOutput.mState.isEnabled = true; |
| mOutput.mState.strategyPrediction = CompositionStrategyPredictionState::FAIL; |
| |
| InSequence seq; |
| |
| impl::GpuCompositionResult result; |
| result.buffer = |
| std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1, |
| HAL_PIXEL_FORMAT_RGBA_8888, 1, |
| 2); |
| |
| EXPECT_CALL(mOutput, |
| composeSurfaces(RegionEq(Region::INVALID_REGION), result.buffer, |
| Eq(ByRef(result.fence)))) |
| .WillOnce(Return(ByMove(base::unique_fd()))); |
| EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f)); |
| mOutput.finishFrame(std::move(result)); |
| } |
| |
| /* |
| * Output::presentFrameAndReleaseLayers() |
| */ |
| |
| struct OutputPostFramebufferTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD0(presentFrame, compositionengine::Output::FrameFences()); |
| }; |
| |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE)); |
| EXPECT_CALL(outputLayer, getHwcLayer()).WillRepeatedly(Return(&hwc2Layer)); |
| } |
| |
| StrictMock<mock::OutputLayer> outputLayer; |
| sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| StrictMock<HWC2::mock::Layer> hwc2Layer; |
| }; |
| |
| OutputPostFramebufferTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u)) |
| .WillRepeatedly(Return(&mLayer1.outputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u)) |
| .WillRepeatedly(Return(&mLayer2.outputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2u)) |
| .WillRepeatedly(Return(&mLayer3.outputLayer)); |
| } |
| |
| StrictMock<OutputPartialMock> mOutput; |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| |
| Layer mLayer1; |
| Layer mLayer2; |
| Layer mLayer3; |
| }; |
| |
| TEST_F(OutputPostFramebufferTest, ifNotEnabledDoesNothing) { |
| mOutput.mState.isEnabled = false; |
| |
| mOutput.presentFrameAndReleaseLayers(); |
| } |
| |
| TEST_F(OutputPostFramebufferTest, ifEnabledMustFlipThenPresentThenSendPresentCompleted) { |
| mOutput.mState.isEnabled = true; |
| |
| compositionengine::Output::FrameFences frameFences; |
| |
| // This should happen even if there are no output layers. |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| |
| // For this test in particular we want to make sure the call expectations |
| // setup below are satisfied in the specific order. |
| InSequence seq; |
| |
| EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences)); |
| EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted()); |
| |
| mOutput.presentFrameAndReleaseLayers(); |
| } |
| |
| TEST_F(OutputPostFramebufferTest, releaseFencesAreSentToLayerFE) { |
| // Simulate getting release fences from each layer, and ensure they are passed to the |
| // front-end layer interface for each layer correctly. |
| |
| mOutput.mState.isEnabled = true; |
| |
| // Create three unique fence instances |
| sp<Fence> layer1Fence = sp<Fence>::make(); |
| sp<Fence> layer2Fence = sp<Fence>::make(); |
| sp<Fence> layer3Fence = sp<Fence>::make(); |
| |
| Output::FrameFences frameFences; |
| frameFences.layerFences.emplace(&mLayer1.hwc2Layer, layer1Fence); |
| frameFences.layerFences.emplace(&mLayer2.hwc2Layer, layer2Fence); |
| frameFences.layerFences.emplace(&mLayer3.hwc2Layer, layer3Fence); |
| |
| EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences)); |
| EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted()); |
| |
| // Compare the pointers values of each fence to make sure the correct ones |
| // are passed. This happens to work with the current implementation, but |
| // would not survive certain calls like Fence::merge() which would return a |
| // new instance. |
| EXPECT_CALL(*mLayer1.layerFE, onLayerDisplayed(_, _)) |
| .WillOnce([&layer1Fence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(layer1Fence), futureFenceResult.get()); |
| }); |
| EXPECT_CALL(*mLayer2.layerFE, onLayerDisplayed(_, _)) |
| .WillOnce([&layer2Fence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(layer2Fence), futureFenceResult.get()); |
| }); |
| EXPECT_CALL(*mLayer3.layerFE, onLayerDisplayed(_, _)) |
| .WillOnce([&layer3Fence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(layer3Fence), futureFenceResult.get()); |
| }); |
| |
| mOutput.presentFrameAndReleaseLayers(); |
| } |
| |
| TEST_F(OutputPostFramebufferTest, releaseFencesIncludeClientTargetAcquireFence) { |
| mOutput.mState.isEnabled = true; |
| mOutput.mState.usesClientComposition = true; |
| |
| Output::FrameFences frameFences; |
| frameFences.clientTargetAcquireFence = sp<Fence>::make(); |
| frameFences.layerFences.emplace(&mLayer1.hwc2Layer, sp<Fence>::make()); |
| frameFences.layerFences.emplace(&mLayer2.hwc2Layer, sp<Fence>::make()); |
| frameFences.layerFences.emplace(&mLayer3.hwc2Layer, sp<Fence>::make()); |
| |
| EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences)); |
| EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted()); |
| |
| // Fence::merge is called, and since none of the fences are actually valid, |
| // Fence::NO_FENCE is returned and passed to each onLayerDisplayed() call. |
| // This is the best we can do without creating a real kernel fence object. |
| EXPECT_CALL(*mLayer1.layerFE, onLayerDisplayed).WillOnce(Return()); |
| EXPECT_CALL(*mLayer2.layerFE, onLayerDisplayed).WillOnce(Return()); |
| EXPECT_CALL(*mLayer3.layerFE, onLayerDisplayed).WillOnce(Return()); |
| |
| mOutput.presentFrameAndReleaseLayers(); |
| } |
| |
| TEST_F(OutputPostFramebufferTest, releasedLayersSentPresentFence) { |
| mOutput.mState.isEnabled = true; |
| mOutput.mState.usesClientComposition = true; |
| |
| // This should happen even if there are no (current) output layers. |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u)); |
| |
| // Load up the released layers with some mock instances |
| sp<StrictMock<mock::LayerFE>> releasedLayer1 = sp<StrictMock<mock::LayerFE>>::make(); |
| sp<StrictMock<mock::LayerFE>> releasedLayer2 = sp<StrictMock<mock::LayerFE>>::make(); |
| sp<StrictMock<mock::LayerFE>> releasedLayer3 = sp<StrictMock<mock::LayerFE>>::make(); |
| Output::ReleasedLayers layers; |
| layers.push_back(releasedLayer1); |
| layers.push_back(releasedLayer2); |
| layers.push_back(releasedLayer3); |
| mOutput.setReleasedLayers(std::move(layers)); |
| |
| // Set up a fake present fence |
| sp<Fence> presentFence = sp<Fence>::make(); |
| Output::FrameFences frameFences; |
| frameFences.presentFence = presentFence; |
| |
| EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences)); |
| EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted()); |
| |
| // Each released layer should be given the presentFence. |
| EXPECT_CALL(*releasedLayer1, onLayerDisplayed(_, _)) |
| .WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get()); |
| }); |
| EXPECT_CALL(*releasedLayer2, onLayerDisplayed(_, _)) |
| .WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get()); |
| }); |
| EXPECT_CALL(*releasedLayer3, onLayerDisplayed(_, _)) |
| .WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult, |
| ui::LayerStack) { |
| EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get()); |
| }); |
| |
| mOutput.presentFrameAndReleaseLayers(); |
| |
| // After the call the list of released layers should have been cleared. |
| EXPECT_TRUE(mOutput.getReleasedLayersForTest().empty()); |
| } |
| |
| /* |
| * Output::composeSurfaces() |
| */ |
| |
| struct OutputComposeSurfacesTest : public testing::Test { |
| using TestType = OutputComposeSurfacesTest; |
| |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_CONST_METHOD0(getSkipColorTransform, bool()); |
| MOCK_METHOD3(generateClientCompositionRequests, |
| std::vector<LayerFE::LayerSettings>(bool, ui::Dataspace, |
| std::vector<LayerFE*>&)); |
| MOCK_METHOD2(appendRegionFlashRequests, |
| void(const Region&, std::vector<LayerFE::LayerSettings>&)); |
| MOCK_METHOD1(setExpensiveRenderingExpected, void(bool)); |
| MOCK_METHOD(void, setHintSessionGpuFence, (std::unique_ptr<FenceTime> && gpuFence), |
| (override)); |
| MOCK_METHOD(bool, isPowerHintSessionEnabled, (), (override)); |
| }; |
| |
| OutputComposeSurfacesTest() { |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| mOutput.cacheClientCompositionRequests(MAX_CLIENT_COMPOSITION_CACHE_SIZE); |
| |
| mOutput.mState.orientedDisplaySpace.setContent(kDefaultOutputFrame); |
| mOutput.mState.layerStackSpace.setContent(kDefaultOutputViewport); |
| mOutput.mState.framebufferSpace.setContent(kDefaultOutputDestinationClip); |
| mOutput.mState.displaySpace.setContent(kDefaultOutputDestinationClip); |
| mOutput.mState.displaySpace.setOrientation(kDefaultOutputOrientation); |
| mOutput.mState.transform = ui::Transform{kDefaultOutputOrientationFlags}; |
| mOutput.mState.dataspace = kDefaultOutputDataspace; |
| mOutput.mState.colorTransformMatrix = kDefaultColorTransformMat; |
| mOutput.mState.isSecure = false; |
| mOutput.mState.needsFiltering = false; |
| mOutput.mState.usesClientComposition = true; |
| mOutput.mState.usesDeviceComposition = false; |
| mOutput.mState.reusedClientComposition = false; |
| mOutput.mState.flipClientTarget = false; |
| mOutput.mState.clientTargetBrightness = kClientTargetBrightness; |
| |
| EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine)); |
| EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine)); |
| EXPECT_CALL(mCompositionEngine, getTimeStats()).WillRepeatedly(Return(mTimeStats.get())); |
| EXPECT_CALL(*mDisplayColorProfile, getHdrCapabilities()) |
| .WillRepeatedly(ReturnRef(kHdrCapabilities)); |
| } |
| |
| struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> { |
| auto execute() { |
| base::unique_fd fence; |
| std::shared_ptr<renderengine::ExternalTexture> externalTexture; |
| const bool success = |
| getInstance()->mOutput.dequeueRenderBuffer(&fence, &externalTexture); |
| if (success) { |
| getInstance()->mReadyFence = |
| getInstance()->mOutput.composeSurfaces(kDebugRegion, externalTexture, |
| fence); |
| } |
| return nextState<FenceCheckState>(); |
| } |
| }; |
| |
| struct FenceCheckState : public CallOrderStateMachineHelper<TestType, FenceCheckState> { |
| void expectNoFenceWasReturned() { EXPECT_FALSE(getInstance()->mReadyFence); } |
| |
| void expectAFenceWasReturned() { EXPECT_TRUE(getInstance()->mReadyFence); } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { return ExecuteState::make(this); } |
| |
| static constexpr ui::Rotation kDefaultOutputOrientation = ui::ROTATION_0; |
| static constexpr uint32_t kDefaultOutputOrientationFlags = |
| ui::Transform::toRotationFlags(kDefaultOutputOrientation); |
| static constexpr ui::Dataspace kDefaultOutputDataspace = ui::Dataspace::UNKNOWN; |
| static constexpr ui::Dataspace kExpensiveOutputDataspace = ui::Dataspace::DISPLAY_P3; |
| static constexpr float kDefaultMaxLuminance = 0.9f; |
| static constexpr float kDefaultAvgLuminance = 0.7f; |
| static constexpr float kDefaultMinLuminance = 0.1f; |
| static constexpr float kDisplayLuminance = 400.f; |
| static constexpr float kWhitePointLuminance = 300.f; |
| static constexpr float kClientTargetLuminanceNits = 200.f; |
| static constexpr float kClientTargetBrightness = 0.5f; |
| |
| static const Rect kDefaultOutputFrame; |
| static const Rect kDefaultOutputViewport; |
| static const Rect kDefaultOutputDestinationClip; |
| static const mat4 kDefaultColorTransformMat; |
| |
| static const Region kDebugRegion; |
| static const HdrCapabilities kHdrCapabilities; |
| |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| StrictMock<renderengine::mock::RenderEngine> mRenderEngine; |
| // TODO: make this is a proper mock. |
| std::shared_ptr<TimeStats> mTimeStats = std::make_shared<android::impl::TimeStats>(); |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| std::shared_ptr<renderengine::ExternalTexture> mOutputBuffer = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>::make(), mRenderEngine, |
| renderengine::impl::ExternalTexture::Usage::READABLE | |
| renderengine::impl::ExternalTexture::Usage::WRITEABLE); |
| |
| std::optional<base::unique_fd> mReadyFence; |
| }; |
| |
| const Rect OutputComposeSurfacesTest::kDefaultOutputFrame{1001, 1002, 1003, 1004}; |
| const Rect OutputComposeSurfacesTest::kDefaultOutputViewport{1005, 1006, 1007, 1008}; |
| const Rect OutputComposeSurfacesTest::kDefaultOutputDestinationClip{1013, 1014, 1015, 1016}; |
| const mat4 OutputComposeSurfacesTest::kDefaultColorTransformMat{mat4() * 0.5f}; |
| const Region OutputComposeSurfacesTest::kDebugRegion{Rect{100, 101, 102, 103}}; |
| |
| const HdrCapabilities OutputComposeSurfacesTest:: |
| kHdrCapabilities{{}, |
| OutputComposeSurfacesTest::kDefaultMaxLuminance, |
| OutputComposeSurfacesTest::kDefaultAvgLuminance, |
| OutputComposeSurfacesTest::kDefaultMinLuminance}; |
| |
| TEST_F(OutputComposeSurfacesTest, doesNothingButSignalNoExpensiveRenderingIfNoClientComposition) { |
| mOutput.mState.usesClientComposition = false; |
| |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false)); |
| |
| verify().execute().expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, |
| dequeuesABufferIfNoClientCompositionButFlipClientTargetRequested) { |
| mOutput.mState.usesClientComposition = false; |
| mOutput.mState.flipClientTarget = true; |
| |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(mOutputBuffer)); |
| EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false)); |
| |
| verify().execute().expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, doesMinimalWorkIfDequeueBufferFailsForClientComposition) { |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(nullptr)); |
| |
| verify().execute().expectNoFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, |
| doesMinimalWorkIfDequeueBufferFailsForNoClientCompositionButFlipClientTargetRequested) { |
| mOutput.mState.usesClientComposition = false; |
| mOutput.mState.flipClientTarget = true; |
| |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(nullptr)); |
| |
| verify().execute().expectNoFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, handlesZeroCompositionRequests) { |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, IsEmpty(), _, _)) |
| .WillRepeatedly([&](const renderengine::DisplaySettings&, |
| const std::vector<renderengine::LayerSettings>&, |
| const std::shared_ptr<renderengine::ExternalTexture>&, |
| base::unique_fd&&) -> ftl::Future<FenceResult> { |
| return ftl::yield<FenceResult>(Fence::NO_FENCE); |
| }); |
| verify().execute().expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, buildsAndRendersRequestList) { |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly( |
| Invoke([&](const Region&, |
| std::vector<LayerFE::LayerSettings>& clientCompositionLayers) { |
| clientCompositionLayers.emplace_back(r2); |
| })); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .WillRepeatedly([&](const renderengine::DisplaySettings&, |
| const std::vector<renderengine::LayerSettings>&, |
| const std::shared_ptr<renderengine::ExternalTexture>&, |
| base::unique_fd&&) -> ftl::Future<FenceResult> { |
| return ftl::yield<FenceResult>(Fence::NO_FENCE); |
| }); |
| |
| verify().execute().expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, |
| buildsAndRendersRequestListAndCachesFramebufferForInternalLayers) { |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| mOutput.setLayerFilter({ui::LayerStack{1234u}, true}); |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly( |
| Invoke([&](const Region&, |
| std::vector<LayerFE::LayerSettings>& clientCompositionLayers) { |
| clientCompositionLayers.emplace_back(r2); |
| })); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .WillRepeatedly([&](const renderengine::DisplaySettings&, |
| const std::vector<renderengine::LayerSettings>&, |
| const std::shared_ptr<renderengine::ExternalTexture>&, |
| base::unique_fd&&) -> ftl::Future<FenceResult> { |
| return ftl::yield<FenceResult>(Fence::NO_FENCE); |
| }); |
| |
| verify().execute().expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, renderDuplicateClientCompositionRequestsWithoutCache) { |
| mOutput.cacheClientCompositionRequests(0); |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .Times(2) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, skipDuplicateClientCompositionRequests) { |
| mOutput.cacheClientCompositionRequests(3); |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false)); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| |
| // We do not expect another call to draw layers. |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_TRUE(mOutput.mState.reusedClientComposition); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, clientCompositionIfBufferChanges) { |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| |
| const auto otherOutputBuffer = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>::make(), mRenderEngine, |
| renderengine::impl::ExternalTexture::Usage::READABLE | |
| renderengine::impl::ExternalTexture::Usage::WRITEABLE); |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)) |
| .WillOnce(Return(mOutputBuffer)) |
| .WillOnce(Return(otherOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .WillRepeatedly([&](const renderengine::DisplaySettings&, |
| const std::vector<renderengine::LayerSettings>&, |
| const std::shared_ptr<renderengine::ExternalTexture>&, |
| base::unique_fd&&) -> ftl::Future<FenceResult> { |
| return ftl::yield<FenceResult>(Fence::NO_FENCE); |
| }); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest, clientCompositionIfRequestChanges) { |
| LayerFE::LayerSettings r1; |
| LayerFE::LayerSettings r2; |
| LayerFE::LayerSettings r3; |
| |
| r1.geometry.boundaries = FloatRect{1, 2, 3, 4}; |
| r2.geometry.boundaries = FloatRect{5, 6, 7, 8}; |
| r3.geometry.boundaries = FloatRect{5, 6, 7, 9}; |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _)) |
| .WillOnce(Return(std::vector<LayerFE::LayerSettings>{r1, r2})) |
| .WillOnce(Return(std::vector<LayerFE::LayerSettings>{r1, r3})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r3), _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| |
| verify().execute().expectAFenceWasReturned(); |
| EXPECT_FALSE(mOutput.mState.reusedClientComposition); |
| } |
| |
| struct OutputComposeSurfacesTest_UsesExpectedDisplaySettings : public OutputComposeSurfacesTest { |
| OutputComposeSurfacesTest_UsesExpectedDisplaySettings() { |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, _, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| } |
| |
| struct MixedCompositionState |
| : public CallOrderStateMachineHelper<TestType, MixedCompositionState> { |
| auto ifMixedCompositionIs(bool used) { |
| getInstance()->mOutput.mState.usesDeviceComposition = used; |
| return nextState<OutputUsesHdrState>(); |
| } |
| }; |
| |
| struct OutputUsesHdrState : public CallOrderStateMachineHelper<TestType, OutputUsesHdrState> { |
| auto andIfUsesHdr(bool used) { |
| EXPECT_CALL(*getInstance()->mDisplayColorProfile, hasWideColorGamut()) |
| .WillOnce(Return(used)); |
| return nextState<OutputWithDisplayBrightnessNits>(); |
| } |
| }; |
| |
| struct OutputWithDisplayBrightnessNits |
| : public CallOrderStateMachineHelper<TestType, OutputWithDisplayBrightnessNits> { |
| auto withDisplayBrightnessNits(float nits) { |
| getInstance()->mOutput.mState.displayBrightnessNits = nits; |
| return nextState<OutputWithSdrWhitePointNits>(); |
| } |
| }; |
| |
| struct OutputWithSdrWhitePointNits |
| : public CallOrderStateMachineHelper<TestType, OutputWithSdrWhitePointNits> { |
| auto withSdrWhitePointNits(float nits) { |
| getInstance()->mOutput.mState.sdrWhitePointNits = nits; |
| return nextState<OutputWithDimmingStage>(); |
| } |
| }; |
| |
| struct OutputWithDimmingStage |
| : public CallOrderStateMachineHelper<TestType, OutputWithDimmingStage> { |
| auto withDimmingStage( |
| aidl::android::hardware::graphics::composer3::DimmingStage dimmingStage) { |
| getInstance()->mOutput.mState.clientTargetDimmingStage = dimmingStage; |
| return nextState<OutputWithRenderIntent>(); |
| } |
| }; |
| |
| struct OutputWithRenderIntent |
| : public CallOrderStateMachineHelper<TestType, OutputWithRenderIntent> { |
| auto withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent renderIntent) { |
| getInstance()->mOutput.mState.renderIntent = |
| static_cast<ui::RenderIntent>(renderIntent); |
| return nextState<SkipColorTransformState>(); |
| } |
| }; |
| |
| struct SkipColorTransformState |
| : public CallOrderStateMachineHelper<TestType, SkipColorTransformState> { |
| auto andIfSkipColorTransform(bool skip) { |
| // May be called zero or one times. |
| EXPECT_CALL(getInstance()->mOutput, getSkipColorTransform()) |
| .WillRepeatedly(Return(skip)); |
| return nextState<PixelFormatState>(); |
| } |
| }; |
| |
| struct PixelFormatState : public CallOrderStateMachineHelper<TestType, PixelFormatState> { |
| auto withPixelFormat(std::optional<PixelFormat> format) { |
| // May be called zero or one times. |
| if (format) { |
| auto outputBuffer = std::make_shared< |
| renderengine::impl:: |
| ExternalTexture>(sp<GraphicBuffer>:: |
| make(1u, 1u, *format, |
| GRALLOC_USAGE_SW_WRITE_OFTEN | |
| GRALLOC_USAGE_SW_READ_OFTEN), |
| getInstance()->mRenderEngine, |
| renderengine::impl::ExternalTexture::Usage:: |
| READABLE | |
| renderengine::impl::ExternalTexture:: |
| Usage::WRITEABLE); |
| EXPECT_CALL(*getInstance()->mRenderSurface, dequeueBuffer(_)) |
| .WillRepeatedly(Return(outputBuffer)); |
| } |
| return nextState<DataspaceState>(); |
| } |
| }; |
| |
| struct DataspaceState : public CallOrderStateMachineHelper<TestType, DataspaceState> { |
| auto withDataspace(ui::Dataspace dataspace) { |
| getInstance()->mOutput.mState.dataspace = dataspace; |
| return nextState<ExpectDisplaySettingsState>(); |
| } |
| }; |
| |
| struct ExpectDisplaySettingsState |
| : public CallOrderStateMachineHelper<TestType, ExpectDisplaySettingsState> { |
| auto thenExpectDisplaySettingsUsed(renderengine::DisplaySettings settings) { |
| EXPECT_CALL(getInstance()->mRenderEngine, drawLayers(settings, _, _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| return nextState<ExecuteState>(); |
| } |
| }; |
| |
| // Call this member function to start using the mini-DSL defined above. |
| [[nodiscard]] auto verify() { return MixedCompositionState::make(this); } |
| }; |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forHdrMixedComposition) { |
| verify().ifMixedCompositionIs(true) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, |
| forHdrMixedCompositionWithDisplayBrightness) { |
| verify().ifMixedCompositionIs(true) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, |
| forHdrMixedCompositionWithDimmingStage) { |
| verify().ifMixedCompositionIs(true) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage( |
| aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, |
| forHdrMixedCompositionWithRenderIntent) { |
| verify().ifMixedCompositionIs(true) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent(aidl::android::hardware::graphics::composer3::RenderIntent::ENHANCE) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = |
| aidl::android::hardware::graphics::composer3::RenderIntent::ENHANCE}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forNonHdrMixedComposition) { |
| verify().ifMixedCompositionIs(true) |
| .andIfUsesHdr(false) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forHdrOnlyClientComposition) { |
| verify().ifMixedCompositionIs(false) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = false, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forNonHdrOnlyClientComposition) { |
| verify().ifMixedCompositionIs(false) |
| .andIfUsesHdr(false) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(false) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = false, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, |
| usesExpectedDisplaySettingsForHdrOnlyClientCompositionWithSkipClientTransform) { |
| verify().ifMixedCompositionIs(false) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(true) |
| .withPixelFormat(std::nullopt) |
| .withDataspace(kDefaultOutputDataspace) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = kDefaultOutputDataspace, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, |
| usesExpectedDisplaySettingsWithFp16Buffer) { |
| SET_FLAG_FOR_TEST(flags::fp16_client_target, true); |
| verify().ifMixedCompositionIs(false) |
| .andIfUsesHdr(true) |
| .withDisplayBrightnessNits(kDisplayLuminance) |
| .withSdrWhitePointNits(kWhitePointLuminance) |
| .withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR) |
| .withRenderIntent( |
| aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC) |
| .andIfSkipColorTransform(true) |
| .withPixelFormat(PIXEL_FORMAT_RGBA_FP16) |
| .withDataspace(ui::Dataspace::V0_SCRGB) |
| .thenExpectDisplaySettingsUsed( |
| {.physicalDisplay = kDefaultOutputDestinationClip, |
| .clip = kDefaultOutputViewport, |
| .maxLuminance = kDefaultMaxLuminance, |
| .currentLuminanceNits = kDisplayLuminance, |
| .outputDataspace = ui::Dataspace::V0_SCRGB, |
| .colorTransform = kDefaultColorTransformMat, |
| .deviceHandlesColorTransform = true, |
| .orientation = kDefaultOutputOrientationFlags, |
| .targetLuminanceNits = kClientTargetLuminanceNits * 0.75f, |
| .dimmingStage = |
| aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR, |
| .renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent:: |
| COLORIMETRIC}) |
| .execute() |
| .expectAFenceWasReturned(); |
| } |
| |
| struct OutputComposeSurfacesTest_HandlesProtectedContent : public OutputComposeSurfacesTest { |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState)); |
| EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE)); |
| EXPECT_CALL(mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| } |
| |
| StrictMock<mock::OutputLayer> mOutputLayer; |
| sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState mLayerFEState; |
| }; |
| |
| OutputComposeSurfacesTest_HandlesProtectedContent() { |
| mLayer1.mLayerFEState.hasProtectedContent = false; |
| mLayer2.mLayerFEState.hasProtectedContent = false; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u)) |
| .WillRepeatedly(Return(&mLayer1.mOutputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u)) |
| .WillRepeatedly(Return(&mLayer2.mOutputLayer)); |
| |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, _, _)) |
| .WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{})); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _)) |
| .WillRepeatedly([&](const renderengine::DisplaySettings&, |
| const std::vector<renderengine::LayerSettings>&, |
| const std::shared_ptr<renderengine::ExternalTexture>&, |
| base::unique_fd&&) -> ftl::Future<FenceResult> { |
| return ftl::yield<FenceResult>(Fence::NO_FENCE); |
| }); |
| } |
| |
| Layer mLayer1; |
| Layer mLayer2; |
| }; |
| |
| TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifNoProtectedContentLayers) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer2.mLayerFEState.hasProtectedContent = false; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true)); |
| EXPECT_CALL(*mRenderSurface, setProtected(false)); |
| |
| base::unique_fd fd; |
| std::shared_ptr<renderengine::ExternalTexture> tex; |
| mOutput.updateProtectedContentState(); |
| mOutput.dequeueRenderBuffer(&fd, &tex); |
| mOutput.composeSurfaces(kDebugRegion, tex, fd); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifNotEnabled) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer2.mLayerFEState.hasProtectedContent = true; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| |
| // For this test, we also check the call order of key functions. |
| InSequence seq; |
| |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false)); |
| EXPECT_CALL(*mRenderSurface, setProtected(true)); |
| // Must happen after setting the protected content state. |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| |
| base::unique_fd fd; |
| std::shared_ptr<renderengine::ExternalTexture> tex; |
| mOutput.updateProtectedContentState(); |
| mOutput.dequeueRenderBuffer(&fd, &tex); |
| mOutput.composeSurfaces(kDebugRegion, tex, fd); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifAlreadyEnabledEverywhere) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer2.mLayerFEState.hasProtectedContent = true; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true)); |
| |
| base::unique_fd fd; |
| std::shared_ptr<renderengine::ExternalTexture> tex; |
| mOutput.updateProtectedContentState(); |
| mOutput.dequeueRenderBuffer(&fd, &tex); |
| mOutput.composeSurfaces(kDebugRegion, tex, fd); |
| } |
| |
| TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifAlreadyEnabledInRenderSurface) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer2.mLayerFEState.hasProtectedContent = true; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true)); |
| |
| base::unique_fd fd; |
| std::shared_ptr<renderengine::ExternalTexture> tex; |
| mOutput.updateProtectedContentState(); |
| mOutput.dequeueRenderBuffer(&fd, &tex); |
| mOutput.composeSurfaces(kDebugRegion, tex, fd); |
| } |
| |
| struct OutputComposeSurfacesTest_SetsExpensiveRendering : public OutputComposeSurfacesTest { |
| OutputComposeSurfacesTest_SetsExpensiveRendering() { |
| EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _)) |
| .WillRepeatedly(Return()); |
| EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer)); |
| } |
| }; |
| |
| TEST_F(OutputComposeSurfacesTest_SetsExpensiveRendering, IfExepensiveOutputDataspaceIsUsed) { |
| mOutput.mState.dataspace = kExpensiveOutputDataspace; |
| |
| LayerFE::LayerSettings layerSettings; |
| EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kExpensiveOutputDataspace, _)) |
| .WillOnce(Return(std::vector<LayerFE::LayerSettings>{layerSettings})); |
| |
| // For this test, we also check the call order of key functions. |
| InSequence seq; |
| |
| EXPECT_CALL(mOutput, setExpensiveRenderingExpected(true)); |
| EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _)) |
| .WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE)))); |
| |
| base::unique_fd fd; |
| std::shared_ptr<renderengine::ExternalTexture> tex; |
| mOutput.updateProtectedContentState(); |
| mOutput.dequeueRenderBuffer(&fd, &tex); |
| mOutput.composeSurfaces(kDebugRegion, tex, fd); |
| } |
| |
| /* |
| * Output::generateClientCompositionRequests() |
| */ |
| |
| struct GenerateClientCompositionRequestsTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // compositionengine::Output overrides |
| std::vector<LayerFE::LayerSettings> generateClientCompositionRequestsHelper( |
| bool supportsProtectedContent, ui::Dataspace dataspace) { |
| std::vector<LayerFE*> ignore; |
| return impl::Output::generateClientCompositionRequests(supportsProtectedContent, |
| dataspace, ignore); |
| } |
| }; |
| |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(mOutputLayer, getOverrideCompositionSettings()) |
| .WillRepeatedly(Return(std::nullopt)); |
| EXPECT_CALL(mOutputLayer, getState()).WillRepeatedly(ReturnRef(mOutputLayerState)); |
| EXPECT_CALL(mOutputLayer, editState()).WillRepeatedly(ReturnRef(mOutputLayerState)); |
| EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE)); |
| EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState)); |
| } |
| |
| StrictMock<mock::OutputLayer> mOutputLayer; |
| sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState mLayerFEState; |
| impl::OutputLayerCompositionState mOutputLayerState; |
| LayerFE::LayerSettings mLayerSettings; |
| }; |
| |
| GenerateClientCompositionRequestsTest() { |
| mOutput.mState.needsFiltering = false; |
| mOutput.mState.isProtected = true; |
| |
| mOutput.setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| } |
| |
| static constexpr float kLayerWhitePointNits = 200.f; |
| |
| mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| }; |
| |
| struct GenerateClientCompositionRequestsTest_ThreeLayers |
| : public GenerateClientCompositionRequestsTest { |
| GenerateClientCompositionRequestsTest_ThreeLayers() { |
| mOutput.mState.orientedDisplaySpace.setContent(kDisplayFrame); |
| mOutput.mState.layerStackSpace.setContent(kDisplayViewport); |
| mOutput.mState.displaySpace.setContent(kDisplayDestinationClip); |
| mOutput.mState.transform = |
| ui::Transform{ui::Transform::toRotationFlags(kDisplayOrientation)}; |
| mOutput.mState.displaySpace.setOrientation(kDisplayOrientation); |
| mOutput.mState.needsFiltering = false; |
| mOutput.mState.isSecure = false; |
| mOutput.mState.isProtected = true; |
| |
| for (size_t i = 0; i < mLayers.size(); i++) { |
| mLayers[i].mOutputLayerState.clearClientTarget = false; |
| mLayers[i].mOutputLayerState.visibleRegion = Region(kDisplayFrame); |
| mLayers[i].mLayerFEState.isOpaque = true; |
| mLayers[i].mLayerSettings.geometry.boundaries = |
| FloatRect{static_cast<float>(i + 1), 0.f, 0.f, 0.f}; |
| mLayers[i].mLayerSettings.source.solidColor = {1.0f, 1.0f, 1.0f}; |
| mLayers[i].mLayerSettings.alpha = 1.0f; |
| mLayers[i].mLayerSettings.disableBlending = false; |
| |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(i)) |
| .WillRepeatedly(Return(&mLayers[i].mOutputLayer)); |
| EXPECT_CALL(mLayers[i].mOutputLayer, requiresClientComposition()) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(mLayers[i].mOutputLayer, needsFiltering()).WillRepeatedly(Return(false)); |
| } |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(mLayers.size())); |
| } |
| |
| static constexpr ui::Rotation kDisplayOrientation = ui::ROTATION_0; |
| static constexpr ui::Dataspace kDisplayDataspace = ui::Dataspace::UNKNOWN; |
| static constexpr float kLayerWhitePointNits = 200.f; |
| |
| static const Rect kDisplayFrame; |
| static const Rect kDisplayViewport; |
| static const Rect kDisplayDestinationClip; |
| |
| std::array<Layer, 3> mLayers; |
| }; |
| |
| const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayFrame(0, 0, 100, 200); |
| const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayViewport(0, 0, 101, 201); |
| const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayDestinationClip(0, 0, 103, |
| 203); |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, handlesNoClientCompostionLayers) { |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| EXPECT_EQ(0u, requests.size()); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, requiresVisibleRegionAfterViewportClip) { |
| mLayers[0].mOutputLayerState.visibleRegion = Region(Rect(10, 10, 10, 10)); |
| mLayers[1].mOutputLayerState.visibleRegion = Region(Rect(4000, 0, 4010, 10)); |
| mLayers[2].mOutputLayerState.visibleRegion = Region(Rect(-10, -10, 0, 0)); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| EXPECT_EQ(0u, requests.size()); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, gathersClientCompositionRequests) { |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[1].mLayerSettings))); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(2u, requests.size()); |
| EXPECT_EQ(mLayers[1].mLayerSettings, requests[0]); |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]); |
| |
| // Check that a timestamp was set for the layers that generated requests |
| EXPECT_TRUE(0 == mLayers[0].mOutputLayerState.clientCompositionTimestamp); |
| EXPECT_TRUE(0 != mLayers[1].mOutputLayerState.clientCompositionTimestamp); |
| EXPECT_TRUE(0 != mLayers[2].mOutputLayerState.clientCompositionTimestamp); |
| } |
| |
| MATCHER_P(ClientCompositionTargetSettingsBlurSettingsEq, expectedBlurSetting, "") { |
| *result_listener << "ClientCompositionTargetSettings' BlurSettings aren't equal \n"; |
| *result_listener << "expected " << expectedBlurSetting << "\n"; |
| *result_listener << "actual " << arg.blurSetting << "\n"; |
| |
| return expectedBlurSetting == arg.blurSetting; |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, overridesBlur) { |
| mLayers[2].mOutputLayerState.overrideInfo.disableBackgroundBlur = true; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[1].mLayerSettings))); |
| EXPECT_CALL(*mLayers[2].mLayerFE, |
| prepareClientComposition(ClientCompositionTargetSettingsBlurSettingsEq( |
| LayerFE::ClientCompositionTargetSettings::BlurSetting::BlurRegionsOnly))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(2u, requests.size()); |
| EXPECT_EQ(mLayers[1].mLayerSettings, requests[0]); |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]); |
| |
| // Check that a timestamp was set for the layers that generated requests |
| EXPECT_TRUE(0 == mLayers[0].mOutputLayerState.clientCompositionTimestamp); |
| EXPECT_TRUE(0 != mLayers[1].mOutputLayerState.clientCompositionTimestamp); |
| EXPECT_TRUE(0 != mLayers[2].mOutputLayerState.clientCompositionTimestamp); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| onlyClientComposesClientComposedLayersIfNoClearingNeeded) { |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true)); |
| |
| mLayers[0].mOutputLayerState.clearClientTarget = false; |
| mLayers[1].mOutputLayerState.clearClientTarget = false; |
| mLayers[2].mOutputLayerState.clearClientTarget = false; |
| |
| mLayers[0].mLayerFEState.isOpaque = true; |
| mLayers[1].mLayerFEState.isOpaque = true; |
| mLayers[2].mLayerFEState.isOpaque = true; |
| |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(1u, requests.size()); |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| onlyClientComposesClientComposedLayersIfOthersAreNotOpaque) { |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true)); |
| |
| mLayers[0].mOutputLayerState.clearClientTarget = true; |
| mLayers[1].mOutputLayerState.clearClientTarget = true; |
| mLayers[2].mOutputLayerState.clearClientTarget = true; |
| |
| mLayers[0].mLayerFEState.isOpaque = false; |
| mLayers[1].mLayerFEState.isOpaque = false; |
| mLayers[2].mLayerFEState.isOpaque = false; |
| |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_)) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(1u, requests.size()); |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, clearsHWCLayersIfOpaqueAndNotFirst) { |
| // If client composition is performed with some layers set to use device |
| // composition, device layers after the first layer (device or client) will |
| // clear the frame buffer if they are opaque and if that layer has a flag |
| // set to do so. The first layer is skipped as the frame buffer is already |
| // expected to be clear. |
| |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true)); |
| |
| mLayers[0].mOutputLayerState.clearClientTarget = true; |
| mLayers[1].mOutputLayerState.clearClientTarget = true; |
| mLayers[2].mOutputLayerState.clearClientTarget = true; |
| |
| mLayers[0].mLayerFEState.isOpaque = true; |
| mLayers[1].mLayerFEState.isOpaque = true; |
| mLayers[2].mLayerFEState.isOpaque = true; |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| false /* realContentIsVisible */, |
| true /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| LayerFE::LayerSettings mBlackoutSettings = mLayers[1].mLayerSettings; |
| mBlackoutSettings.source.buffer.buffer = nullptr; |
| mBlackoutSettings.source.solidColor = {0.1f, 0.1f, 0.1f}; |
| mBlackoutSettings.alpha = 0.f; |
| mBlackoutSettings.disableBlending = true; |
| |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mBlackoutSettings))); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(2u, requests.size()); |
| |
| // The second layer is expected to be rendered as alpha=0 black with no blending |
| EXPECT_EQ(mBlackoutSettings, requests[0]); |
| |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| clippedVisibleRegionUsedToGenerateRequest) { |
| mLayers[0].mOutputLayerState.visibleRegion = Region(Rect(10, 10, 20, 20)); |
| mLayers[1].mOutputLayerState.visibleRegion = Region(Rect(-10, -10, 30, 30)); |
| mLayers[2].mOutputLayerState.visibleRegion = Region(Rect(-10, 0, 40, 4000)); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{ |
| Region(Rect(10, 10, 20, 20)), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(Rect(0, 0, 30, 30)), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(Rect(0, 0, 40, 201)), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| |
| static_cast<void>( |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace)); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| perLayerNeedsFilteringUsedToGenerateRequests) { |
| mOutput.mState.needsFiltering = false; |
| EXPECT_CALL(mLayers[0].mOutputLayer, needsFiltering()).WillRepeatedly(Return(true)); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{ |
| Region(kDisplayFrame), |
| true, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| |
| static_cast<void>( |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace)); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| wholeOutputNeedsFilteringUsedToGenerateRequests) { |
| mOutput.mState.needsFiltering = true; |
| EXPECT_CALL(mLayers[0].mOutputLayer, needsFiltering()).WillRepeatedly(Return(true)); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{ |
| Region(kDisplayFrame), |
| true, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(kDisplayFrame), |
| true, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(kDisplayFrame), |
| true, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| |
| static_cast<void>( |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace)); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| wholeOutputSecurityUsedToGenerateRequests) { |
| mOutput.mState.isSecure = true; |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| true, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| true, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| true, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| |
| static_cast<void>( |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace)); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| protectedContentSupportUsedToGenerateRequests) { |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| true, /* isProtected */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| true, /* isProtected */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{ |
| Region(kDisplayFrame), |
| false, /* needs filtering */ |
| false, /* secure */ |
| true, /* isProtected */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>())); |
| |
| static_cast<void>( |
| mOutput.generateClientCompositionRequestsHelper(true /* supportsProtectedContent */, |
| kDisplayDataspace)); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, noBackgroundBlurWhenOpaque) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| |
| uint32_t z = 0; |
| // Layer requesting blur, or below, should request client composition, unless opaque. |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| layer2.layerFEState.backgroundBlurRadius = 10; |
| layer2.layerFEState.isOpaque = true; |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = false; |
| args.devOptForceClientComposition = false; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, handlesBackgroundBlurRequests) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| uint32_t z = 0; |
| // Layer requesting blur, or below, should request client composition. |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| layer2.layerFEState.backgroundBlurRadius = 10; |
| layer2.layerFEState.isOpaque = false; |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = false; |
| args.devOptForceClientComposition = false; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(OutputUpdateAndWriteCompositionStateTest, handlesBlurRegionRequests) { |
| InjectedLayer layer1; |
| InjectedLayer layer2; |
| InjectedLayer layer3; |
| |
| uint32_t z = 0; |
| // Layer requesting blur, or below, should request client composition. |
| EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer1.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer2.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0)); |
| EXPECT_CALL(*layer3.outputLayer, |
| writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++, |
| /*zIsOverridden*/ false, /*isPeekingThrough*/ false)); |
| EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| |
| BlurRegion region; |
| layer2.layerFEState.blurRegions.push_back(region); |
| layer2.layerFEState.isOpaque = false; |
| |
| injectOutputLayer(layer1); |
| injectOutputLayer(layer2); |
| injectOutputLayer(layer3); |
| |
| mOutput->editState().isEnabled = true; |
| |
| CompositionRefreshArgs args; |
| args.updatingGeometryThisFrame = false; |
| args.devOptForceClientComposition = false; |
| mOutput->updateCompositionState(args); |
| mOutput->planComposition(); |
| mOutput->writeCompositionState(args); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest, handlesLandscapeModeSplitScreenRequests) { |
| // In split-screen landscape mode, the screen is rotated 90 degrees, with |
| // one layer on the left covering the left side of the output, and one layer |
| // on the right covering that side of the output. |
| |
| const Rect kPortraitFrame(0, 0, 1000, 2000); |
| const Rect kPortraitViewport(0, 0, 2000, 1000); |
| const Rect kPortraitDestinationClip(0, 0, 1000, 2000); |
| const ui::Rotation kPortraitOrientation = ui::ROTATION_90; |
| constexpr ui::Dataspace kOutputDataspace = ui::Dataspace::DISPLAY_P3; |
| |
| mOutput.mState.orientedDisplaySpace.setContent(kPortraitFrame); |
| mOutput.mState.layerStackSpace.setContent(kPortraitViewport); |
| mOutput.mState.displaySpace.setContent(kPortraitDestinationClip); |
| mOutput.mState.transform = ui::Transform{ui::Transform::toRotationFlags(kPortraitOrientation)}; |
| mOutput.mState.displaySpace.setOrientation(kPortraitOrientation); |
| mOutput.mState.needsFiltering = false; |
| mOutput.mState.isSecure = true; |
| |
| Layer leftLayer; |
| Layer rightLayer; |
| |
| leftLayer.mOutputLayerState.clearClientTarget = false; |
| leftLayer.mOutputLayerState.visibleRegion = Region(Rect(0, 0, 1000, 1000)); |
| leftLayer.mLayerFEState.isOpaque = true; |
| leftLayer.mLayerSettings.source.solidColor = {1.f, 0.f, 0.f}; |
| |
| rightLayer.mOutputLayerState.clearClientTarget = false; |
| rightLayer.mOutputLayerState.visibleRegion = Region(Rect(1000, 0, 2000, 1000)); |
| rightLayer.mLayerFEState.isOpaque = true; |
| rightLayer.mLayerSettings.source.solidColor = {0.f, 1.f, 0.f}; |
| |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u)) |
| .WillRepeatedly(Return(&leftLayer.mOutputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u)) |
| .WillRepeatedly(Return(&rightLayer.mOutputLayer)); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings leftLayerSettings{ |
| Region(Rect(0, 0, 1000, 1000)), |
| false, /* needs filtering */ |
| true, /* secure */ |
| true, /* isProtected */ |
| kPortraitViewport, |
| kOutputDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(leftLayer.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(leftLayer.mOutputLayer, needsFiltering()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*leftLayer.mLayerFE, prepareClientComposition(Eq(ByRef(leftLayerSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(leftLayer.mLayerSettings))); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings rightLayerSettings{ |
| Region(Rect(1000, 0, 2000, 1000)), |
| false, /* needs filtering */ |
| true, /* secure */ |
| true, /* isProtected */ |
| kPortraitViewport, |
| kOutputDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(rightLayer.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(rightLayer.mOutputLayer, needsFiltering()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(*rightLayer.mLayerFE, prepareClientComposition(Eq(ByRef(rightLayerSettings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(rightLayer.mLayerSettings))); |
| |
| constexpr bool supportsProtectedContent = true; |
| auto requests = mOutput.generateClientCompositionRequestsHelper(supportsProtectedContent, |
| kOutputDataspace); |
| ASSERT_EQ(2u, requests.size()); |
| EXPECT_EQ(leftLayer.mLayerSettings, requests[0]); |
| EXPECT_EQ(rightLayer.mLayerSettings, requests[1]); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| shadowRegionOnlyVisibleSkipsContentComposition) { |
| const Rect kContentWithShadow(40, 40, 70, 90); |
| const Rect kContent(50, 50, 60, 80); |
| const Region kShadowRegion = Region(kContentWithShadow).subtract(kContent); |
| const Region kPartialShadowRegion = Region(kContentWithShadow).subtract(Rect(40, 40, 60, 80)); |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2Settings{ |
| Region(Rect(60, 40, 70, 80)).merge(Rect(40, 80, 70, 90)), /* visible region */ |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| false /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| LayerFE::LayerSettings mShadowSettings; |
| mShadowSettings.source.solidColor = {0.1f, 0.1f, 0.1f}; |
| |
| mLayers[2].mOutputLayerState.visibleRegion = kPartialShadowRegion; |
| mLayers[2].mOutputLayerState.shadowRegion = kShadowRegion; |
| |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2Settings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mShadowSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(1u, requests.size()); |
| |
| EXPECT_EQ(mShadowSettings, requests[0]); |
| } |
| |
| TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, |
| shadowRegionWithContentVisibleRequestsContentAndShadowComposition) { |
| const Rect kContentWithShadow(40, 40, 70, 90); |
| const Rect kContent(50, 50, 60, 80); |
| const Region kShadowRegion = Region(kContentWithShadow).subtract(kContent); |
| const Region kPartialContentWithPartialShadowRegion = |
| Region(kContentWithShadow).subtract(Rect(40, 40, 50, 80)); |
| |
| mLayers[2].mOutputLayerState.visibleRegion = kPartialContentWithPartialShadowRegion; |
| mLayers[2].mOutputLayerState.shadowRegion = kShadowRegion; |
| |
| compositionengine::LayerFE::ClientCompositionTargetSettings layer2Settings{ |
| Region(Rect(50, 40, 70, 80)).merge(Rect(40, 80, 70, 90)), /* visible region */ |
| false, /* needs filtering */ |
| false, /* secure */ |
| false, /* supports protected content */ |
| kDisplayViewport, |
| kDisplayDataspace, |
| true /* realContentIsVisible */, |
| false /* clearContent */, |
| compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled, |
| kLayerWhitePointNits, |
| false /* treat170mAsSrgb */, |
| }; |
| |
| EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false)); |
| EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2Settings)))) |
| .WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings))); |
| |
| auto requests = |
| mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */, |
| kDisplayDataspace); |
| ASSERT_EQ(1u, requests.size()); |
| |
| EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]); |
| } |
| |
| struct OutputPresentFrameAndReleaseLayersAsyncTest : public ::testing::Test { |
| // Piggy-back on OutputPrepareFrameAsyncTest's version to avoid some boilerplate. |
| struct OutputPartialMock : public OutputPrepareFrameAsyncTest::OutputPartialMock { |
| // Set up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_METHOD0(presentFrameAndReleaseLayers, void()); |
| MOCK_METHOD0(presentFrameAndReleaseLayersAsync, ftl::Future<std::monostate>()); |
| }; |
| OutputPresentFrameAndReleaseLayersAsyncTest() { |
| mOutput->setDisplayColorProfileForTest( |
| std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile)); |
| mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| mOutput->setCompositionEnabled(true); |
| mRefreshArgs.outputs = {mOutput}; |
| } |
| |
| mock::DisplayColorProfile* mDisplayColorProfile = new NiceMock<mock::DisplayColorProfile>(); |
| mock::RenderSurface* mRenderSurface = new NiceMock<mock::RenderSurface>(); |
| std::shared_ptr<OutputPartialMock> mOutput{std::make_shared<NiceMock<OutputPartialMock>>()}; |
| CompositionRefreshArgs mRefreshArgs; |
| }; |
| |
| TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, notCalledWhenNotRequested) { |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync()).Times(0); |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(1); |
| |
| mOutput->present(mRefreshArgs); |
| } |
| |
| TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, calledWhenRequested) { |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync()) |
| .WillOnce(Return(ftl::yield<std::monostate>({}))); |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(0); |
| |
| mOutput->offloadPresentNextFrame(); |
| mOutput->present(mRefreshArgs); |
| } |
| |
| TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, calledForOneFrame) { |
| ::testing::InSequence inseq; |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync()) |
| .WillOnce(Return(ftl::yield<std::monostate>({}))); |
| EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(1); |
| |
| mOutput->offloadPresentNextFrame(); |
| mOutput->present(mRefreshArgs); |
| mOutput->present(mRefreshArgs); |
| } |
| |
| /* |
| * Output::updateProtectedContentState() |
| */ |
| |
| struct OutputUpdateProtectedContentStateTest : public testing::Test { |
| struct OutputPartialMock : public OutputPartialMockBase { |
| // Sets up the helper functions called by the function under test to use |
| // mock implementations. |
| MOCK_CONST_METHOD0(getCompositionEngine, const CompositionEngine&()); |
| }; |
| |
| OutputUpdateProtectedContentStateTest() { |
| mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface)); |
| EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine)); |
| EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine)); |
| EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0)) |
| .WillRepeatedly(Return(&mLayer1.mOutputLayer)); |
| EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1)) |
| .WillRepeatedly(Return(&mLayer2.mOutputLayer)); |
| } |
| |
| struct Layer { |
| Layer() { |
| EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState)); |
| EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE)); |
| } |
| |
| StrictMock<mock::OutputLayer> mOutputLayer; |
| sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make(); |
| LayerFECompositionState mLayerFEState; |
| }; |
| |
| mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>(); |
| StrictMock<OutputPartialMock> mOutput; |
| StrictMock<mock::CompositionEngine> mCompositionEngine; |
| StrictMock<renderengine::mock::RenderEngine> mRenderEngine; |
| Layer mLayer1; |
| Layer mLayer2; |
| }; |
| |
| TEST_F(OutputUpdateProtectedContentStateTest, ifProtectedContentLayerComposeByHWC) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer1.mLayerFEState.hasProtectedContent = false; |
| mLayer2.mLayerFEState.hasProtectedContent = true; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false)); |
| EXPECT_CALL(mLayer1.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mLayer2.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(false)); |
| mOutput.updateProtectedContentState(); |
| } |
| |
| TEST_F(OutputUpdateProtectedContentStateTest, ifProtectedContentLayerComposeByClient) { |
| SET_FLAG_FOR_TEST(flags::protected_if_client, true); |
| if (FlagManager::getInstance().display_protected()) { |
| mOutput.mState.isProtected = true; |
| } else { |
| mOutput.mState.isSecure = true; |
| } |
| mLayer1.mLayerFEState.hasProtectedContent = false; |
| mLayer2.mLayerFEState.hasProtectedContent = true; |
| EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false)); |
| EXPECT_CALL(*mRenderSurface, setProtected(true)); |
| EXPECT_CALL(mLayer1.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| EXPECT_CALL(mLayer2.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true)); |
| mOutput.updateProtectedContentState(); |
| } |
| |
| } // namespace |
| } // namespace android::compositionengine |