blob: 799c7edebdafc146b137ced629b7cb65c3c500c7 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/stringprintf.h>
#include <com_android_graphics_surfaceflinger_flags.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/impl/Output.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
#include <compositionengine/mock/CompositionEngine.h>
#include <compositionengine/mock/DisplayColorProfile.h>
#include <compositionengine/mock/LayerFE.h>
#include <compositionengine/mock/OutputLayer.h>
#include <compositionengine/mock/RenderSurface.h>
#include <ftl/future.h>
#include <gtest/gtest.h>
#include <renderengine/ExternalTexture.h>
#include <renderengine/impl/ExternalTexture.h>
#include <renderengine/mock/FakeExternalTexture.h>
#include <renderengine/mock/RenderEngine.h>
#include <ui/Rect.h>
#include <ui/Region.h>
#include <cmath>
#include <cstdint>
#include <variant>
#include <common/FlagManager.h>
#include <common/test/FlagUtils.h>
#include "CallOrderStateMachineHelper.h"
#include "MockHWC2.h"
#include "RegionMatcher.h"
namespace android::compositionengine {
namespace {
using namespace com::android::graphics::surfaceflinger;
using testing::_;
using testing::ByMove;
using testing::ByRef;
using testing::DoAll;
using testing::ElementsAre;
using testing::ElementsAreArray;
using testing::Eq;
using testing::InSequence;
using testing::Invoke;
using testing::IsEmpty;
using testing::Mock;
using testing::NiceMock;
using testing::Pointee;
using testing::Property;
using testing::Ref;
using testing::Return;
using testing::ReturnRef;
using testing::SetArgPointee;
using testing::StrictMock;
constexpr auto TR_IDENT = 0u;
constexpr auto TR_ROT_90 = HAL_TRANSFORM_ROT_90;
constexpr auto MAX_CLIENT_COMPOSITION_CACHE_SIZE = 3;
const mat4 kIdentity;
const mat4 kNonIdentityHalf = mat4() * 0.5f;
const mat4 kNonIdentityQuarter = mat4() * 0.25f;
constexpr OutputColorSetting kVendorSpecifiedOutputColorSetting =
static_cast<OutputColorSetting>(0x100);
using CompositionStrategyPredictionState = android::compositionengine::impl::
OutputCompositionState::CompositionStrategyPredictionState;
struct OutputPartialMockBase : public impl::Output {
// compositionengine::Output overrides
const OutputCompositionState& getState() const override { return mState; }
OutputCompositionState& editState() override { return mState; }
// Use mocks for all the remaining virtual functions
// not implemented by the base implementation class.
MOCK_CONST_METHOD0(getOutputLayerCount, size_t());
MOCK_CONST_METHOD1(getOutputLayerOrderedByZByIndex, compositionengine::OutputLayer*(size_t));
MOCK_METHOD2(ensureOutputLayer,
compositionengine::OutputLayer*(std::optional<size_t>, const sp<LayerFE>&));
MOCK_METHOD0(finalizePendingOutputLayers, void());
MOCK_METHOD0(clearOutputLayers, void());
MOCK_CONST_METHOD1(dumpState, void(std::string&));
MOCK_CONST_METHOD0(getCompositionEngine, const CompositionEngine&());
MOCK_METHOD1(injectOutputLayerForTest, compositionengine::OutputLayer*(const sp<LayerFE>&));
MOCK_METHOD1(injectOutputLayerForTest, void(std::unique_ptr<OutputLayer>));
impl::OutputCompositionState mState;
};
struct InjectedLayer {
InjectedLayer() {
EXPECT_CALL(*outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE.get()));
EXPECT_CALL(*outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(*outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(*layerFE, getCompositionState()).WillRepeatedly(Return(&layerFEState));
EXPECT_CALL(*layerFE, getSequence()).WillRepeatedly(Return(0));
EXPECT_CALL(*layerFE, getDebugName()).WillRepeatedly(Return("InjectedLayer"));
}
mock::OutputLayer* outputLayer = {new StrictMock<mock::OutputLayer>};
sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState layerFEState;
impl::OutputLayerCompositionState outputLayerState;
};
struct NonInjectedLayer {
NonInjectedLayer() {
EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE.get()));
EXPECT_CALL(outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(*layerFE, getCompositionState()).WillRepeatedly(Return(&layerFEState));
EXPECT_CALL(*layerFE, getSequence()).WillRepeatedly(Return(0));
EXPECT_CALL(*layerFE, getDebugName()).WillRepeatedly(Return("NonInjectedLayer"));
}
mock::OutputLayer outputLayer;
sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState layerFEState;
impl::OutputLayerCompositionState outputLayerState;
};
struct OutputTest : public testing::Test {
class Output : public impl::Output {
public:
using impl::Output::injectOutputLayerForTest;
virtual void injectOutputLayerForTest(std::unique_ptr<compositionengine::OutputLayer>) = 0;
};
static std::shared_ptr<Output> createOutput(
const compositionengine::CompositionEngine& compositionEngine) {
return impl::createOutputTemplated<Output>(compositionEngine);
}
OutputTest() {
mOutput->setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput->editState().displaySpace.setBounds(
ui::Size(kDefaultDisplaySize.getWidth(), kDefaultDisplaySize.getHeight()));
EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine));
}
void injectOutputLayer(InjectedLayer& layer) {
mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(layer.outputLayer));
}
void injectNullOutputLayer() {
mOutput->injectOutputLayerForTest(std::unique_ptr<OutputLayer>(nullptr));
}
static const Rect kDefaultDisplaySize;
StrictMock<mock::CompositionEngine> mCompositionEngine;
StrictMock<renderengine::mock::RenderEngine> mRenderEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
std::shared_ptr<Output> mOutput = createOutput(mCompositionEngine);
};
const Rect OutputTest::kDefaultDisplaySize{100, 200};
using ColorProfile = compositionengine::Output::ColorProfile;
void dumpColorProfile(ColorProfile profile, std::string& result, const char* name) {
android::base::StringAppendF(&result, "%s (%s[%d] %s[%d] %s[%d]) ", name,
toString(profile.mode).c_str(), profile.mode,
toString(profile.dataspace).c_str(), profile.dataspace,
toString(profile.renderIntent).c_str(), profile.renderIntent);
}
// Checks for a ColorProfile match
MATCHER_P(ColorProfileEq, expected, "") {
std::string buf;
buf.append("ColorProfiles are not equal\n");
dumpColorProfile(expected, buf, "expected value");
dumpColorProfile(arg, buf, "actual value");
*result_listener << buf;
return (expected.mode == arg.mode) && (expected.dataspace == arg.dataspace) &&
(expected.renderIntent == arg.renderIntent);
}
/*
* Basic construction
*/
TEST_F(OutputTest, canInstantiateOutput) {
// The validation check checks each required component.
EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true));
EXPECT_CALL(*mRenderSurface, isValid()).WillOnce(Return(true));
EXPECT_TRUE(mOutput->isValid());
// If we take away the required components, it is no longer valid.
mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>());
EXPECT_CALL(*mDisplayColorProfile, isValid()).WillOnce(Return(true));
EXPECT_FALSE(mOutput->isValid());
}
/*
* Output::setCompositionEnabled()
*/
TEST_F(OutputTest, setCompositionEnabledDoesNothingIfAlreadyEnabled) {
mOutput->editState().isEnabled = true;
mOutput->setCompositionEnabled(true);
EXPECT_TRUE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setCompositionEnabledSetsEnabledAndDirtiesEntireOutput) {
mOutput->editState().isEnabled = false;
mOutput->setCompositionEnabled(true);
EXPECT_TRUE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setCompositionEnabledSetsDisabledAndDirtiesEntireOutput) {
mOutput->editState().isEnabled = true;
mOutput->setCompositionEnabled(false);
EXPECT_FALSE(mOutput->getState().isEnabled);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setTreat170mAsSrgb()
*/
TEST_F(OutputTest, setTreat170mAsSrgb) {
EXPECT_FALSE(mOutput->getState().treat170mAsSrgb);
mOutput->setTreat170mAsSrgb(true);
EXPECT_TRUE(mOutput->getState().treat170mAsSrgb);
mOutput->setTreat170mAsSrgb(false);
EXPECT_FALSE(mOutput->getState().treat170mAsSrgb);
}
/*
* Output::setLayerCachingEnabled()
*/
TEST_F(OutputTest, setLayerCachingEnabled_enablesCaching) {
const auto kSize = ui::Size(1, 1);
EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize));
mOutput->setLayerCachingEnabled(false);
mOutput->setLayerCachingEnabled(true);
EXPECT_TRUE(mOutput->plannerEnabled());
}
TEST_F(OutputTest, setLayerCachingEnabled_disablesCaching) {
const auto kSize = ui::Size(1, 1);
EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize));
mOutput->setLayerCachingEnabled(true);
mOutput->setLayerCachingEnabled(false);
EXPECT_FALSE(mOutput->plannerEnabled());
}
TEST_F(OutputTest, setLayerCachingEnabled_disablesCachingAndResetsOverrideInfo) {
renderengine::mock::RenderEngine renderEngine;
const auto kSize = ui::Size(1, 1);
EXPECT_CALL(*mRenderSurface, getSize()).WillRepeatedly(ReturnRef(kSize));
mOutput->setLayerCachingEnabled(true);
// Inject some layers
InjectedLayer layer;
layer.outputLayerState.overrideInfo.buffer = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::make(), renderEngine,
renderengine::impl::ExternalTexture::Usage::READABLE |
renderengine::impl::ExternalTexture::Usage::WRITEABLE);
injectOutputLayer(layer);
// inject a null layer to check for null exceptions
injectNullOutputLayer();
EXPECT_NE(nullptr, layer.outputLayerState.overrideInfo.buffer);
mOutput->setLayerCachingEnabled(false);
EXPECT_EQ(nullptr, layer.outputLayerState.overrideInfo.buffer);
}
/*
* Output::setProjection()
*/
TEST_F(OutputTest, setProjectionWorks) {
const Rect displayRect{0, 0, 1000, 2000};
mOutput->editState().displaySpace.setBounds(
ui::Size(displayRect.getWidth(), displayRect.getHeight()));
mOutput->editState().framebufferSpace.setBounds(
ui::Size(displayRect.getWidth(), displayRect.getHeight()));
const ui::Rotation orientation = ui::ROTATION_90;
const Rect frame{50, 60, 100, 100};
const Rect viewport{10, 20, 30, 40};
mOutput->setProjection(orientation, viewport, frame);
EXPECT_EQ(orientation, mOutput->getState().displaySpace.getOrientation());
EXPECT_EQ(frame, mOutput->getState().orientedDisplaySpace.getContent());
EXPECT_EQ(viewport, mOutput->getState().layerStackSpace.getContent());
const auto state = mOutput->getState();
EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation());
EXPECT_EQ(viewport, state.layerStackSpace.getContent());
EXPECT_EQ(Rect(0, 0, 20, 20), state.layerStackSpace.getBoundsAsRect());
EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation());
EXPECT_EQ(frame, state.orientedDisplaySpace.getContent());
EXPECT_EQ(Rect(0, 0, 2000, 1000), state.orientedDisplaySpace.getBoundsAsRect());
EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect());
EXPECT_EQ(Rect(900, 50, 940, 100), state.displaySpace.getContent());
EXPECT_EQ(orientation, state.displaySpace.getOrientation());
EXPECT_EQ(displayRect, state.framebufferSpace.getBoundsAsRect());
EXPECT_EQ(Rect(900, 50, 940, 100), state.framebufferSpace.getContent());
EXPECT_EQ(orientation, state.framebufferSpace.getOrientation());
EXPECT_EQ(state.displaySpace.getContent(),
state.transform.transform(state.layerStackSpace.getContent()));
EXPECT_EQ(ui::Transform::ROT_90, mOutput->getTransformHint());
}
TEST_F(OutputTest, setProjectionWithSmallFramebufferWorks) {
const Rect displayRect{0, 0, 1000, 2000};
const Rect framebufferRect{0, 0, 500, 1000};
mOutput->editState().displaySpace.setBounds(
ui::Size(displayRect.getWidth(), displayRect.getHeight()));
mOutput->editState().framebufferSpace.setBounds(
ui::Size(framebufferRect.getWidth(), framebufferRect.getHeight()));
const ui::Rotation orientation = ui::ROTATION_90;
const Rect frame{50, 60, 100, 100};
const Rect viewport{10, 20, 30, 40};
mOutput->setProjection(orientation, viewport, frame);
EXPECT_EQ(orientation, mOutput->getState().displaySpace.getOrientation());
EXPECT_EQ(frame, mOutput->getState().orientedDisplaySpace.getContent());
EXPECT_EQ(viewport, mOutput->getState().layerStackSpace.getContent());
const auto state = mOutput->getState();
EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation());
EXPECT_EQ(viewport, state.layerStackSpace.getContent());
EXPECT_EQ(Rect(0, 0, 20, 20), state.layerStackSpace.getBoundsAsRect());
EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation());
EXPECT_EQ(frame, state.orientedDisplaySpace.getContent());
EXPECT_EQ(Rect(0, 0, 2000, 1000), state.orientedDisplaySpace.getBoundsAsRect());
EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect());
EXPECT_EQ(Rect(900, 50, 940, 100), state.displaySpace.getContent());
EXPECT_EQ(orientation, state.displaySpace.getOrientation());
EXPECT_EQ(framebufferRect, state.framebufferSpace.getBoundsAsRect());
EXPECT_EQ(Rect(450, 25, 470, 50), state.framebufferSpace.getContent());
EXPECT_EQ(orientation, state.framebufferSpace.getOrientation());
EXPECT_EQ(state.displaySpace.getContent(),
state.transform.transform(state.layerStackSpace.getContent()));
}
/*
* Output::setDisplaySize()
*/
TEST_F(OutputTest, setDisplaySpaceSizeUpdatesOutputStateAndDirtiesEntireOutput) {
mOutput->editState().layerStackSpace.setContent(Rect(0, 0, 2000, 1000));
mOutput->editState().layerStackSpace.setBounds(ui::Size(2000, 1000));
mOutput->editState().orientedDisplaySpace.setContent(Rect(0, 0, 1800, 900));
mOutput->editState().orientedDisplaySpace.setBounds(ui::Size(2000, 1000));
mOutput->editState().framebufferSpace.setContent(Rect(0, 0, 900, 1800));
mOutput->editState().framebufferSpace.setBounds(ui::Size(1000, 2000));
mOutput->editState().framebufferSpace.setOrientation(ui::ROTATION_90);
mOutput->editState().displaySpace.setContent(Rect(0, 0, 900, 1800));
mOutput->editState().displaySpace.setBounds(ui::Size(1000, 2000));
mOutput->editState().displaySpace.setOrientation(ui::ROTATION_90);
const ui::Size newDisplaySize{500, 1000};
EXPECT_CALL(*mRenderSurface, setDisplaySize(newDisplaySize)).Times(1);
mOutput->setDisplaySize(newDisplaySize);
const auto state = mOutput->getState();
const Rect displayRect(newDisplaySize);
EXPECT_EQ(ui::ROTATION_0, state.layerStackSpace.getOrientation());
EXPECT_EQ(Rect(0, 0, 2000, 1000), state.layerStackSpace.getContent());
EXPECT_EQ(Rect(0, 0, 2000, 1000), state.layerStackSpace.getBoundsAsRect());
EXPECT_EQ(ui::ROTATION_0, state.orientedDisplaySpace.getOrientation());
EXPECT_EQ(Rect(0, 0, 1000, 500), state.orientedDisplaySpace.getBoundsAsRect());
EXPECT_EQ(displayRect, state.displaySpace.getBoundsAsRect());
EXPECT_EQ(ui::ROTATION_90, state.displaySpace.getOrientation());
EXPECT_EQ(displayRect, state.framebufferSpace.getBoundsAsRect());
EXPECT_EQ(ui::ROTATION_90, state.framebufferSpace.getOrientation());
EXPECT_EQ(state.displaySpace.getContent(),
state.transform.transform(state.layerStackSpace.getContent()));
EXPECT_THAT(state.dirtyRegion, RegionEq(Region(displayRect)));
}
/*
* Output::setLayerFilter()
*/
TEST_F(OutputTest, setLayerFilterSetsFilterAndDirtiesEntireOutput) {
constexpr ui::LayerFilter kFilter{ui::LayerStack{123u}, true};
mOutput->setLayerFilter(kFilter);
const auto& state = mOutput->getState();
EXPECT_EQ(kFilter.layerStack, state.layerFilter.layerStack);
EXPECT_TRUE(state.layerFilter.toInternalDisplay);
EXPECT_THAT(state.dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setColorTransform
*/
TEST_F(OutputTest, setColorTransformWithNoChangeFlaggedSkipsUpdates) {
mOutput->editState().colorTransformMatrix = kIdentity;
// If no colorTransformMatrix is set the update should be skipped.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = std::nullopt;
mOutput->setColorTransform(refreshArgs);
// The internal state should be unchanged
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// No dirty region should be set
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setColorTransformWithNoActualChangeSkipsUpdates) {
mOutput->editState().colorTransformMatrix = kIdentity;
// Attempting to set the same colorTransformMatrix that is already set should
// also skip the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kIdentity;
mOutput->setColorTransform(refreshArgs);
// The internal state should be unchanged
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// No dirty region should be set
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateToIdentity) {
mOutput->editState().colorTransformMatrix = kNonIdentityHalf;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kIdentity;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kIdentity, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateForIdentityToHalf) {
mOutput->editState().colorTransformMatrix = kIdentity;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kNonIdentityHalf;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kNonIdentityHalf, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputTest, setColorTransformPerformsUpdateForHalfToQuarter) {
mOutput->editState().colorTransformMatrix = kNonIdentityHalf;
// Setting a different colorTransformMatrix should perform the update.
CompositionRefreshArgs refreshArgs;
refreshArgs.colorTransformMatrix = kNonIdentityQuarter;
mOutput->setColorTransform(refreshArgs);
// The internal state should have been updated
EXPECT_EQ(kNonIdentityQuarter, mOutput->getState().colorTransformMatrix);
// The dirtyRegion should be set to the full display size
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
/*
* Output::setColorProfile
*/
using OutputSetColorProfileTest = OutputTest;
TEST_F(OutputSetColorProfileTest, setsStateAndDirtiesOutputIfChanged) {
using ColorProfile = Output::ColorProfile;
EXPECT_CALL(*mRenderSurface, setBufferDataspace(ui::Dataspace::DISPLAY_P3)).Times(1);
mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::TONE_MAP_COLORIMETRIC});
EXPECT_EQ(ui::ColorMode::DISPLAY_P3, mOutput->getState().colorMode);
EXPECT_EQ(ui::Dataspace::DISPLAY_P3, mOutput->getState().dataspace);
EXPECT_EQ(ui::RenderIntent::TONE_MAP_COLORIMETRIC, mOutput->getState().renderIntent);
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region(kDefaultDisplaySize)));
}
TEST_F(OutputSetColorProfileTest, doesNothingIfNoChange) {
using ColorProfile = Output::ColorProfile;
mOutput->editState().colorMode = ui::ColorMode::DISPLAY_P3;
mOutput->editState().dataspace = ui::Dataspace::DISPLAY_P3;
mOutput->editState().renderIntent = ui::RenderIntent::TONE_MAP_COLORIMETRIC;
mOutput->setColorProfile(ColorProfile{ui::ColorMode::DISPLAY_P3, ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::TONE_MAP_COLORIMETRIC});
EXPECT_THAT(mOutput->getState().dirtyRegion, RegionEq(Region()));
}
/*
* Output::setRenderSurface()
*/
TEST_F(OutputTest, setRenderSurfaceResetsBounds) {
const ui::Size newDisplaySize{640, 480};
mock::RenderSurface* renderSurface = new StrictMock<mock::RenderSurface>();
EXPECT_CALL(*renderSurface, getSize()).WillOnce(ReturnRef(newDisplaySize));
mOutput->setRenderSurface(std::unique_ptr<RenderSurface>(renderSurface));
EXPECT_EQ(Rect(newDisplaySize), mOutput->getState().framebufferSpace.getBoundsAsRect());
}
/**
* Output::setDisplayBrightness()
*/
TEST_F(OutputTest, setNextBrightness) {
constexpr float kDisplayBrightness = 0.5f;
mOutput->setNextBrightness(kDisplayBrightness);
ASSERT_TRUE(mOutput->getState().displayBrightness.has_value());
EXPECT_EQ(kDisplayBrightness, mOutput->getState().displayBrightness);
}
/*
* Output::getDirtyRegion()
*/
TEST_F(OutputTest, getDirtyRegion) {
const Rect viewport{100, 200};
mOutput->editState().layerStackSpace.setContent(viewport);
mOutput->editState().dirtyRegion.set(50, 300);
// The dirty region should be clipped to the display bounds.
EXPECT_THAT(mOutput->getDirtyRegion(), RegionEq(Region(Rect(50, 200))));
}
/*
* Output::includesLayer()
*/
TEST_F(OutputTest, layerFiltering) {
const ui::LayerStack layerStack1{123u};
const ui::LayerStack layerStack2{456u};
// If the output is associated to layerStack1 and to an internal display...
mOutput->setLayerFilter({layerStack1, true});
// It excludes layers with no layer stack, internal-only or not.
EXPECT_FALSE(mOutput->includesLayer({ui::INVALID_LAYER_STACK, false}));
EXPECT_FALSE(mOutput->includesLayer({ui::INVALID_LAYER_STACK, true}));
// It includes layers on layerStack1, internal-only or not.
EXPECT_TRUE(mOutput->includesLayer({layerStack1, false}));
EXPECT_TRUE(mOutput->includesLayer({layerStack1, true}));
EXPECT_FALSE(mOutput->includesLayer({layerStack2, true}));
EXPECT_FALSE(mOutput->includesLayer({layerStack2, false}));
// If the output is associated to layerStack1 but not to an internal display...
mOutput->setLayerFilter({layerStack1, false});
// It includes layers on layerStack1, unless they are internal-only.
EXPECT_TRUE(mOutput->includesLayer({layerStack1, false}));
EXPECT_FALSE(mOutput->includesLayer({layerStack1, true}));
EXPECT_FALSE(mOutput->includesLayer({layerStack2, true}));
EXPECT_FALSE(mOutput->includesLayer({layerStack2, false}));
}
TEST_F(OutputTest, layerFilteringWithoutCompositionState) {
NonInjectedLayer layer;
sp<LayerFE> layerFE(layer.layerFE);
// Layers without composition state are excluded.
EXPECT_CALL(*layer.layerFE, getCompositionState).WillOnce(Return(nullptr));
EXPECT_FALSE(mOutput->includesLayer(layerFE));
}
TEST_F(OutputTest, layerFilteringWithCompositionState) {
NonInjectedLayer layer;
sp<LayerFE> layerFE(layer.layerFE);
const ui::LayerStack layerStack1{123u};
const ui::LayerStack layerStack2{456u};
// If the output is associated to layerStack1 and to an internal display...
mOutput->setLayerFilter({layerStack1, true});
// It excludes layers with no layer stack, internal-only or not.
layer.layerFEState.outputFilter = {ui::INVALID_LAYER_STACK, false};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {ui::INVALID_LAYER_STACK, true};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
// It includes layers on layerStack1, internal-only or not.
layer.layerFEState.outputFilter = {layerStack1, false};
EXPECT_TRUE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack1, true};
EXPECT_TRUE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack2, true};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack2, false};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
// If the output is associated to layerStack1 but not to an internal display...
mOutput->setLayerFilter({layerStack1, false});
// It includes layers on layerStack1, unless they are internal-only.
layer.layerFEState.outputFilter = {layerStack1, false};
EXPECT_TRUE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack1, true};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack2, true};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
layer.layerFEState.outputFilter = {layerStack2, false};
EXPECT_FALSE(mOutput->includesLayer(layerFE));
}
/*
* Output::getOutputLayerForLayer()
*/
TEST_F(OutputTest, getOutputLayerForLayerWorks) {
InjectedLayer layer1;
InjectedLayer layer2;
NonInjectedLayer layer3;
injectOutputLayer(layer1);
injectNullOutputLayer();
injectOutputLayer(layer2);
// If the input layer matches the first OutputLayer, it will be returned.
EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get()));
EXPECT_EQ(layer1.outputLayer, mOutput->getOutputLayerForLayer(layer1.layerFE));
// If the input layer matches the second OutputLayer, it will be returned.
EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get()));
EXPECT_CALL(*layer2.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer2.layerFE.get()));
EXPECT_EQ(layer2.outputLayer, mOutput->getOutputLayerForLayer(layer2.layerFE));
// If the input layer does not match an output layer, null will be returned.
EXPECT_CALL(*layer1.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer1.layerFE.get()));
EXPECT_CALL(*layer2.outputLayer, getLayerFE()).WillOnce(ReturnRef(*layer2.layerFE.get()));
EXPECT_EQ(nullptr, mOutput->getOutputLayerForLayer(layer3.layerFE));
}
/*
* Output::setReleasedLayers()
*/
using OutputSetReleasedLayersTest = OutputTest;
TEST_F(OutputSetReleasedLayersTest, setReleasedLayersTakesGivenLayers) {
sp<StrictMock<mock::LayerFE>> layer1FE = sp<StrictMock<mock::LayerFE>>::make();
sp<StrictMock<mock::LayerFE>> layer2FE = sp<StrictMock<mock::LayerFE>>::make();
sp<StrictMock<mock::LayerFE>> layer3FE = sp<StrictMock<mock::LayerFE>>::make();
Output::ReleasedLayers layers;
layers.push_back(layer1FE);
layers.push_back(layer2FE);
layers.push_back(layer3FE);
mOutput->setReleasedLayers(std::move(layers));
const auto& setLayers = mOutput->getReleasedLayersForTest();
ASSERT_EQ(3u, setLayers.size());
ASSERT_EQ(layer1FE.get(), setLayers[0].promote().get());
ASSERT_EQ(layer2FE.get(), setLayers[1].promote().get());
ASSERT_EQ(layer3FE.get(), setLayers[2].promote().get());
}
/*
* Output::updateAndWriteCompositionState()
*/
using OutputUpdateAndWriteCompositionStateTest = OutputTest;
TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfLayers) {
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, doesNothingIfOutputNotEnabled) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
mOutput->editState().isEnabled = false;
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
CompositionRefreshArgs args;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerContentForAllLayers) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
uint32_t z = 0;
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_180));
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = false;
args.internalDisplayRotationFlags = ui::Transform::ROT_180;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, updatesLayerGeometryAndContentForAllLayers) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
uint32_t z = 0;
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = true;
args.devOptForceClientComposition = false;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, forcesClientCompositionForAllLayers) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
uint32_t z = 0;
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = true;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, peekThroughLayerChangesOrder) {
renderengine::mock::RenderEngine renderEngine;
InjectedLayer layer0;
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
InSequence seq;
EXPECT_CALL(*layer0.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(true, false, ui::Transform::ROT_0));
uint32_t z = 0;
EXPECT_CALL(*layer0.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer0.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
// After calling planComposition (which clears overrideInfo), this test sets
// layer3 to be the peekThroughLayer for layer1 and layer2. As a result, it
// comes first, setting isPeekingThrough to true and zIsOverridden to true
// for it and the following layers.
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ true, /*isPeekingThrough*/
true));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ false, z++,
/*zIsOverridden*/ true, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ true, /*skipLayer*/ true, z++,
/*zIsOverridden*/ true, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
injectOutputLayer(layer0);
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = true;
args.devOptForceClientComposition = false;
mOutput->updateCompositionState(args);
mOutput->planComposition();
std::shared_ptr<renderengine::ExternalTexture> buffer = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::make(), renderEngine,
renderengine::impl::ExternalTexture::Usage::READABLE |
renderengine::impl::ExternalTexture::Usage::WRITEABLE);
layer1.outputLayerState.overrideInfo.buffer = buffer;
layer2.outputLayerState.overrideInfo.buffer = buffer;
layer1.outputLayerState.overrideInfo.peekThroughLayer = layer3.outputLayer;
layer2.outputLayerState.overrideInfo.peekThroughLayer = layer3.outputLayer;
mOutput->writeCompositionState(args);
}
/*
* Output::prepareFrame()
*/
struct OutputPrepareFrameTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD1(chooseCompositionStrategy,
bool(std::optional<android::HWComposer::DeviceRequestedChanges>*));
MOCK_METHOD0(resetCompositionStrategy, void());
};
OutputPrepareFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
StrictMock<mock::CompositionEngine> mCompositionEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
TEST_F(OutputPrepareFrameTest, takesEarlyOutIfNotEnabled) {
mOutput.editState().isEnabled = false;
mOutput.prepareFrame();
}
TEST_F(OutputPrepareFrameTest, delegatesToChooseCompositionStrategyAndRenderSurface) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
EXPECT_CALL(mOutput, chooseCompositionStrategy(_)).WillRepeatedly(Return(true));
EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(1);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true));
mOutput.prepareFrame();
EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::DISABLED);
}
// Note: Use OutputTest and not OutputPrepareFrameTest, so the real
// base chooseCompositionStrategy() is invoked.
TEST_F(OutputTest, prepareFrameSetsClientCompositionOnlyByDefault) {
mOutput->editState().isEnabled = true;
mOutput->editState().usesClientComposition = false;
mOutput->editState().usesDeviceComposition = true;
EXPECT_CALL(*mRenderSurface, prepareFrame(true, false));
mOutput->prepareFrame();
EXPECT_TRUE(mOutput->getState().usesClientComposition);
EXPECT_FALSE(mOutput->getState().usesDeviceComposition);
EXPECT_EQ(mOutput->getState().strategyPrediction, CompositionStrategyPredictionState::DISABLED);
}
struct OutputPrepareFrameAsyncTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD1(chooseCompositionStrategy,
bool(std::optional<android::HWComposer::DeviceRequestedChanges>*));
MOCK_METHOD0(updateProtectedContentState, void());
MOCK_METHOD2(dequeueRenderBuffer,
bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*));
MOCK_METHOD1(
chooseCompositionStrategyAsync,
std::future<bool>(std::optional<android::HWComposer::DeviceRequestedChanges>*));
MOCK_METHOD3(composeSurfaces,
std::optional<base::unique_fd>(const Region&,
std::shared_ptr<renderengine::ExternalTexture>,
base::unique_fd&));
MOCK_METHOD0(resetCompositionStrategy, void());
};
OutputPrepareFrameAsyncTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
StrictMock<mock::CompositionEngine> mCompositionEngine;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
CompositionRefreshArgs mRefreshArgs;
};
TEST_F(OutputPrepareFrameAsyncTest, delegatesToChooseCompositionStrategyAndRenderSurface) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
mOutput.editState().previousDeviceRequestedChanges =
std::make_optional<android::HWComposer::DeviceRequestedChanges>({});
std::promise<bool> p;
p.set_value(true);
EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(1);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true));
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(1);
EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_))
.WillOnce(DoAll(SetArgPointee<0>(mOutput.editState().previousDeviceRequestedChanges),
Return(ByMove(p.get_future()))));
EXPECT_CALL(mOutput, composeSurfaces(_, _, _));
impl::GpuCompositionResult result = mOutput.prepareFrameAsync();
EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::SUCCESS);
EXPECT_FALSE(result.bufferAvailable());
}
TEST_F(OutputPrepareFrameAsyncTest, skipCompositionOnDequeueFailure) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
mOutput.editState().previousDeviceRequestedChanges =
std::make_optional<android::HWComposer::DeviceRequestedChanges>({});
std::promise<bool> p;
p.set_value(true);
EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(false));
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2);
EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_))
.WillOnce(DoAll(SetArgPointee<0>(mOutput.editState().previousDeviceRequestedChanges),
Return(ByMove(p.get_future()))));
impl::GpuCompositionResult result = mOutput.prepareFrameAsync();
EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL);
EXPECT_FALSE(result.bufferAvailable());
}
// Tests that in the event of hwc error when choosing composition strategy, we would fall back
// client composition
TEST_F(OutputPrepareFrameAsyncTest, chooseCompositionStrategyFailureCallsPrepareFrame) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
mOutput.editState().previousDeviceRequestedChanges =
std::make_optional<android::HWComposer::DeviceRequestedChanges>({});
std::promise<bool> p;
p.set_value(false);
std::shared_ptr<renderengine::ExternalTexture> tex =
std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1,
HAL_PIXEL_FORMAT_RGBA_8888, 1,
2);
EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _))
.WillOnce(DoAll(SetArgPointee<1>(tex), Return(true)));
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2);
EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)).WillOnce([&] {
return p.get_future();
});
EXPECT_CALL(mOutput, composeSurfaces(_, _, _));
impl::GpuCompositionResult result = mOutput.prepareFrameAsync();
EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL);
EXPECT_TRUE(result.bufferAvailable());
}
TEST_F(OutputPrepareFrameAsyncTest, predictionMiss) {
mOutput.editState().isEnabled = true;
mOutput.editState().usesClientComposition = false;
mOutput.editState().usesDeviceComposition = true;
mOutput.editState().previousDeviceRequestedChanges =
std::make_optional<android::HWComposer::DeviceRequestedChanges>({});
auto newDeviceRequestedChanges =
std::make_optional<android::HWComposer::DeviceRequestedChanges>({});
newDeviceRequestedChanges->displayRequests = static_cast<hal::DisplayRequest>(0);
std::promise<bool> p;
p.set_value(false);
std::shared_ptr<renderengine::ExternalTexture> tex =
std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1,
HAL_PIXEL_FORMAT_RGBA_8888, 1,
2);
EXPECT_CALL(mOutput, resetCompositionStrategy()).Times(2);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _))
.WillOnce(DoAll(SetArgPointee<1>(tex), Return(true)));
EXPECT_CALL(*mRenderSurface, prepareFrame(false, true)).Times(2);
EXPECT_CALL(mOutput, chooseCompositionStrategyAsync(_)).WillOnce([&] {
return p.get_future();
});
EXPECT_CALL(mOutput, composeSurfaces(_, _, _));
impl::GpuCompositionResult result = mOutput.prepareFrameAsync();
EXPECT_EQ(mOutput.getState().strategyPrediction, CompositionStrategyPredictionState::FAIL);
EXPECT_TRUE(result.bufferAvailable());
}
/*
* Output::prepare()
*/
struct OutputPrepareTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD2(rebuildLayerStacks,
void(const compositionengine::CompositionRefreshArgs&,
compositionengine::LayerFESet&));
};
OutputPrepareTest() {
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0))
.WillRepeatedly(Return(&mLayer1.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1))
.WillRepeatedly(Return(&mLayer2.outputLayer));
mRefreshArgs.layers.push_back(mLayer1.layerFE);
mRefreshArgs.layers.push_back(mLayer2.layerFE);
}
struct Layer {
StrictMock<mock::OutputLayer> outputLayer;
sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make();
};
StrictMock<OutputPartialMock> mOutput;
CompositionRefreshArgs mRefreshArgs;
LayerFESet mGeomSnapshots;
Layer mLayer1;
Layer mLayer2;
};
TEST_F(OutputPrepareTest, callsUncacheBuffersOnEachOutputLayerAndThenRebuildsLayerStacks) {
InSequence seq;
mRefreshArgs.bufferIdsToUncache = {1, 3, 5};
EXPECT_CALL(mOutput, rebuildLayerStacks(Ref(mRefreshArgs), Ref(mGeomSnapshots)));
EXPECT_CALL(mLayer1.outputLayer, uncacheBuffers(Ref(mRefreshArgs.bufferIdsToUncache)));
EXPECT_CALL(mLayer2.outputLayer, uncacheBuffers(Ref(mRefreshArgs.bufferIdsToUncache)));
mOutput.prepare(mRefreshArgs, mGeomSnapshots);
}
TEST_F(OutputPrepareTest, skipsUncacheBuffersIfEmptyAndThenRebuildsLayerStacks) {
InSequence seq;
mRefreshArgs.bufferIdsToUncache = {};
EXPECT_CALL(mOutput, rebuildLayerStacks(Ref(mRefreshArgs), Ref(mGeomSnapshots)));
EXPECT_CALL(mLayer1.outputLayer, uncacheBuffers(_)).Times(0);
EXPECT_CALL(mLayer2.outputLayer, uncacheBuffers(_)).Times(0);
mOutput.prepare(mRefreshArgs, mGeomSnapshots);
}
/*
* Output::rebuildLayerStacks()
*/
struct OutputRebuildLayerStacksTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD2(collectVisibleLayers,
void(const compositionengine::CompositionRefreshArgs&,
compositionengine::Output::CoverageState&));
};
OutputRebuildLayerStacksTest() {
mOutput.mState.isEnabled = true;
mOutput.mState.transform = kIdentityTransform;
mOutput.mState.displaySpace.setBounds(
ui::Size(kOutputBounds.getWidth(), kOutputBounds.getHeight()));
mRefreshArgs.updatingOutputGeometryThisFrame = true;
mCoverageAboveCoveredLayersToSet = Region(Rect(0, 0, 10, 10));
EXPECT_CALL(mOutput, collectVisibleLayers(Ref(mRefreshArgs), _))
.WillRepeatedly(Invoke(this, &OutputRebuildLayerStacksTest::setTestCoverageValues));
}
void setTestCoverageValues(const CompositionRefreshArgs&,
compositionengine::Output::CoverageState& state) {
state.aboveCoveredLayers = mCoverageAboveCoveredLayersToSet;
state.aboveOpaqueLayers = mCoverageAboveOpaqueLayersToSet;
state.dirtyRegion = mCoverageDirtyRegionToSet;
}
static const ui::Transform kIdentityTransform;
static const ui::Transform kRotate90Transform;
static const Rect kOutputBounds;
StrictMock<OutputPartialMock> mOutput;
CompositionRefreshArgs mRefreshArgs;
LayerFESet mGeomSnapshots;
Region mCoverageAboveCoveredLayersToSet;
Region mCoverageAboveOpaqueLayersToSet;
Region mCoverageDirtyRegionToSet;
};
const ui::Transform OutputRebuildLayerStacksTest::kIdentityTransform{TR_IDENT, 1920, 1080};
const ui::Transform OutputRebuildLayerStacksTest::kRotate90Transform{TR_ROT_90, 1920, 1080};
const Rect OutputRebuildLayerStacksTest::kOutputBounds{0, 0, 1920, 1080};
TEST_F(OutputRebuildLayerStacksTest, doesNothingIfNotEnabled) {
mOutput.mState.isEnabled = false;
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
}
TEST_F(OutputRebuildLayerStacksTest, doesNothingIfNotUpdatingGeometryThisFrame) {
mRefreshArgs.updatingOutputGeometryThisFrame = false;
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
}
TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWithNoRotationAndFullCoverage) {
mOutput.mState.transform = kIdentityTransform;
mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1920, 1080));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 0, 0))));
}
TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWithNoRotationAndPartialCoverage) {
mOutput.mState.transform = kIdentityTransform;
mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 960, 1080));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(960, 0, 1920, 1080))));
}
TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWith90RotationAndFullCoverage) {
mOutput.mState.transform = kRotate90Transform;
mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1080, 1920));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 0, 0))));
}
TEST_F(OutputRebuildLayerStacksTest, computesUndefinedRegionWith90RotationAndPartialCoverage) {
mOutput.mState.transform = kRotate90Transform;
mCoverageAboveOpaqueLayersToSet = Region(Rect(0, 0, 1080, 960));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.undefinedRegion, RegionEq(Region(Rect(0, 0, 960, 1080))));
}
TEST_F(OutputRebuildLayerStacksTest, addsToDirtyRegionWithNoRotation) {
mOutput.mState.transform = kIdentityTransform;
mOutput.mState.dirtyRegion = Region(Rect(960, 0, 1920, 1080));
mCoverageDirtyRegionToSet = Region(Rect(0, 0, 960, 1080));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.dirtyRegion, RegionEq(Region(Rect(0, 0, 1920, 1080))));
}
TEST_F(OutputRebuildLayerStacksTest, addsToDirtyRegionWith90Rotation) {
mOutput.mState.transform = kRotate90Transform;
mOutput.mState.dirtyRegion = Region(Rect(0, 960, 1080, 1920));
mCoverageDirtyRegionToSet = Region(Rect(0, 0, 1080, 960));
mOutput.rebuildLayerStacks(mRefreshArgs, mGeomSnapshots);
EXPECT_THAT(mOutput.mState.dirtyRegion, RegionEq(Region(Rect(0, 0, 1080, 1920))));
}
/*
* Output::collectVisibleLayers()
*/
struct OutputCollectVisibleLayersTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD2(ensureOutputLayerIfVisible,
void(sp<compositionengine::LayerFE>&,
compositionengine::Output::CoverageState&));
MOCK_METHOD1(setReleasedLayers, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD0(finalizePendingOutputLayers, void());
};
struct Layer {
Layer() {
EXPECT_CALL(outputLayer, getState()).WillRepeatedly(ReturnRef(outputLayerState));
EXPECT_CALL(outputLayer, editState()).WillRepeatedly(ReturnRef(outputLayerState));
}
StrictMock<mock::OutputLayer> outputLayer;
impl::OutputLayerCompositionState outputLayerState;
sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make();
};
OutputCollectVisibleLayersTest() {
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0))
.WillRepeatedly(Return(&mLayer1.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1))
.WillRepeatedly(Return(&mLayer2.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2))
.WillRepeatedly(Return(&mLayer3.outputLayer));
mRefreshArgs.layers.push_back(mLayer1.layerFE);
mRefreshArgs.layers.push_back(mLayer2.layerFE);
mRefreshArgs.layers.push_back(mLayer3.layerFE);
}
StrictMock<OutputPartialMock> mOutput;
CompositionRefreshArgs mRefreshArgs;
LayerFESet mGeomSnapshots;
Output::CoverageState mCoverageState{mGeomSnapshots};
Layer mLayer1;
Layer mLayer2;
Layer mLayer3;
};
TEST_F(OutputCollectVisibleLayersTest, doesMinimalWorkIfNoLayers) {
mRefreshArgs.layers.clear();
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
EXPECT_CALL(mOutput, setReleasedLayers(Ref(mRefreshArgs)));
EXPECT_CALL(mOutput, finalizePendingOutputLayers());
mOutput.collectVisibleLayers(mRefreshArgs, mCoverageState);
}
TEST_F(OutputCollectVisibleLayersTest, processesCandidateLayersReversedAndSetsOutputLayerZ) {
// Enforce a call order sequence for this test.
InSequence seq;
// Layer coverage is evaluated from front to back!
EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer3.layerFE), Ref(mCoverageState)));
EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer2.layerFE), Ref(mCoverageState)));
EXPECT_CALL(mOutput, ensureOutputLayerIfVisible(Eq(mLayer1.layerFE), Ref(mCoverageState)));
EXPECT_CALL(mOutput, setReleasedLayers(Ref(mRefreshArgs)));
EXPECT_CALL(mOutput, finalizePendingOutputLayers());
mOutput.collectVisibleLayers(mRefreshArgs, mCoverageState);
}
/*
* Output::ensureOutputLayerIfVisible()
*/
struct OutputEnsureOutputLayerIfVisibleTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD(bool, includesLayer, (const sp<compositionengine::LayerFE>&),
(const, override));
MOCK_CONST_METHOD1(getOutputLayerOrderedByZByIndex, OutputLayer*(size_t));
MOCK_METHOD2(ensureOutputLayer,
compositionengine::OutputLayer*(std::optional<size_t>, const sp<LayerFE>&));
};
OutputEnsureOutputLayerIfVisibleTest() {
EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE)))
.WillRepeatedly(Return(true));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&mLayer.outputLayer));
mOutput.mState.displaySpace.setBounds(ui::Size(200, 300));
mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 200, 300));
mOutput.mState.transform = ui::Transform(TR_IDENT, 200, 300);
mLayer.layerFEState.isVisible = true;
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 100, 200};
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
mLayer.layerFEState.transparentRegionHint = kTransparentRegionHint;
mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 50, 200));
mLayer.outputLayerState.coveredRegion = Region(Rect(50, 0, 100, 200));
mGeomSnapshots.insert(mLayer.layerFE);
}
void ensureOutputLayerIfVisible() {
sp<LayerFE> layerFE(mLayer.layerFE);
mOutput.ensureOutputLayerIfVisible(layerFE, mCoverageState);
}
static const Region kEmptyRegion;
static const Region kFullBoundsNoRotation;
static const Region kRightHalfBoundsNoRotation;
static const Region kLowerHalfBoundsNoRotation;
static const Region kFullBounds90Rotation;
static const Region kTransparentRegionHint;
static const Region kTransparentRegionHintTwo;
static const Region kTransparentRegionHintTwo90Rotation;
static const Region kTransparentRegionHintNegative;
static const Region kTransparentRegionHintNegativeIntersectsBounds;
StrictMock<OutputPartialMock> mOutput;
LayerFESet mGeomSnapshots;
Output::CoverageState mCoverageState{mGeomSnapshots};
NonInjectedLayer mLayer;
};
const Region OutputEnsureOutputLayerIfVisibleTest::kEmptyRegion = Region(Rect(0, 0, 0, 0));
const Region OutputEnsureOutputLayerIfVisibleTest::kFullBoundsNoRotation =
Region(Rect(0, 0, 100, 200));
const Region OutputEnsureOutputLayerIfVisibleTest::kRightHalfBoundsNoRotation =
Region(Rect(0, 100, 100, 200));
const Region OutputEnsureOutputLayerIfVisibleTest::kLowerHalfBoundsNoRotation =
Region(Rect(50, 0, 100, 200));
const Region OutputEnsureOutputLayerIfVisibleTest::kFullBounds90Rotation =
Region(Rect(0, 0, 200, 100));
const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHint =
Region(Rect(0, 0, 100, 100));
const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintTwo =
Region(Rect(25, 20, 50, 75));
const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintTwo90Rotation =
Region(Rect(125, 25, 180, 50));
const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintNegative =
Region(Rect(INT32_MIN, INT32_MIN, INT32_MIN + 100, INT32_MIN + 200));
const Region OutputEnsureOutputLayerIfVisibleTest::kTransparentRegionHintNegativeIntersectsBounds =
Region(Rect(INT32_MIN, INT32_MIN, 100, 100));
TEST_F(OutputEnsureOutputLayerIfVisibleTest, performsGeomLatchBeforeCheckingIfLayerIncluded) {
EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE))).WillOnce(Return(false));
mGeomSnapshots.clear();
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
skipsLatchIfAlreadyLatchedBeforeCheckingIfLayerIncluded) {
EXPECT_CALL(mOutput, includesLayer(sp<LayerFE>(mLayer.layerFE))).WillOnce(Return(false));
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerHasNoCompositionState) {
EXPECT_CALL(*mLayer.layerFE, getCompositionState()).WillOnce(Return(nullptr));
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerNotVisible) {
mLayer.layerFEState.isVisible = false;
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesEarlyOutIfLayerHasEmptyVisibleRegion) {
mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 0, 0};
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesNotSoEarlyOutifDrawRegionEmpty) {
mOutput.mState.displaySpace.setBounds(ui::Size(0, 0));
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForOpaqueDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesUpdatingOutputLayerForOpaqueDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForTransparentDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kRightHalfBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesUpdatingOutputLayerForTransparentDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kRightHalfBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForOpaqueNonDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = false;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesUpdatingOutputLayerForOpaqueNonDirtyNotRotatedLayer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = false;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kLowerHalfBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForOpaqueDirtyRotated90Layer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 200, 100};
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_ROT_90, 100, 200);
mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 100, 100));
mLayer.outputLayerState.coveredRegion = Region(Rect(100, 0, 200, 100));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesUpdatingOutputLayerForOpaqueDirtyRotated90Layer) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 200, 100};
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_ROT_90, 100, 200);
mLayer.outputLayerState.visibleRegion = Region(Rect(0, 0, 100, 100));
mLayer.outputLayerState.coveredRegion = Region(Rect(100, 0, 200, 100));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBoundsNoRotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForOpaqueDirtyNotRotatedLayerRotatedOutput) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200));
mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBounds90Rotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesUpdatingOutputLayerForOpaqueDirtyNotRotatedLayerRotatedOutput) {
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200));
mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300);
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kFullBoundsNoRotation));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kFullBounds90Rotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest,
handlesCreatingOutputLayerForOpaqueDirtyArbitraryTransformLayer) {
ui::Transform arbitraryTransform;
arbitraryTransform.set(1, 1, -1, 1);
arbitraryTransform.set(0, 100);
mLayer.layerFEState.isOpaque = true;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = FloatRect{0, 0, 100, 200};
mLayer.layerFEState.geomLayerTransform = arbitraryTransform;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
const Region kRegion = Region(Rect(0, 0, 300, 300));
const Region kRegionClipped = Region(Rect(0, 0, 200, 300));
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kRegion));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kRegion));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion, RegionEq(kRegion));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kEmptyRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion, RegionEq(kRegionClipped));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, coverageAccumulatesTest) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerTransform = ui::Transform(TR_IDENT, 100, 200);
mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500));
mCoverageState.aboveCoveredLayers = Region(Rect(50, 0, 150, 200));
mCoverageState.aboveOpaqueLayers = Region(Rect(50, 0, 150, 200));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
const Region kExpectedDirtyRegion = Region(Rect(0, 0, 500, 500));
const Region kExpectedAboveCoveredRegion = Region(Rect(0, 0, 150, 200));
const Region kExpectedAboveOpaqueRegion = Region(Rect(50, 0, 150, 200));
const Region kExpectedLayerVisibleRegion = Region(Rect(0, 0, 50, 200));
const Region kExpectedLayerCoveredRegion = Region(Rect(50, 0, 100, 200));
const Region kExpectedLayerVisibleNonTransparentRegion = Region(Rect(0, 100, 50, 200));
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kExpectedDirtyRegion));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kExpectedAboveCoveredRegion));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kExpectedAboveOpaqueRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kExpectedLayerVisibleNonTransparentRegion));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kExpectedLayerCoveredRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion,
RegionEq(kExpectedLayerVisibleRegion));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, coverageAccumulatesWithShadowsTest) {
ui::Transform translate;
translate.set(50, 50);
mLayer.layerFEState.geomLayerTransform = translate;
mLayer.layerFEState.shadowSettings.length = 10.0f;
mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500));
// half of the layer including the casting shadow is covered and opaque
mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 100, 260));
mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 100, 260));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
const Region kExpectedDirtyRegion = Region(Rect(0, 0, 500, 500));
const Region kExpectedAboveCoveredRegion = Region(Rect(40, 40, 160, 260));
// add starting opaque region to the opaque half of the casting layer bounds
const Region kExpectedAboveOpaqueRegion =
Region(Rect(40, 40, 100, 260)).orSelf(Rect(100, 50, 150, 250));
const Region kExpectedLayerVisibleRegion = Region(Rect(100, 40, 160, 260));
const Region kExpectedoutputSpaceLayerVisibleRegion = Region(Rect(100, 50, 150, 250));
const Region kExpectedLayerCoveredRegion = Region(Rect(40, 40, 100, 260));
const Region kExpectedLayerVisibleNonTransparentRegion = Region(Rect(100, 40, 160, 260));
const Region kExpectedLayerShadowRegion =
Region(Rect(40, 40, 160, 260)).subtractSelf(Rect(50, 50, 150, 250));
EXPECT_THAT(mCoverageState.dirtyRegion, RegionEq(kExpectedDirtyRegion));
EXPECT_THAT(mCoverageState.aboveCoveredLayers, RegionEq(kExpectedAboveCoveredRegion));
EXPECT_THAT(mCoverageState.aboveOpaqueLayers, RegionEq(kExpectedAboveOpaqueRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion));
EXPECT_THAT(mLayer.outputLayerState.visibleNonTransparentRegion,
RegionEq(kExpectedLayerVisibleNonTransparentRegion));
EXPECT_THAT(mLayer.outputLayerState.coveredRegion, RegionEq(kExpectedLayerCoveredRegion));
EXPECT_THAT(mLayer.outputLayerState.outputSpaceVisibleRegion,
RegionEq(kExpectedoutputSpaceLayerVisibleRegion));
EXPECT_THAT(mLayer.outputLayerState.shadowRegion, RegionEq(kExpectedLayerShadowRegion));
EXPECT_FALSE(kExpectedLayerVisibleRegion.subtract(kExpectedLayerShadowRegion).isEmpty());
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, shadowRegionOnlyTest) {
ui::Transform translate;
translate.set(50, 50);
mLayer.layerFEState.geomLayerTransform = translate;
mLayer.layerFEState.shadowSettings.length = 10.0f;
mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500));
// Casting layer is covered by an opaque region leaving only part of its shadow to be drawn
mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 150, 260));
mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 150, 260));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(0u), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
const Region kExpectedLayerVisibleRegion = Region(Rect(150, 40, 160, 260));
const Region kExpectedLayerShadowRegion =
Region(Rect(40, 40, 160, 260)).subtractSelf(Rect(50, 50, 150, 250));
EXPECT_THAT(mLayer.outputLayerState.visibleRegion, RegionEq(kExpectedLayerVisibleRegion));
EXPECT_THAT(mLayer.outputLayerState.shadowRegion, RegionEq(kExpectedLayerShadowRegion));
EXPECT_TRUE(kExpectedLayerVisibleRegion.subtract(kExpectedLayerShadowRegion).isEmpty());
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, takesNotSoEarlyOutifLayerWithShadowIsCovered) {
ui::Transform translate;
translate.set(50, 50);
mLayer.layerFEState.geomLayerTransform = translate;
mLayer.layerFEState.shadowSettings.length = 10.0f;
mCoverageState.dirtyRegion = Region(Rect(0, 0, 500, 500));
// Casting layer and its shadows are covered by an opaque region
mCoverageState.aboveCoveredLayers = Region(Rect(40, 40, 160, 260));
mCoverageState.aboveOpaqueLayers = Region(Rect(40, 40, 160, 260));
ensureOutputLayerIfVisible();
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, displayDecorSetsBlockingFromTransparentRegion) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.compositionType =
aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint,
RegionEq(kTransparentRegionHint));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, normalLayersDoNotSetBlockingRegion) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint, RegionEq(Region()));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, blockingRegionIsInOutputSpace) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.compositionType =
aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintTwo;
mOutput.mState.layerStackSpace.setContent(Rect(0, 0, 300, 200));
mOutput.mState.transform = ui::Transform(TR_ROT_90, 200, 300);
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint,
RegionEq(kTransparentRegionHintTwo90Rotation));
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionExcludesOutputLayer) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = kFullBoundsNoRotation.bounds().toFloatRect();
mLayer.layerFEState.transparentRegionHint = kFullBoundsNoRotation;
EXPECT_CALL(mOutput, ensureOutputLayer(_, _)).Times(0);
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionIgnoredWhenOutsideBounds) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.geomLayerBounds = kFullBoundsNoRotation.bounds().toFloatRect();
mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintNegative;
EXPECT_CALL(mOutput, ensureOutputLayer(_, _)).Times(0);
}
TEST_F(OutputEnsureOutputLayerIfVisibleTest, transparentRegionClipsWhenOutsideBounds) {
mLayer.layerFEState.isOpaque = false;
mLayer.layerFEState.contentDirty = true;
mLayer.layerFEState.compositionType =
aidl::android::hardware::graphics::composer3::Composition::DISPLAY_DECORATION;
mLayer.layerFEState.transparentRegionHint = kTransparentRegionHintNegativeIntersectsBounds;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
EXPECT_CALL(mOutput, ensureOutputLayer(Eq(std::nullopt), Eq(mLayer.layerFE)))
.WillOnce(Return(&mLayer.outputLayer));
ensureOutputLayerIfVisible();
// Check that the blocking region clips an out-of-bounds transparent region.
EXPECT_THAT(mLayer.outputLayerState.outputSpaceBlockingRegionHint,
RegionEq(kTransparentRegionHint));
}
/*
* Output::present()
*/
struct OutputPresentTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD1(updateColorProfile, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(updateCompositionState,
void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD0(planComposition, void());
MOCK_METHOD1(writeCompositionState, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(setColorTransform, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD0(beginFrame, void());
MOCK_METHOD0(prepareFrame, void());
MOCK_METHOD0(prepareFrameAsync, GpuCompositionResult());
MOCK_METHOD1(devOptRepaintFlash, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(finishFrame, void(GpuCompositionResult&&));
MOCK_METHOD0(presentFrameAndReleaseLayers, void());
MOCK_METHOD1(renderCachedSets, void(const compositionengine::CompositionRefreshArgs&));
MOCK_METHOD1(canPredictCompositionStrategy, bool(const CompositionRefreshArgs&));
};
StrictMock<OutputPartialMock> mOutput;
};
TEST_F(OutputPresentTest, justInvokesChildFunctionsInSequence) {
CompositionRefreshArgs args;
InSequence seq;
EXPECT_CALL(mOutput, updateColorProfile(Ref(args)));
EXPECT_CALL(mOutput, updateCompositionState(Ref(args)));
EXPECT_CALL(mOutput, planComposition());
EXPECT_CALL(mOutput, writeCompositionState(Ref(args)));
EXPECT_CALL(mOutput, setColorTransform(Ref(args)));
EXPECT_CALL(mOutput, beginFrame());
EXPECT_CALL(mOutput, canPredictCompositionStrategy(Ref(args))).WillOnce(Return(false));
EXPECT_CALL(mOutput, prepareFrame());
EXPECT_CALL(mOutput, devOptRepaintFlash(Ref(args)));
EXPECT_CALL(mOutput, finishFrame(_));
EXPECT_CALL(mOutput, presentFrameAndReleaseLayers());
EXPECT_CALL(mOutput, renderCachedSets(Ref(args)));
mOutput.present(args);
}
TEST_F(OutputPresentTest, predictingCompositionStrategyInvokesPrepareFrameAsync) {
CompositionRefreshArgs args;
InSequence seq;
EXPECT_CALL(mOutput, updateColorProfile(Ref(args)));
EXPECT_CALL(mOutput, updateCompositionState(Ref(args)));
EXPECT_CALL(mOutput, planComposition());
EXPECT_CALL(mOutput, writeCompositionState(Ref(args)));
EXPECT_CALL(mOutput, setColorTransform(Ref(args)));
EXPECT_CALL(mOutput, beginFrame());
EXPECT_CALL(mOutput, canPredictCompositionStrategy(Ref(args))).WillOnce(Return(true));
EXPECT_CALL(mOutput, prepareFrameAsync());
EXPECT_CALL(mOutput, devOptRepaintFlash(Ref(args)));
EXPECT_CALL(mOutput, finishFrame(_));
EXPECT_CALL(mOutput, presentFrameAndReleaseLayers());
EXPECT_CALL(mOutput, renderCachedSets(Ref(args)));
mOutput.present(args);
}
/*
* Output::updateColorProfile()
*/
struct OutputUpdateColorProfileTest : public testing::Test {
using TestType = OutputUpdateColorProfileTest;
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD1(setColorProfile, void(const ColorProfile&));
};
struct Layer {
Layer() {
EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE));
EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState));
}
StrictMock<mock::OutputLayer> mOutputLayer;
sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState mLayerFEState;
};
OutputUpdateColorProfileTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput.editState().isEnabled = true;
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0))
.WillRepeatedly(Return(&mLayer1.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1))
.WillRepeatedly(Return(&mLayer2.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2))
.WillRepeatedly(Return(&mLayer3.mOutputLayer));
}
struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> {
void execute() { getInstance()->mOutput.updateColorProfile(getInstance()->mRefreshArgs); }
};
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
Layer mLayer1;
Layer mLayer2;
Layer mLayer3;
CompositionRefreshArgs mRefreshArgs;
};
// TODO(b/144522012): Refactor Output::updateColorProfile and the related code
// to make it easier to write unit tests.
TEST_F(OutputUpdateColorProfileTest, setsAColorProfileWhenUnmanaged) {
// When the outputColorSetting is set to kUnmanaged, the implementation sets
// a simple default color profile without looking at anything else.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u));
EXPECT_CALL(mOutput,
setColorProfile(
ColorProfileEq(ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC})));
mRefreshArgs.outputColorSetting = OutputColorSetting::kUnmanaged;
mOutput.updateColorProfile(mRefreshArgs);
}
struct OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile
: public OutputUpdateColorProfileTest {
OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile() {
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(0u));
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
}
struct ExpectBestColorModeCallResultUsedToSetColorProfileState
: public CallOrderStateMachineHelper<
TestType, ExpectBestColorModeCallResultUsedToSetColorProfileState> {
[[nodiscard]] auto expectBestColorModeCallResultUsedToSetColorProfile(
ui::ColorMode colorMode, ui::Dataspace dataspace, ui::RenderIntent renderIntent) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(ui::Dataspace::V0_SRGB, ui::RenderIntent::ENHANCE, _, _,
_))
.WillOnce(DoAll(SetArgPointee<2>(dataspace), SetArgPointee<3>(colorMode),
SetArgPointee<4>(renderIntent)));
EXPECT_CALL(getInstance()->mOutput,
setColorProfile(
ColorProfileEq(ColorProfile{colorMode, dataspace, renderIntent})));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() {
return ExpectBestColorModeCallResultUsedToSetColorProfileState::make(this);
}
};
TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile,
Native_Unknown_Colorimetric_Set) {
verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::NATIVE,
ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_GetBestColorModeResultBecomesSetProfile,
DisplayP3_DisplayP3_Enhance_Set) {
verify().expectBestColorModeCallResultUsedToSetColorProfile(ui::ColorMode::DISPLAY_P3,
ui::Dataspace::DISPLAY_P3,
ui::RenderIntent::ENHANCE)
.execute();
}
struct OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference
: public OutputUpdateColorProfileTest {
// Internally the implementation looks through the dataspaces of all the
// visible layers. The topmost one that also has an actual dataspace
// preference set is used to drive subsequent choices.
OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
struct IfTopLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> {
[[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer3.mLayerFEState.dataspace = dataspace;
return nextState<AndIfMiddleLayerDataspaceState>();
}
[[nodiscard]] auto ifTopLayerHasNoPreference() {
return ifTopLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct AndIfMiddleLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfMiddleLayerDataspaceState> {
[[nodiscard]] auto andIfMiddleLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer2.mLayerFEState.dataspace = dataspace;
return nextState<AndIfBottomLayerDataspaceState>();
}
[[nodiscard]] auto andIfMiddleLayerHasNoPreference() {
return andIfMiddleLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct AndIfBottomLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> {
[[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
[[nodiscard]] auto andIfBottomLayerHasNoPreference() {
return andIfBottomLayerIs(ui::Dataspace::UNKNOWN);
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
noStrongLayerPrefenceUses_V0_SRGB) {
// If none of the layers indicate a preference, then V0_SRGB is the
// preferred choice (subject to additional checks).
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopmostUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the topmost layer has a preference, then that is what is chosen.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifMiddleUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the middle layer has a preference, that that is what is chosen.
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfBottomLayerHasNoPreference()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifBottomUses_DisplayP3_Then_DisplayP3_Chosen) {
// If only the middle layer has a preference, that that is what is chosen.
verify().ifTopLayerHasNoPreference()
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopUses_DisplayBT2020_AndBottomUses_DisplayP3_Then_DisplayBT2020_Chosen) {
// If multiple layers have a preference, the topmost value is what is used.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_BT2020)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_TopmostLayerPreferenceSetsOutputPreference,
ifTopUses_DisplayP3_AndBottomUses_V0_SRGB_Then_DisplayP3_Chosen) {
// If multiple layers have a preference, the topmost value is what is used.
verify().ifTopLayerIs(ui::Dataspace::DISPLAY_P3)
.andIfMiddleLayerHasNoPreference()
.andIfBottomLayerIs(ui::Dataspace::DISPLAY_BT2020)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
struct OutputUpdateColorProfileTest_ForceOutputColorOverrides
: public OutputUpdateColorProfileTest {
// If CompositionRefreshArgs::forceOutputColorMode is set to some specific
// values, it overrides the layer dataspace choice.
OutputUpdateColorProfileTest_ForceOutputColorOverrides() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mLayer1.mLayerFEState.dataspace = ui::Dataspace::DISPLAY_BT2020;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
struct IfForceOutputColorModeState
: public CallOrderStateMachineHelper<TestType, IfForceOutputColorModeState> {
[[nodiscard]] auto ifForceOutputColorMode(ui::ColorMode colorMode) {
getInstance()->mRefreshArgs.forceOutputColorMode = colorMode;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
[[nodiscard]] auto ifNoOverride() { return ifForceOutputColorMode(ui::ColorMode::NATIVE); }
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfForceOutputColorModeState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, NoOverride_DoesNotOverride) {
// By default the layer state is used to set the preferred dataspace
verify().ifNoOverride()
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_BT2020)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, SRGB_Override_USES_V0_SRGB) {
// Setting ui::ColorMode::SRGB overrides it with ui::Dataspace::V0_SRGB
verify().ifForceOutputColorMode(ui::ColorMode::SRGB)
.thenExpectBestColorModeCallUses(ui::Dataspace::V0_SRGB)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_ForceOutputColorOverrides, DisplayP3_Override_Uses_DisplayP3) {
// Setting ui::ColorMode::DISPLAY_P3 overrides it with ui::Dataspace::DISPLAY_P3
verify().ifForceOutputColorMode(ui::ColorMode::DISPLAY_P3)
.thenExpectBestColorModeCallUses(ui::Dataspace::DISPLAY_P3)
.execute();
}
// HDR output requires all layers to be compatible with the chosen HDR
// dataspace, along with there being proper support.
struct OutputUpdateColorProfileTest_Hdr : public OutputUpdateColorProfileTest {
OutputUpdateColorProfileTest_Hdr() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
}
static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3;
static constexpr ui::Dataspace BT2020_PQ = ui::Dataspace::BT2020_PQ;
static constexpr ui::Dataspace BT2020_HLG = ui::Dataspace::BT2020_HLG;
static constexpr ui::Dataspace DISPLAY_P3 = ui::Dataspace::DISPLAY_P3;
struct IfTopLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, IfTopLayerDataspaceState> {
[[nodiscard]] auto ifTopLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer2.mLayerFEState.dataspace = dataspace;
return nextState<AndTopLayerCompositionTypeState>();
}
[[nodiscard]] auto ifTopLayerIsNotHdr() { return ifTopLayerIs(kNonHdrDataspace); }
};
struct AndTopLayerCompositionTypeState
: public CallOrderStateMachineHelper<TestType, AndTopLayerCompositionTypeState> {
[[nodiscard]] auto andTopLayerIsREComposed(bool renderEngineComposed) {
getInstance()->mLayer2.mLayerFEState.forceClientComposition = renderEngineComposed;
return nextState<AndIfBottomLayerDataspaceState>();
}
};
struct AndIfBottomLayerDataspaceState
: public CallOrderStateMachineHelper<TestType, AndIfBottomLayerDataspaceState> {
[[nodiscard]] auto andIfBottomLayerIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<AndBottomLayerCompositionTypeState>();
}
[[nodiscard]] auto andIfBottomLayerIsNotHdr() {
return andIfBottomLayerIs(kNonHdrDataspace);
}
};
struct AndBottomLayerCompositionTypeState
: public CallOrderStateMachineHelper<TestType, AndBottomLayerCompositionTypeState> {
[[nodiscard]] auto andBottomLayerIsREComposed(bool renderEngineComposed) {
getInstance()->mLayer1.mLayerFEState.forceClientComposition = renderEngineComposed;
return nextState<AndIfHasLegacySupportState>();
}
};
struct AndIfHasLegacySupportState
: public CallOrderStateMachineHelper<TestType, AndIfHasLegacySupportState> {
[[nodiscard]] auto andIfLegacySupportFor(ui::Dataspace dataspace, bool legacySupport) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile, hasLegacyHdrSupport(dataspace))
.WillOnce(Return(legacySupport));
return nextState<ThenExpectBestColorModeCallUsesState>();
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::Dataspace dataspace) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(dataspace, _, _, _, _));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return IfTopLayerDataspaceState::make(this); }
};
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_Uses_PQ) {
// If all layers use BT2020_PQ, and there are no other special conditions,
// BT2020_PQ is used.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_PQ_RE_Uses_PQ) {
// BT2020_PQ is still used if the bottom layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_PQ_HW_Uses_DisplayP3) {
// BT2020_PQ is not used if the top layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_Uses_PQ) {
// If there is mixed HLG/PQ use, and the topmost layer is PQ, then PQ is used if there
// are no other special conditions.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_HLG_RE_Uses_PQ) {
// BT2020_PQ is used if the bottom HLG layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_RE_On_HLG_HW_Uses_DisplayP3) {
// BT2020_PQ is not used if the top PQ layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_Uses_PQ) {
// If there is mixed HLG/PQ use, and the topmost layer is HLG, then PQ is
// used if there are no other special conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_PQ is not used if there is only legacy support for it.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_PQ_RE_Uses_DisplayP3) {
// BT2020_PQ is not used if the bottom PQ layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_PQ_HW_Uses_PQ) {
// BT2020_PQ is still used if the top HLG layer is RenderEngine composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_PQ)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_Uses_HLG) {
// If all layers use HLG then HLG is used if there are no other special
// conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_HW_IfPQHasLegacySupport_Uses_DisplayP3) {
// BT2020_HLG is not used if there is legacy support for it.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, true)
.thenExpectBestColorModeCallUses(DISPLAY_P3)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_HLG_RE_Uses_HLG) {
// BT2020_HLG is used even if the bottom layer is client composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_RE_On_HLG_HW_Uses_HLG) {
// BT2020_HLG is used even if the top layer is client composed.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(true)
.andIfBottomLayerIs(BT2020_HLG)
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, PQ_HW_On_NonHdr_HW_Uses_PQ) {
// Even if there are non-HDR layers present, BT2020_PQ can still be used.
verify().ifTopLayerIs(BT2020_PQ)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIsNotHdr()
.andBottomLayerIsREComposed(false)
.andIfLegacySupportFor(BT2020_PQ, false)
.thenExpectBestColorModeCallUses(BT2020_PQ)
.execute();
}
TEST_F(OutputUpdateColorProfileTest_Hdr, HLG_HW_On_NonHdr_RE_Uses_HLG) {
// If all layers use HLG then HLG is used if there are no other special
// conditions.
verify().ifTopLayerIs(BT2020_HLG)
.andTopLayerIsREComposed(false)
.andIfBottomLayerIsNotHdr()
.andBottomLayerIsREComposed(true)
.andIfLegacySupportFor(BT2020_HLG, false)
.thenExpectBestColorModeCallUses(BT2020_HLG)
.execute();
}
struct OutputUpdateColorProfile_AffectsChosenRenderIntentTest
: public OutputUpdateColorProfileTest {
// The various values for CompositionRefreshArgs::outputColorSetting affect
// the chosen renderIntent, along with whether the preferred dataspace is an
// HDR dataspace or not.
OutputUpdateColorProfile_AffectsChosenRenderIntentTest() {
mRefreshArgs.outputColorSetting = OutputColorSetting::kEnhanced;
mLayer1.mLayerFEState.dataspace = ui::Dataspace::BT2020_PQ;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(1u));
EXPECT_CALL(mOutput, setColorProfile(_)).WillRepeatedly(Return());
EXPECT_CALL(*mDisplayColorProfile, hasLegacyHdrSupport(ui::Dataspace::BT2020_PQ))
.WillRepeatedly(Return(false));
}
// The tests here involve enough state and GMock setup that using a mini-DSL
// makes the tests much more readable, and allows the test to focus more on
// the intent than on some of the details.
static constexpr ui::Dataspace kNonHdrDataspace = ui::Dataspace::DISPLAY_P3;
static constexpr ui::Dataspace kHdrDataspace = ui::Dataspace::BT2020_PQ;
struct IfDataspaceChosenState
: public CallOrderStateMachineHelper<TestType, IfDataspaceChosenState> {
[[nodiscard]] auto ifDataspaceChosenIs(ui::Dataspace dataspace) {
getInstance()->mLayer1.mLayerFEState.dataspace = dataspace;
return nextState<AndOutputColorSettingState>();
}
[[nodiscard]] auto ifDataspaceChosenIsNonHdr() {
return ifDataspaceChosenIs(kNonHdrDataspace);
}
[[nodiscard]] auto ifDataspaceChosenIsHdr() { return ifDataspaceChosenIs(kHdrDataspace); }
};
struct AndOutputColorSettingState
: public CallOrderStateMachineHelper<TestType, AndOutputColorSettingState> {
[[nodiscard]] auto andOutputColorSettingIs(OutputColorSetting setting) {
getInstance()->mRefreshArgs.outputColorSetting = setting;
return nextState<ThenExpectBestColorModeCallUsesState>();
}
};
struct ThenExpectBestColorModeCallUsesState
: public CallOrderStateMachineHelper<TestType, ThenExpectBestColorModeCallUsesState> {
[[nodiscard]] auto thenExpectBestColorModeCallUses(ui::RenderIntent intent) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile,
getBestColorMode(getInstance()->mLayer1.mLayerFEState.dataspace, intent, _,
_, _));
return nextState<ExecuteState>();
}
};
// Tests call one of these two helper member functions to start using the
// mini-DSL defined above.
[[nodiscard]] auto verify() { return IfDataspaceChosenState::make(this); }
};
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Managed_NonHdr_Prefers_Colorimetric) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(OutputColorSetting::kManaged)
.thenExpectBestColorModeCallUses(ui::RenderIntent::COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Managed_Hdr_Prefers_ToneMapColorimetric) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(OutputColorSetting::kManaged)
.thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_COLORIMETRIC)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Enhanced_NonHdr_Prefers_Enhance) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(OutputColorSetting::kEnhanced)
.thenExpectBestColorModeCallUses(ui::RenderIntent::ENHANCE)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest,
Enhanced_Hdr_Prefers_ToneMapEnhance) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(OutputColorSetting::kEnhanced)
.thenExpectBestColorModeCallUses(ui::RenderIntent::TONE_MAP_ENHANCE)
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_NonHdr_Prefers_Vendor) {
verify().ifDataspaceChosenIsNonHdr()
.andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting)
.thenExpectBestColorModeCallUses(
static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting))
.execute();
}
TEST_F(OutputUpdateColorProfile_AffectsChosenRenderIntentTest, Vendor_Hdr_Prefers_Vendor) {
verify().ifDataspaceChosenIsHdr()
.andOutputColorSettingIs(kVendorSpecifiedOutputColorSetting)
.thenExpectBestColorModeCallUses(
static_cast<ui::RenderIntent>(kVendorSpecifiedOutputColorSetting))
.execute();
}
/*
* Output::beginFrame()
*/
struct OutputBeginFrameTest : public ::testing::Test {
using TestType = OutputBeginFrameTest;
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD(Region, getDirtyRegion, (), (const));
};
OutputBeginFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
struct IfGetDirtyRegionExpectationState
: public CallOrderStateMachineHelper<TestType, IfGetDirtyRegionExpectationState> {
[[nodiscard]] auto ifGetDirtyRegionReturns(Region dirtyRegion) {
EXPECT_CALL(getInstance()->mOutput, getDirtyRegion()).WillOnce(Return(dirtyRegion));
return nextState<AndIfGetOutputLayerCountExpectationState>();
}
};
struct AndIfGetOutputLayerCountExpectationState
: public CallOrderStateMachineHelper<TestType, AndIfGetOutputLayerCountExpectationState> {
[[nodiscard]] auto andIfGetOutputLayerCountReturns(size_t layerCount) {
EXPECT_CALL(getInstance()->mOutput, getOutputLayerCount()).WillOnce(Return(layerCount));
return nextState<AndIfLastCompositionHadVisibleLayersState>();
}
};
struct AndIfLastCompositionHadVisibleLayersState
: public CallOrderStateMachineHelper<TestType,
AndIfLastCompositionHadVisibleLayersState> {
[[nodiscard]] auto andIfLastCompositionHadVisibleLayersIs(bool hadOutputLayers) {
getInstance()->mOutput.mState.lastCompositionHadVisibleLayers = hadOutputLayers;
return nextState<ThenExpectRenderSurfaceBeginFrameCallState>();
}
};
struct ThenExpectRenderSurfaceBeginFrameCallState
: public CallOrderStateMachineHelper<TestType,
ThenExpectRenderSurfaceBeginFrameCallState> {
[[nodiscard]] auto thenExpectRenderSurfaceBeginFrameCall(bool mustRecompose) {
EXPECT_CALL(*getInstance()->mRenderSurface, beginFrame(mustRecompose));
return nextState<ExecuteState>();
}
};
struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> {
[[nodiscard]] auto execute() {
getInstance()->mOutput.beginFrame();
return nextState<CheckPostconditionHadVisibleLayersState>();
}
};
struct CheckPostconditionHadVisibleLayersState
: public CallOrderStateMachineHelper<TestType, CheckPostconditionHadVisibleLayersState> {
void checkPostconditionHadVisibleLayers(bool expected) {
EXPECT_EQ(expected, getInstance()->mOutput.mState.lastCompositionHadVisibleLayers);
}
};
// Tests call one of these two helper member functions to start using the
// mini-DSL defined above.
[[nodiscard]] auto verify() { return IfGetDirtyRegionExpectationState::make(this); }
static const Region kEmptyRegion;
static const Region kNotEmptyRegion;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
const Region OutputBeginFrameTest::kEmptyRegion{Rect{0, 0, 0, 0}};
const Region OutputBeginFrameTest::kNotEmptyRegion{Rect{0, 0, 1, 1}};
TEST_F(OutputBeginFrameTest, hasDirtyHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, hasDirtyHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(true)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, hasDirtyNotHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kNotEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(true)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(true);
}
TEST_F(OutputBeginFrameTest, notHasDirtyHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(1u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
TEST_F(OutputBeginFrameTest, notHasDirtyNotHasLayersNotHadLayersLastFrame) {
verify().ifGetDirtyRegionReturns(kEmptyRegion)
.andIfGetOutputLayerCountReturns(0u)
.andIfLastCompositionHadVisibleLayersIs(false)
.thenExpectRenderSurfaceBeginFrameCall(false)
.execute()
.checkPostconditionHadVisibleLayers(false);
}
/*
* Output::devOptRepaintFlash()
*/
struct OutputDevOptRepaintFlashTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD(Region, getDirtyRegion, (), (const));
MOCK_METHOD3(composeSurfaces,
std::optional<base::unique_fd>(const Region&,
std::shared_ptr<renderengine::ExternalTexture>,
base::unique_fd&));
MOCK_METHOD0(presentFrameAndReleaseLayers, void());
MOCK_METHOD0(prepareFrame, void());
MOCK_METHOD0(updateProtectedContentState, void());
MOCK_METHOD2(dequeueRenderBuffer,
bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*));
};
OutputDevOptRepaintFlashTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
static const Region kEmptyRegion;
static const Region kNotEmptyRegion;
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
CompositionRefreshArgs mRefreshArgs;
};
const Region OutputDevOptRepaintFlashTest::kEmptyRegion{Rect{0, 0, 0, 0}};
const Region OutputDevOptRepaintFlashTest::kNotEmptyRegion{Rect{0, 0, 1, 1}};
TEST_F(OutputDevOptRepaintFlashTest, doesNothingIfFlashDelayNotSet) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = {};
mOutput.mState.isEnabled = true;
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfNotEnabled) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mOutput.mState.isEnabled = false;
InSequence seq;
EXPECT_CALL(mOutput, presentFrameAndReleaseLayers());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, postsAndPreparesANewFrameIfEnabled) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, getDirtyRegion()).WillOnce(Return(kEmptyRegion));
EXPECT_CALL(mOutput, presentFrameAndReleaseLayers());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
TEST_F(OutputDevOptRepaintFlashTest, alsoComposesSurfacesAndQueuesABufferIfDirty) {
mRefreshArgs.devOptFlashDirtyRegionsDelay = std::chrono::microseconds(1);
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, getDirtyRegion()).WillOnce(Return(kNotEmptyRegion));
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _));
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(kNotEmptyRegion), _, _));
EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f));
EXPECT_CALL(mOutput, presentFrameAndReleaseLayers());
EXPECT_CALL(mOutput, prepareFrame());
mOutput.devOptRepaintFlash(mRefreshArgs);
}
/*
* Output::finishFrame()
*/
struct OutputFinishFrameTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD3(composeSurfaces,
std::optional<base::unique_fd>(const Region&,
std::shared_ptr<renderengine::ExternalTexture>,
base::unique_fd&));
MOCK_METHOD0(presentFrameAndReleaseLayers, void());
MOCK_METHOD0(updateProtectedContentState, void());
MOCK_METHOD2(dequeueRenderBuffer,
bool(base::unique_fd*, std::shared_ptr<renderengine::ExternalTexture>*));
};
OutputFinishFrameTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine));
EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine));
}
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<mock::CompositionEngine> mCompositionEngine;
StrictMock<renderengine::mock::RenderEngine> mRenderEngine;
};
TEST_F(OutputFinishFrameTest, ifNotEnabledDoesNothing) {
mOutput.mState.isEnabled = false;
impl::GpuCompositionResult result;
mOutput.finishFrame(std::move(result));
}
TEST_F(OutputFinishFrameTest, takesEarlyOutifComposeSurfacesReturnsNoFence) {
mOutput.mState.isEnabled = true;
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true));
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _));
impl::GpuCompositionResult result;
mOutput.finishFrame(std::move(result));
}
TEST_F(OutputFinishFrameTest, queuesBufferIfComposeSurfacesReturnsAFence) {
mOutput.mState.isEnabled = true;
InSequence seq;
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _)).WillOnce(Return(true));
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _))
.WillOnce(Return(ByMove(base::unique_fd())));
EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f));
impl::GpuCompositionResult result;
mOutput.finishFrame(std::move(result));
}
TEST_F(OutputFinishFrameTest, queuesBufferWithHdrSdrRatio) {
SET_FLAG_FOR_TEST(flags::fp16_client_target, true);
mOutput.mState.isEnabled = true;
InSequence seq;
auto texture = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::make(1u, 1u, PIXEL_FORMAT_RGBA_FP16,
GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_SW_READ_OFTEN),
mRenderEngine,
renderengine::impl::ExternalTexture::Usage::READABLE |
renderengine::impl::ExternalTexture::Usage::WRITEABLE);
mOutput.mState.displayBrightnessNits = 400.f;
mOutput.mState.sdrWhitePointNits = 200.f;
mOutput.mState.dataspace = ui::Dataspace::V0_SCRGB;
EXPECT_CALL(mOutput, updateProtectedContentState());
EXPECT_CALL(mOutput, dequeueRenderBuffer(_, _))
.WillOnce(DoAll(SetArgPointee<1>(texture), Return(true)));
EXPECT_CALL(mOutput, composeSurfaces(RegionEq(Region::INVALID_REGION), _, _))
.WillOnce(Return(ByMove(base::unique_fd())));
EXPECT_CALL(*mRenderSurface, queueBuffer(_, 2.f));
impl::GpuCompositionResult result;
mOutput.finishFrame(std::move(result));
}
TEST_F(OutputFinishFrameTest, predictionSucceeded) {
mOutput.mState.isEnabled = true;
mOutput.mState.strategyPrediction = CompositionStrategyPredictionState::SUCCESS;
InSequence seq;
EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f));
impl::GpuCompositionResult result;
mOutput.finishFrame(std::move(result));
}
TEST_F(OutputFinishFrameTest, predictionFailedAndBufferIsReused) {
mOutput.mState.isEnabled = true;
mOutput.mState.strategyPrediction = CompositionStrategyPredictionState::FAIL;
InSequence seq;
impl::GpuCompositionResult result;
result.buffer =
std::make_shared<renderengine::mock::FakeExternalTexture>(1, 1,
HAL_PIXEL_FORMAT_RGBA_8888, 1,
2);
EXPECT_CALL(mOutput,
composeSurfaces(RegionEq(Region::INVALID_REGION), result.buffer,
Eq(ByRef(result.fence))))
.WillOnce(Return(ByMove(base::unique_fd())));
EXPECT_CALL(*mRenderSurface, queueBuffer(_, 1.f));
mOutput.finishFrame(std::move(result));
}
/*
* Output::presentFrameAndReleaseLayers()
*/
struct OutputPostFramebufferTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD0(presentFrame, compositionengine::Output::FrameFences());
};
struct Layer {
Layer() {
EXPECT_CALL(outputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*layerFE));
EXPECT_CALL(outputLayer, getHwcLayer()).WillRepeatedly(Return(&hwc2Layer));
}
StrictMock<mock::OutputLayer> outputLayer;
sp<StrictMock<mock::LayerFE>> layerFE = sp<StrictMock<mock::LayerFE>>::make();
StrictMock<HWC2::mock::Layer> hwc2Layer;
};
OutputPostFramebufferTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(3u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&mLayer1.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&mLayer2.outputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(2u))
.WillRepeatedly(Return(&mLayer3.outputLayer));
}
StrictMock<OutputPartialMock> mOutput;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
Layer mLayer1;
Layer mLayer2;
Layer mLayer3;
};
TEST_F(OutputPostFramebufferTest, ifNotEnabledDoesNothing) {
mOutput.mState.isEnabled = false;
mOutput.presentFrameAndReleaseLayers();
}
TEST_F(OutputPostFramebufferTest, ifEnabledMustFlipThenPresentThenSendPresentCompleted) {
mOutput.mState.isEnabled = true;
compositionengine::Output::FrameFences frameFences;
// This should happen even if there are no output layers.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
// For this test in particular we want to make sure the call expectations
// setup below are satisfied in the specific order.
InSequence seq;
EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
mOutput.presentFrameAndReleaseLayers();
}
TEST_F(OutputPostFramebufferTest, releaseFencesAreSentToLayerFE) {
// Simulate getting release fences from each layer, and ensure they are passed to the
// front-end layer interface for each layer correctly.
mOutput.mState.isEnabled = true;
// Create three unique fence instances
sp<Fence> layer1Fence = sp<Fence>::make();
sp<Fence> layer2Fence = sp<Fence>::make();
sp<Fence> layer3Fence = sp<Fence>::make();
Output::FrameFences frameFences;
frameFences.layerFences.emplace(&mLayer1.hwc2Layer, layer1Fence);
frameFences.layerFences.emplace(&mLayer2.hwc2Layer, layer2Fence);
frameFences.layerFences.emplace(&mLayer3.hwc2Layer, layer3Fence);
EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Compare the pointers values of each fence to make sure the correct ones
// are passed. This happens to work with the current implementation, but
// would not survive certain calls like Fence::merge() which would return a
// new instance.
EXPECT_CALL(*mLayer1.layerFE, onLayerDisplayed(_, _))
.WillOnce([&layer1Fence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(layer1Fence), futureFenceResult.get());
});
EXPECT_CALL(*mLayer2.layerFE, onLayerDisplayed(_, _))
.WillOnce([&layer2Fence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(layer2Fence), futureFenceResult.get());
});
EXPECT_CALL(*mLayer3.layerFE, onLayerDisplayed(_, _))
.WillOnce([&layer3Fence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(layer3Fence), futureFenceResult.get());
});
mOutput.presentFrameAndReleaseLayers();
}
TEST_F(OutputPostFramebufferTest, releaseFencesIncludeClientTargetAcquireFence) {
mOutput.mState.isEnabled = true;
mOutput.mState.usesClientComposition = true;
Output::FrameFences frameFences;
frameFences.clientTargetAcquireFence = sp<Fence>::make();
frameFences.layerFences.emplace(&mLayer1.hwc2Layer, sp<Fence>::make());
frameFences.layerFences.emplace(&mLayer2.hwc2Layer, sp<Fence>::make());
frameFences.layerFences.emplace(&mLayer3.hwc2Layer, sp<Fence>::make());
EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Fence::merge is called, and since none of the fences are actually valid,
// Fence::NO_FENCE is returned and passed to each onLayerDisplayed() call.
// This is the best we can do without creating a real kernel fence object.
EXPECT_CALL(*mLayer1.layerFE, onLayerDisplayed).WillOnce(Return());
EXPECT_CALL(*mLayer2.layerFE, onLayerDisplayed).WillOnce(Return());
EXPECT_CALL(*mLayer3.layerFE, onLayerDisplayed).WillOnce(Return());
mOutput.presentFrameAndReleaseLayers();
}
TEST_F(OutputPostFramebufferTest, releasedLayersSentPresentFence) {
mOutput.mState.isEnabled = true;
mOutput.mState.usesClientComposition = true;
// This should happen even if there are no (current) output layers.
EXPECT_CALL(mOutput, getOutputLayerCount()).WillOnce(Return(0u));
// Load up the released layers with some mock instances
sp<StrictMock<mock::LayerFE>> releasedLayer1 = sp<StrictMock<mock::LayerFE>>::make();
sp<StrictMock<mock::LayerFE>> releasedLayer2 = sp<StrictMock<mock::LayerFE>>::make();
sp<StrictMock<mock::LayerFE>> releasedLayer3 = sp<StrictMock<mock::LayerFE>>::make();
Output::ReleasedLayers layers;
layers.push_back(releasedLayer1);
layers.push_back(releasedLayer2);
layers.push_back(releasedLayer3);
mOutput.setReleasedLayers(std::move(layers));
// Set up a fake present fence
sp<Fence> presentFence = sp<Fence>::make();
Output::FrameFences frameFences;
frameFences.presentFence = presentFence;
EXPECT_CALL(mOutput, presentFrame()).WillOnce(Return(frameFences));
EXPECT_CALL(*mRenderSurface, onPresentDisplayCompleted());
// Each released layer should be given the presentFence.
EXPECT_CALL(*releasedLayer1, onLayerDisplayed(_, _))
.WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get());
});
EXPECT_CALL(*releasedLayer2, onLayerDisplayed(_, _))
.WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get());
});
EXPECT_CALL(*releasedLayer3, onLayerDisplayed(_, _))
.WillOnce([&presentFence](ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack) {
EXPECT_EQ(FenceResult(presentFence), futureFenceResult.get());
});
mOutput.presentFrameAndReleaseLayers();
// After the call the list of released layers should have been cleared.
EXPECT_TRUE(mOutput.getReleasedLayersForTest().empty());
}
/*
* Output::composeSurfaces()
*/
struct OutputComposeSurfacesTest : public testing::Test {
using TestType = OutputComposeSurfacesTest;
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_CONST_METHOD0(getSkipColorTransform, bool());
MOCK_METHOD3(generateClientCompositionRequests,
std::vector<LayerFE::LayerSettings>(bool, ui::Dataspace,
std::vector<LayerFE*>&));
MOCK_METHOD2(appendRegionFlashRequests,
void(const Region&, std::vector<LayerFE::LayerSettings>&));
MOCK_METHOD1(setExpensiveRenderingExpected, void(bool));
MOCK_METHOD(void, setHintSessionGpuFence, (std::unique_ptr<FenceTime> && gpuFence),
(override));
MOCK_METHOD(bool, isPowerHintSessionEnabled, (), (override));
};
OutputComposeSurfacesTest() {
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput.cacheClientCompositionRequests(MAX_CLIENT_COMPOSITION_CACHE_SIZE);
mOutput.mState.orientedDisplaySpace.setContent(kDefaultOutputFrame);
mOutput.mState.layerStackSpace.setContent(kDefaultOutputViewport);
mOutput.mState.framebufferSpace.setContent(kDefaultOutputDestinationClip);
mOutput.mState.displaySpace.setContent(kDefaultOutputDestinationClip);
mOutput.mState.displaySpace.setOrientation(kDefaultOutputOrientation);
mOutput.mState.transform = ui::Transform{kDefaultOutputOrientationFlags};
mOutput.mState.dataspace = kDefaultOutputDataspace;
mOutput.mState.colorTransformMatrix = kDefaultColorTransformMat;
mOutput.mState.isSecure = false;
mOutput.mState.needsFiltering = false;
mOutput.mState.usesClientComposition = true;
mOutput.mState.usesDeviceComposition = false;
mOutput.mState.reusedClientComposition = false;
mOutput.mState.flipClientTarget = false;
mOutput.mState.clientTargetBrightness = kClientTargetBrightness;
EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine));
EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine));
EXPECT_CALL(mCompositionEngine, getTimeStats()).WillRepeatedly(Return(mTimeStats.get()));
EXPECT_CALL(*mDisplayColorProfile, getHdrCapabilities())
.WillRepeatedly(ReturnRef(kHdrCapabilities));
}
struct ExecuteState : public CallOrderStateMachineHelper<TestType, ExecuteState> {
auto execute() {
base::unique_fd fence;
std::shared_ptr<renderengine::ExternalTexture> externalTexture;
const bool success =
getInstance()->mOutput.dequeueRenderBuffer(&fence, &externalTexture);
if (success) {
getInstance()->mReadyFence =
getInstance()->mOutput.composeSurfaces(kDebugRegion, externalTexture,
fence);
}
return nextState<FenceCheckState>();
}
};
struct FenceCheckState : public CallOrderStateMachineHelper<TestType, FenceCheckState> {
void expectNoFenceWasReturned() { EXPECT_FALSE(getInstance()->mReadyFence); }
void expectAFenceWasReturned() { EXPECT_TRUE(getInstance()->mReadyFence); }
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return ExecuteState::make(this); }
static constexpr ui::Rotation kDefaultOutputOrientation = ui::ROTATION_0;
static constexpr uint32_t kDefaultOutputOrientationFlags =
ui::Transform::toRotationFlags(kDefaultOutputOrientation);
static constexpr ui::Dataspace kDefaultOutputDataspace = ui::Dataspace::UNKNOWN;
static constexpr ui::Dataspace kExpensiveOutputDataspace = ui::Dataspace::DISPLAY_P3;
static constexpr float kDefaultMaxLuminance = 0.9f;
static constexpr float kDefaultAvgLuminance = 0.7f;
static constexpr float kDefaultMinLuminance = 0.1f;
static constexpr float kDisplayLuminance = 400.f;
static constexpr float kWhitePointLuminance = 300.f;
static constexpr float kClientTargetLuminanceNits = 200.f;
static constexpr float kClientTargetBrightness = 0.5f;
static const Rect kDefaultOutputFrame;
static const Rect kDefaultOutputViewport;
static const Rect kDefaultOutputDestinationClip;
static const mat4 kDefaultColorTransformMat;
static const Region kDebugRegion;
static const HdrCapabilities kHdrCapabilities;
StrictMock<mock::CompositionEngine> mCompositionEngine;
StrictMock<renderengine::mock::RenderEngine> mRenderEngine;
// TODO: make this is a proper mock.
std::shared_ptr<TimeStats> mTimeStats = std::make_shared<android::impl::TimeStats>();
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
std::shared_ptr<renderengine::ExternalTexture> mOutputBuffer = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::make(), mRenderEngine,
renderengine::impl::ExternalTexture::Usage::READABLE |
renderengine::impl::ExternalTexture::Usage::WRITEABLE);
std::optional<base::unique_fd> mReadyFence;
};
const Rect OutputComposeSurfacesTest::kDefaultOutputFrame{1001, 1002, 1003, 1004};
const Rect OutputComposeSurfacesTest::kDefaultOutputViewport{1005, 1006, 1007, 1008};
const Rect OutputComposeSurfacesTest::kDefaultOutputDestinationClip{1013, 1014, 1015, 1016};
const mat4 OutputComposeSurfacesTest::kDefaultColorTransformMat{mat4() * 0.5f};
const Region OutputComposeSurfacesTest::kDebugRegion{Rect{100, 101, 102, 103}};
const HdrCapabilities OutputComposeSurfacesTest::
kHdrCapabilities{{},
OutputComposeSurfacesTest::kDefaultMaxLuminance,
OutputComposeSurfacesTest::kDefaultAvgLuminance,
OutputComposeSurfacesTest::kDefaultMinLuminance};
TEST_F(OutputComposeSurfacesTest, doesNothingButSignalNoExpensiveRenderingIfNoClientComposition) {
mOutput.mState.usesClientComposition = false;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false));
verify().execute().expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest,
dequeuesABufferIfNoClientCompositionButFlipClientTargetRequested) {
mOutput.mState.usesClientComposition = false;
mOutput.mState.flipClientTarget = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(mOutputBuffer));
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false));
verify().execute().expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest, doesMinimalWorkIfDequeueBufferFailsForClientComposition) {
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(nullptr));
verify().execute().expectNoFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest,
doesMinimalWorkIfDequeueBufferFailsForNoClientCompositionButFlipClientTargetRequested) {
mOutput.mState.usesClientComposition = false;
mOutput.mState.flipClientTarget = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillOnce(Return(nullptr));
verify().execute().expectNoFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest, handlesZeroCompositionRequests) {
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, IsEmpty(), _, _))
.WillRepeatedly([&](const renderengine::DisplaySettings&,
const std::vector<renderengine::LayerSettings>&,
const std::shared_ptr<renderengine::ExternalTexture>&,
base::unique_fd&&) -> ftl::Future<FenceResult> {
return ftl::yield<FenceResult>(Fence::NO_FENCE);
});
verify().execute().expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest, buildsAndRendersRequestList) {
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(
Invoke([&](const Region&,
std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
clientCompositionLayers.emplace_back(r2);
}));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.WillRepeatedly([&](const renderengine::DisplaySettings&,
const std::vector<renderengine::LayerSettings>&,
const std::shared_ptr<renderengine::ExternalTexture>&,
base::unique_fd&&) -> ftl::Future<FenceResult> {
return ftl::yield<FenceResult>(Fence::NO_FENCE);
});
verify().execute().expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest,
buildsAndRendersRequestListAndCachesFramebufferForInternalLayers) {
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
mOutput.setLayerFilter({ui::LayerStack{1234u}, true});
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(
Invoke([&](const Region&,
std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
clientCompositionLayers.emplace_back(r2);
}));
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.WillRepeatedly([&](const renderengine::DisplaySettings&,
const std::vector<renderengine::LayerSettings>&,
const std::shared_ptr<renderengine::ExternalTexture>&,
base::unique_fd&&) -> ftl::Future<FenceResult> {
return ftl::yield<FenceResult>(Fence::NO_FENCE);
});
verify().execute().expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest, renderDuplicateClientCompositionRequestsWithoutCache) {
mOutput.cacheClientCompositionRequests(0);
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.Times(2)
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
}
TEST_F(OutputComposeSurfacesTest, skipDuplicateClientCompositionRequests) {
mOutput.cacheClientCompositionRequests(3);
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(false));
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
// We do not expect another call to draw layers.
verify().execute().expectAFenceWasReturned();
EXPECT_TRUE(mOutput.mState.reusedClientComposition);
}
TEST_F(OutputComposeSurfacesTest, clientCompositionIfBufferChanges) {
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{r1, r2}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
const auto otherOutputBuffer = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::make(), mRenderEngine,
renderengine::impl::ExternalTexture::Usage::READABLE |
renderengine::impl::ExternalTexture::Usage::WRITEABLE);
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_))
.WillOnce(Return(mOutputBuffer))
.WillOnce(Return(otherOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.WillRepeatedly([&](const renderengine::DisplaySettings&,
const std::vector<renderengine::LayerSettings>&,
const std::shared_ptr<renderengine::ExternalTexture>&,
base::unique_fd&&) -> ftl::Future<FenceResult> {
return ftl::yield<FenceResult>(Fence::NO_FENCE);
});
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
}
TEST_F(OutputComposeSurfacesTest, clientCompositionIfRequestChanges) {
LayerFE::LayerSettings r1;
LayerFE::LayerSettings r2;
LayerFE::LayerSettings r3;
r1.geometry.boundaries = FloatRect{1, 2, 3, 4};
r2.geometry.boundaries = FloatRect{5, 6, 7, 8};
r3.geometry.boundaries = FloatRect{5, 6, 7, 9};
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kDefaultOutputDataspace, _))
.WillOnce(Return(std::vector<LayerFE::LayerSettings>{r1, r2}))
.WillOnce(Return(std::vector<LayerFE::LayerSettings>{r1, r3}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r2), _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
EXPECT_CALL(mRenderEngine, drawLayers(_, ElementsAre(r1, r3), _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
verify().execute().expectAFenceWasReturned();
EXPECT_FALSE(mOutput.mState.reusedClientComposition);
}
struct OutputComposeSurfacesTest_UsesExpectedDisplaySettings : public OutputComposeSurfacesTest {
OutputComposeSurfacesTest_UsesExpectedDisplaySettings() {
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, _, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
}
struct MixedCompositionState
: public CallOrderStateMachineHelper<TestType, MixedCompositionState> {
auto ifMixedCompositionIs(bool used) {
getInstance()->mOutput.mState.usesDeviceComposition = used;
return nextState<OutputUsesHdrState>();
}
};
struct OutputUsesHdrState : public CallOrderStateMachineHelper<TestType, OutputUsesHdrState> {
auto andIfUsesHdr(bool used) {
EXPECT_CALL(*getInstance()->mDisplayColorProfile, hasWideColorGamut())
.WillOnce(Return(used));
return nextState<OutputWithDisplayBrightnessNits>();
}
};
struct OutputWithDisplayBrightnessNits
: public CallOrderStateMachineHelper<TestType, OutputWithDisplayBrightnessNits> {
auto withDisplayBrightnessNits(float nits) {
getInstance()->mOutput.mState.displayBrightnessNits = nits;
return nextState<OutputWithSdrWhitePointNits>();
}
};
struct OutputWithSdrWhitePointNits
: public CallOrderStateMachineHelper<TestType, OutputWithSdrWhitePointNits> {
auto withSdrWhitePointNits(float nits) {
getInstance()->mOutput.mState.sdrWhitePointNits = nits;
return nextState<OutputWithDimmingStage>();
}
};
struct OutputWithDimmingStage
: public CallOrderStateMachineHelper<TestType, OutputWithDimmingStage> {
auto withDimmingStage(
aidl::android::hardware::graphics::composer3::DimmingStage dimmingStage) {
getInstance()->mOutput.mState.clientTargetDimmingStage = dimmingStage;
return nextState<OutputWithRenderIntent>();
}
};
struct OutputWithRenderIntent
: public CallOrderStateMachineHelper<TestType, OutputWithRenderIntent> {
auto withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent renderIntent) {
getInstance()->mOutput.mState.renderIntent =
static_cast<ui::RenderIntent>(renderIntent);
return nextState<SkipColorTransformState>();
}
};
struct SkipColorTransformState
: public CallOrderStateMachineHelper<TestType, SkipColorTransformState> {
auto andIfSkipColorTransform(bool skip) {
// May be called zero or one times.
EXPECT_CALL(getInstance()->mOutput, getSkipColorTransform())
.WillRepeatedly(Return(skip));
return nextState<PixelFormatState>();
}
};
struct PixelFormatState : public CallOrderStateMachineHelper<TestType, PixelFormatState> {
auto withPixelFormat(std::optional<PixelFormat> format) {
// May be called zero or one times.
if (format) {
auto outputBuffer = std::make_shared<
renderengine::impl::
ExternalTexture>(sp<GraphicBuffer>::
make(1u, 1u, *format,
GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_SW_READ_OFTEN),
getInstance()->mRenderEngine,
renderengine::impl::ExternalTexture::Usage::
READABLE |
renderengine::impl::ExternalTexture::
Usage::WRITEABLE);
EXPECT_CALL(*getInstance()->mRenderSurface, dequeueBuffer(_))
.WillRepeatedly(Return(outputBuffer));
}
return nextState<DataspaceState>();
}
};
struct DataspaceState : public CallOrderStateMachineHelper<TestType, DataspaceState> {
auto withDataspace(ui::Dataspace dataspace) {
getInstance()->mOutput.mState.dataspace = dataspace;
return nextState<ExpectDisplaySettingsState>();
}
};
struct ExpectDisplaySettingsState
: public CallOrderStateMachineHelper<TestType, ExpectDisplaySettingsState> {
auto thenExpectDisplaySettingsUsed(renderengine::DisplaySettings settings) {
EXPECT_CALL(getInstance()->mRenderEngine, drawLayers(settings, _, _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
return nextState<ExecuteState>();
}
};
// Call this member function to start using the mini-DSL defined above.
[[nodiscard]] auto verify() { return MixedCompositionState::make(this); }
};
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forHdrMixedComposition) {
verify().ifMixedCompositionIs(true)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings,
forHdrMixedCompositionWithDisplayBrightness) {
verify().ifMixedCompositionIs(true)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings,
forHdrMixedCompositionWithDimmingStage) {
verify().ifMixedCompositionIs(true)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(
aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::GAMMA_OETF,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings,
forHdrMixedCompositionWithRenderIntent) {
verify().ifMixedCompositionIs(true)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(aidl::android::hardware::graphics::composer3::RenderIntent::ENHANCE)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent =
aidl::android::hardware::graphics::composer3::RenderIntent::ENHANCE})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forNonHdrMixedComposition) {
verify().ifMixedCompositionIs(true)
.andIfUsesHdr(false)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forHdrOnlyClientComposition) {
verify().ifMixedCompositionIs(false)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = false,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings, forNonHdrOnlyClientComposition) {
verify().ifMixedCompositionIs(false)
.andIfUsesHdr(false)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(false)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = false,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings,
usesExpectedDisplaySettingsForHdrOnlyClientCompositionWithSkipClientTransform) {
verify().ifMixedCompositionIs(false)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(true)
.withPixelFormat(std::nullopt)
.withDataspace(kDefaultOutputDataspace)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = kDefaultOutputDataspace,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
TEST_F(OutputComposeSurfacesTest_UsesExpectedDisplaySettings,
usesExpectedDisplaySettingsWithFp16Buffer) {
SET_FLAG_FOR_TEST(flags::fp16_client_target, true);
verify().ifMixedCompositionIs(false)
.andIfUsesHdr(true)
.withDisplayBrightnessNits(kDisplayLuminance)
.withSdrWhitePointNits(kWhitePointLuminance)
.withDimmingStage(aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR)
.withRenderIntent(
aidl::android::hardware::graphics::composer3::RenderIntent::COLORIMETRIC)
.andIfSkipColorTransform(true)
.withPixelFormat(PIXEL_FORMAT_RGBA_FP16)
.withDataspace(ui::Dataspace::V0_SCRGB)
.thenExpectDisplaySettingsUsed(
{.physicalDisplay = kDefaultOutputDestinationClip,
.clip = kDefaultOutputViewport,
.maxLuminance = kDefaultMaxLuminance,
.currentLuminanceNits = kDisplayLuminance,
.outputDataspace = ui::Dataspace::V0_SCRGB,
.colorTransform = kDefaultColorTransformMat,
.deviceHandlesColorTransform = true,
.orientation = kDefaultOutputOrientationFlags,
.targetLuminanceNits = kClientTargetLuminanceNits * 0.75f,
.dimmingStage =
aidl::android::hardware::graphics::composer3::DimmingStage::LINEAR,
.renderIntent = aidl::android::hardware::graphics::composer3::RenderIntent::
COLORIMETRIC})
.execute()
.expectAFenceWasReturned();
}
struct OutputComposeSurfacesTest_HandlesProtectedContent : public OutputComposeSurfacesTest {
struct Layer {
Layer() {
EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState));
EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE));
EXPECT_CALL(mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
}
StrictMock<mock::OutputLayer> mOutputLayer;
sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState mLayerFEState;
};
OutputComposeSurfacesTest_HandlesProtectedContent() {
mLayer1.mLayerFEState.hasProtectedContent = false;
mLayer2.mLayerFEState.hasProtectedContent = false;
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&mLayer1.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&mLayer2.mOutputLayer));
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, _, _))
.WillRepeatedly(Return(std::vector<LayerFE::LayerSettings>{}));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _))
.WillRepeatedly([&](const renderengine::DisplaySettings&,
const std::vector<renderengine::LayerSettings>&,
const std::shared_ptr<renderengine::ExternalTexture>&,
base::unique_fd&&) -> ftl::Future<FenceResult> {
return ftl::yield<FenceResult>(Fence::NO_FENCE);
});
}
Layer mLayer1;
Layer mLayer2;
};
TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifNoProtectedContentLayers) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer2.mLayerFEState.hasProtectedContent = false;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true));
EXPECT_CALL(*mRenderSurface, setProtected(false));
base::unique_fd fd;
std::shared_ptr<renderengine::ExternalTexture> tex;
mOutput.updateProtectedContentState();
mOutput.dequeueRenderBuffer(&fd, &tex);
mOutput.composeSurfaces(kDebugRegion, tex, fd);
}
TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifNotEnabled) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer2.mLayerFEState.hasProtectedContent = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
// For this test, we also check the call order of key functions.
InSequence seq;
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false));
EXPECT_CALL(*mRenderSurface, setProtected(true));
// Must happen after setting the protected content state.
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
base::unique_fd fd;
std::shared_ptr<renderengine::ExternalTexture> tex;
mOutput.updateProtectedContentState();
mOutput.dequeueRenderBuffer(&fd, &tex);
mOutput.composeSurfaces(kDebugRegion, tex, fd);
}
TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifAlreadyEnabledEverywhere) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer2.mLayerFEState.hasProtectedContent = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true));
base::unique_fd fd;
std::shared_ptr<renderengine::ExternalTexture> tex;
mOutput.updateProtectedContentState();
mOutput.dequeueRenderBuffer(&fd, &tex);
mOutput.composeSurfaces(kDebugRegion, tex, fd);
}
TEST_F(OutputComposeSurfacesTest_HandlesProtectedContent, ifAlreadyEnabledInRenderSurface) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer2.mLayerFEState.hasProtectedContent = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(true));
base::unique_fd fd;
std::shared_ptr<renderengine::ExternalTexture> tex;
mOutput.updateProtectedContentState();
mOutput.dequeueRenderBuffer(&fd, &tex);
mOutput.composeSurfaces(kDebugRegion, tex, fd);
}
struct OutputComposeSurfacesTest_SetsExpensiveRendering : public OutputComposeSurfacesTest {
OutputComposeSurfacesTest_SetsExpensiveRendering() {
EXPECT_CALL(mOutput, getSkipColorTransform()).WillRepeatedly(Return(false));
EXPECT_CALL(*mDisplayColorProfile, hasWideColorGamut()).WillRepeatedly(Return(true));
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(false));
EXPECT_CALL(mRenderEngine, isProtected()).WillRepeatedly(Return(false));
EXPECT_CALL(mOutput, appendRegionFlashRequests(RegionEq(kDebugRegion), _))
.WillRepeatedly(Return());
EXPECT_CALL(*mRenderSurface, dequeueBuffer(_)).WillRepeatedly(Return(mOutputBuffer));
}
};
TEST_F(OutputComposeSurfacesTest_SetsExpensiveRendering, IfExepensiveOutputDataspaceIsUsed) {
mOutput.mState.dataspace = kExpensiveOutputDataspace;
LayerFE::LayerSettings layerSettings;
EXPECT_CALL(mOutput, generateClientCompositionRequests(_, kExpensiveOutputDataspace, _))
.WillOnce(Return(std::vector<LayerFE::LayerSettings>{layerSettings}));
// For this test, we also check the call order of key functions.
InSequence seq;
EXPECT_CALL(mOutput, setExpensiveRenderingExpected(true));
EXPECT_CALL(mRenderEngine, drawLayers(_, _, _, _))
.WillOnce(Return(ByMove(ftl::yield<FenceResult>(Fence::NO_FENCE))));
base::unique_fd fd;
std::shared_ptr<renderengine::ExternalTexture> tex;
mOutput.updateProtectedContentState();
mOutput.dequeueRenderBuffer(&fd, &tex);
mOutput.composeSurfaces(kDebugRegion, tex, fd);
}
/*
* Output::generateClientCompositionRequests()
*/
struct GenerateClientCompositionRequestsTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// compositionengine::Output overrides
std::vector<LayerFE::LayerSettings> generateClientCompositionRequestsHelper(
bool supportsProtectedContent, ui::Dataspace dataspace) {
std::vector<LayerFE*> ignore;
return impl::Output::generateClientCompositionRequests(supportsProtectedContent,
dataspace, ignore);
}
};
struct Layer {
Layer() {
EXPECT_CALL(mOutputLayer, getOverrideCompositionSettings())
.WillRepeatedly(Return(std::nullopt));
EXPECT_CALL(mOutputLayer, getState()).WillRepeatedly(ReturnRef(mOutputLayerState));
EXPECT_CALL(mOutputLayer, editState()).WillRepeatedly(ReturnRef(mOutputLayerState));
EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE));
EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState));
}
StrictMock<mock::OutputLayer> mOutputLayer;
sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState mLayerFEState;
impl::OutputLayerCompositionState mOutputLayerState;
LayerFE::LayerSettings mLayerSettings;
};
GenerateClientCompositionRequestsTest() {
mOutput.mState.needsFiltering = false;
mOutput.mState.isProtected = true;
mOutput.setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
}
static constexpr float kLayerWhitePointNits = 200.f;
mock::DisplayColorProfile* mDisplayColorProfile = new StrictMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
};
struct GenerateClientCompositionRequestsTest_ThreeLayers
: public GenerateClientCompositionRequestsTest {
GenerateClientCompositionRequestsTest_ThreeLayers() {
mOutput.mState.orientedDisplaySpace.setContent(kDisplayFrame);
mOutput.mState.layerStackSpace.setContent(kDisplayViewport);
mOutput.mState.displaySpace.setContent(kDisplayDestinationClip);
mOutput.mState.transform =
ui::Transform{ui::Transform::toRotationFlags(kDisplayOrientation)};
mOutput.mState.displaySpace.setOrientation(kDisplayOrientation);
mOutput.mState.needsFiltering = false;
mOutput.mState.isSecure = false;
mOutput.mState.isProtected = true;
for (size_t i = 0; i < mLayers.size(); i++) {
mLayers[i].mOutputLayerState.clearClientTarget = false;
mLayers[i].mOutputLayerState.visibleRegion = Region(kDisplayFrame);
mLayers[i].mLayerFEState.isOpaque = true;
mLayers[i].mLayerSettings.geometry.boundaries =
FloatRect{static_cast<float>(i + 1), 0.f, 0.f, 0.f};
mLayers[i].mLayerSettings.source.solidColor = {1.0f, 1.0f, 1.0f};
mLayers[i].mLayerSettings.alpha = 1.0f;
mLayers[i].mLayerSettings.disableBlending = false;
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(i))
.WillRepeatedly(Return(&mLayers[i].mOutputLayer));
EXPECT_CALL(mLayers[i].mOutputLayer, requiresClientComposition())
.WillRepeatedly(Return(true));
EXPECT_CALL(mLayers[i].mOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
}
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(mLayers.size()));
}
static constexpr ui::Rotation kDisplayOrientation = ui::ROTATION_0;
static constexpr ui::Dataspace kDisplayDataspace = ui::Dataspace::UNKNOWN;
static constexpr float kLayerWhitePointNits = 200.f;
static const Rect kDisplayFrame;
static const Rect kDisplayViewport;
static const Rect kDisplayDestinationClip;
std::array<Layer, 3> mLayers;
};
const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayFrame(0, 0, 100, 200);
const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayViewport(0, 0, 101, 201);
const Rect GenerateClientCompositionRequestsTest_ThreeLayers::kDisplayDestinationClip(0, 0, 103,
203);
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, handlesNoClientCompostionLayers) {
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
EXPECT_EQ(0u, requests.size());
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, requiresVisibleRegionAfterViewportClip) {
mLayers[0].mOutputLayerState.visibleRegion = Region(Rect(10, 10, 10, 10));
mLayers[1].mOutputLayerState.visibleRegion = Region(Rect(4000, 0, 4010, 10));
mLayers[2].mOutputLayerState.visibleRegion = Region(Rect(-10, -10, 0, 0));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
EXPECT_EQ(0u, requests.size());
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, gathersClientCompositionRequests) {
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[1].mLayerSettings)));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(2u, requests.size());
EXPECT_EQ(mLayers[1].mLayerSettings, requests[0]);
EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]);
// Check that a timestamp was set for the layers that generated requests
EXPECT_TRUE(0 == mLayers[0].mOutputLayerState.clientCompositionTimestamp);
EXPECT_TRUE(0 != mLayers[1].mOutputLayerState.clientCompositionTimestamp);
EXPECT_TRUE(0 != mLayers[2].mOutputLayerState.clientCompositionTimestamp);
}
MATCHER_P(ClientCompositionTargetSettingsBlurSettingsEq, expectedBlurSetting, "") {
*result_listener << "ClientCompositionTargetSettings' BlurSettings aren't equal \n";
*result_listener << "expected " << expectedBlurSetting << "\n";
*result_listener << "actual " << arg.blurSetting << "\n";
return expectedBlurSetting == arg.blurSetting;
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, overridesBlur) {
mLayers[2].mOutputLayerState.overrideInfo.disableBackgroundBlur = true;
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[1].mLayerSettings)));
EXPECT_CALL(*mLayers[2].mLayerFE,
prepareClientComposition(ClientCompositionTargetSettingsBlurSettingsEq(
LayerFE::ClientCompositionTargetSettings::BlurSetting::BlurRegionsOnly)))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(2u, requests.size());
EXPECT_EQ(mLayers[1].mLayerSettings, requests[0]);
EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]);
// Check that a timestamp was set for the layers that generated requests
EXPECT_TRUE(0 == mLayers[0].mOutputLayerState.clientCompositionTimestamp);
EXPECT_TRUE(0 != mLayers[1].mOutputLayerState.clientCompositionTimestamp);
EXPECT_TRUE(0 != mLayers[2].mOutputLayerState.clientCompositionTimestamp);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
onlyClientComposesClientComposedLayersIfNoClearingNeeded) {
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true));
mLayers[0].mOutputLayerState.clearClientTarget = false;
mLayers[1].mOutputLayerState.clearClientTarget = false;
mLayers[2].mOutputLayerState.clearClientTarget = false;
mLayers[0].mLayerFEState.isOpaque = true;
mLayers[1].mLayerFEState.isOpaque = true;
mLayers[2].mLayerFEState.isOpaque = true;
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(1u, requests.size());
EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
onlyClientComposesClientComposedLayersIfOthersAreNotOpaque) {
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true));
mLayers[0].mOutputLayerState.clearClientTarget = true;
mLayers[1].mOutputLayerState.clearClientTarget = true;
mLayers[2].mOutputLayerState.clearClientTarget = true;
mLayers[0].mLayerFEState.isOpaque = false;
mLayers[1].mLayerFEState.isOpaque = false;
mLayers[2].mLayerFEState.isOpaque = false;
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(_))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(1u, requests.size());
EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers, clearsHWCLayersIfOpaqueAndNotFirst) {
// If client composition is performed with some layers set to use device
// composition, device layers after the first layer (device or client) will
// clear the frame buffer if they are opaque and if that layer has a flag
// set to do so. The first layer is skipped as the frame buffer is already
// expected to be clear.
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[2].mOutputLayer, requiresClientComposition()).WillOnce(Return(true));
mLayers[0].mOutputLayerState.clearClientTarget = true;
mLayers[1].mOutputLayerState.clearClientTarget = true;
mLayers[2].mOutputLayerState.clearClientTarget = true;
mLayers[0].mLayerFEState.isOpaque = true;
mLayers[1].mLayerFEState.isOpaque = true;
mLayers[2].mLayerFEState.isOpaque = true;
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
false /* realContentIsVisible */,
true /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
LayerFE::LayerSettings mBlackoutSettings = mLayers[1].mLayerSettings;
mBlackoutSettings.source.buffer.buffer = nullptr;
mBlackoutSettings.source.solidColor = {0.1f, 0.1f, 0.1f};
mBlackoutSettings.alpha = 0.f;
mBlackoutSettings.disableBlending = true;
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mBlackoutSettings)));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(2u, requests.size());
// The second layer is expected to be rendered as alpha=0 black with no blending
EXPECT_EQ(mBlackoutSettings, requests[0]);
EXPECT_EQ(mLayers[2].mLayerSettings, requests[1]);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
clippedVisibleRegionUsedToGenerateRequest) {
mLayers[0].mOutputLayerState.visibleRegion = Region(Rect(10, 10, 20, 20));
mLayers[1].mOutputLayerState.visibleRegion = Region(Rect(-10, -10, 30, 30));
mLayers[2].mOutputLayerState.visibleRegion = Region(Rect(-10, 0, 40, 4000));
compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{
Region(Rect(10, 10, 20, 20)),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(Rect(0, 0, 30, 30)),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(Rect(0, 0, 40, 201)),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
static_cast<void>(
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace));
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
perLayerNeedsFilteringUsedToGenerateRequests) {
mOutput.mState.needsFiltering = false;
EXPECT_CALL(mLayers[0].mOutputLayer, needsFiltering()).WillRepeatedly(Return(true));
compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{
Region(kDisplayFrame),
true, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
static_cast<void>(
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace));
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
wholeOutputNeedsFilteringUsedToGenerateRequests) {
mOutput.mState.needsFiltering = true;
EXPECT_CALL(mLayers[0].mOutputLayer, needsFiltering()).WillRepeatedly(Return(true));
compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{
Region(kDisplayFrame),
true, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(kDisplayFrame),
true, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(kDisplayFrame),
true, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
static_cast<void>(
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace));
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
wholeOutputSecurityUsedToGenerateRequests) {
mOutput.mState.isSecure = true;
compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
true, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
true, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
true, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
static_cast<void>(
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace));
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
protectedContentSupportUsedToGenerateRequests) {
compositionengine::LayerFE::ClientCompositionTargetSettings layer0TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
true, /* isProtected */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer1TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
true, /* isProtected */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
compositionengine::LayerFE::ClientCompositionTargetSettings layer2TargetSettings{
Region(kDisplayFrame),
false, /* needs filtering */
false, /* secure */
true, /* isProtected */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(*mLayers[0].mLayerFE, prepareClientComposition(Eq(ByRef(layer0TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[1].mLayerFE, prepareClientComposition(Eq(ByRef(layer1TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2TargetSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>()));
static_cast<void>(
mOutput.generateClientCompositionRequestsHelper(true /* supportsProtectedContent */,
kDisplayDataspace));
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, noBackgroundBlurWhenOpaque) {
InjectedLayer layer1;
InjectedLayer layer2;
uint32_t z = 0;
// Layer requesting blur, or below, should request client composition, unless opaque.
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
layer2.layerFEState.backgroundBlurRadius = 10;
layer2.layerFEState.isOpaque = true;
injectOutputLayer(layer1);
injectOutputLayer(layer2);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = false;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, handlesBackgroundBlurRequests) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
uint32_t z = 0;
// Layer requesting blur, or below, should request client composition.
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
layer2.layerFEState.backgroundBlurRadius = 10;
layer2.layerFEState.isOpaque = false;
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = false;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(OutputUpdateAndWriteCompositionStateTest, handlesBlurRegionRequests) {
InjectedLayer layer1;
InjectedLayer layer2;
InjectedLayer layer3;
uint32_t z = 0;
// Layer requesting blur, or below, should request client composition.
EXPECT_CALL(*layer1.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer1.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer1.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer2.outputLayer, updateCompositionState(false, true, ui::Transform::ROT_0));
EXPECT_CALL(*layer2.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer2.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
EXPECT_CALL(*layer3.outputLayer, updateCompositionState(false, false, ui::Transform::ROT_0));
EXPECT_CALL(*layer3.outputLayer,
writeStateToHWC(/*includeGeometry*/ false, /*skipLayer*/ false, z++,
/*zIsOverridden*/ false, /*isPeekingThrough*/ false));
EXPECT_CALL(*layer3.outputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
BlurRegion region;
layer2.layerFEState.blurRegions.push_back(region);
layer2.layerFEState.isOpaque = false;
injectOutputLayer(layer1);
injectOutputLayer(layer2);
injectOutputLayer(layer3);
mOutput->editState().isEnabled = true;
CompositionRefreshArgs args;
args.updatingGeometryThisFrame = false;
args.devOptForceClientComposition = false;
mOutput->updateCompositionState(args);
mOutput->planComposition();
mOutput->writeCompositionState(args);
}
TEST_F(GenerateClientCompositionRequestsTest, handlesLandscapeModeSplitScreenRequests) {
// In split-screen landscape mode, the screen is rotated 90 degrees, with
// one layer on the left covering the left side of the output, and one layer
// on the right covering that side of the output.
const Rect kPortraitFrame(0, 0, 1000, 2000);
const Rect kPortraitViewport(0, 0, 2000, 1000);
const Rect kPortraitDestinationClip(0, 0, 1000, 2000);
const ui::Rotation kPortraitOrientation = ui::ROTATION_90;
constexpr ui::Dataspace kOutputDataspace = ui::Dataspace::DISPLAY_P3;
mOutput.mState.orientedDisplaySpace.setContent(kPortraitFrame);
mOutput.mState.layerStackSpace.setContent(kPortraitViewport);
mOutput.mState.displaySpace.setContent(kPortraitDestinationClip);
mOutput.mState.transform = ui::Transform{ui::Transform::toRotationFlags(kPortraitOrientation)};
mOutput.mState.displaySpace.setOrientation(kPortraitOrientation);
mOutput.mState.needsFiltering = false;
mOutput.mState.isSecure = true;
Layer leftLayer;
Layer rightLayer;
leftLayer.mOutputLayerState.clearClientTarget = false;
leftLayer.mOutputLayerState.visibleRegion = Region(Rect(0, 0, 1000, 1000));
leftLayer.mLayerFEState.isOpaque = true;
leftLayer.mLayerSettings.source.solidColor = {1.f, 0.f, 0.f};
rightLayer.mOutputLayerState.clearClientTarget = false;
rightLayer.mOutputLayerState.visibleRegion = Region(Rect(1000, 0, 2000, 1000));
rightLayer.mLayerFEState.isOpaque = true;
rightLayer.mLayerSettings.source.solidColor = {0.f, 1.f, 0.f};
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0u))
.WillRepeatedly(Return(&leftLayer.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1u))
.WillRepeatedly(Return(&rightLayer.mOutputLayer));
compositionengine::LayerFE::ClientCompositionTargetSettings leftLayerSettings{
Region(Rect(0, 0, 1000, 1000)),
false, /* needs filtering */
true, /* secure */
true, /* isProtected */
kPortraitViewport,
kOutputDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(leftLayer.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(leftLayer.mOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(*leftLayer.mLayerFE, prepareClientComposition(Eq(ByRef(leftLayerSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(leftLayer.mLayerSettings)));
compositionengine::LayerFE::ClientCompositionTargetSettings rightLayerSettings{
Region(Rect(1000, 0, 2000, 1000)),
false, /* needs filtering */
true, /* secure */
true, /* isProtected */
kPortraitViewport,
kOutputDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(rightLayer.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(rightLayer.mOutputLayer, needsFiltering()).WillRepeatedly(Return(false));
EXPECT_CALL(*rightLayer.mLayerFE, prepareClientComposition(Eq(ByRef(rightLayerSettings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(rightLayer.mLayerSettings)));
constexpr bool supportsProtectedContent = true;
auto requests = mOutput.generateClientCompositionRequestsHelper(supportsProtectedContent,
kOutputDataspace);
ASSERT_EQ(2u, requests.size());
EXPECT_EQ(leftLayer.mLayerSettings, requests[0]);
EXPECT_EQ(rightLayer.mLayerSettings, requests[1]);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
shadowRegionOnlyVisibleSkipsContentComposition) {
const Rect kContentWithShadow(40, 40, 70, 90);
const Rect kContent(50, 50, 60, 80);
const Region kShadowRegion = Region(kContentWithShadow).subtract(kContent);
const Region kPartialShadowRegion = Region(kContentWithShadow).subtract(Rect(40, 40, 60, 80));
compositionengine::LayerFE::ClientCompositionTargetSettings layer2Settings{
Region(Rect(60, 40, 70, 80)).merge(Rect(40, 80, 70, 90)), /* visible region */
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
false /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
LayerFE::LayerSettings mShadowSettings;
mShadowSettings.source.solidColor = {0.1f, 0.1f, 0.1f};
mLayers[2].mOutputLayerState.visibleRegion = kPartialShadowRegion;
mLayers[2].mOutputLayerState.shadowRegion = kShadowRegion;
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2Settings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mShadowSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(1u, requests.size());
EXPECT_EQ(mShadowSettings, requests[0]);
}
TEST_F(GenerateClientCompositionRequestsTest_ThreeLayers,
shadowRegionWithContentVisibleRequestsContentAndShadowComposition) {
const Rect kContentWithShadow(40, 40, 70, 90);
const Rect kContent(50, 50, 60, 80);
const Region kShadowRegion = Region(kContentWithShadow).subtract(kContent);
const Region kPartialContentWithPartialShadowRegion =
Region(kContentWithShadow).subtract(Rect(40, 40, 50, 80));
mLayers[2].mOutputLayerState.visibleRegion = kPartialContentWithPartialShadowRegion;
mLayers[2].mOutputLayerState.shadowRegion = kShadowRegion;
compositionengine::LayerFE::ClientCompositionTargetSettings layer2Settings{
Region(Rect(50, 40, 70, 80)).merge(Rect(40, 80, 70, 90)), /* visible region */
false, /* needs filtering */
false, /* secure */
false, /* supports protected content */
kDisplayViewport,
kDisplayDataspace,
true /* realContentIsVisible */,
false /* clearContent */,
compositionengine::LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled,
kLayerWhitePointNits,
false /* treat170mAsSrgb */,
};
EXPECT_CALL(mLayers[0].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(mLayers[1].mOutputLayer, requiresClientComposition()).WillOnce(Return(false));
EXPECT_CALL(*mLayers[2].mLayerFE, prepareClientComposition(Eq(ByRef(layer2Settings))))
.WillOnce(Return(std::optional<LayerFE::LayerSettings>(mLayers[2].mLayerSettings)));
auto requests =
mOutput.generateClientCompositionRequestsHelper(false /* supportsProtectedContent */,
kDisplayDataspace);
ASSERT_EQ(1u, requests.size());
EXPECT_EQ(mLayers[2].mLayerSettings, requests[0]);
}
struct OutputPresentFrameAndReleaseLayersAsyncTest : public ::testing::Test {
// Piggy-back on OutputPrepareFrameAsyncTest's version to avoid some boilerplate.
struct OutputPartialMock : public OutputPrepareFrameAsyncTest::OutputPartialMock {
// Set up the helper functions called by the function under test to use
// mock implementations.
MOCK_METHOD0(presentFrameAndReleaseLayers, void());
MOCK_METHOD0(presentFrameAndReleaseLayersAsync, ftl::Future<std::monostate>());
};
OutputPresentFrameAndReleaseLayersAsyncTest() {
mOutput->setDisplayColorProfileForTest(
std::unique_ptr<DisplayColorProfile>(mDisplayColorProfile));
mOutput->setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
mOutput->setCompositionEnabled(true);
mRefreshArgs.outputs = {mOutput};
}
mock::DisplayColorProfile* mDisplayColorProfile = new NiceMock<mock::DisplayColorProfile>();
mock::RenderSurface* mRenderSurface = new NiceMock<mock::RenderSurface>();
std::shared_ptr<OutputPartialMock> mOutput{std::make_shared<NiceMock<OutputPartialMock>>()};
CompositionRefreshArgs mRefreshArgs;
};
TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, notCalledWhenNotRequested) {
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync()).Times(0);
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(1);
mOutput->present(mRefreshArgs);
}
TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, calledWhenRequested) {
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync())
.WillOnce(Return(ftl::yield<std::monostate>({})));
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(0);
mOutput->offloadPresentNextFrame();
mOutput->present(mRefreshArgs);
}
TEST_F(OutputPresentFrameAndReleaseLayersAsyncTest, calledForOneFrame) {
::testing::InSequence inseq;
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayersAsync())
.WillOnce(Return(ftl::yield<std::monostate>({})));
EXPECT_CALL(*mOutput, presentFrameAndReleaseLayers()).Times(1);
mOutput->offloadPresentNextFrame();
mOutput->present(mRefreshArgs);
mOutput->present(mRefreshArgs);
}
/*
* Output::updateProtectedContentState()
*/
struct OutputUpdateProtectedContentStateTest : public testing::Test {
struct OutputPartialMock : public OutputPartialMockBase {
// Sets up the helper functions called by the function under test to use
// mock implementations.
MOCK_CONST_METHOD0(getCompositionEngine, const CompositionEngine&());
};
OutputUpdateProtectedContentStateTest() {
mOutput.setRenderSurfaceForTest(std::unique_ptr<RenderSurface>(mRenderSurface));
EXPECT_CALL(mOutput, getCompositionEngine()).WillRepeatedly(ReturnRef(mCompositionEngine));
EXPECT_CALL(mCompositionEngine, getRenderEngine()).WillRepeatedly(ReturnRef(mRenderEngine));
EXPECT_CALL(mOutput, getOutputLayerCount()).WillRepeatedly(Return(2u));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(0))
.WillRepeatedly(Return(&mLayer1.mOutputLayer));
EXPECT_CALL(mOutput, getOutputLayerOrderedByZByIndex(1))
.WillRepeatedly(Return(&mLayer2.mOutputLayer));
}
struct Layer {
Layer() {
EXPECT_CALL(*mLayerFE, getCompositionState()).WillRepeatedly(Return(&mLayerFEState));
EXPECT_CALL(mOutputLayer, getLayerFE()).WillRepeatedly(ReturnRef(*mLayerFE));
}
StrictMock<mock::OutputLayer> mOutputLayer;
sp<StrictMock<mock::LayerFE>> mLayerFE = sp<StrictMock<mock::LayerFE>>::make();
LayerFECompositionState mLayerFEState;
};
mock::RenderSurface* mRenderSurface = new StrictMock<mock::RenderSurface>();
StrictMock<OutputPartialMock> mOutput;
StrictMock<mock::CompositionEngine> mCompositionEngine;
StrictMock<renderengine::mock::RenderEngine> mRenderEngine;
Layer mLayer1;
Layer mLayer2;
};
TEST_F(OutputUpdateProtectedContentStateTest, ifProtectedContentLayerComposeByHWC) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer1.mLayerFEState.hasProtectedContent = false;
mLayer2.mLayerFEState.hasProtectedContent = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false));
EXPECT_CALL(mLayer1.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(mLayer2.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(false));
mOutput.updateProtectedContentState();
}
TEST_F(OutputUpdateProtectedContentStateTest, ifProtectedContentLayerComposeByClient) {
SET_FLAG_FOR_TEST(flags::protected_if_client, true);
if (FlagManager::getInstance().display_protected()) {
mOutput.mState.isProtected = true;
} else {
mOutput.mState.isSecure = true;
}
mLayer1.mLayerFEState.hasProtectedContent = false;
mLayer2.mLayerFEState.hasProtectedContent = true;
EXPECT_CALL(mRenderEngine, supportsProtectedContent()).WillRepeatedly(Return(true));
EXPECT_CALL(*mRenderSurface, isProtected).WillOnce(Return(false));
EXPECT_CALL(*mRenderSurface, setProtected(true));
EXPECT_CALL(mLayer1.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
EXPECT_CALL(mLayer2.mOutputLayer, requiresClientComposition()).WillRepeatedly(Return(true));
mOutput.updateProtectedContentState();
}
} // namespace
} // namespace android::compositionengine