| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cinttypes> |
| #include <memory> |
| #include <optional> |
| |
| #include <CursorInputMapper.h> |
| #include <InputDevice.h> |
| #include <InputMapper.h> |
| #include <InputReader.h> |
| #include <InputReaderBase.h> |
| #include <InputReaderFactory.h> |
| #include <JoystickInputMapper.h> |
| #include <KeyboardInputMapper.h> |
| #include <MultiTouchInputMapper.h> |
| #include <PeripheralController.h> |
| #include <SensorInputMapper.h> |
| #include <SingleTouchInputMapper.h> |
| #include <SwitchInputMapper.h> |
| #include <TestEventMatchers.h> |
| #include <TestInputListener.h> |
| #include <TouchInputMapper.h> |
| #include <UinputDevice.h> |
| #include <VibratorInputMapper.h> |
| #include <android-base/thread_annotations.h> |
| #include <com_android_input_flags.h> |
| #include <ftl/enum.h> |
| #include <gtest/gtest.h> |
| #include <gui/constants.h> |
| #include <ui/Rotation.h> |
| |
| #include <thread> |
| #include "FakeEventHub.h" |
| #include "FakeInputReaderPolicy.h" |
| #include "FakePointerController.h" |
| #include "InputMapperTest.h" |
| #include "InstrumentedInputReader.h" |
| #include "TestConstants.h" |
| #include "input/DisplayViewport.h" |
| #include "input/Input.h" |
| |
| namespace android { |
| |
| using namespace ftl::flag_operators; |
| using testing::AllOf; |
| using std::chrono_literals::operator""ms; |
| using std::chrono_literals::operator""s; |
| |
| // Arbitrary display properties. |
| static constexpr int32_t DISPLAY_ID = 0; |
| static const std::string DISPLAY_UNIQUE_ID = "local:1"; |
| static constexpr int32_t SECONDARY_DISPLAY_ID = DISPLAY_ID + 1; |
| static const std::string SECONDARY_DISPLAY_UNIQUE_ID = "local:2"; |
| static constexpr int32_t DISPLAY_WIDTH = 480; |
| static constexpr int32_t DISPLAY_HEIGHT = 800; |
| static constexpr int32_t VIRTUAL_DISPLAY_ID = 1; |
| static constexpr int32_t VIRTUAL_DISPLAY_WIDTH = 400; |
| static constexpr int32_t VIRTUAL_DISPLAY_HEIGHT = 500; |
| static const char* VIRTUAL_DISPLAY_UNIQUE_ID = "virtual:1"; |
| static constexpr std::optional<uint8_t> NO_PORT = std::nullopt; // no physical port is specified |
| |
| static constexpr int32_t FIRST_SLOT = 0; |
| static constexpr int32_t SECOND_SLOT = 1; |
| static constexpr int32_t THIRD_SLOT = 2; |
| static constexpr int32_t INVALID_TRACKING_ID = -1; |
| static constexpr int32_t FIRST_TRACKING_ID = 0; |
| static constexpr int32_t SECOND_TRACKING_ID = 1; |
| static constexpr int32_t THIRD_TRACKING_ID = 2; |
| static constexpr int32_t LIGHT_BRIGHTNESS = 0x55000000; |
| static constexpr int32_t LIGHT_COLOR = 0x7F448866; |
| static constexpr int32_t LIGHT_PLAYER_ID = 2; |
| |
| static constexpr int32_t ACTION_POINTER_0_DOWN = |
| AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| static constexpr int32_t ACTION_POINTER_0_UP = |
| AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| static constexpr int32_t ACTION_POINTER_1_DOWN = |
| AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| static constexpr int32_t ACTION_POINTER_1_UP = |
| AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| |
| static constexpr uint32_t STYLUS_FUSION_SOURCE = |
| AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_BLUETOOTH_STYLUS; |
| |
| // Minimum timestamp separation between subsequent input events from a Bluetooth device. |
| static constexpr nsecs_t MIN_BLUETOOTH_TIMESTAMP_DELTA = ms2ns(4); |
| |
| namespace input_flags = com::android::input::flags; |
| |
| template<typename T> |
| static inline T min(T a, T b) { |
| return a < b ? a : b; |
| } |
| |
| static inline float avg(float x, float y) { |
| return (x + y) / 2; |
| } |
| |
| // Mapping for light color name and the light color |
| const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED}, |
| {"green", LightColor::GREEN}, |
| {"blue", LightColor::BLUE}}; |
| |
| static ui::Rotation getInverseRotation(ui::Rotation orientation) { |
| switch (orientation) { |
| case ui::ROTATION_90: |
| return ui::ROTATION_270; |
| case ui::ROTATION_270: |
| return ui::ROTATION_90; |
| default: |
| return orientation; |
| } |
| } |
| |
| static void assertAxisResolution(MultiTouchInputMapper& mapper, int axis, float resolution) { |
| InputDeviceInfo info; |
| mapper.populateDeviceInfo(info); |
| |
| const InputDeviceInfo::MotionRange* motionRange = |
| info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN); |
| ASSERT_NEAR(motionRange->resolution, resolution, EPSILON); |
| } |
| |
| static void assertAxisNotPresent(MultiTouchInputMapper& mapper, int axis) { |
| InputDeviceInfo info; |
| mapper.populateDeviceInfo(info); |
| |
| const InputDeviceInfo::MotionRange* motionRange = |
| info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN); |
| ASSERT_EQ(nullptr, motionRange); |
| } |
| |
| [[maybe_unused]] static void dumpReader(InputReader& reader) { |
| std::string dump; |
| reader.dump(dump); |
| std::istringstream iss(dump); |
| for (std::string line; std::getline(iss, line);) { |
| ALOGE("%s", line.c_str()); |
| std::this_thread::sleep_for(1ms); |
| } |
| } |
| |
| // --- FakeInputMapper --- |
| |
| class FakeInputMapper : public InputMapper { |
| uint32_t mSources; |
| int32_t mKeyboardType; |
| int32_t mMetaState; |
| KeyedVector<int32_t, int32_t> mKeyCodeStates; |
| KeyedVector<int32_t, int32_t> mScanCodeStates; |
| KeyedVector<int32_t, int32_t> mSwitchStates; |
| // fake mapping which would normally come from keyCharacterMap |
| std::unordered_map<int32_t, int32_t> mKeyCodeMapping; |
| std::vector<int32_t> mSupportedKeyCodes; |
| std::list<NotifyArgs> mProcessResult; |
| |
| std::mutex mLock; |
| std::condition_variable mStateChangedCondition; |
| bool mConfigureWasCalled GUARDED_BY(mLock); |
| bool mResetWasCalled GUARDED_BY(mLock); |
| bool mProcessWasCalled GUARDED_BY(mLock); |
| RawEvent mLastEvent GUARDED_BY(mLock); |
| |
| std::optional<DisplayViewport> mViewport; |
| public: |
| FakeInputMapper(InputDeviceContext& deviceContext, const InputReaderConfiguration& readerConfig, |
| uint32_t sources) |
| : InputMapper(deviceContext, readerConfig), |
| mSources(sources), |
| mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE), |
| mMetaState(0), |
| mConfigureWasCalled(false), |
| mResetWasCalled(false), |
| mProcessWasCalled(false) {} |
| |
| virtual ~FakeInputMapper() {} |
| |
| void setKeyboardType(int32_t keyboardType) { |
| mKeyboardType = keyboardType; |
| } |
| |
| void setMetaState(int32_t metaState) { |
| mMetaState = metaState; |
| } |
| |
| // Sets the return value for the `process` call. |
| void setProcessResult(std::list<NotifyArgs> notifyArgs) { |
| mProcessResult.clear(); |
| for (auto notifyArg : notifyArgs) { |
| mProcessResult.push_back(notifyArg); |
| } |
| } |
| |
| void assertConfigureWasCalled() { |
| std::unique_lock<std::mutex> lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| const bool configureCalled = |
| mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { |
| return mConfigureWasCalled; |
| }); |
| if (!configureCalled) { |
| FAIL() << "Expected configure() to have been called."; |
| } |
| mConfigureWasCalled = false; |
| } |
| |
| void assertResetWasCalled() { |
| std::unique_lock<std::mutex> lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| const bool resetCalled = |
| mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { |
| return mResetWasCalled; |
| }); |
| if (!resetCalled) { |
| FAIL() << "Expected reset() to have been called."; |
| } |
| mResetWasCalled = false; |
| } |
| |
| void assertResetWasNotCalled() { |
| std::scoped_lock lock(mLock); |
| ASSERT_FALSE(mResetWasCalled) << "Expected reset to not have been called."; |
| } |
| |
| void assertProcessWasCalled(RawEvent* outLastEvent = nullptr) { |
| std::unique_lock<std::mutex> lock(mLock); |
| base::ScopedLockAssertion assumeLocked(mLock); |
| const bool processCalled = |
| mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) { |
| return mProcessWasCalled; |
| }); |
| if (!processCalled) { |
| FAIL() << "Expected process() to have been called."; |
| } |
| if (outLastEvent) { |
| *outLastEvent = mLastEvent; |
| } |
| mProcessWasCalled = false; |
| } |
| |
| void assertProcessWasNotCalled() { |
| std::scoped_lock lock(mLock); |
| ASSERT_FALSE(mProcessWasCalled) << "Expected process to not have been called."; |
| } |
| |
| void setKeyCodeState(int32_t keyCode, int32_t state) { |
| mKeyCodeStates.replaceValueFor(keyCode, state); |
| } |
| |
| void setScanCodeState(int32_t scanCode, int32_t state) { |
| mScanCodeStates.replaceValueFor(scanCode, state); |
| } |
| |
| void setSwitchState(int32_t switchCode, int32_t state) { |
| mSwitchStates.replaceValueFor(switchCode, state); |
| } |
| |
| void addSupportedKeyCode(int32_t keyCode) { |
| mSupportedKeyCodes.push_back(keyCode); |
| } |
| |
| void addKeyCodeMapping(int32_t fromKeyCode, int32_t toKeyCode) { |
| mKeyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode); |
| } |
| |
| private: |
| uint32_t getSources() const override { return mSources; } |
| |
| void populateDeviceInfo(InputDeviceInfo& deviceInfo) override { |
| InputMapper::populateDeviceInfo(deviceInfo); |
| |
| if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) { |
| deviceInfo.setKeyboardType(mKeyboardType); |
| } |
| } |
| |
| std::list<NotifyArgs> reconfigure(nsecs_t, const InputReaderConfiguration& config, |
| ConfigurationChanges changes) override { |
| std::scoped_lock<std::mutex> lock(mLock); |
| mConfigureWasCalled = true; |
| |
| // Find the associated viewport if exist. |
| const std::optional<uint8_t> displayPort = getDeviceContext().getAssociatedDisplayPort(); |
| if (displayPort && changes.test(InputReaderConfiguration::Change::DISPLAY_INFO)) { |
| mViewport = config.getDisplayViewportByPort(*displayPort); |
| } |
| |
| mStateChangedCondition.notify_all(); |
| return {}; |
| } |
| |
| std::list<NotifyArgs> reset(nsecs_t) override { |
| std::scoped_lock<std::mutex> lock(mLock); |
| mResetWasCalled = true; |
| mStateChangedCondition.notify_all(); |
| return {}; |
| } |
| |
| std::list<NotifyArgs> process(const RawEvent* rawEvent) override { |
| std::scoped_lock<std::mutex> lock(mLock); |
| mLastEvent = *rawEvent; |
| mProcessWasCalled = true; |
| mStateChangedCondition.notify_all(); |
| return mProcessResult; |
| } |
| |
| int32_t getKeyCodeState(uint32_t, int32_t keyCode) override { |
| ssize_t index = mKeyCodeStates.indexOfKey(keyCode); |
| return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t getKeyCodeForKeyLocation(int32_t locationKeyCode) const override { |
| auto it = mKeyCodeMapping.find(locationKeyCode); |
| return it != mKeyCodeMapping.end() ? it->second : locationKeyCode; |
| } |
| |
| int32_t getScanCodeState(uint32_t, int32_t scanCode) override { |
| ssize_t index = mScanCodeStates.indexOfKey(scanCode); |
| return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t getSwitchState(uint32_t, int32_t switchCode) override { |
| ssize_t index = mSwitchStates.indexOfKey(switchCode); |
| return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN; |
| } |
| |
| // Return true if the device has non-empty key layout. |
| bool markSupportedKeyCodes(uint32_t, const std::vector<int32_t>& keyCodes, |
| uint8_t* outFlags) override { |
| for (size_t i = 0; i < keyCodes.size(); i++) { |
| for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) { |
| if (keyCodes[i] == mSupportedKeyCodes[j]) { |
| outFlags[i] = 1; |
| } |
| } |
| } |
| bool result = mSupportedKeyCodes.size() > 0; |
| return result; |
| } |
| |
| virtual int32_t getMetaState() { |
| return mMetaState; |
| } |
| |
| virtual void fadePointer() { |
| } |
| |
| virtual std::optional<int32_t> getAssociatedDisplay() { |
| if (mViewport) { |
| return std::make_optional(mViewport->displayId); |
| } |
| return std::nullopt; |
| } |
| }; |
| |
| // --- InputReaderPolicyTest --- |
| class InputReaderPolicyTest : public testing::Test { |
| protected: |
| sp<FakeInputReaderPolicy> mFakePolicy; |
| |
| void SetUp() override { mFakePolicy = sp<FakeInputReaderPolicy>::make(); } |
| void TearDown() override { mFakePolicy.clear(); } |
| }; |
| |
| /** |
| * Check that empty set of viewports is an acceptable configuration. |
| * Also try to get internal viewport two different ways - by type and by uniqueId. |
| * |
| * There will be confusion if two viewports with empty uniqueId and identical type are present. |
| * Such configuration is not currently allowed. |
| */ |
| TEST_F(InputReaderPolicyTest, Viewports_GetCleared) { |
| static const std::string uniqueId = "local:0"; |
| |
| // We didn't add any viewports yet, so there shouldn't be any. |
| std::optional<DisplayViewport> internalViewport = |
| mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_FALSE(internalViewport); |
| |
| // Add an internal viewport, then clear it |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, uniqueId, NO_PORT, ViewportType::INTERNAL); |
| |
| // Check matching by uniqueId |
| internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId); |
| ASSERT_TRUE(internalViewport); |
| ASSERT_EQ(ViewportType::INTERNAL, internalViewport->type); |
| |
| // Check matching by viewport type |
| internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_TRUE(internalViewport); |
| ASSERT_EQ(uniqueId, internalViewport->uniqueId); |
| |
| mFakePolicy->clearViewports(); |
| // Make sure nothing is found after clear |
| internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId); |
| ASSERT_FALSE(internalViewport); |
| internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_FALSE(internalViewport); |
| } |
| |
| TEST_F(InputReaderPolicyTest, Viewports_GetByType) { |
| const std::string internalUniqueId = "local:0"; |
| const std::string externalUniqueId = "local:1"; |
| const std::string virtualUniqueId1 = "virtual:2"; |
| const std::string virtualUniqueId2 = "virtual:3"; |
| constexpr int32_t virtualDisplayId1 = 2; |
| constexpr int32_t virtualDisplayId2 = 3; |
| |
| // Add an internal viewport |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, internalUniqueId, NO_PORT, |
| ViewportType::INTERNAL); |
| // Add an external viewport |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, externalUniqueId, NO_PORT, |
| ViewportType::EXTERNAL); |
| // Add an virtual viewport |
| mFakePolicy->addDisplayViewport(virtualDisplayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, virtualUniqueId1, NO_PORT, |
| ViewportType::VIRTUAL); |
| // Add another virtual viewport |
| mFakePolicy->addDisplayViewport(virtualDisplayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, virtualUniqueId2, NO_PORT, |
| ViewportType::VIRTUAL); |
| |
| // Check matching by type for internal |
| std::optional<DisplayViewport> internalViewport = |
| mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_TRUE(internalViewport); |
| ASSERT_EQ(internalUniqueId, internalViewport->uniqueId); |
| |
| // Check matching by type for external |
| std::optional<DisplayViewport> externalViewport = |
| mFakePolicy->getDisplayViewportByType(ViewportType::EXTERNAL); |
| ASSERT_TRUE(externalViewport); |
| ASSERT_EQ(externalUniqueId, externalViewport->uniqueId); |
| |
| // Check matching by uniqueId for virtual viewport #1 |
| std::optional<DisplayViewport> virtualViewport1 = |
| mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId1); |
| ASSERT_TRUE(virtualViewport1); |
| ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport1->type); |
| ASSERT_EQ(virtualUniqueId1, virtualViewport1->uniqueId); |
| ASSERT_EQ(virtualDisplayId1, virtualViewport1->displayId); |
| |
| // Check matching by uniqueId for virtual viewport #2 |
| std::optional<DisplayViewport> virtualViewport2 = |
| mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId2); |
| ASSERT_TRUE(virtualViewport2); |
| ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport2->type); |
| ASSERT_EQ(virtualUniqueId2, virtualViewport2->uniqueId); |
| ASSERT_EQ(virtualDisplayId2, virtualViewport2->displayId); |
| } |
| |
| |
| /** |
| * We can have 2 viewports of the same kind. We can distinguish them by uniqueId, and confirm |
| * that lookup works by checking display id. |
| * Check that 2 viewports of each kind is possible, for all existing viewport types. |
| */ |
| TEST_F(InputReaderPolicyTest, Viewports_TwoOfSameType) { |
| const std::string uniqueId1 = "uniqueId1"; |
| const std::string uniqueId2 = "uniqueId2"; |
| constexpr int32_t displayId1 = 2; |
| constexpr int32_t displayId2 = 3; |
| |
| std::vector<ViewportType> types = {ViewportType::INTERNAL, ViewportType::EXTERNAL, |
| ViewportType::VIRTUAL}; |
| for (const ViewportType& type : types) { |
| mFakePolicy->clearViewports(); |
| // Add a viewport |
| mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, uniqueId1, NO_PORT, type); |
| // Add another viewport |
| mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, uniqueId2, NO_PORT, type); |
| |
| // Check that correct display viewport was returned by comparing the display IDs. |
| std::optional<DisplayViewport> viewport1 = |
| mFakePolicy->getDisplayViewportByUniqueId(uniqueId1); |
| ASSERT_TRUE(viewport1); |
| ASSERT_EQ(displayId1, viewport1->displayId); |
| ASSERT_EQ(type, viewport1->type); |
| |
| std::optional<DisplayViewport> viewport2 = |
| mFakePolicy->getDisplayViewportByUniqueId(uniqueId2); |
| ASSERT_TRUE(viewport2); |
| ASSERT_EQ(displayId2, viewport2->displayId); |
| ASSERT_EQ(type, viewport2->type); |
| |
| // When there are multiple viewports of the same kind, and uniqueId is not specified |
| // in the call to getDisplayViewport, then that situation is not supported. |
| // The viewports can be stored in any order, so we cannot rely on the order, since that |
| // is just implementation detail. |
| // However, we can check that it still returns *a* viewport, we just cannot assert |
| // which one specifically is returned. |
| std::optional<DisplayViewport> someViewport = mFakePolicy->getDisplayViewportByType(type); |
| ASSERT_TRUE(someViewport); |
| } |
| } |
| |
| /** |
| * When we have multiple internal displays make sure we always return the default display when |
| * querying by type. |
| */ |
| TEST_F(InputReaderPolicyTest, Viewports_ByTypeReturnsDefaultForInternal) { |
| const std::string uniqueId1 = "uniqueId1"; |
| const std::string uniqueId2 = "uniqueId2"; |
| constexpr int32_t nonDefaultDisplayId = 2; |
| static_assert(nonDefaultDisplayId != ADISPLAY_ID_DEFAULT, |
| "Test display ID should not be ADISPLAY_ID_DEFAULT"); |
| |
| // Add the default display first and ensure it gets returned. |
| mFakePolicy->clearViewports(); |
| mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, uniqueId1, NO_PORT, |
| ViewportType::INTERNAL); |
| mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, uniqueId2, NO_PORT, |
| ViewportType::INTERNAL); |
| |
| std::optional<DisplayViewport> viewport = |
| mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_TRUE(viewport); |
| ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId); |
| ASSERT_EQ(ViewportType::INTERNAL, viewport->type); |
| |
| // Add the default display second to make sure order doesn't matter. |
| mFakePolicy->clearViewports(); |
| mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, uniqueId2, NO_PORT, |
| ViewportType::INTERNAL); |
| mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, uniqueId1, NO_PORT, |
| ViewportType::INTERNAL); |
| |
| viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| ASSERT_TRUE(viewport); |
| ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId); |
| ASSERT_EQ(ViewportType::INTERNAL, viewport->type); |
| } |
| |
| /** |
| * Check getDisplayViewportByPort |
| */ |
| TEST_F(InputReaderPolicyTest, Viewports_GetByPort) { |
| constexpr ViewportType type = ViewportType::EXTERNAL; |
| const std::string uniqueId1 = "uniqueId1"; |
| const std::string uniqueId2 = "uniqueId2"; |
| constexpr int32_t displayId1 = 1; |
| constexpr int32_t displayId2 = 2; |
| const uint8_t hdmi1 = 0; |
| const uint8_t hdmi2 = 1; |
| const uint8_t hdmi3 = 2; |
| |
| mFakePolicy->clearViewports(); |
| // Add a viewport that's associated with some display port that's not of interest. |
| mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, uniqueId1, hdmi3, type); |
| // Add another viewport, connected to HDMI1 port |
| mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, uniqueId2, hdmi1, type); |
| |
| // Check that correct display viewport was returned by comparing the display ports. |
| std::optional<DisplayViewport> hdmi1Viewport = mFakePolicy->getDisplayViewportByPort(hdmi1); |
| ASSERT_TRUE(hdmi1Viewport); |
| ASSERT_EQ(displayId2, hdmi1Viewport->displayId); |
| ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId); |
| |
| // Check that we can still get the same viewport using the uniqueId |
| hdmi1Viewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId2); |
| ASSERT_TRUE(hdmi1Viewport); |
| ASSERT_EQ(displayId2, hdmi1Viewport->displayId); |
| ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId); |
| ASSERT_EQ(type, hdmi1Viewport->type); |
| |
| // Check that we cannot find a port with "HDMI2", because we never added one |
| std::optional<DisplayViewport> hdmi2Viewport = mFakePolicy->getDisplayViewportByPort(hdmi2); |
| ASSERT_FALSE(hdmi2Viewport); |
| } |
| |
| // --- InputReaderTest --- |
| |
| class InputReaderTest : public testing::Test { |
| protected: |
| std::unique_ptr<TestInputListener> mFakeListener; |
| sp<FakeInputReaderPolicy> mFakePolicy; |
| std::shared_ptr<FakeEventHub> mFakeEventHub; |
| std::unique_ptr<InstrumentedInputReader> mReader; |
| |
| void SetUp() override { |
| mFakeEventHub = std::make_unique<FakeEventHub>(); |
| mFakePolicy = sp<FakeInputReaderPolicy>::make(); |
| mFakeListener = std::make_unique<TestInputListener>(); |
| |
| mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy, |
| *mFakeListener); |
| } |
| |
| void TearDown() override { |
| mFakeListener.reset(); |
| mFakePolicy.clear(); |
| } |
| |
| void addDevice(int32_t eventHubId, const std::string& name, |
| ftl::Flags<InputDeviceClass> classes, const PropertyMap* configuration) { |
| mFakeEventHub->addDevice(eventHubId, name, classes); |
| |
| if (configuration) { |
| mFakeEventHub->addConfigurationMap(eventHubId, configuration); |
| } |
| mFakeEventHub->finishDeviceScan(); |
| mReader->loopOnce(); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyInputDevicesChangedWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty()); |
| } |
| |
| void disableDevice(int32_t deviceId) { |
| mFakePolicy->addDisabledDevice(deviceId); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::ENABLED_STATE); |
| } |
| |
| void enableDevice(int32_t deviceId) { |
| mFakePolicy->removeDisabledDevice(deviceId); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::ENABLED_STATE); |
| } |
| |
| FakeInputMapper& addDeviceWithFakeInputMapper(int32_t deviceId, int32_t eventHubId, |
| const std::string& name, |
| ftl::Flags<InputDeviceClass> classes, |
| uint32_t sources, |
| const PropertyMap* configuration) { |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, name); |
| FakeInputMapper& mapper = |
| device->addMapper<FakeInputMapper>(eventHubId, |
| mFakePolicy->getReaderConfiguration(), sources); |
| mReader->pushNextDevice(device); |
| addDevice(eventHubId, name, classes, configuration); |
| return mapper; |
| } |
| }; |
| |
| TEST_F(InputReaderTest, PolicyGetInputDevices) { |
| ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", InputDeviceClass::KEYBOARD, nullptr)); |
| ASSERT_NO_FATAL_FAILURE(addDevice(2, "ignored", ftl::Flags<InputDeviceClass>(0), |
| nullptr)); // no classes so device will be ignored |
| |
| // Should also have received a notification describing the new input devices. |
| const std::vector<InputDeviceInfo>& inputDevices = mFakePolicy->getInputDevices(); |
| ASSERT_EQ(1U, inputDevices.size()); |
| ASSERT_EQ(END_RESERVED_ID + 1, inputDevices[0].getId()); |
| ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.c_str()); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType()); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources()); |
| ASSERT_EQ(0U, inputDevices[0].getMotionRanges().size()); |
| } |
| |
| TEST_F(InputReaderTest, InputDeviceRecreatedOnSysfsNodeChanged) { |
| ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", InputDeviceClass::KEYBOARD, nullptr)); |
| mFakeEventHub->setSysfsRootPath(1, "xyz"); |
| |
| // Should also have received a notification describing the new input device. |
| ASSERT_EQ(1U, mFakePolicy->getInputDevices().size()); |
| InputDeviceInfo inputDevice = mFakePolicy->getInputDevices()[0]; |
| ASSERT_EQ(0U, inputDevice.getLights().size()); |
| |
| RawLightInfo infoMonolight = {.id = 123, |
| .name = "mono_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(/*rawId=*/123, std::move(infoMonolight)); |
| mReader->sysfsNodeChanged("xyz"); |
| mReader->loopOnce(); |
| |
| // Should also have received a notification describing the new recreated input device. |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| inputDevice = mFakePolicy->getInputDevices()[0]; |
| ASSERT_EQ(1U, inputDevice.getLights().size()); |
| } |
| |
| TEST_F(InputReaderTest, GetMergedInputDevices) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1}; |
| // Add two subdevices to device |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| |
| // Push same device instance for next device to be added, so they'll have same identifier. |
| mReader->pushNextDevice(device); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE( |
| addDevice(eventHubIds[0], "fake1", InputDeviceClass::KEYBOARD, nullptr)); |
| ASSERT_NO_FATAL_FAILURE( |
| addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr)); |
| |
| // Two devices will be merged to one input device as they have same identifier |
| ASSERT_EQ(1U, mFakePolicy->getInputDevices().size()); |
| } |
| |
| TEST_F(InputReaderTest, GetMergedInputDevicesEnabled) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1}; |
| // Add two subdevices to device |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| |
| // Push same device instance for next device to be added, so they'll have same identifier. |
| mReader->pushNextDevice(device); |
| mReader->pushNextDevice(device); |
| // Sensor device is initially disabled |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", |
| InputDeviceClass::KEYBOARD | InputDeviceClass::SENSOR, |
| nullptr)); |
| // Device is disabled because the only sub device is a sensor device and disabled initially. |
| ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0])); |
| ASSERT_FALSE(device->isEnabled()); |
| ASSERT_NO_FATAL_FAILURE( |
| addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr)); |
| // The merged device is enabled if any sub device is enabled |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1])); |
| ASSERT_TRUE(device->isEnabled()); |
| } |
| |
| TEST_F(InputReaderTest, WhenEnabledChanges_SendsDeviceResetNotification) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass(InputDeviceClass::KEYBOARD); |
| constexpr int32_t eventHubId = 1; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr)); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| |
| ASSERT_EQ(device->isEnabled(), true); |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| ASSERT_EQ(device->isEnabled(), false); |
| |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasNotCalled()); |
| ASSERT_EQ(device->isEnabled(), false); |
| |
| enableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| ASSERT_EQ(device->isEnabled(), true); |
| } |
| |
| TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = |
| addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| mapper.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0, |
| AINPUT_SOURCE_ANY, AKEYCODE_A)) |
| << "Should return unknown when the device id is >= 0 but unknown."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, |
| mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return unknown when the device id is valid but the sources are not " |
| "supported by the device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, |
| mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, |
| AKEYCODE_A)) |
| << "Should return value provided by mapper when device id is valid and the device " |
| "supports some of the sources."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1, |
| AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1, |
| AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; |
| } |
| |
| TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_ForwardsRequestsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "keyboard", |
| InputDeviceClass::KEYBOARD, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z); |
| |
| ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(0, AKEYCODE_Y)) |
| << "Should return unknown when the device with the specified id is not found."; |
| |
| ASSERT_EQ(AKEYCODE_Z, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y)) |
| << "Should return correct mapping when device id is valid and mapping exists."; |
| |
| ASSERT_EQ(AKEYCODE_A, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_A)) |
| << "Should return the location key code when device id is valid and there's no " |
| "mapping."; |
| } |
| |
| TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_NoKeyboardMapper) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "joystick", |
| InputDeviceClass::JOYSTICK, |
| AINPUT_SOURCE_GAMEPAD, nullptr); |
| mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z); |
| |
| ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y)) |
| << "Should return unknown when the device id is valid but there is no keyboard mapper"; |
| } |
| |
| TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = |
| addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| mapper.setScanCodeState(KEY_A, AKEY_STATE_DOWN); |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0, |
| AINPUT_SOURCE_ANY, KEY_A)) |
| << "Should return unknown when the device id is >= 0 but unknown."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, |
| mReader->getScanCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, KEY_A)) |
| << "Should return unknown when the device id is valid but the sources are not " |
| "supported by the device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, |
| mReader->getScanCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, |
| KEY_A)) |
| << "Should return value provided by mapper when device id is valid and the device " |
| "supports some of the sources."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1, |
| AINPUT_SOURCE_TRACKBALL, KEY_A)) |
| << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1, |
| AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A)) |
| << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; |
| } |
| |
| TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = |
| addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| mapper.setSwitchState(SW_LID, AKEY_STATE_DOWN); |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0, |
| AINPUT_SOURCE_ANY, SW_LID)) |
| << "Should return unknown when the device id is >= 0 but unknown."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, |
| mReader->getSwitchState(deviceId, AINPUT_SOURCE_TRACKBALL, SW_LID)) |
| << "Should return unknown when the device id is valid but the sources are not " |
| "supported by the device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, |
| mReader->getSwitchState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, |
| SW_LID)) |
| << "Should return value provided by mapper when device id is valid and the device " |
| "supports some of the sources."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1, |
| AINPUT_SOURCE_TRACKBALL, SW_LID)) |
| << "Should return unknown when the device id is < 0 but the sources are not supported by any device."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1, |
| AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID)) |
| << "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources."; |
| } |
| |
| TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| FakeInputMapper& mapper = |
| addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| |
| mapper.addSupportedKeyCode(AKEYCODE_A); |
| mapper.addSupportedKeyCode(AKEYCODE_B); |
| |
| const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2}; |
| uint8_t flags[4] = { 0, 0, 0, 1 }; |
| |
| ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, keyCodes, flags)) |
| << "Should return false when device id is >= 0 but unknown."; |
| ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); |
| |
| flags[3] = 1; |
| ASSERT_FALSE(mReader->hasKeys(deviceId, AINPUT_SOURCE_TRACKBALL, keyCodes, flags)) |
| << "Should return false when device id is valid but the sources are not supported by " |
| "the device."; |
| ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); |
| |
| flags[3] = 1; |
| ASSERT_TRUE(mReader->hasKeys(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, |
| keyCodes, flags)) |
| << "Should return value provided by mapper when device id is valid and the device " |
| "supports some of the sources."; |
| ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); |
| |
| flags[3] = 1; |
| ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, keyCodes, flags)) |
| << "Should return false when the device id is < 0 but the sources are not supported by " |
| "any device."; |
| ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]); |
| |
| flags[3] = 1; |
| ASSERT_TRUE( |
| mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, keyCodes, flags)) |
| << "Should return value provided by mapper when device id is < 0 and one of the " |
| "devices supports some of the sources."; |
| ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]); |
| } |
| |
| TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) { |
| constexpr int32_t eventHubId = 1; |
| addDevice(eventHubId, "ignored", InputDeviceClass::KEYBOARD, nullptr); |
| |
| NotifyConfigurationChangedArgs args; |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(&args)); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| } |
| |
| TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr nsecs_t when = 0; |
| constexpr int32_t eventHubId = 1; |
| constexpr nsecs_t readTime = 2; |
| FakeInputMapper& mapper = |
| addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass, |
| AINPUT_SOURCE_KEYBOARD, nullptr); |
| |
| mFakeEventHub->enqueueEvent(when, readTime, eventHubId, EV_KEY, KEY_A, 1); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty()); |
| |
| RawEvent event; |
| ASSERT_NO_FATAL_FAILURE(mapper.assertProcessWasCalled(&event)); |
| ASSERT_EQ(when, event.when); |
| ASSERT_EQ(readTime, event.readTime); |
| ASSERT_EQ(eventHubId, event.deviceId); |
| ASSERT_EQ(EV_KEY, event.type); |
| ASSERT_EQ(KEY_A, event.code); |
| ASSERT_EQ(1, event.value); |
| } |
| |
| TEST_F(InputReaderTest, DeviceReset_RandomId) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| int32_t prevId = resetArgs.id; |
| |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_NE(prevId, resetArgs.id); |
| prevId = resetArgs.id; |
| |
| enableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_NE(prevId, resetArgs.id); |
| prevId = resetArgs.id; |
| |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_NE(prevId, resetArgs.id); |
| prevId = resetArgs.id; |
| } |
| |
| TEST_F(InputReaderTest, DeviceReset_GenerateIdWithInputReaderSource) { |
| constexpr int32_t deviceId = 1; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE(addDevice(deviceId, "fake", deviceClass, nullptr)); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(IdGenerator::Source::INPUT_READER, IdGenerator::getSource(resetArgs.id)); |
| } |
| |
| TEST_F(InputReaderTest, Device_CanDispatchToDisplay) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "USB1"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| FakeInputMapper& mapper = |
| device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_TOUCHSCREEN); |
| mReader->pushNextDevice(device); |
| |
| const uint8_t hdmi1 = 1; |
| |
| // Associated touch screen with second display. |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); |
| |
| // Add default and second display. |
| mFakePolicy->clearViewports(); |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, "local:0", NO_PORT, ViewportType::INTERNAL); |
| mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, "local:1", hdmi1, |
| ViewportType::EXTERNAL); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::DISPLAY_INFO); |
| mReader->loopOnce(); |
| |
| // Add the device, and make sure all of the callbacks are triggered. |
| // The device is added after the input port associations are processed since |
| // we do not yet support dynamic device-to-display associations. |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled()); |
| |
| // Device should only dispatch to the specified display. |
| ASSERT_EQ(deviceId, device->getId()); |
| ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, DISPLAY_ID)); |
| ASSERT_TRUE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID)); |
| |
| // Can't dispatch event from a disabled device. |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID)); |
| } |
| |
| TEST_F(InputReaderTest, WhenEnabledChanges_AllSubdevicesAreUpdated) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1}; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| // Must add at least one mapper or the device will be ignored! |
| device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr)); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr)); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| ASSERT_TRUE(device->isEnabled()); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0])); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1])); |
| |
| disableDevice(deviceId); |
| mReader->loopOnce(); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| ASSERT_FALSE(device->isEnabled()); |
| ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0])); |
| ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[1])); |
| |
| enableDevice(deviceId); |
| mReader->loopOnce(); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(deviceId, resetArgs.deviceId); |
| ASSERT_TRUE(device->isEnabled()); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0])); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1])); |
| } |
| |
| TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToSubdeviceMappers) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD; |
| constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1}; |
| // Add two subdevices to device |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake"); |
| FakeInputMapper& mapperDevice1 = |
| device->addMapper<FakeInputMapper>(eventHubIds[0], |
| mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| FakeInputMapper& mapperDevice2 = |
| device->addMapper<FakeInputMapper>(eventHubIds[1], |
| mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| mReader->pushNextDevice(device); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr)); |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr)); |
| |
| mapperDevice1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); |
| mapperDevice2.setKeyCodeState(AKEYCODE_B, AKEY_STATE_DOWN); |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, |
| mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_A)); |
| ASSERT_EQ(AKEY_STATE_DOWN, |
| mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_B)); |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, |
| mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_C)); |
| } |
| |
| TEST_F(InputReaderTest, ChangingPointerCaptureNotifiesInputListener) { |
| NotifyPointerCaptureChangedArgs args; |
| |
| auto request = mFakePolicy->setPointerCapture(true); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE); |
| mReader->loopOnce(); |
| mFakeListener->assertNotifyCaptureWasCalled(&args); |
| ASSERT_TRUE(args.request.enable) << "Pointer Capture should be enabled."; |
| ASSERT_EQ(args.request, request) << "Pointer Capture sequence number should match."; |
| |
| mFakePolicy->setPointerCapture(false); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE); |
| mReader->loopOnce(); |
| mFakeListener->assertNotifyCaptureWasCalled(&args); |
| ASSERT_FALSE(args.request.enable) << "Pointer Capture should be disabled."; |
| |
| // Verify that the Pointer Capture state is not updated when the configuration value |
| // does not change. |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE); |
| mReader->loopOnce(); |
| mFakeListener->assertNotifyCaptureWasNotCalled(); |
| } |
| |
| class FakeVibratorInputMapper : public FakeInputMapper { |
| public: |
| FakeVibratorInputMapper(InputDeviceContext& deviceContext, |
| const InputReaderConfiguration& readerConfig, uint32_t sources) |
| : FakeInputMapper(deviceContext, readerConfig, sources) {} |
| |
| std::vector<int32_t> getVibratorIds() override { return getDeviceContext().getVibratorIds(); } |
| }; |
| |
| TEST_F(InputReaderTest, VibratorGetVibratorIds) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| ftl::Flags<InputDeviceClass> deviceClass = |
| InputDeviceClass::KEYBOARD | InputDeviceClass::VIBRATOR; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "BLUETOOTH"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| FakeVibratorInputMapper& mapper = |
| device->addMapper<FakeVibratorInputMapper>(eventHubId, |
| mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mReader->pushNextDevice(device); |
| |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled()); |
| |
| ASSERT_EQ(mapper.getVibratorIds().size(), 2U); |
| ASSERT_EQ(mReader->getVibratorIds(deviceId).size(), 2U); |
| } |
| |
| // --- FakePeripheralController --- |
| |
| class FakePeripheralController : public PeripheralControllerInterface { |
| public: |
| FakePeripheralController(InputDeviceContext& deviceContext) : mDeviceContext(deviceContext) {} |
| |
| ~FakePeripheralController() override {} |
| |
| int32_t getEventHubId() const { return getDeviceContext().getEventHubId(); } |
| |
| void populateDeviceInfo(InputDeviceInfo* deviceInfo) override {} |
| |
| void dump(std::string& dump) override {} |
| |
| std::optional<int32_t> getBatteryCapacity(int32_t batteryId) override { |
| return getDeviceContext().getBatteryCapacity(batteryId); |
| } |
| |
| std::optional<int32_t> getBatteryStatus(int32_t batteryId) override { |
| return getDeviceContext().getBatteryStatus(batteryId); |
| } |
| |
| bool setLightColor(int32_t lightId, int32_t color) override { |
| getDeviceContext().setLightBrightness(lightId, color >> 24); |
| return true; |
| } |
| |
| std::optional<int32_t> getLightColor(int32_t lightId) override { |
| std::optional<int32_t> result = getDeviceContext().getLightBrightness(lightId); |
| if (!result.has_value()) { |
| return std::nullopt; |
| } |
| return result.value() << 24; |
| } |
| |
| bool setLightPlayerId(int32_t lightId, int32_t playerId) override { return true; } |
| |
| std::optional<int32_t> getLightPlayerId(int32_t lightId) override { return std::nullopt; } |
| |
| private: |
| InputDeviceContext& mDeviceContext; |
| inline int32_t getDeviceId() { return mDeviceContext.getId(); } |
| inline InputDeviceContext& getDeviceContext() { return mDeviceContext; } |
| inline InputDeviceContext& getDeviceContext() const { return mDeviceContext; } |
| }; |
| |
| TEST_F(InputReaderTest, BatteryGetCapacity) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| ftl::Flags<InputDeviceClass> deviceClass = |
| InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "BLUETOOTH"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| FakePeripheralController& controller = |
| device->addController<FakePeripheralController>(eventHubId); |
| mReader->pushNextDevice(device); |
| |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| ASSERT_EQ(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY), |
| FakeEventHub::BATTERY_CAPACITY); |
| ASSERT_EQ(mReader->getBatteryCapacity(deviceId), FakeEventHub::BATTERY_CAPACITY); |
| } |
| |
| TEST_F(InputReaderTest, BatteryGetStatus) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| ftl::Flags<InputDeviceClass> deviceClass = |
| InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "BLUETOOTH"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| FakePeripheralController& controller = |
| device->addController<FakePeripheralController>(eventHubId); |
| mReader->pushNextDevice(device); |
| |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| ASSERT_EQ(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY), |
| FakeEventHub::BATTERY_STATUS); |
| ASSERT_EQ(mReader->getBatteryStatus(deviceId), FakeEventHub::BATTERY_STATUS); |
| } |
| |
| TEST_F(InputReaderTest, BatteryGetDevicePath) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| ftl::Flags<InputDeviceClass> deviceClass = |
| InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "BLUETOOTH"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| device->addController<FakePeripheralController>(eventHubId); |
| mReader->pushNextDevice(device); |
| |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| ASSERT_EQ(mReader->getBatteryDevicePath(deviceId), FakeEventHub::BATTERY_DEVPATH); |
| } |
| |
| TEST_F(InputReaderTest, LightGetColor) { |
| constexpr int32_t deviceId = END_RESERVED_ID + 1000; |
| ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD | InputDeviceClass::LIGHT; |
| constexpr int32_t eventHubId = 1; |
| const char* DEVICE_LOCATION = "BLUETOOTH"; |
| std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION); |
| FakePeripheralController& controller = |
| device->addController<FakePeripheralController>(eventHubId); |
| mReader->pushNextDevice(device); |
| RawLightInfo info = {.id = 1, |
| .name = "Mono", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(/*rawId=*/1, std::move(info)); |
| mFakeEventHub->fakeLightBrightness(/*rawId=*/1, 0x55); |
| |
| ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr)); |
| |
| ASSERT_TRUE(controller.setLightColor(/*lightId=*/1, LIGHT_BRIGHTNESS)); |
| ASSERT_EQ(controller.getLightColor(/*lightId=*/1), LIGHT_BRIGHTNESS); |
| ASSERT_TRUE(mReader->setLightColor(deviceId, /*lightId=*/1, LIGHT_BRIGHTNESS)); |
| ASSERT_EQ(mReader->getLightColor(deviceId, /*lightId=*/1), LIGHT_BRIGHTNESS); |
| } |
| |
| // --- InputReaderIntegrationTest --- |
| |
| // These tests create and interact with the InputReader only through its interface. |
| // The InputReader is started during SetUp(), which starts its processing in its own |
| // thread. The tests use linux uinput to emulate input devices. |
| // NOTE: Interacting with the physical device while these tests are running may cause |
| // the tests to fail. |
| class InputReaderIntegrationTest : public testing::Test { |
| protected: |
| std::unique_ptr<TestInputListener> mTestListener; |
| sp<FakeInputReaderPolicy> mFakePolicy; |
| std::unique_ptr<InputReaderInterface> mReader; |
| |
| std::shared_ptr<FakePointerController> mFakePointerController; |
| |
| constexpr static auto EVENT_HAPPENED_TIMEOUT = 2000ms; |
| constexpr static auto EVENT_DID_NOT_HAPPEN_TIMEOUT = 30ms; |
| |
| void SetUp() override { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP(); |
| #endif |
| mFakePolicy = sp<FakeInputReaderPolicy>::make(); |
| mFakePointerController = std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(mFakePointerController); |
| |
| setupInputReader(); |
| } |
| |
| void TearDown() override { |
| #if !defined(__ANDROID__) |
| return; |
| #endif |
| ASSERT_EQ(mReader->stop(), OK); |
| mReader.reset(); |
| mTestListener.reset(); |
| mFakePolicy.clear(); |
| } |
| |
| std::optional<InputDeviceInfo> waitForDevice(const std::string& deviceName) { |
| std::chrono::time_point start = std::chrono::steady_clock::now(); |
| while (true) { |
| const std::vector<InputDeviceInfo> inputDevices = mFakePolicy->getInputDevices(); |
| const auto& it = std::find_if(inputDevices.begin(), inputDevices.end(), |
| [&deviceName](const InputDeviceInfo& info) { |
| return info.getIdentifier().name == deviceName; |
| }); |
| if (it != inputDevices.end()) { |
| return std::make_optional(*it); |
| } |
| std::this_thread::sleep_for(1ms); |
| std::chrono::duration elapsed = std::chrono::steady_clock::now() - start; |
| if (elapsed > 5s) { |
| return {}; |
| } |
| } |
| } |
| |
| void setupInputReader() { |
| mTestListener = std::make_unique<TestInputListener>(EVENT_HAPPENED_TIMEOUT, |
| EVENT_DID_NOT_HAPPEN_TIMEOUT); |
| |
| mReader = std::make_unique<InputReader>(std::make_shared<EventHub>(), mFakePolicy, |
| *mTestListener); |
| ASSERT_EQ(mReader->start(), OK); |
| |
| // Since this test is run on a real device, all the input devices connected |
| // to the test device will show up in mReader. We wait for those input devices to |
| // show up before beginning the tests. |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyInputDevicesChangedWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| } |
| }; |
| |
| TEST_F(InputReaderIntegrationTest, TestInvalidDevice) { |
| // An invalid input device that is only used for this test. |
| class InvalidUinputDevice : public UinputDevice { |
| public: |
| InvalidUinputDevice() : UinputDevice("Invalid Device", /*productId=*/99) {} |
| |
| private: |
| void configureDevice(int fd, uinput_user_dev* device) override {} |
| }; |
| |
| const size_t numDevices = mFakePolicy->getInputDevices().size(); |
| |
| // UinputDevice does not set any event or key bits, so InputReader should not |
| // consider it as a valid device. |
| std::unique_ptr<UinputDevice> invalidDevice = createUinputDevice<InvalidUinputDevice>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled()); |
| ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size()); |
| |
| invalidDevice.reset(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled()); |
| ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size()); |
| } |
| |
| TEST_F(InputReaderIntegrationTest, AddNewDevice) { |
| const size_t initialNumDevices = mFakePolicy->getInputDevices().size(); |
| |
| std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| ASSERT_EQ(initialNumDevices + 1, mFakePolicy->getInputDevices().size()); |
| |
| const auto device = waitForDevice(keyboard->getName()); |
| ASSERT_TRUE(device.has_value()); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, device->getKeyboardType()); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources()); |
| ASSERT_EQ(0U, device->getMotionRanges().size()); |
| |
| keyboard.reset(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| ASSERT_EQ(initialNumDevices, mFakePolicy->getInputDevices().size()); |
| } |
| |
| TEST_F(InputReaderIntegrationTest, SendsEventsToInputListener) { |
| std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| |
| NotifyConfigurationChangedArgs configChangedArgs; |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyConfigurationChangedWasCalled(&configChangedArgs)); |
| int32_t prevId = configChangedArgs.id; |
| nsecs_t prevTimestamp = configChangedArgs.eventTime; |
| |
| NotifyKeyArgs keyArgs; |
| keyboard->pressAndReleaseHomeKey(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_NE(prevId, keyArgs.id); |
| prevId = keyArgs.id; |
| ASSERT_LE(prevTimestamp, keyArgs.eventTime); |
| ASSERT_LE(keyArgs.eventTime, keyArgs.readTime); |
| prevTimestamp = keyArgs.eventTime; |
| |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_NE(prevId, keyArgs.id); |
| ASSERT_LE(prevTimestamp, keyArgs.eventTime); |
| ASSERT_LE(keyArgs.eventTime, keyArgs.readTime); |
| } |
| |
| TEST_F(InputReaderIntegrationTest, ExternalStylusesButtons) { |
| std::unique_ptr<UinputExternalStylus> stylus = createUinputDevice<UinputExternalStylus>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| |
| const auto device = waitForDevice(stylus->getName()); |
| ASSERT_TRUE(device.has_value()); |
| |
| // An external stylus with buttons should also be recognized as a keyboard. |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_STYLUS, device->getSources()) |
| << "Unexpected source " << inputEventSourceToString(device->getSources()).c_str(); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, device->getKeyboardType()); |
| |
| const auto DOWN = |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD)); |
| const auto UP = AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD)); |
| |
| stylus->pressAndReleaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY)))); |
| |
| stylus->pressAndReleaseKey(BTN_STYLUS2); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_SECONDARY)))); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_SECONDARY)))); |
| |
| stylus->pressAndReleaseKey(BTN_STYLUS3); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_TERTIARY)))); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled( |
| AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_TERTIARY)))); |
| } |
| |
| TEST_F(InputReaderIntegrationTest, KeyboardWithStylusButtons) { |
| std::unique_ptr<UinputKeyboard> keyboard = |
| createUinputDevice<UinputKeyboard>("KeyboardWithStylusButtons", /*productId=*/99, |
| std::initializer_list<int>{KEY_Q, KEY_W, KEY_E, |
| KEY_R, KEY_T, KEY_Y, |
| BTN_STYLUS, BTN_STYLUS2, |
| BTN_STYLUS3}); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| |
| const auto device = waitForDevice(keyboard->getName()); |
| ASSERT_TRUE(device.has_value()); |
| |
| // An alphabetical keyboard that reports stylus buttons should not be recognized as a stylus. |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources()) |
| << "Unexpected source " << inputEventSourceToString(device->getSources()).c_str(); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, device->getKeyboardType()); |
| } |
| |
| TEST_F(InputReaderIntegrationTest, HidUsageKeyboardIsNotAStylus) { |
| // Create a Uinput keyboard that simulates a keyboard that can report HID usage codes. The |
| // hid-input driver reports HID usage codes using the value for EV_MSC MSC_SCAN event. |
| std::unique_ptr<UinputKeyboardWithHidUsage> keyboard = |
| createUinputDevice<UinputKeyboardWithHidUsage>( |
| std::initializer_list<int>{KEY_VOLUMEUP, KEY_VOLUMEDOWN}); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| |
| const auto device = waitForDevice(keyboard->getName()); |
| ASSERT_TRUE(device.has_value()); |
| |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources()) |
| << "Unexpected source " << inputEventSourceToString(device->getSources()).c_str(); |
| |
| // If a device supports reporting HID usage codes, it shouldn't automatically support |
| // stylus keys. |
| const std::vector<int> keycodes{AKEYCODE_STYLUS_BUTTON_PRIMARY}; |
| uint8_t outFlags[] = {0}; |
| ASSERT_TRUE(mReader->hasKeys(device->getId(), AINPUT_SOURCE_KEYBOARD, keycodes, outFlags)); |
| ASSERT_EQ(0, outFlags[0]) << "Keyboard should not have stylus button"; |
| } |
| |
| /** |
| * The Steam controller sends BTN_GEAR_DOWN and BTN_GEAR_UP for the two "paddle" buttons |
| * on the back. In this test, we make sure that BTN_GEAR_DOWN / BTN_WHEEL and BTN_GEAR_UP |
| * are passed to the listener. |
| */ |
| static_assert(BTN_GEAR_DOWN == BTN_WHEEL); |
| TEST_F(InputReaderIntegrationTest, SendsGearDownAndUpToInputListener) { |
| std::unique_ptr<UinputSteamController> controller = createUinputDevice<UinputSteamController>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| NotifyKeyArgs keyArgs; |
| |
| controller->pressAndReleaseKey(BTN_GEAR_DOWN); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP |
| ASSERT_EQ(BTN_GEAR_DOWN, keyArgs.scanCode); |
| |
| controller->pressAndReleaseKey(BTN_GEAR_UP); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP |
| ASSERT_EQ(BTN_GEAR_UP, keyArgs.scanCode); |
| } |
| |
| // --- TouchIntegrationTest --- |
| |
| class BaseTouchIntegrationTest : public InputReaderIntegrationTest { |
| protected: |
| const std::string UNIQUE_ID = "local:0"; |
| |
| void SetUp() override { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP(); |
| #endif |
| InputReaderIntegrationTest::SetUp(); |
| // At least add an internal display. |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| |
| mDevice = createUinputDevice<UinputTouchScreen>(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT)); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto info = waitForDevice(mDevice->getName()); |
| ASSERT_TRUE(info); |
| mDeviceInfo = *info; |
| } |
| |
| void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height, |
| ui::Rotation orientation, const std::string& uniqueId, |
| std::optional<uint8_t> physicalPort, |
| ViewportType viewportType) { |
| mFakePolicy->addDisplayViewport(displayId, width, height, orientation, /*isActive=*/true, |
| uniqueId, physicalPort, viewportType); |
| mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::DISPLAY_INFO); |
| } |
| |
| void assertReceivedMotion(int32_t action, const std::vector<Point>& points) { |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_EQ(action, args.action); |
| ASSERT_EQ(points.size(), args.getPointerCount()); |
| for (size_t i = 0; i < args.getPointerCount(); i++) { |
| EXPECT_EQ(points[i].x, args.pointerCoords[i].getX()); |
| EXPECT_EQ(points[i].y, args.pointerCoords[i].getY()); |
| } |
| } |
| |
| std::unique_ptr<UinputTouchScreen> mDevice; |
| InputDeviceInfo mDeviceInfo; |
| }; |
| |
| enum class TouchIntegrationTestDisplays { DISPLAY_INTERNAL, DISPLAY_INPUT_PORT, DISPLAY_UNIQUE_ID }; |
| |
| class TouchIntegrationTest : public BaseTouchIntegrationTest, |
| public testing::WithParamInterface<TouchIntegrationTestDisplays> { |
| protected: |
| static constexpr std::optional<uint8_t> DISPLAY_PORT = 0; |
| const std::string INPUT_PORT = "uinput_touch/input0"; |
| |
| void SetUp() override { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP(); |
| #endif |
| if (GetParam() == TouchIntegrationTestDisplays::DISPLAY_INTERNAL) { |
| BaseTouchIntegrationTest::SetUp(); |
| return; |
| } |
| |
| // setup policy with a input-port or UniqueId association to the display |
| bool isInputPortAssociation = |
| GetParam() == TouchIntegrationTestDisplays::DISPLAY_INPUT_PORT; |
| |
| mFakePolicy = sp<FakeInputReaderPolicy>::make(); |
| if (isInputPortAssociation) { |
| mFakePolicy->addInputPortAssociation(INPUT_PORT, DISPLAY_PORT.value()); |
| } else { |
| mFakePolicy->addInputUniqueIdAssociation(INPUT_PORT, UNIQUE_ID); |
| } |
| mFakePointerController = std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(mFakePointerController); |
| |
| InputReaderIntegrationTest::setupInputReader(); |
| |
| mDevice = createUinputDevice<UinputTouchScreen>(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT), |
| INPUT_PORT); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| |
| // Add a display linked to a physical port or UniqueId. |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| UNIQUE_ID, isInputPortAssociation ? DISPLAY_PORT : NO_PORT, |
| ViewportType::INTERNAL); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto info = waitForDevice(mDevice->getName()); |
| ASSERT_TRUE(info); |
| mDeviceInfo = *info; |
| } |
| }; |
| |
| TEST_P(TouchIntegrationTest, MultiTouchDeviceSource) { |
| // The UinputTouchScreen is an MT device that supports MT_TOOL_TYPE and also supports stylus |
| // buttons. It should show up as a touchscreen, stylus, and keyboard (for reporting button |
| // presses). |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, |
| mDeviceInfo.getSources()); |
| } |
| |
| TEST_P(TouchIntegrationTest, InputEvent_ProcessSingleTouch) { |
| NotifyMotionArgs args; |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // ACTION_DOWN |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| |
| // ACTION_MOVE |
| mDevice->sendMove(centerPoint + Point(1, 1)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| |
| // ACTION_UP |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); |
| } |
| |
| TEST_P(TouchIntegrationTest, InputEvent_ProcessMultiTouch) { |
| NotifyMotionArgs args; |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // ACTION_DOWN |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| |
| // ACTION_POINTER_DOWN (Second slot) |
| const Point secondPoint = centerPoint + Point(100, 100); |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendTrackingId(SECOND_TRACKING_ID); |
| mDevice->sendDown(secondPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action); |
| |
| // ACTION_MOVE (Second slot) |
| mDevice->sendMove(secondPoint + Point(1, 1)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| |
| // ACTION_POINTER_UP (Second slot) |
| mDevice->sendPointerUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, args.action); |
| |
| // ACTION_UP |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); |
| } |
| |
| /** |
| * What happens when a pointer goes up while another pointer moves in the same frame? Are POINTER_UP |
| * events guaranteed to contain the same data as a preceding MOVE, or can they contain different |
| * data? |
| * In this test, we try to send a change in coordinates in Pointer 0 in the same frame as the |
| * liftoff of Pointer 1. We check that POINTER_UP event is generated first, and the MOVE event |
| * for Pointer 0 only is generated after. |
| * Suppose we are only interested in learning the movement of Pointer 0. If we only observe MOVE |
| * events, we will not miss any information. |
| * Even though the Pointer 1 up event contains updated Pointer 0 coordinates, there is another MOVE |
| * event generated afterwards that contains the newest movement of pointer 0. |
| * This is important for palm rejection. If there is a subsequent InputListener stage that detects |
| * palms, and wants to cancel Pointer 1, then it is safe to simply drop POINTER_1_UP event without |
| * losing information about non-palm pointers. |
| */ |
| TEST_P(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerUp) { |
| NotifyMotionArgs args; |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // ACTION_DOWN |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint}); |
| |
| // ACTION_POINTER_DOWN (Second slot) |
| const Point secondPoint = centerPoint + Point(100, 100); |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendTrackingId(SECOND_TRACKING_ID); |
| mDevice->sendDown(secondPoint); |
| mDevice->sendSync(); |
| assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint}); |
| |
| // ACTION_MOVE (First slot) |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendMove(centerPoint + Point(5, 5)); |
| // ACTION_POINTER_UP (Second slot) |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendPointerUp(); |
| // Send a single sync for the above 2 pointer updates |
| mDevice->sendSync(); |
| |
| // First, we should get POINTER_UP for the second pointer |
| assertReceivedMotion(ACTION_POINTER_1_UP, |
| {/*first pointer */ centerPoint + Point(5, 5), |
| /*second pointer*/ secondPoint}); |
| |
| // Next, the MOVE event for the first pointer |
| assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)}); |
| } |
| |
| /** |
| * Similar scenario as above. The difference is that when the second pointer goes up, it will first |
| * move, and then it will go up, all in the same frame. |
| * In this scenario, the movement of the second pointer just prior to liftoff is ignored, and never |
| * gets sent to the listener. |
| */ |
| TEST_P(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerMoveAndUp) { |
| NotifyMotionArgs args; |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // ACTION_DOWN |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint}); |
| |
| // ACTION_POINTER_DOWN (Second slot) |
| const Point secondPoint = centerPoint + Point(100, 100); |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendTrackingId(SECOND_TRACKING_ID); |
| mDevice->sendDown(secondPoint); |
| mDevice->sendSync(); |
| assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint}); |
| |
| // ACTION_MOVE (First slot) |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendMove(centerPoint + Point(5, 5)); |
| // ACTION_POINTER_UP (Second slot) |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendMove(secondPoint + Point(6, 6)); |
| mDevice->sendPointerUp(); |
| // Send a single sync for the above 2 pointer updates |
| mDevice->sendSync(); |
| |
| // First, we should get POINTER_UP for the second pointer |
| // The movement of the second pointer during the liftoff frame is ignored. |
| // The coordinates 'secondPoint + Point(6, 6)' are never sent to the listener. |
| assertReceivedMotion(ACTION_POINTER_1_UP, |
| {/*first pointer */ centerPoint + Point(5, 5), |
| /*second pointer*/ secondPoint}); |
| |
| // Next, the MOVE event for the first pointer |
| assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)}); |
| } |
| |
| TEST_P(TouchIntegrationTest, InputEvent_ProcessPalm) { |
| NotifyMotionArgs args; |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // ACTION_DOWN |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| |
| // ACTION_POINTER_DOWN (second slot) |
| const Point secondPoint = centerPoint + Point(100, 100); |
| mDevice->sendSlot(SECOND_SLOT); |
| mDevice->sendTrackingId(SECOND_TRACKING_ID); |
| mDevice->sendDown(secondPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action); |
| |
| // ACTION_MOVE (second slot) |
| mDevice->sendMove(secondPoint + Point(1, 1)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| |
| // Send MT_TOOL_PALM (second slot), which indicates that the touch IC has determined this to be |
| // a palm event. |
| // Expect to receive the ACTION_POINTER_UP with cancel flag. |
| mDevice->sendToolType(MT_TOOL_PALM); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, args.action); |
| ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, args.flags); |
| |
| // Send up to second slot, expect first slot send moving. |
| mDevice->sendPointerUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| |
| // Send ACTION_UP (first slot) |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); |
| } |
| |
| /** |
| * Some drivers historically have reported axis values outside of the range specified in the |
| * evdev axis info. Ensure we don't crash when this happens. For example, a driver may report a |
| * pressure value greater than the reported maximum, since it unclear what specific meaning the |
| * maximum value for pressure has (beyond the maximum value that can be produced by a sensor), |
| * and no units for pressure (resolution) is specified by the evdev documentation. |
| */ |
| TEST_P(TouchIntegrationTest, AcceptsAxisValuesOutsideReportedRange) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Down with pressure outside the reported range |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendPressure(UinputTouchScreen::RAW_PRESSURE_MAX + 2); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // Move to a point outside the reported range |
| mDevice->sendMove(Point(DISPLAY_WIDTH, DISPLAY_HEIGHT) + Point(1, 1)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_MOVE))); |
| |
| // Up |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| } |
| |
| TEST_P(TouchIntegrationTest, NotifiesPolicyWhenStylusGestureStarted) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Send down with the pen tool selected. The policy should be notified of the stylus presence. |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_PEN); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::STYLUS)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotified(mDeviceInfo.getId())); |
| |
| // Release the stylus touch. |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotNotified()); |
| |
| // Touch down with the finger, without the pen tool selected. The policy is not notified. |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_FINGER); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::FINGER)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotNotified()); |
| |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| |
| // Send a move event with the stylus tool without BTN_TOUCH to generate a hover enter. |
| // The policy should be notified of the stylus presence. |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_PEN); |
| mDevice->sendMove(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithToolType(ToolType::STYLUS)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotified(mDeviceInfo.getId())); |
| } |
| |
| TEST_P(TouchIntegrationTest, ExternalStylusConnectedDuringTouchGesture) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Down |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // Move |
| mDevice->sendMove(centerPoint + Point(1, 1)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_MOVE))); |
| |
| // Connecting an external stylus mid-gesture should not interrupt the ongoing gesture stream. |
| auto externalStylus = createUinputDevice<UinputExternalStylus>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto stylusInfo = waitForDevice(externalStylus->getName()); |
| ASSERT_TRUE(stylusInfo); |
| |
| // Move |
| mDevice->sendMove(centerPoint + Point(2, 2)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_MOVE))); |
| |
| // Disconnecting an external stylus mid-gesture should not interrupt the ongoing gesture stream. |
| externalStylus.reset(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| |
| // Up |
| mDevice->sendUp(); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(TouchIntegrationTestDisplayVariants, TouchIntegrationTest, |
| testing::Values(TouchIntegrationTestDisplays::DISPLAY_INTERNAL, |
| TouchIntegrationTestDisplays::DISPLAY_INPUT_PORT, |
| TouchIntegrationTestDisplays::DISPLAY_UNIQUE_ID)); |
| |
| // --- StylusButtonIntegrationTest --- |
| |
| // Verify the behavior of button presses reported by various kinds of styluses, including buttons |
| // reported by the touchscreen's device, by a fused external stylus, and by an un-fused external |
| // stylus. |
| template <typename UinputStylusDevice> |
| class StylusButtonIntegrationTest : public BaseTouchIntegrationTest { |
| protected: |
| void SetUp() override { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP(); |
| #endif |
| BaseTouchIntegrationTest::SetUp(); |
| mTouchscreen = mDevice.get(); |
| mTouchscreenInfo = mDeviceInfo; |
| |
| setUpStylusDevice(); |
| } |
| |
| UinputStylusDevice* mStylus{nullptr}; |
| InputDeviceInfo mStylusInfo{}; |
| |
| UinputTouchScreen* mTouchscreen{nullptr}; |
| InputDeviceInfo mTouchscreenInfo{}; |
| |
| private: |
| // When we are attempting to test stylus button events that are sent from the touchscreen, |
| // use the same Uinput device for the touchscreen and the stylus. |
| template <typename T = UinputStylusDevice> |
| std::enable_if_t<std::is_same_v<UinputTouchScreen, T>, void> setUpStylusDevice() { |
| mStylus = mDevice.get(); |
| mStylusInfo = mDeviceInfo; |
| } |
| |
| // When we are attempting to stylus buttons from an external stylus being merged with touches |
| // from a touchscreen, create a new Uinput device through which stylus buttons can be injected. |
| template <typename T = UinputStylusDevice> |
| std::enable_if_t<!std::is_same_v<UinputTouchScreen, T>, void> setUpStylusDevice() { |
| mStylusDeviceLifecycleTracker = createUinputDevice<T>(); |
| mStylus = mStylusDeviceLifecycleTracker.get(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto info = waitForDevice(mStylus->getName()); |
| ASSERT_TRUE(info); |
| mStylusInfo = *info; |
| } |
| |
| std::unique_ptr<UinputStylusDevice> mStylusDeviceLifecycleTracker{}; |
| |
| // Hide the base class's device to expose it with a different name for readability. |
| using BaseTouchIntegrationTest::mDevice; |
| using BaseTouchIntegrationTest::mDeviceInfo; |
| }; |
| |
| using StylusButtonIntegrationTestTypes = |
| ::testing::Types<UinputTouchScreen, UinputExternalStylus, UinputExternalStylusWithPressure>; |
| TYPED_TEST_SUITE(StylusButtonIntegrationTest, StylusButtonIntegrationTestTypes); |
| |
| TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsGenerateKeyEvents) { |
| const auto stylusId = TestFixture::mStylusInfo.getId(); |
| |
| TestFixture::mStylus->pressKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| |
| TestFixture::mStylus->releaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| } |
| |
| TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsSurroundingTouchGesture) { |
| const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint(); |
| const auto touchscreenId = TestFixture::mTouchscreenInfo.getId(); |
| const auto stylusId = TestFixture::mStylusInfo.getId(); |
| |
| // Press the stylus button. |
| TestFixture::mStylus->pressKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| |
| // Start and finish a stylus gesture. |
| TestFixture::mTouchscreen->sendSlot(FIRST_SLOT); |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendDown(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::STYLUS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY), |
| WithDeviceId(touchscreenId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithToolType(ToolType::STYLUS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY), |
| WithDeviceId(touchscreenId)))); |
| |
| TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| // Release the stylus button. |
| TestFixture::mStylus->releaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| } |
| |
| TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsSurroundingHoveringTouchGesture) { |
| const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint(); |
| const auto touchscreenId = TestFixture::mTouchscreenInfo.getId(); |
| const auto stylusId = TestFixture::mStylusInfo.getId(); |
| auto toolTypeDevice = |
| AllOf(WithToolType(ToolType::STYLUS), WithDeviceId(touchscreenId)); |
| |
| // Press the stylus button. |
| TestFixture::mStylus->pressKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| |
| // Start hovering with the stylus. |
| TestFixture::mTouchscreen->sendSlot(FIRST_SLOT); |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendMove(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| // Touch down with the stylus. |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendDown(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| // Stop touching with the stylus, and start hovering. |
| TestFixture::mTouchscreen->sendUp(); |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendMove(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| // Stop hovering. |
| TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), |
| WithButtonState(0)))); |
| // TODO(b/257971675): Fix inconsistent button state when exiting hover. |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| // Release the stylus button. |
| TestFixture::mStylus->releaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| } |
| |
| TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsWithinTouchGesture) { |
| const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint(); |
| const auto touchscreenId = TestFixture::mTouchscreenInfo.getId(); |
| const auto stylusId = TestFixture::mStylusInfo.getId(); |
| |
| // Start a stylus gesture. |
| TestFixture::mTouchscreen->sendSlot(FIRST_SLOT); |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendDown(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| // Press and release a stylus button. Each change in button state also generates a MOVE event. |
| TestFixture::mStylus->pressKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::STYLUS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY), |
| WithDeviceId(touchscreenId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithToolType(ToolType::STYLUS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY), |
| WithDeviceId(touchscreenId)))); |
| |
| TestFixture::mStylus->releaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| // Finish the stylus gesture. |
| TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| } |
| |
| TYPED_TEST(StylusButtonIntegrationTest, StylusButtonMotionEventsDisabled) { |
| TestFixture::mFakePolicy->setStylusButtonMotionEventsEnabled(false); |
| TestFixture::mReader->requestRefreshConfiguration( |
| InputReaderConfiguration::Change::STYLUS_BUTTON_REPORTING); |
| |
| const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint(); |
| const auto touchscreenId = TestFixture::mTouchscreenInfo.getId(); |
| const auto stylusId = TestFixture::mStylusInfo.getId(); |
| |
| // Start a stylus gesture. By the time this event is processed, the configuration change that |
| // was requested is guaranteed to be completed. |
| TestFixture::mTouchscreen->sendSlot(FIRST_SLOT); |
| TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID); |
| TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN); |
| TestFixture::mTouchscreen->sendDown(centerPoint); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| // Press and release a stylus button. Each change only generates a MOVE motion event. |
| // Key events are unaffected. |
| TestFixture::mStylus->pressKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| TestFixture::mStylus->releaseKey(BTN_STYLUS); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled( |
| AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD), |
| WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId)))); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| |
| // Finish the stylus gesture. |
| TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID); |
| TestFixture::mTouchscreen->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), |
| WithDeviceId(touchscreenId)))); |
| } |
| |
| // --- ExternalStylusIntegrationTest --- |
| |
| // Verify the behavior of an external stylus. An external stylus can report pressure or button |
| // data independently of the touchscreen, which is then sent as a MotionEvent as part of an |
| // ongoing stylus gesture that is being emitted by the touchscreen. |
| using ExternalStylusIntegrationTest = BaseTouchIntegrationTest; |
| |
| TEST_F(ExternalStylusIntegrationTest, ExternalStylusConnectionChangesTouchscreenSource) { |
| // Create an external stylus capable of reporting pressure data that |
| // should be fused with a touch pointer. |
| std::unique_ptr<UinputExternalStylusWithPressure> stylus = |
| createUinputDevice<UinputExternalStylusWithPressure>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto stylusInfo = waitForDevice(stylus->getName()); |
| ASSERT_TRUE(stylusInfo); |
| |
| // Connecting an external stylus changes the source of the touchscreen. |
| const auto deviceInfo = waitForDevice(mDevice->getName()); |
| ASSERT_TRUE(deviceInfo); |
| ASSERT_TRUE(isFromSource(deviceInfo->getSources(), STYLUS_FUSION_SOURCE)); |
| } |
| |
| TEST_F(ExternalStylusIntegrationTest, FusedExternalStylusPressureReported) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Create an external stylus capable of reporting pressure data that |
| // should be fused with a touch pointer. |
| std::unique_ptr<UinputExternalStylusWithPressure> stylus = |
| createUinputDevice<UinputExternalStylusWithPressure>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto stylusInfo = waitForDevice(stylus->getName()); |
| ASSERT_TRUE(stylusInfo); |
| |
| ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources()); |
| |
| const auto touchscreenId = mDeviceInfo.getId(); |
| |
| // Set a pressure value on the stylus. It doesn't generate any events. |
| const auto& RAW_PRESSURE_MAX = UinputExternalStylusWithPressure::RAW_PRESSURE_MAX; |
| stylus->setPressure(100); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| |
| // Start a finger gesture, and ensure it shows up as stylus gesture |
| // with the pressure set by the external stylus. |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_FINGER); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithToolType(ToolType::STYLUS), |
| WithButtonState(0), WithSource(STYLUS_FUSION_SOURCE), WithDeviceId(touchscreenId), |
| WithPressure(100.f / RAW_PRESSURE_MAX)))); |
| |
| // Change the pressure on the external stylus, and ensure the touchscreen generates a MOVE |
| // event with the updated pressure. |
| stylus->setPressure(200); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithToolType(ToolType::STYLUS), |
| WithButtonState(0), WithSource(STYLUS_FUSION_SOURCE), WithDeviceId(touchscreenId), |
| WithPressure(200.f / RAW_PRESSURE_MAX)))); |
| |
| // The external stylus did not generate any events. |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled()); |
| } |
| |
| TEST_F(ExternalStylusIntegrationTest, FusedExternalStylusPressureNotReported) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Create an external stylus capable of reporting pressure data that |
| // should be fused with a touch pointer. |
| std::unique_ptr<UinputExternalStylusWithPressure> stylus = |
| createUinputDevice<UinputExternalStylusWithPressure>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto stylusInfo = waitForDevice(stylus->getName()); |
| ASSERT_TRUE(stylusInfo); |
| |
| ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources()); |
| |
| const auto touchscreenId = mDeviceInfo.getId(); |
| |
| // Set a pressure value of 0 on the stylus. It doesn't generate any events. |
| const auto& RAW_PRESSURE_MAX = UinputExternalStylusWithPressure::RAW_PRESSURE_MAX; |
| // Send a non-zero value first to prevent the kernel from consuming the zero event. |
| stylus->setPressure(100); |
| stylus->setPressure(0); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| |
| // Start a finger gesture. The touch device will withhold generating any touches for |
| // up to 72 milliseconds while waiting for pressure data from the external stylus. |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_FINGER); |
| mDevice->sendDown(centerPoint); |
| const auto syncTime = std::chrono::system_clock::now(); |
| // After 72 ms, the event *will* be generated. If we wait the full 72 ms to check that NO event |
| // is generated in that period, there will be a race condition between the event being generated |
| // and the test's wait timeout expiring. Thus, we wait for a shorter duration in the test, which |
| // will reduce the liklihood of the race condition occurring. |
| const auto waitUntilTimeForNoEvent = |
| syncTime + std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT / 2)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled(waitUntilTimeForNoEvent)); |
| |
| // Since the external stylus did not report a pressure value within the timeout, |
| // it shows up as a finger pointer. |
| const auto waitUntilTimeForEvent = syncTime + |
| std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT)) + EVENT_HAPPENED_TIMEOUT; |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(AllOf(WithMotionAction( |
| AMOTION_EVENT_ACTION_DOWN), |
| WithSource(AINPUT_SOURCE_TOUCHSCREEN | |
| AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::FINGER), |
| WithDeviceId(touchscreenId), |
| WithPressure(1.f)), |
| waitUntilTimeForEvent)); |
| |
| // Change the pressure on the external stylus. Since the pressure was not present at the start |
| // of the gesture, it is ignored for now. |
| stylus->setPressure(200); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| |
| // Finish the finger gesture. |
| mDevice->sendTrackingId(INVALID_TRACKING_ID); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::FINGER)))); |
| |
| // Start a new gesture. Since we have a valid pressure value, it shows up as a stylus. |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_FINGER); |
| mDevice->sendDown(centerPoint); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithSource(STYLUS_FUSION_SOURCE), |
| WithToolType(ToolType::STYLUS), WithButtonState(0), WithDeviceId(touchscreenId), |
| WithPressure(200.f / RAW_PRESSURE_MAX)))); |
| |
| // The external stylus did not generate any events. |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled()); |
| } |
| |
| TEST_F(ExternalStylusIntegrationTest, UnfusedExternalStylus) { |
| const Point centerPoint = mDevice->getCenterPoint(); |
| |
| // Create an external stylus device that does not support pressure. It should not affect any |
| // touch pointers. |
| std::unique_ptr<UinputExternalStylus> stylus = createUinputDevice<UinputExternalStylus>(); |
| ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled()); |
| const auto stylusInfo = waitForDevice(stylus->getName()); |
| ASSERT_TRUE(stylusInfo); |
| |
| ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources()); |
| |
| const auto touchscreenId = mDeviceInfo.getId(); |
| |
| // Start a finger gesture and ensure a finger pointer is generated for it, without waiting for |
| // pressure data from the external stylus. |
| mDevice->sendSlot(FIRST_SLOT); |
| mDevice->sendTrackingId(FIRST_TRACKING_ID); |
| mDevice->sendToolType(MT_TOOL_FINGER); |
| mDevice->sendDown(centerPoint); |
| auto waitUntil = std::chrono::system_clock::now() + |
| std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT)); |
| mDevice->sendSync(); |
| ASSERT_NO_FATAL_FAILURE( |
| mTestListener->assertNotifyMotionWasCalled(AllOf(WithMotionAction( |
| AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::FINGER), |
| WithSource(AINPUT_SOURCE_TOUCHSCREEN | |
| AINPUT_SOURCE_STYLUS), |
| WithButtonState(0), |
| WithDeviceId(touchscreenId), |
| WithPressure(1.f)), |
| waitUntil)); |
| |
| // The external stylus did not generate any events. |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled()); |
| } |
| |
| // --- InputDeviceTest --- |
| class InputDeviceTest : public testing::Test { |
| protected: |
| static const char* DEVICE_NAME; |
| static const char* DEVICE_LOCATION; |
| static const int32_t DEVICE_ID; |
| static const int32_t DEVICE_GENERATION; |
| static const int32_t DEVICE_CONTROLLER_NUMBER; |
| static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES; |
| static const int32_t EVENTHUB_ID; |
| static const std::string DEVICE_BLUETOOTH_ADDRESS; |
| |
| std::shared_ptr<FakeEventHub> mFakeEventHub; |
| sp<FakeInputReaderPolicy> mFakePolicy; |
| std::unique_ptr<TestInputListener> mFakeListener; |
| std::unique_ptr<InstrumentedInputReader> mReader; |
| std::shared_ptr<InputDevice> mDevice; |
| |
| void SetUp() override { |
| mFakeEventHub = std::make_unique<FakeEventHub>(); |
| mFakePolicy = sp<FakeInputReaderPolicy>::make(); |
| mFakeListener = std::make_unique<TestInputListener>(); |
| mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy, |
| *mFakeListener); |
| InputDeviceIdentifier identifier; |
| identifier.name = DEVICE_NAME; |
| identifier.location = DEVICE_LOCATION; |
| identifier.bluetoothAddress = DEVICE_BLUETOOTH_ADDRESS; |
| mDevice = std::make_shared<InputDevice>(mReader->getContext(), DEVICE_ID, DEVICE_GENERATION, |
| identifier); |
| mReader->pushNextDevice(mDevice); |
| mFakeEventHub->addDevice(EVENTHUB_ID, DEVICE_NAME, ftl::Flags<InputDeviceClass>(0)); |
| mReader->loopOnce(); |
| } |
| |
| void TearDown() override { |
| mFakeListener.reset(); |
| mFakePolicy.clear(); |
| } |
| }; |
| |
| const char* InputDeviceTest::DEVICE_NAME = "device"; |
| const char* InputDeviceTest::DEVICE_LOCATION = "USB1"; |
| const int32_t InputDeviceTest::DEVICE_ID = END_RESERVED_ID + 1000; |
| const int32_t InputDeviceTest::DEVICE_GENERATION = 2; |
| const int32_t InputDeviceTest::DEVICE_CONTROLLER_NUMBER = 0; |
| const ftl::Flags<InputDeviceClass> InputDeviceTest::DEVICE_CLASSES = |
| InputDeviceClass::KEYBOARD | InputDeviceClass::TOUCH | InputDeviceClass::JOYSTICK; |
| const int32_t InputDeviceTest::EVENTHUB_ID = 1; |
| const std::string InputDeviceTest::DEVICE_BLUETOOTH_ADDRESS = "11:AA:22:BB:33:CC"; |
| |
| TEST_F(InputDeviceTest, ImmutableProperties) { |
| ASSERT_EQ(DEVICE_ID, mDevice->getId()); |
| ASSERT_STREQ(DEVICE_NAME, mDevice->getName().c_str()); |
| ASSERT_EQ(ftl::Flags<InputDeviceClass>(0), mDevice->getClasses()); |
| } |
| |
| TEST_F(InputDeviceTest, WhenDeviceCreated_EnabledIsFalse) { |
| ASSERT_EQ(mDevice->isEnabled(), false); |
| } |
| |
| TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) { |
| // Configuration. |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| // Reset. |
| unused += mDevice->reset(ARBITRARY_TIME); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); |
| |
| // Metadata. |
| ASSERT_TRUE(mDevice->isIgnored()); |
| ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources()); |
| |
| InputDeviceInfo info = mDevice->getDeviceInfo(); |
| ASSERT_EQ(DEVICE_ID, info.getId()); |
| ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str()); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType()); |
| ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources()); |
| |
| // State queries. |
| ASSERT_EQ(0, mDevice->getMetaState()); |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0)) |
| << "Ignored device should return unknown key code state."; |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0)) |
| << "Ignored device should return unknown scan code state."; |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0)) |
| << "Ignored device should return unknown switch state."; |
| |
| const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B}; |
| uint8_t flags[2] = { 0, 1 }; |
| ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags)) |
| << "Ignored device should never mark any key codes."; |
| ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged."; |
| ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged."; |
| } |
| |
| TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) { |
| // Configuration. |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "key", "value"); |
| |
| FakeInputMapper& mapper1 = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| mapper1.setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| mapper1.setMetaState(AMETA_ALT_ON); |
| mapper1.addSupportedKeyCode(AKEYCODE_A); |
| mapper1.addSupportedKeyCode(AKEYCODE_B); |
| mapper1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN); |
| mapper1.setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP); |
| mapper1.setScanCodeState(2, AKEY_STATE_DOWN); |
| mapper1.setScanCodeState(3, AKEY_STATE_UP); |
| mapper1.setSwitchState(4, AKEY_STATE_DOWN); |
| |
| FakeInputMapper& mapper2 = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_TOUCHSCREEN); |
| mapper2.setMetaState(AMETA_SHIFT_ON); |
| |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| std::optional<std::string> propertyValue = mDevice->getConfiguration().getString("key"); |
| ASSERT_TRUE(propertyValue.has_value()) |
| << "Device should have read configuration during configuration phase."; |
| ASSERT_EQ("value", *propertyValue); |
| |
| ASSERT_NO_FATAL_FAILURE(mapper1.assertConfigureWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mapper2.assertConfigureWasCalled()); |
| |
| // Reset |
| unused += mDevice->reset(ARBITRARY_TIME); |
| ASSERT_NO_FATAL_FAILURE(mapper1.assertResetWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mapper2.assertResetWasCalled()); |
| |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, resetArgs.deviceId); |
| |
| // Metadata. |
| ASSERT_FALSE(mDevice->isIgnored()); |
| ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources()); |
| |
| InputDeviceInfo info = mDevice->getDeviceInfo(); |
| ASSERT_EQ(DEVICE_ID, info.getId()); |
| ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str()); |
| ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType()); |
| ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources()); |
| |
| // State queries. |
| ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState()) |
| << "Should query mappers and combine meta states."; |
| |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return unknown key code state when source not supported."; |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return unknown scan code state when source not supported."; |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A)) |
| << "Should return unknown switch state when source not supported."; |
| |
| ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A)) |
| << "Should query mapper when source is supported."; |
| ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3)) |
| << "Should query mapper when source is supported."; |
| ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4)) |
| << "Should query mapper when source is supported."; |
| |
| const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2}; |
| uint8_t flags[4] = { 0, 0, 0, 1 }; |
| ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, keyCodes, flags)) |
| << "Should do nothing when source is unsupported."; |
| ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported."; |
| ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported."; |
| ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported."; |
| ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported."; |
| |
| ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags)) |
| << "Should query mapper when source is supported."; |
| ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set."; |
| ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set."; |
| ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged."; |
| ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged."; |
| |
| // Event handling. |
| RawEvent event; |
| event.deviceId = EVENTHUB_ID; |
| unused += mDevice->process(&event, 1); |
| |
| ASSERT_NO_FATAL_FAILURE(mapper1.assertProcessWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mapper2.assertProcessWasCalled()); |
| } |
| |
| TEST_F(InputDeviceTest, Configure_SmoothScrollViewBehaviorNotSet) { |
| // Set some behavior to force the configuration to be update. |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "1"); |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| ASSERT_FALSE(mDevice->getDeviceInfo().getViewBehavior().shouldSmoothScroll.has_value()); |
| } |
| |
| TEST_F(InputDeviceTest, Configure_SmoothScrollViewBehaviorEnabled) { |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.viewBehavior_smoothScroll", "1"); |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| ASSERT_TRUE(mDevice->getDeviceInfo().getViewBehavior().shouldSmoothScroll.value_or(false)); |
| } |
| |
| TEST_F(InputDeviceTest, WakeDevice_AddsWakeFlagToProcessNotifyArgs) { |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "1"); |
| FakeInputMapper& mapper = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| NotifyMotionArgs args1; |
| NotifySwitchArgs args2; |
| NotifyKeyArgs args3; |
| mapper.setProcessResult({args1, args2, args3}); |
| |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| RawEvent event; |
| event.deviceId = EVENTHUB_ID; |
| std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1); |
| |
| for (auto& arg : notifyArgs) { |
| if (const auto notifyMotionArgs = std::get_if<NotifyMotionArgs>(&arg)) { |
| ASSERT_EQ(POLICY_FLAG_WAKE, notifyMotionArgs->policyFlags); |
| } else if (const auto notifySwitchArgs = std::get_if<NotifySwitchArgs>(&arg)) { |
| ASSERT_EQ(POLICY_FLAG_WAKE, notifySwitchArgs->policyFlags); |
| } else if (const auto notifyKeyArgs = std::get_if<NotifyKeyArgs>(&arg)) { |
| ASSERT_EQ(POLICY_FLAG_WAKE, notifyKeyArgs->policyFlags); |
| } |
| } |
| } |
| |
| TEST_F(InputDeviceTest, NotWakeDevice_DoesNotAddWakeFlagToProcessNotifyArgs) { |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "0"); |
| FakeInputMapper& mapper = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| NotifyMotionArgs args; |
| mapper.setProcessResult({args}); |
| |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| RawEvent event; |
| event.deviceId = EVENTHUB_ID; |
| std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1); |
| |
| // POLICY_FLAG_WAKE is not added to the NotifyArgs. |
| ASSERT_EQ(0u, std::get<NotifyMotionArgs>(notifyArgs.front()).policyFlags); |
| } |
| |
| TEST_F(InputDeviceTest, NotWakeDevice_DoesNotRemoveExistingWakeFlagFromProcessNotifyArgs) { |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "0"); |
| FakeInputMapper& mapper = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| NotifyMotionArgs args; |
| args.policyFlags = POLICY_FLAG_WAKE; |
| mapper.setProcessResult({args}); |
| |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| RawEvent event; |
| event.deviceId = EVENTHUB_ID; |
| std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1); |
| |
| // The POLICY_FLAG_WAKE is preserved, despite the device being a non-wake device. |
| ASSERT_EQ(POLICY_FLAG_WAKE, std::get<NotifyMotionArgs>(notifyArgs.front()).policyFlags); |
| } |
| |
| // A single input device is associated with a specific display. Check that: |
| // 1. Device is disabled if the viewport corresponding to the associated display is not found |
| // 2. Device is disabled when configure API is called |
| TEST_F(InputDeviceTest, Configure_AssignsDisplayPort) { |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_TOUCHSCREEN); |
| |
| // First Configuration. |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| // Device should be enabled by default. |
| ASSERT_TRUE(mDevice->isEnabled()); |
| |
| // Prepare associated info. |
| constexpr uint8_t hdmi = 1; |
| const std::string UNIQUE_ID = "local:1"; |
| |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| // Device should be disabled because it is associated with a specific display via |
| // input port <-> display port association, but the corresponding display is not found |
| ASSERT_FALSE(mDevice->isEnabled()); |
| |
| // Prepare displays. |
| mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /*isActive=*/true, UNIQUE_ID, hdmi, |
| ViewportType::INTERNAL); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_TRUE(mDevice->isEnabled()); |
| |
| // Device should be disabled after set disable. |
| mFakePolicy->addDisabledDevice(mDevice->getId()); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::ENABLED_STATE); |
| ASSERT_FALSE(mDevice->isEnabled()); |
| |
| // Device should still be disabled even found the associated display. |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_FALSE(mDevice->isEnabled()); |
| } |
| |
| TEST_F(InputDeviceTest, Configure_AssignsDisplayUniqueId) { |
| // Device should be enabled by default. |
| mFakePolicy->clearViewports(); |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| ASSERT_TRUE(mDevice->isEnabled()); |
| |
| // Device should be disabled because it is associated with a specific display, but the |
| // corresponding display is not found. |
| mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_FALSE(mDevice->isEnabled()); |
| |
| // Device should be enabled when a display is found. |
| mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID, |
| NO_PORT, ViewportType::INTERNAL); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_TRUE(mDevice->isEnabled()); |
| |
| // Device should be disabled after set disable. |
| mFakePolicy->addDisabledDevice(mDevice->getId()); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::ENABLED_STATE); |
| ASSERT_FALSE(mDevice->isEnabled()); |
| |
| // Device should still be disabled even found the associated display. |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_FALSE(mDevice->isEnabled()); |
| } |
| |
| TEST_F(InputDeviceTest, Configure_UniqueId_CorrectlyMatches) { |
| mFakePolicy->clearViewports(); |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID); |
| mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID, |
| NO_PORT, ViewportType::INTERNAL); |
| const auto initialGeneration = mDevice->getGeneration(); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_EQ(DISPLAY_UNIQUE_ID, mDevice->getAssociatedDisplayUniqueId()); |
| ASSERT_GT(mDevice->getGeneration(), initialGeneration); |
| ASSERT_EQ(mDevice->getDeviceInfo().getAssociatedDisplayId(), SECONDARY_DISPLAY_ID); |
| } |
| |
| /** |
| * This test reproduces a crash caused by a dangling reference that remains after device is added |
| * and removed. The reference is accessed in InputDevice::dump(..); |
| */ |
| TEST_F(InputDeviceTest, DumpDoesNotCrash) { |
| constexpr int32_t TEST_EVENTHUB_ID = 10; |
| mFakeEventHub->addDevice(TEST_EVENTHUB_ID, "Test EventHub device", InputDeviceClass::BATTERY); |
| |
| InputDevice device(mReader->getContext(), /*id=*/1, /*generation=*/2, /*identifier=*/{}); |
| auto _ = device.addEventHubDevice(ARBITRARY_TIME, TEST_EVENTHUB_ID, |
| mFakePolicy->getReaderConfiguration()); |
| device.removeEventHubDevice(TEST_EVENTHUB_ID); |
| std::string dumpStr, eventHubDevStr; |
| device.dump(dumpStr, eventHubDevStr); |
| } |
| |
| TEST_F(InputDeviceTest, GetBluetoothAddress) { |
| const auto& address = mReader->getBluetoothAddress(DEVICE_ID); |
| ASSERT_TRUE(address); |
| ASSERT_EQ(DEVICE_BLUETOOTH_ADDRESS, *address); |
| } |
| |
| TEST_F(InputDeviceTest, KernelBufferOverflowResetsMappers) { |
| mFakePolicy->clearViewports(); |
| FakeInputMapper& mapper = |
| mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| mapper.assertConfigureWasCalled(); |
| mapper.assertResetWasNotCalled(); |
| |
| RawEvent event{.when = ARBITRARY_TIME, |
| .readTime = ARBITRARY_TIME, |
| .deviceId = EVENTHUB_ID, |
| .type = EV_SYN, |
| .code = SYN_REPORT, |
| .value = 0}; |
| |
| // Events are processed normally. |
| unused = mDevice->process(&event, /*count=*/1); |
| mapper.assertProcessWasCalled(); |
| |
| // Simulate a kernel buffer overflow, which generates a SYN_DROPPED event. |
| event.type = EV_SYN; |
| event.code = SYN_DROPPED; |
| event.value = 0; |
| unused = mDevice->process(&event, /*count=*/1); |
| mapper.assertProcessWasNotCalled(); |
| |
| // All events until the next SYN_REPORT should be dropped. |
| event.type = EV_KEY; |
| event.code = KEY_A; |
| event.value = 1; |
| unused = mDevice->process(&event, /*count=*/1); |
| mapper.assertProcessWasNotCalled(); |
| |
| // We get the SYN_REPORT event now, which is not forwarded to mappers. |
| // This should reset the mapper. |
| event.type = EV_SYN; |
| event.code = SYN_REPORT; |
| event.value = 0; |
| unused = mDevice->process(&event, /*count=*/1); |
| mapper.assertProcessWasNotCalled(); |
| mapper.assertResetWasCalled(); |
| |
| // The mapper receives events normally now. |
| event.type = EV_KEY; |
| event.code = KEY_B; |
| event.value = 1; |
| unused = mDevice->process(&event, /*count=*/1); |
| mapper.assertProcessWasCalled(); |
| } |
| |
| // --- SwitchInputMapperTest --- |
| |
| class SwitchInputMapperTest : public InputMapperTest { |
| protected: |
| }; |
| |
| TEST_F(SwitchInputMapperTest, GetSources) { |
| SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>(); |
| |
| ASSERT_EQ(uint32_t(AINPUT_SOURCE_SWITCH), mapper.getSources()); |
| } |
| |
| TEST_F(SwitchInputMapperTest, GetSwitchState) { |
| SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>(); |
| |
| mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 1); |
| ASSERT_EQ(1, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); |
| |
| mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 0); |
| ASSERT_EQ(0, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID)); |
| } |
| |
| TEST_F(SwitchInputMapperTest, Process) { |
| SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>(); |
| std::list<NotifyArgs> out; |
| out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_LID, 1); |
| ASSERT_TRUE(out.empty()); |
| out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_JACK_PHYSICAL_INSERT, 1); |
| ASSERT_TRUE(out.empty()); |
| out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_HEADPHONE_INSERT, 0); |
| ASSERT_TRUE(out.empty()); |
| out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(1u, out.size()); |
| const NotifySwitchArgs& args = std::get<NotifySwitchArgs>(*out.begin()); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT), args.switchValues); |
| ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT) | (1 << SW_HEADPHONE_INSERT), |
| args.switchMask); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| } |
| |
| // --- VibratorInputMapperTest --- |
| class VibratorInputMapperTest : public InputMapperTest { |
| protected: |
| void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::VIBRATOR); } |
| }; |
| |
| TEST_F(VibratorInputMapperTest, GetSources) { |
| VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>(); |
| |
| ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mapper.getSources()); |
| } |
| |
| TEST_F(VibratorInputMapperTest, GetVibratorIds) { |
| VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>(); |
| |
| ASSERT_EQ(mapper.getVibratorIds().size(), 2U); |
| } |
| |
| TEST_F(VibratorInputMapperTest, Vibrate) { |
| constexpr uint8_t DEFAULT_AMPLITUDE = 192; |
| constexpr int32_t VIBRATION_TOKEN = 100; |
| VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>(); |
| |
| VibrationElement pattern(2); |
| VibrationSequence sequence(2); |
| pattern.duration = std::chrono::milliseconds(200); |
| pattern.channels = {{/*vibratorId=*/0, DEFAULT_AMPLITUDE / 2}, |
| {/*vibratorId=*/1, DEFAULT_AMPLITUDE}}; |
| sequence.addElement(pattern); |
| pattern.duration = std::chrono::milliseconds(500); |
| pattern.channels = {{/*vibratorId=*/0, DEFAULT_AMPLITUDE / 4}, |
| {/*vibratorId=*/1, DEFAULT_AMPLITUDE}}; |
| sequence.addElement(pattern); |
| |
| std::vector<int64_t> timings = {0, 1}; |
| std::vector<uint8_t> amplitudes = {DEFAULT_AMPLITUDE, DEFAULT_AMPLITUDE / 2}; |
| |
| ASSERT_FALSE(mapper.isVibrating()); |
| // Start vibrating |
| std::list<NotifyArgs> out = mapper.vibrate(sequence, /*repeat=*/-1, VIBRATION_TOKEN); |
| ASSERT_TRUE(mapper.isVibrating()); |
| // Verify vibrator state listener was notified. |
| mReader->loopOnce(); |
| ASSERT_EQ(1u, out.size()); |
| const NotifyVibratorStateArgs& vibrateArgs = std::get<NotifyVibratorStateArgs>(*out.begin()); |
| ASSERT_EQ(DEVICE_ID, vibrateArgs.deviceId); |
| ASSERT_TRUE(vibrateArgs.isOn); |
| // Stop vibrating |
| out = mapper.cancelVibrate(VIBRATION_TOKEN); |
| ASSERT_FALSE(mapper.isVibrating()); |
| // Verify vibrator state listener was notified. |
| mReader->loopOnce(); |
| ASSERT_EQ(1u, out.size()); |
| const NotifyVibratorStateArgs& cancelArgs = std::get<NotifyVibratorStateArgs>(*out.begin()); |
| ASSERT_EQ(DEVICE_ID, cancelArgs.deviceId); |
| ASSERT_FALSE(cancelArgs.isOn); |
| } |
| |
| // --- SensorInputMapperTest --- |
| |
| class SensorInputMapperTest : public InputMapperTest { |
| protected: |
| static const int32_t ACCEL_RAW_MIN; |
| static const int32_t ACCEL_RAW_MAX; |
| static const int32_t ACCEL_RAW_FUZZ; |
| static const int32_t ACCEL_RAW_FLAT; |
| static const int32_t ACCEL_RAW_RESOLUTION; |
| |
| static const int32_t GYRO_RAW_MIN; |
| static const int32_t GYRO_RAW_MAX; |
| static const int32_t GYRO_RAW_FUZZ; |
| static const int32_t GYRO_RAW_FLAT; |
| static const int32_t GYRO_RAW_RESOLUTION; |
| |
| static const float GRAVITY_MS2_UNIT; |
| static const float DEGREE_RADIAN_UNIT; |
| |
| void prepareAccelAxes(); |
| void prepareGyroAxes(); |
| void setAccelProperties(); |
| void setGyroProperties(); |
| void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::SENSOR); } |
| }; |
| |
| const int32_t SensorInputMapperTest::ACCEL_RAW_MIN = -32768; |
| const int32_t SensorInputMapperTest::ACCEL_RAW_MAX = 32768; |
| const int32_t SensorInputMapperTest::ACCEL_RAW_FUZZ = 16; |
| const int32_t SensorInputMapperTest::ACCEL_RAW_FLAT = 0; |
| const int32_t SensorInputMapperTest::ACCEL_RAW_RESOLUTION = 8192; |
| |
| const int32_t SensorInputMapperTest::GYRO_RAW_MIN = -2097152; |
| const int32_t SensorInputMapperTest::GYRO_RAW_MAX = 2097152; |
| const int32_t SensorInputMapperTest::GYRO_RAW_FUZZ = 16; |
| const int32_t SensorInputMapperTest::GYRO_RAW_FLAT = 0; |
| const int32_t SensorInputMapperTest::GYRO_RAW_RESOLUTION = 1024; |
| |
| const float SensorInputMapperTest::GRAVITY_MS2_UNIT = 9.80665f; |
| const float SensorInputMapperTest::DEGREE_RADIAN_UNIT = 0.0174533f; |
| |
| void SensorInputMapperTest::prepareAccelAxes() { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ, |
| ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ, |
| ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Z, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ, |
| ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION); |
| } |
| |
| void SensorInputMapperTest::prepareGyroAxes() { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RX, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ, |
| GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RY, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ, |
| GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RZ, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ, |
| GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION); |
| } |
| |
| void SensorInputMapperTest::setAccelProperties() { |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 0, InputDeviceSensorType::ACCELEROMETER, |
| /* sensorDataIndex */ 0); |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 1, InputDeviceSensorType::ACCELEROMETER, |
| /* sensorDataIndex */ 1); |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 2, InputDeviceSensorType::ACCELEROMETER, |
| /* sensorDataIndex */ 2); |
| mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP); |
| addConfigurationProperty("sensor.accelerometer.reportingMode", "0"); |
| addConfigurationProperty("sensor.accelerometer.maxDelay", "100000"); |
| addConfigurationProperty("sensor.accelerometer.minDelay", "5000"); |
| addConfigurationProperty("sensor.accelerometer.power", "1.5"); |
| } |
| |
| void SensorInputMapperTest::setGyroProperties() { |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 3, InputDeviceSensorType::GYROSCOPE, |
| /* sensorDataIndex */ 0); |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 4, InputDeviceSensorType::GYROSCOPE, |
| /* sensorDataIndex */ 1); |
| mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 5, InputDeviceSensorType::GYROSCOPE, |
| /* sensorDataIndex */ 2); |
| mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP); |
| addConfigurationProperty("sensor.gyroscope.reportingMode", "0"); |
| addConfigurationProperty("sensor.gyroscope.maxDelay", "100000"); |
| addConfigurationProperty("sensor.gyroscope.minDelay", "5000"); |
| addConfigurationProperty("sensor.gyroscope.power", "0.8"); |
| } |
| |
| TEST_F(SensorInputMapperTest, GetSources) { |
| SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>(); |
| |
| ASSERT_EQ(static_cast<uint32_t>(AINPUT_SOURCE_SENSOR), mapper.getSources()); |
| } |
| |
| TEST_F(SensorInputMapperTest, ProcessAccelerometerSensor) { |
| setAccelProperties(); |
| prepareAccelAxes(); |
| SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>(); |
| |
| ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::ACCELEROMETER, |
| std::chrono::microseconds(10000), |
| std::chrono::microseconds(0))); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, 20000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, -20000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Z, 40000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| NotifySensorArgs args; |
| std::vector<float> values = {20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT, |
| -20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT, |
| 40000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT}; |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args)); |
| ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR); |
| ASSERT_EQ(args.deviceId, DEVICE_ID); |
| ASSERT_EQ(args.sensorType, InputDeviceSensorType::ACCELEROMETER); |
| ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH); |
| ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME); |
| ASSERT_EQ(args.values, values); |
| mapper.flushSensor(InputDeviceSensorType::ACCELEROMETER); |
| } |
| |
| TEST_F(SensorInputMapperTest, ProcessGyroscopeSensor) { |
| setGyroProperties(); |
| prepareGyroAxes(); |
| SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>(); |
| |
| ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::GYROSCOPE, |
| std::chrono::microseconds(10000), |
| std::chrono::microseconds(0))); |
| ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RX, 20000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RY, -20000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RZ, 40000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| NotifySensorArgs args; |
| std::vector<float> values = {20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT, |
| -20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT, |
| 40000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT}; |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args)); |
| ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR); |
| ASSERT_EQ(args.deviceId, DEVICE_ID); |
| ASSERT_EQ(args.sensorType, InputDeviceSensorType::GYROSCOPE); |
| ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH); |
| ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME); |
| ASSERT_EQ(args.values, values); |
| mapper.flushSensor(InputDeviceSensorType::GYROSCOPE); |
| } |
| |
| // --- KeyboardInputMapperTest --- |
| |
| class KeyboardInputMapperTest : public InputMapperTest { |
| protected: |
| const std::string UNIQUE_ID = "local:0"; |
| const KeyboardLayoutInfo DEVICE_KEYBOARD_LAYOUT_INFO = KeyboardLayoutInfo("en-US", "qwerty"); |
| void prepareDisplay(ui::Rotation orientation); |
| |
| void testDPadKeyRotation(KeyboardInputMapper& mapper, int32_t originalScanCode, |
| int32_t originalKeyCode, int32_t rotatedKeyCode, |
| int32_t displayId = ADISPLAY_ID_NONE); |
| }; |
| |
| /* Similar to setDisplayInfoAndReconfigure, but pre-populates all parameters except for the |
| * orientation. |
| */ |
| void KeyboardInputMapperTest::prepareDisplay(ui::Rotation orientation) { |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID, |
| NO_PORT, ViewportType::INTERNAL); |
| } |
| |
| void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper& mapper, |
| int32_t originalScanCode, int32_t originalKeyCode, |
| int32_t rotatedKeyCode, int32_t displayId) { |
| NotifyKeyArgs args; |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(originalScanCode, args.scanCode); |
| ASSERT_EQ(rotatedKeyCode, args.keyCode); |
| ASSERT_EQ(displayId, args.displayId); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(originalScanCode, args.scanCode); |
| ASSERT_EQ(rotatedKeyCode, args.keyCode); |
| ASSERT_EQ(displayId, args.displayId); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, GetSources) { |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper.getSources()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) { |
| const int32_t USAGE_A = 0x070004; |
| const int32_t USAGE_UNKNOWN = 0x07ffff; |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, POLICY_FLAG_WAKE); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| // Key down by scan code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Key up by scan code. |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Key down by usage code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, 0, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(AKEYCODE_A, args.keyCode); |
| ASSERT_EQ(0, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Key up by usage code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A); |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, 0, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(AKEYCODE_A, args.keyCode); |
| ASSERT_EQ(0, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Key down with unknown scan code or usage code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UNKNOWN, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(0, args.keyCode); |
| ASSERT_EQ(KEY_UNKNOWN, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(0U, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Key up with unknown scan code or usage code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN); |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_UNKNOWN, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(0, args.keyCode); |
| ASSERT_EQ(KEY_UNKNOWN, args.scanCode); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| ASSERT_EQ(0U, args.policyFlags); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_KeyRemapping) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_B, 0, AKEYCODE_B, 0); |
| mFakeEventHub->addKeyRemapping(EVENTHUB_ID, AKEYCODE_A, AKEYCODE_B); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| // Key down by scan code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_A, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEYCODE_B, args.keyCode); |
| |
| // Key up by scan code. |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_A, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEYCODE_B, args.keyCode); |
| } |
| |
| /** |
| * Ensure that the readTime is set to the time when the EV_KEY is received. |
| */ |
| TEST_F(KeyboardInputMapperTest, Process_SendsReadTime) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| NotifyKeyArgs args; |
| |
| // Key down |
| process(mapper, ARBITRARY_TIME, /*readTime=*/12, EV_KEY, KEY_HOME, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(12, args.readTime); |
| |
| // Key up |
| process(mapper, ARBITRARY_TIME, /*readTime=*/15, EV_KEY, KEY_HOME, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(15, args.readTime); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFTSHIFT, 0, AKEYCODE_SHIFT_LEFT, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| // Metakey down. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled()); |
| |
| // Key down. |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_A, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); |
| |
| // Key up. |
| process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, KEY_A, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState()); |
| |
| // Metakey up. |
| process(mapper, ARBITRARY_TIME + 3, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| prepareDisplay(ui::ROTATION_90); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, |
| KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, |
| KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, |
| KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, |
| KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT)); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); |
| |
| addConfigurationProperty("keyboard.orientationAware", "1"); |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| prepareDisplay(ui::ROTATION_0); |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_DOWN, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_LEFT, DISPLAY_ID)); |
| |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_90); |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_UP, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_DOWN, DISPLAY_ID)); |
| |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_180); |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_LEFT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_UP, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); |
| |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_270); |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_DOWN, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_LEFT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_UP, DISPLAY_ID)); |
| |
| // Special case: if orientation changes while key is down, we still emit the same keycode |
| // in the key up as we did in the key down. |
| NotifyKeyArgs args; |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_270); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(KEY_UP, args.scanCode); |
| ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); |
| |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_180); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(KEY_UP, args.scanCode); |
| ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_NotOrientationAware) { |
| // If the keyboard is not orientation aware, |
| // key events should not be associated with a specific display id |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| NotifyKeyArgs args; |
| |
| // Display id should be ADISPLAY_ID_NONE without any display configuration. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId); |
| |
| prepareDisplay(ui::ROTATION_0); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_OrientationAware) { |
| // If the keyboard is orientation aware, |
| // key events should be associated with the internal viewport |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| |
| addConfigurationProperty("keyboard.orientationAware", "1"); |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| NotifyKeyArgs args; |
| |
| // Display id should be ADISPLAY_ID_NONE without any display configuration. |
| // ^--- already checked by the previous test |
| |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DISPLAY_ID, args.displayId); |
| |
| constexpr int32_t newDisplayId = 2; |
| clearViewports(); |
| setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(newDisplayId, args.displayId); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, GetKeyCodeState) { |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 1); |
| ASSERT_EQ(1, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); |
| |
| mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 0); |
| ASSERT_EQ(0, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, GetKeyCodeForKeyLocation) { |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| mFakeEventHub->addKeyCodeMapping(EVENTHUB_ID, AKEYCODE_Y, AKEYCODE_Z); |
| ASSERT_EQ(AKEYCODE_Z, mapper.getKeyCodeForKeyLocation(AKEYCODE_Y)) |
| << "If a mapping is available, the result is equal to the mapping"; |
| |
| ASSERT_EQ(AKEYCODE_A, mapper.getKeyCodeForKeyLocation(AKEYCODE_A)) |
| << "If no mapping is available, the result is the key location"; |
| } |
| |
| TEST_F(KeyboardInputMapperTest, GetScanCodeState) { |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 1); |
| ASSERT_EQ(1, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); |
| |
| mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 0); |
| ASSERT_EQ(0, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) { |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0); |
| |
| uint8_t flags[2] = { 0, 0 }; |
| ASSERT_TRUE(mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_A, AKEYCODE_B}, flags)); |
| ASSERT_TRUE(flags[0]); |
| ASSERT_FALSE(flags[1]); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) { |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| // Initialization should have turned all of the lights off. |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| |
| // Toggle caps lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle num lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle caps lock off. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle scroll lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle num lock off. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle scroll lock off. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, NoMetaStateWhenMetaKeysNotPresent) { |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_A, 0, AKEYCODE_BUTTON_A, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_B, 0, AKEYCODE_BUTTON_B, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_X, 0, AKEYCODE_BUTTON_X, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_Y, 0, AKEYCODE_BUTTON_Y, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC); |
| |
| // Meta state should be AMETA_NONE after reset |
| std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| // Meta state should be AMETA_NONE with update, as device doesn't have the keys. |
| mapper.updateMetaState(AKEYCODE_NUM_LOCK); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| NotifyKeyArgs args; |
| // Press button "A" |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_A, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode); |
| |
| // Button up. |
| process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, BTN_A, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AMETA_NONE, args.metaState); |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Configure_AssignsDisplayPort) { |
| // keyboard 1. |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); |
| |
| // keyboard 2. |
| const std::string USB2 = "USB2"; |
| const std::string DEVICE_NAME2 = "KEYBOARD2"; |
| constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; |
| constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; |
| std::shared_ptr<InputDevice> device2 = |
| newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID, |
| ftl::Flags<InputDeviceClass>(0)); |
| |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID); |
| KeyboardInputMapper& mapper2 = |
| device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, |
| mFakePolicy |
| ->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| std::list<NotifyArgs> unused = |
| device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| unused += device2->reset(ARBITRARY_TIME); |
| |
| // Prepared displays and associated info. |
| constexpr uint8_t hdmi1 = 0; |
| constexpr uint8_t hdmi2 = 1; |
| const std::string SECONDARY_UNIQUE_ID = "local:1"; |
| |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); |
| mFakePolicy->addInputPortAssociation(USB2, hdmi2); |
| |
| // No associated display viewport found, should disable the device. |
| unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_FALSE(device2->isEnabled()); |
| |
| // Prepare second display. |
| constexpr int32_t newDisplayId = 2; |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| UNIQUE_ID, hdmi1, ViewportType::INTERNAL); |
| setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| SECONDARY_UNIQUE_ID, hdmi2, ViewportType::EXTERNAL); |
| // Default device will reconfigure above, need additional reconfiguration for another device. |
| unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // Device should be enabled after the associated display is found. |
| ASSERT_TRUE(mDevice->isEnabled()); |
| ASSERT_TRUE(device2->isEnabled()); |
| |
| // Test pad key events |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_RIGHT, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_DOWN, DISPLAY_ID)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_LEFT, DISPLAY_ID)); |
| |
| ASSERT_NO_FATAL_FAILURE( |
| testDPadKeyRotation(mapper2, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, newDisplayId)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_RIGHT, AKEYCODE_DPAD_RIGHT, |
| AKEYCODE_DPAD_RIGHT, newDisplayId)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_DOWN, AKEYCODE_DPAD_DOWN, |
| AKEYCODE_DPAD_DOWN, newDisplayId)); |
| ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_LEFT, AKEYCODE_DPAD_LEFT, |
| AKEYCODE_DPAD_LEFT, newDisplayId)); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleAfterReattach) { |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| // Initialization should have turned all of the lights off. |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| |
| // Toggle caps lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle num lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState()); |
| |
| // Toggle scroll lock on. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState()); |
| |
| mFakeEventHub->removeDevice(EVENTHUB_ID); |
| mReader->loopOnce(); |
| |
| // keyboard 2 should default toggle keys. |
| const std::string USB2 = "USB2"; |
| const std::string DEVICE_NAME2 = "KEYBOARD2"; |
| constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; |
| constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; |
| std::shared_ptr<InputDevice> device2 = |
| newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID, |
| ftl::Flags<InputDeviceClass>(0)); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID); |
| KeyboardInputMapper& mapper2 = |
| device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, |
| mFakePolicy |
| ->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| std::list<NotifyArgs> unused = |
| device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| unused += device2->reset(ARBITRARY_TIME); |
| |
| ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_NUML)); |
| ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, |
| mapper2.getMetaState()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_toggleCapsLockState) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| // Suppose we have two mappers. (DPAD + KEYBOARD) |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_DPAD, |
| AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC); |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper.getMetaState()); |
| |
| mReader->toggleCapsLockState(DEVICE_ID); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleInMultiDevices) { |
| // keyboard 1. |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/); |
| mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| KeyboardInputMapper& mapper1 = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| // keyboard 2. |
| const std::string USB2 = "USB2"; |
| const std::string DEVICE_NAME2 = "KEYBOARD2"; |
| constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; |
| constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; |
| std::shared_ptr<InputDevice> device2 = |
| newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID, |
| ftl::Flags<InputDeviceClass>(0)); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/); |
| mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0); |
| mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0); |
| |
| device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID); |
| KeyboardInputMapper& mapper2 = |
| device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID, |
| mFakePolicy |
| ->getReaderConfiguration(), |
| AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| std::list<NotifyArgs> unused = |
| device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| unused += device2->reset(ARBITRARY_TIME); |
| |
| // Initial metastate is AMETA_NONE. |
| ASSERT_EQ(AMETA_NONE, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_NONE, mapper2.getMetaState()); |
| |
| // Toggle num lock on and off. |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper2.getMetaState()); |
| |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML)); |
| ASSERT_EQ(AMETA_NONE, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_NONE, mapper2.getMetaState()); |
| |
| // Toggle caps lock on and off. |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper2.getMetaState()); |
| |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL)); |
| ASSERT_EQ(AMETA_NONE, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_NONE, mapper2.getMetaState()); |
| |
| // Toggle scroll lock on and off. |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0); |
| ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper2.getMetaState()); |
| |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1); |
| process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0); |
| ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL)); |
| ASSERT_EQ(AMETA_NONE, mapper1.getMetaState()); |
| ASSERT_EQ(AMETA_NONE, mapper2.getMetaState()); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_DisabledDevice) { |
| const int32_t USAGE_A = 0x070004; |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| // Key down by scan code. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags); |
| |
| // Disable device, it should synthesize cancellation events for down events. |
| mFakePolicy->addDisabledDevice(DEVICE_ID); |
| configureDevice(InputReaderConfiguration::Change::ENABLED_STATE); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_CANCELED, args.flags); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Configure_AssignKeyboardLayoutInfo) { |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| uint32_t generation = mReader->getContext()->getGeneration(); |
| mFakePolicy->addKeyboardLayoutAssociation(DEVICE_LOCATION, DEVICE_KEYBOARD_LAYOUT_INFO); |
| |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::KEYBOARD_LAYOUT_ASSOCIATION); |
| |
| InputDeviceInfo deviceInfo = mDevice->getDeviceInfo(); |
| ASSERT_EQ(DEVICE_KEYBOARD_LAYOUT_INFO.languageTag, |
| deviceInfo.getKeyboardLayoutInfo()->languageTag); |
| ASSERT_EQ(DEVICE_KEYBOARD_LAYOUT_INFO.layoutType, |
| deviceInfo.getKeyboardLayoutInfo()->layoutType); |
| ASSERT_TRUE(mReader->getContext()->getGeneration() != generation); |
| |
| // Call change layout association with the same values: Generation shouldn't change |
| generation = mReader->getContext()->getGeneration(); |
| mFakePolicy->addKeyboardLayoutAssociation(DEVICE_LOCATION, DEVICE_KEYBOARD_LAYOUT_INFO); |
| unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::KEYBOARD_LAYOUT_ASSOCIATION); |
| ASSERT_TRUE(mReader->getContext()->getGeneration() == generation); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, LayoutInfoCorrectlyMapped) { |
| mFakeEventHub->setRawLayoutInfo(EVENTHUB_ID, |
| RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}); |
| |
| // Configuration |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| InputReaderConfiguration config; |
| std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{}); |
| |
| ASSERT_EQ("en", mDevice->getDeviceInfo().getKeyboardLayoutInfo()->languageTag); |
| ASSERT_EQ("extended", mDevice->getDeviceInfo().getKeyboardLayoutInfo()->layoutType); |
| } |
| |
| TEST_F(KeyboardInputMapperTest, Process_GesureEventToSetFlagKeepTouchMode) { |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, POLICY_FLAG_GESTURE); |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| NotifyKeyArgs args; |
| |
| // Key down |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_LEFT, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_KEEP_TOUCH_MODE, args.flags); |
| } |
| |
| // --- KeyboardInputMapperTest_ExternalDevice --- |
| |
| class KeyboardInputMapperTest_ExternalDevice : public InputMapperTest { |
| protected: |
| void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); } |
| }; |
| |
| TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior_AlphabeticKeyboard) { |
| // For external devices, keys will trigger wake on key down. Media keys should also trigger |
| // wake if triggered from external devices. |
| |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE, |
| POLICY_FLAG_WAKE); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| } |
| |
| TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior_NoneAlphabeticKeyboard) { |
| // For external devices, keys will trigger wake on key down. Media keys should not trigger |
| // wake if triggered from external non-alphaebtic keyboard (e.g. headsets). |
| |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE, |
| POLICY_FLAG_WAKE); |
| |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| } |
| |
| TEST_F(KeyboardInputMapperTest_ExternalDevice, DoNotWakeByDefaultBehavior) { |
| // Tv Remote key's wake behavior is prescribed by the keylayout file. |
| |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, POLICY_FLAG_WAKE); |
| |
| addConfigurationProperty("keyboard.doNotWakeByDefault", "1"); |
| KeyboardInputMapper& mapper = |
| constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD, |
| AINPUT_KEYBOARD_TYPE_ALPHABETIC); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1); |
| NotifyKeyArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_DOWN, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_DOWN, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(uint32_t(0), args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| |
| process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags); |
| } |
| |
| // --- TouchInputMapperTest --- |
| |
| class TouchInputMapperTest : public InputMapperTest { |
| protected: |
| static const int32_t RAW_X_MIN; |
| static const int32_t RAW_X_MAX; |
| static const int32_t RAW_Y_MIN; |
| static const int32_t RAW_Y_MAX; |
| static const int32_t RAW_TOUCH_MIN; |
| static const int32_t RAW_TOUCH_MAX; |
| static const int32_t RAW_TOOL_MIN; |
| static const int32_t RAW_TOOL_MAX; |
| static const int32_t RAW_PRESSURE_MIN; |
| static const int32_t RAW_PRESSURE_MAX; |
| static const int32_t RAW_ORIENTATION_MIN; |
| static const int32_t RAW_ORIENTATION_MAX; |
| static const int32_t RAW_DISTANCE_MIN; |
| static const int32_t RAW_DISTANCE_MAX; |
| static const int32_t RAW_TILT_MIN; |
| static const int32_t RAW_TILT_MAX; |
| static const int32_t RAW_ID_MIN; |
| static const int32_t RAW_ID_MAX; |
| static const int32_t RAW_SLOT_MIN; |
| static const int32_t RAW_SLOT_MAX; |
| static const float X_PRECISION; |
| static const float Y_PRECISION; |
| static const float X_PRECISION_VIRTUAL; |
| static const float Y_PRECISION_VIRTUAL; |
| |
| static const float GEOMETRIC_SCALE; |
| static const TouchAffineTransformation AFFINE_TRANSFORM; |
| |
| static const VirtualKeyDefinition VIRTUAL_KEYS[2]; |
| |
| const std::string UNIQUE_ID = "local:0"; |
| const std::string SECONDARY_UNIQUE_ID = "local:1"; |
| |
| enum Axes { |
| POSITION = 1 << 0, |
| TOUCH = 1 << 1, |
| TOOL = 1 << 2, |
| PRESSURE = 1 << 3, |
| ORIENTATION = 1 << 4, |
| MINOR = 1 << 5, |
| ID = 1 << 6, |
| DISTANCE = 1 << 7, |
| TILT = 1 << 8, |
| SLOT = 1 << 9, |
| TOOL_TYPE = 1 << 10, |
| }; |
| |
| void prepareDisplay(ui::Rotation orientation, std::optional<uint8_t> port = NO_PORT); |
| void prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port = NO_PORT); |
| void prepareVirtualDisplay(ui::Rotation orientation); |
| void prepareVirtualKeys(); |
| void prepareLocationCalibration(); |
| int32_t toRawX(float displayX); |
| int32_t toRawY(float displayY); |
| int32_t toRotatedRawX(float displayX); |
| int32_t toRotatedRawY(float displayY); |
| float toCookedX(float rawX, float rawY); |
| float toCookedY(float rawX, float rawY); |
| float toDisplayX(int32_t rawX); |
| float toDisplayX(int32_t rawX, int32_t displayWidth); |
| float toDisplayY(int32_t rawY); |
| float toDisplayY(int32_t rawY, int32_t displayHeight); |
| |
| }; |
| |
| const int32_t TouchInputMapperTest::RAW_X_MIN = 25; |
| const int32_t TouchInputMapperTest::RAW_X_MAX = 1019; |
| const int32_t TouchInputMapperTest::RAW_Y_MIN = 30; |
| const int32_t TouchInputMapperTest::RAW_Y_MAX = 1009; |
| const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31; |
| const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15; |
| const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = 255; |
| const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7; |
| const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7; |
| const int32_t TouchInputMapperTest::RAW_DISTANCE_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_DISTANCE_MAX = 7; |
| const int32_t TouchInputMapperTest::RAW_TILT_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_TILT_MAX = 150; |
| const int32_t TouchInputMapperTest::RAW_ID_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_ID_MAX = 9; |
| const int32_t TouchInputMapperTest::RAW_SLOT_MIN = 0; |
| const int32_t TouchInputMapperTest::RAW_SLOT_MAX = 9; |
| const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH; |
| const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT; |
| const float TouchInputMapperTest::X_PRECISION_VIRTUAL = |
| float(RAW_X_MAX - RAW_X_MIN + 1) / VIRTUAL_DISPLAY_WIDTH; |
| const float TouchInputMapperTest::Y_PRECISION_VIRTUAL = |
| float(RAW_Y_MAX - RAW_Y_MIN + 1) / VIRTUAL_DISPLAY_HEIGHT; |
| const TouchAffineTransformation TouchInputMapperTest::AFFINE_TRANSFORM = |
| TouchAffineTransformation(1, -2, 3, -4, 5, -6); |
| |
| const float TouchInputMapperTest::GEOMETRIC_SCALE = |
| avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN + 1), |
| float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN + 1)); |
| |
| const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = { |
| { KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 }, |
| { KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 }, |
| }; |
| |
| void TouchInputMapperTest::prepareDisplay(ui::Rotation orientation, std::optional<uint8_t> port) { |
| setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID, |
| port, ViewportType::INTERNAL); |
| } |
| |
| void TouchInputMapperTest::prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port) { |
| setDisplayInfoAndReconfigure(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, |
| ui::ROTATION_0, SECONDARY_UNIQUE_ID, port, type); |
| } |
| |
| void TouchInputMapperTest::prepareVirtualDisplay(ui::Rotation orientation) { |
| setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH, VIRTUAL_DISPLAY_HEIGHT, |
| orientation, VIRTUAL_DISPLAY_UNIQUE_ID, NO_PORT, |
| ViewportType::VIRTUAL); |
| } |
| |
| void TouchInputMapperTest::prepareVirtualKeys() { |
| mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[0]); |
| mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[1]); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE); |
| mFakeEventHub->addKey(EVENTHUB_ID, KEY_MENU, 0, AKEYCODE_MENU, POLICY_FLAG_WAKE); |
| } |
| |
| void TouchInputMapperTest::prepareLocationCalibration() { |
| mFakePolicy->setTouchAffineTransformation(AFFINE_TRANSFORM); |
| } |
| |
| int32_t TouchInputMapperTest::toRawX(float displayX) { |
| return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH + RAW_X_MIN); |
| } |
| |
| int32_t TouchInputMapperTest::toRawY(float displayY) { |
| return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT + RAW_Y_MIN); |
| } |
| |
| int32_t TouchInputMapperTest::toRotatedRawX(float displayX) { |
| return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_HEIGHT + RAW_X_MIN); |
| } |
| |
| int32_t TouchInputMapperTest::toRotatedRawY(float displayY) { |
| return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_WIDTH + RAW_Y_MIN); |
| } |
| |
| float TouchInputMapperTest::toCookedX(float rawX, float rawY) { |
| AFFINE_TRANSFORM.applyTo(rawX, rawY); |
| return rawX; |
| } |
| |
| float TouchInputMapperTest::toCookedY(float rawX, float rawY) { |
| AFFINE_TRANSFORM.applyTo(rawX, rawY); |
| return rawY; |
| } |
| |
| float TouchInputMapperTest::toDisplayX(int32_t rawX) { |
| return toDisplayX(rawX, DISPLAY_WIDTH); |
| } |
| |
| float TouchInputMapperTest::toDisplayX(int32_t rawX, int32_t displayWidth) { |
| return float(rawX - RAW_X_MIN) * displayWidth / (RAW_X_MAX - RAW_X_MIN + 1); |
| } |
| |
| float TouchInputMapperTest::toDisplayY(int32_t rawY) { |
| return toDisplayY(rawY, DISPLAY_HEIGHT); |
| } |
| |
| float TouchInputMapperTest::toDisplayY(int32_t rawY, int32_t displayHeight) { |
| return float(rawY - RAW_Y_MIN) * displayHeight / (RAW_Y_MAX - RAW_Y_MIN + 1); |
| } |
| |
| |
| // --- SingleTouchInputMapperTest --- |
| |
| class SingleTouchInputMapperTest : public TouchInputMapperTest { |
| protected: |
| void prepareButtons(); |
| void prepareAxes(int axes); |
| |
| void processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y); |
| void processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y); |
| void processUp(SingleTouchInputMapper& mappery); |
| void processPressure(SingleTouchInputMapper& mapper, int32_t pressure); |
| void processToolMajor(SingleTouchInputMapper& mapper, int32_t toolMajor); |
| void processDistance(SingleTouchInputMapper& mapper, int32_t distance); |
| void processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, int32_t tiltY); |
| void processKey(SingleTouchInputMapper& mapper, int32_t code, int32_t value); |
| void processSync(SingleTouchInputMapper& mapper); |
| }; |
| |
| void SingleTouchInputMapperTest::prepareButtons() { |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); |
| } |
| |
| void SingleTouchInputMapperTest::prepareAxes(int axes) { |
| if (axes & POSITION) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); |
| } |
| if (axes & PRESSURE) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MIN, |
| RAW_PRESSURE_MAX, 0, 0); |
| } |
| if (axes & TOOL) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, |
| 0); |
| } |
| if (axes & DISTANCE) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_DISTANCE, RAW_DISTANCE_MIN, |
| RAW_DISTANCE_MAX, 0, 0); |
| } |
| if (axes & TILT) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_X, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_Y, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0); |
| } |
| } |
| |
| void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y); |
| } |
| |
| void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y); |
| } |
| |
| void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper& mapper) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 0); |
| } |
| |
| void SingleTouchInputMapperTest::processPressure(SingleTouchInputMapper& mapper, int32_t pressure) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_PRESSURE, pressure); |
| } |
| |
| void SingleTouchInputMapperTest::processToolMajor(SingleTouchInputMapper& mapper, |
| int32_t toolMajor) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TOOL_WIDTH, toolMajor); |
| } |
| |
| void SingleTouchInputMapperTest::processDistance(SingleTouchInputMapper& mapper, int32_t distance) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_DISTANCE, distance); |
| } |
| |
| void SingleTouchInputMapperTest::processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, |
| int32_t tiltY) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_X, tiltX); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_Y, tiltY); |
| } |
| |
| void SingleTouchInputMapperTest::processKey(SingleTouchInputMapper& mapper, int32_t code, |
| int32_t value) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value); |
| } |
| |
| void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper& mapper) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndNotACursor_ReturnsPointer) { |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchScreen_ReturnsTouchScreen) { |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Unknown key. |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A)); |
| |
| // Virtual key is down. |
| int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); |
| int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); |
| processDown(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); |
| |
| ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); |
| |
| // Virtual key is up. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); |
| |
| ASSERT_EQ(AKEY_STATE_UP, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, GetScanCodeState) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Unknown key. |
| ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A)); |
| |
| // Virtual key is down. |
| int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); |
| int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); |
| processDown(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); |
| |
| ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); |
| |
| // Virtual key is up. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled()); |
| |
| ASSERT_EQ(AKEY_STATE_UP, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| uint8_t flags[2] = { 0, 0 }; |
| ASSERT_TRUE( |
| mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_HOME, AKEYCODE_A}, flags)); |
| ASSERT_TRUE(flags[0]); |
| ASSERT_FALSE(flags[1]); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyKeyArgs args; |
| |
| // Press virtual key. |
| int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); |
| int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); |
| processDown(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Release virtual key. |
| processUp(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args)); |
| ASSERT_EQ(ARBITRARY_TIME, args.eventTime); |
| ASSERT_EQ(DEVICE_ID, args.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source); |
| ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags); |
| ASSERT_EQ(AKEYCODE_HOME, args.keyCode); |
| ASSERT_EQ(KEY_HOME, args.scanCode); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState); |
| ASSERT_EQ(ARBITRARY_TIME, args.downTime); |
| |
| // Should not have sent any motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyKeyArgs keyArgs; |
| |
| // Press virtual key. |
| int32_t x = toRawX(VIRTUAL_KEYS[0].centerX); |
| int32_t y = toRawY(VIRTUAL_KEYS[0].centerY); |
| processDown(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); |
| ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags); |
| ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); |
| ASSERT_EQ(KEY_HOME, keyArgs.scanCode); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); |
| ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); |
| |
| // Move out of bounds. This should generate a cancel and a pointer down since we moved |
| // into the display area. |
| y -= 100; |
| processMove(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, keyArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source); |
| ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY |
| | AKEY_EVENT_FLAG_CANCELED, keyArgs.flags); |
| ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode); |
| ASSERT_EQ(KEY_HOME, keyArgs.scanCode); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState); |
| ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime); |
| |
| NotifyMotionArgs motionArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Keep moving out of bounds. Should generate a pointer move. |
| y -= 50; |
| processMove(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Release out of bounds. Should generate a pointer up. |
| processUp(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Initially go down out of bounds. |
| int32_t x = -10; |
| int32_t y = -10; |
| processDown(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Move into the display area. Should generate a pointer down. |
| x = 50; |
| y = 75; |
| processMove(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Release. Should generate a pointer up. |
| processUp(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture_VirtualDisplay) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.displayId", VIRTUAL_DISPLAY_UNIQUE_ID); |
| |
| prepareVirtualDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Down. |
| int32_t x = 100; |
| int32_t y = 125; |
| processDown(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), |
| 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Move. |
| x += 50; |
| y += 75; |
| processMove(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), |
| 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Up. |
| processUp(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT), |
| 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Down. |
| int32_t x = 100; |
| int32_t y = 125; |
| processDown(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Move. |
| x += 50; |
| y += 75; |
| processMove(mapper, x, y); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Up. |
| processUp(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_DoesNotRotateMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| // InputReader works in the un-rotated coordinate space, so orientation-aware devices do not |
| // need to be rotated. Touchscreens are orientation-aware by default. |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs args; |
| |
| // Rotation 90. |
| prepareDisplay(ui::ROTATION_90); |
| processDown(mapper, toRawX(50), toRawY(75)); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_RotatesMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| // Since InputReader works in the un-rotated coordinate space, only devices that are not |
| // orientation-aware are affected by display rotation. |
| addConfigurationProperty("touch.orientationAware", "0"); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs args; |
| |
| // Rotation 0. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| processDown(mapper, toRawX(50), toRawY(75)); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Rotation 90. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_90); |
| processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Rotation 180. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_180); |
| processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Rotation 270. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_270); |
| processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50)); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation0_RotatesMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.orientationAware", "1"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_0"); |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| NotifyMotionArgs args; |
| |
| // Orientation 0. |
| processDown(mapper, toRawX(50), toRawY(75)); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation90_RotatesMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.orientationAware", "1"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_90"); |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| NotifyMotionArgs args; |
| |
| // Orientation 90. |
| processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50)); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation180_RotatesMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.orientationAware", "1"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_180"); |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| NotifyMotionArgs args; |
| |
| // Orientation 180. |
| processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation270_RotatesMotions) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.orientationAware", "1"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_270"); |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| NotifyMotionArgs args; |
| |
| // Orientation 270. |
| processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationSpecified_RotatesMotionWithDisplay) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| // Since InputReader works in the un-rotated coordinate space, only devices that are not |
| // orientation-aware are affected by display rotation. |
| addConfigurationProperty("touch.orientationAware", "0"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_90"); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs args; |
| |
| // Orientation 90, Rotation 0. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_0); |
| processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50)); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Orientation 90, Rotation 90. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_90); |
| processDown(mapper, toRawX(50), toRawY(75)); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Orientation 90, Rotation 180. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_180); |
| processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| |
| // Orientation 90, Rotation 270. |
| clearViewports(); |
| prepareDisplay(ui::ROTATION_270); |
| processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN); |
| processSync(mapper); |
| |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_IgnoresTouchesOutsidePhysicalFrame) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.orientationAware", "1"); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Set a physical frame in the display viewport. |
| auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| viewport->physicalLeft = 20; |
| viewport->physicalTop = 600; |
| viewport->physicalRight = 30; |
| viewport->physicalBottom = 610; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // Start the touch. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1); |
| processSync(mapper); |
| |
| // Expect all input starting outside the physical frame to be ignored. |
| const std::array<Point, 6> outsidePoints = { |
| {{0, 0}, {19, 605}, {31, 605}, {25, 599}, {25, 611}, {DISPLAY_WIDTH, DISPLAY_HEIGHT}}}; |
| for (const auto& p : outsidePoints) { |
| processMove(mapper, toRawX(p.x), toRawY(p.y)); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| // Move the touch into the physical frame. |
| processMove(mapper, toRawX(25), toRawY(605)); |
| processSync(mapper); |
| NotifyMotionArgs args; |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| EXPECT_NEAR(25, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(605, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| |
| // Once the touch down is reported, continue reporting input, even if it is outside the frame. |
| for (const auto& p : outsidePoints) { |
| processMove(mapper, toRawX(p.x), toRawY(p.y)); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| EXPECT_NEAR(p.x, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1); |
| EXPECT_NEAR(p.y, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1); |
| } |
| |
| processUp(mapper); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE( |
| mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_DoesntCheckPhysicalFrameForTouchpads) { |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(fakePointerController); |
| |
| addConfigurationProperty("touch.deviceType", "pointer"); |
| prepareAxes(POSITION); |
| prepareDisplay(ui::ROTATION_0); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Set a physical frame in the display viewport. |
| auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| viewport->physicalLeft = 20; |
| viewport->physicalTop = 600; |
| viewport->physicalRight = 30; |
| viewport->physicalBottom = 610; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // Start the touch. |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1); |
| processSync(mapper); |
| |
| // Expect all input starting outside the physical frame to result in NotifyMotionArgs being |
| // produced. |
| const std::array<Point, 6> outsidePoints = { |
| {{0, 0}, {19, 605}, {31, 605}, {25, 599}, {25, 611}, {DISPLAY_WIDTH, DISPLAY_HEIGHT}}}; |
| for (const auto& p : outsidePoints) { |
| processMove(mapper, toRawX(p.x), toRawY(p.y)); |
| processSync(mapper); |
| EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled()); |
| } |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION | PRESSURE | TOOL | DISTANCE | TILT); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // These calculations are based on the input device calibration documentation. |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawPressure = 10; |
| int32_t rawToolMajor = 12; |
| int32_t rawDistance = 2; |
| int32_t rawTiltX = 30; |
| int32_t rawTiltY = 110; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float pressure = float(rawPressure) / RAW_PRESSURE_MAX; |
| float size = float(rawToolMajor) / RAW_TOOL_MAX; |
| float tool = float(rawToolMajor) * GEOMETRIC_SCALE; |
| float distance = float(rawDistance); |
| |
| float tiltCenter = (RAW_TILT_MAX + RAW_TILT_MIN) * 0.5f; |
| float tiltScale = M_PI / 180; |
| float tiltXAngle = (rawTiltX - tiltCenter) * tiltScale; |
| float tiltYAngle = (rawTiltY - tiltCenter) * tiltScale; |
| float orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); |
| float tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); |
| |
| processDown(mapper, rawX, rawY); |
| processPressure(mapper, rawPressure); |
| processToolMajor(mapper, rawToolMajor); |
| processDistance(mapper, rawDistance); |
| processTilt(mapper, rawTiltX, rawTiltY); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, pressure, size, tool, tool, tool, tool, orientation, distance)); |
| ASSERT_EQ(tilt, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_TILT)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_XYAxes_AffineCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareLocationCalibration(); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| |
| float x = toDisplayX(toCookedX(rawX, rawY)); |
| float y = toDisplayY(toCookedY(rawX, rawY)); |
| |
| processDown(mapper, rawX, rawY); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, 1, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllButtons) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| NotifyKeyArgs keyArgs; |
| |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_LEFT, release BTN_LEFT |
| processKey(mapper, BTN_LEFT, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_LEFT, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE |
| processKey(mapper, BTN_RIGHT, 1); |
| processKey(mapper, BTN_MIDDLE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, |
| motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, |
| motionArgs.buttonState); |
| |
| processKey(mapper, BTN_RIGHT, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_MIDDLE, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_BACK, release BTN_BACK |
| processKey(mapper, BTN_BACK, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_BACK, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| // press BTN_SIDE, release BTN_SIDE |
| processKey(mapper, BTN_SIDE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_SIDE, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| // press BTN_FORWARD, release BTN_FORWARD |
| processKey(mapper, BTN_FORWARD, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_FORWARD, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| // press BTN_EXTRA, release BTN_EXTRA |
| processKey(mapper, BTN_EXTRA, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_EXTRA, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| |
| // press BTN_STYLUS, release BTN_STYLUS |
| processKey(mapper, BTN_STYLUS, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_STYLUS, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_STYLUS2, release BTN_STYLUS2 |
| processKey(mapper, BTN_STYLUS2, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_STYLUS2, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // release touch |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllToolTypes) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // default tool type is finger |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // eraser |
| processKey(mapper, BTN_TOOL_RUBBER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType); |
| |
| // stylus |
| processKey(mapper, BTN_TOOL_RUBBER, 0); |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // brush |
| processKey(mapper, BTN_TOOL_PEN, 0); |
| processKey(mapper, BTN_TOOL_BRUSH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // pencil |
| processKey(mapper, BTN_TOOL_BRUSH, 0); |
| processKey(mapper, BTN_TOOL_PENCIL, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // air-brush |
| processKey(mapper, BTN_TOOL_PENCIL, 0); |
| processKey(mapper, BTN_TOOL_AIRBRUSH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // mouse |
| processKey(mapper, BTN_TOOL_AIRBRUSH, 0); |
| processKey(mapper, BTN_TOOL_MOUSE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // lens |
| processKey(mapper, BTN_TOOL_MOUSE, 0); |
| processKey(mapper, BTN_TOOL_LENS, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // double-tap |
| processKey(mapper, BTN_TOOL_LENS, 0); |
| processKey(mapper, BTN_TOOL_DOUBLETAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // triple-tap |
| processKey(mapper, BTN_TOOL_DOUBLETAP, 0); |
| processKey(mapper, BTN_TOOL_TRIPLETAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // quad-tap |
| processKey(mapper, BTN_TOOL_TRIPLETAP, 0); |
| processKey(mapper, BTN_TOOL_QUADTAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // finger |
| processKey(mapper, BTN_TOOL_QUADTAP, 0); |
| processKey(mapper, BTN_TOOL_FINGER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // stylus trumps finger |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // eraser trumps stylus |
| processKey(mapper, BTN_TOOL_RUBBER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType); |
| |
| // mouse trumps eraser |
| processKey(mapper, BTN_TOOL_MOUSE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // back to default tool type |
| processKey(mapper, BTN_TOOL_MOUSE, 0); |
| processKey(mapper, BTN_TOOL_RUBBER, 0); |
| processKey(mapper, BTN_TOOL_PEN, 0); |
| processKey(mapper, BTN_TOOL_FINGER, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_FINGER, 0, AKEYCODE_UNKNOWN, 0); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0 |
| processKey(mapper, BTN_TOOL_FINGER, 1); |
| processMove(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // move a little |
| processMove(mapper, 150, 250); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // down when BTN_TOUCH is pressed, pressure defaults to 1 |
| processKey(mapper, BTN_TOUCH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // up when BTN_TOUCH is released, hover restored |
| processKey(mapper, BTN_TOUCH, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // exit hover when pointer goes away |
| processKey(mapper, BTN_TOOL_FINGER, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenAbsPressureIsPresent_HoversIfItsValueIsZero) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION | PRESSURE); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // initially hovering because pressure is 0 |
| processDown(mapper, 100, 200); |
| processPressure(mapper, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // move a little |
| processMove(mapper, 150, 250); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // down when pressure is non-zero |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // up when pressure becomes 0, hover restored |
| processPressure(mapper, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // exit hover when pointer goes away |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Reset_CancelsOngoingGesture) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION | PRESSURE); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Touch down. |
| processDown(mapper, 100, 200); |
| processPressure(mapper, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // Reset the mapper. This should cancel the ongoing gesture. |
| resetMapper(mapper, ARBITRARY_TIME); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_CANCEL))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Reset_RecreatesTouchState) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION | PRESSURE); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Set the initial state for the touch pointer. |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 100); |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 200); |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MAX); |
| mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1); |
| |
| // Reset the mapper. When the mapper is reset, we expect it to attempt to recreate the touch |
| // state by reading the current axis values. Since there was no ongoing gesture, calling reset |
| // does not generate any events. |
| resetMapper(mapper, ARBITRARY_TIME); |
| |
| // Send a sync to simulate an empty touch frame where nothing changes. The mapper should use |
| // the recreated touch state to generate a down event. |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, |
| Process_WhenViewportDisplayIdChanged_TouchIsCanceledAndDeviceIsReset) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| NotifyMotionArgs motionArgs; |
| |
| // Down. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| |
| // We should receive a down event |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| |
| // Change display id |
| clearViewports(); |
| prepareSecondaryDisplay(ViewportType::INTERNAL); |
| |
| // We should receive a cancel event |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| // Then receive reset called |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, |
| Process_WhenViewportActiveStatusChanged_TouchIsCanceledAndDeviceIsReset) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| NotifyMotionArgs motionArgs; |
| |
| // Start a new gesture. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| |
| // Make the viewport inactive. This will put the device in disabled mode. |
| auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| viewport->isActive = false; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // We should receive a cancel event for the ongoing gesture. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| // Then we should be notified that the device was reset. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| // No events are generated while the viewport is inactive. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Start a new gesture while the viewport is still inactive. |
| processDown(mapper, 300, 400); |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 300); |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 400); |
| mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1); |
| processSync(mapper); |
| |
| // Make the viewport active again. The device should resume processing events. |
| viewport->isActive = true; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // The device is reset because it changes back to direct mode, without generating any events. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // In the next sync, the touch state that was recreated when the device was reset is reported. |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // No more events. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, ButtonIsReleasedOnTouchUp) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| // Press a stylus button. |
| processKey(mapper, BTN_STYLUS, 1); |
| processSync(mapper); |
| |
| // Start a touch gesture and ensure the BUTTON_PRESS event is generated. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithCoords(toDisplayX(100), toDisplayY(200)), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithCoords(toDisplayX(100), toDisplayY(200)), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| // Release the touch gesture. Ensure that the BUTTON_RELEASE event is generated even though |
| // the button has not actually been released, since there will be no pointers through which the |
| // button state can be reported. The event is generated at the location of the pointer before |
| // it went up. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), |
| WithCoords(toDisplayX(100), toDisplayY(200)), WithButtonState(0)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithCoords(toDisplayX(100), toDisplayY(200)), WithButtonState(0)))); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, StylusButtonMotionEventsDisabled) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| |
| mFakePolicy->setStylusButtonMotionEventsEnabled(false); |
| |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| // Press a stylus button. |
| processKey(mapper, BTN_STYLUS, 1); |
| processSync(mapper); |
| |
| // Start a touch gesture and ensure that the stylus button is not reported. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithButtonState(0)))); |
| |
| // Release and press the stylus button again. |
| processKey(mapper, BTN_STYLUS, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0)))); |
| processKey(mapper, BTN_STYLUS, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0)))); |
| |
| // Release the touch gesture. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, WhenDeviceTypeIsSetToTouchNavigation_setsCorrectType) { |
| mFakePolicy->addDeviceTypeAssociation(DEVICE_LOCATION, "touchNavigation"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| ASSERT_EQ(AINPUT_SOURCE_TOUCH_NAVIGATION, mapper.getSources()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenConfigEnabled_ShouldShowDirectStylusPointer) { |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| mFakePolicy->setPointerController(fakePointerController); |
| mFakePolicy->setStylusPointerIconEnabled(true); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processMove(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithToolType(ToolType::STYLUS), |
| WithPointerCoords(0, toDisplayX(100), toDisplayY(200))))); |
| ASSERT_TRUE(fakePointerController->isPointerShown()); |
| ASSERT_NO_FATAL_FAILURE( |
| fakePointerController->assertPosition(toDisplayX(100), toDisplayY(200))); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, Process_WhenConfigDisabled_ShouldNotShowDirectStylusPointer) { |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| mFakePolicy->setPointerController(fakePointerController); |
| mFakePolicy->setStylusPointerIconEnabled(false); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processMove(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithToolType(ToolType::STYLUS), |
| WithPointerCoords(0, toDisplayX(100), toDisplayY(200))))); |
| ASSERT_FALSE(fakePointerController->isPointerShown()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, WhenDeviceTypeIsChangedToTouchNavigation_updatesDeviceType) { |
| // Initialize the device without setting device source to touch navigation. |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Ensure that the device is created as a touchscreen, not touch navigation. |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); |
| |
| // Add device type association after the device was created. |
| mFakePolicy->addDeviceTypeAssociation(DEVICE_LOCATION, "touchNavigation"); |
| |
| // Send update to the mapper. |
| std::list<NotifyArgs> unused2 = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DEVICE_TYPE /*changes*/); |
| |
| // Check whether device type update was successful. |
| ASSERT_EQ(AINPUT_SOURCE_TOUCH_NAVIGATION, mDevice->getSources()); |
| } |
| |
| TEST_F(SingleTouchInputMapperTest, HoverEventsOutsidePhysicalFrameAreIgnored) { |
| // Initialize the device without setting device source to touch navigation. |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| |
| // Set a physical frame in the display viewport. |
| auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| viewport->physicalLeft = 0; |
| viewport->physicalTop = 0; |
| viewport->physicalRight = DISPLAY_WIDTH / 2; |
| viewport->physicalBottom = DISPLAY_HEIGHT / 2; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Hovering inside the physical frame produces events. |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processMove(mapper, RAW_X_MIN + 1, RAW_Y_MIN + 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE))); |
| |
| // Leaving the physical frame ends the hovering gesture. |
| processMove(mapper, RAW_X_MAX - 1, RAW_Y_MAX - 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT))); |
| |
| // Moving outside the physical frame does not produce events. |
| processMove(mapper, RAW_X_MAX - 2, RAW_Y_MAX - 2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Re-entering the physical frame produces events. |
| processMove(mapper, RAW_X_MIN, RAW_Y_MIN); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE))); |
| } |
| |
| // --- TouchDisplayProjectionTest --- |
| |
| class TouchDisplayProjectionTest : public SingleTouchInputMapperTest { |
| public: |
| // The values inside DisplayViewport are expected to be pre-rotated. This updates the current |
| // DisplayViewport to pre-rotate the values. The viewport's physical display will be set to the |
| // rotated equivalent of the given un-rotated physical display bounds. |
| void configurePhysicalDisplay(ui::Rotation orientation, Rect naturalPhysicalDisplay, |
| int32_t naturalDisplayWidth = DISPLAY_WIDTH, |
| int32_t naturalDisplayHeight = DISPLAY_HEIGHT) { |
| uint32_t inverseRotationFlags; |
| auto rotatedWidth = naturalDisplayWidth; |
| auto rotatedHeight = naturalDisplayHeight; |
| switch (orientation) { |
| case ui::ROTATION_90: |
| inverseRotationFlags = ui::Transform::ROT_270; |
| std::swap(rotatedWidth, rotatedHeight); |
| break; |
| case ui::ROTATION_180: |
| inverseRotationFlags = ui::Transform::ROT_180; |
| break; |
| case ui::ROTATION_270: |
| inverseRotationFlags = ui::Transform::ROT_90; |
| std::swap(rotatedWidth, rotatedHeight); |
| break; |
| case ui::ROTATION_0: |
| inverseRotationFlags = ui::Transform::ROT_0; |
| break; |
| } |
| |
| const ui::Transform rotation(inverseRotationFlags, rotatedWidth, rotatedHeight); |
| const Rect rotatedPhysicalDisplay = rotation.transform(naturalPhysicalDisplay); |
| |
| std::optional<DisplayViewport> internalViewport = |
| *mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| DisplayViewport& v = *internalViewport; |
| v.displayId = DISPLAY_ID; |
| v.orientation = orientation; |
| |
| v.logicalLeft = 0; |
| v.logicalTop = 0; |
| v.logicalRight = 100; |
| v.logicalBottom = 100; |
| |
| v.physicalLeft = rotatedPhysicalDisplay.left; |
| v.physicalTop = rotatedPhysicalDisplay.top; |
| v.physicalRight = rotatedPhysicalDisplay.right; |
| v.physicalBottom = rotatedPhysicalDisplay.bottom; |
| |
| v.deviceWidth = rotatedWidth; |
| v.deviceHeight = rotatedHeight; |
| |
| v.isActive = true; |
| v.uniqueId = UNIQUE_ID; |
| v.type = ViewportType::INTERNAL; |
| mFakePolicy->updateViewport(v); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| } |
| |
| void assertReceivedMove(const Point& point) { |
| NotifyMotionArgs motionArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], point.x, point.y, |
| 1, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| }; |
| |
| TEST_F(TouchDisplayProjectionTest, IgnoresTouchesOutsidePhysicalDisplay) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Configure the DisplayViewport such that the logical display maps to a subsection of |
| // the display panel called the physical display. Here, the physical display is bounded by the |
| // points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800. |
| static const Rect kPhysicalDisplay{10, 20, 70, 160}; |
| static const std::array<Point, 6> kPointsOutsidePhysicalDisplay{ |
| {{-10, -10}, {0, 0}, {5, 100}, {50, 15}, {75, 100}, {50, 165}}}; |
| |
| for (auto orientation : {ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180, ui::ROTATION_270}) { |
| configurePhysicalDisplay(orientation, kPhysicalDisplay); |
| |
| // Touches outside the physical display should be ignored, and should not generate any |
| // events. Ensure touches at the following points that lie outside of the physical display |
| // area do not generate any events. |
| for (const auto& point : kPointsOutsidePhysicalDisplay) { |
| processDown(mapper, toRawX(point.x), toRawY(point.y)); |
| processSync(mapper); |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()) |
| << "Unexpected event generated for touch outside physical display at point: " |
| << point.x << ", " << point.y; |
| } |
| } |
| } |
| |
| TEST_F(TouchDisplayProjectionTest, EmitsTouchDownAfterEnteringPhysicalDisplay) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| |
| prepareButtons(); |
| prepareAxes(POSITION); |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Configure the DisplayViewport such that the logical display maps to a subsection of |
| // the display panel called the physical display. Here, the physical display is bounded by the |
| // points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800. |
| static const Rect kPhysicalDisplay{10, 20, 70, 160}; |
| |
| for (auto orientation : {ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180, ui::ROTATION_270}) { |
| configurePhysicalDisplay(orientation, kPhysicalDisplay); |
| |
| // Touches that start outside the physical display should be ignored until it enters the |
| // physical display bounds, at which point it should generate a down event. Start a touch at |
| // the point (5, 100), which is outside the physical display bounds. |
| static const Point kOutsidePoint{5, 100}; |
| processDown(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y)); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Move the touch into the physical display area. This should generate a pointer down. |
| processMove(mapper, toRawX(11), toRawY(21)); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(motionArgs.pointerCoords[0], 11, 21, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Move the touch inside the physical display area. This should generate a pointer move. |
| processMove(mapper, toRawX(69), toRawY(159)); |
| processSync(mapper); |
| assertReceivedMove({69, 159}); |
| |
| // Move outside the physical display area. Since the pointer is already down, this should |
| // now continue generating events. |
| processMove(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y)); |
| processSync(mapper); |
| assertReceivedMove(kOutsidePoint); |
| |
| // Release. This should generate a pointer up. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], kOutsidePoint.x, |
| kOutsidePoint.y, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Ensure no more events were generated. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| } |
| |
| // --- TouchscreenPrecisionTests --- |
| |
| // This test suite is used to ensure that touchscreen devices are scaled and configured correctly |
| // in various orientations and with different display rotations. We configure the touchscreen to |
| // have a higher resolution than that of the display by an integer scale factor in each axis so that |
| // we can enforce that coordinates match precisely as expected. |
| class TouchscreenPrecisionTestsFixture : public TouchDisplayProjectionTest, |
| public ::testing::WithParamInterface<ui::Rotation> { |
| public: |
| void SetUp() override { |
| SingleTouchInputMapperTest::SetUp(); |
| |
| // Prepare the raw axes to have twice the resolution of the display in the X axis and |
| // four times the resolution of the display in the Y axis. |
| prepareButtons(); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, PRECISION_RAW_X_MIN, PRECISION_RAW_X_MAX, |
| PRECISION_RAW_X_FLAT, PRECISION_RAW_X_FUZZ, |
| PRECISION_RAW_X_RES); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, PRECISION_RAW_Y_MIN, PRECISION_RAW_Y_MAX, |
| PRECISION_RAW_Y_FLAT, PRECISION_RAW_Y_FUZZ, |
| PRECISION_RAW_Y_RES); |
| } |
| |
| static const int32_t PRECISION_RAW_X_MIN = TouchInputMapperTest::RAW_X_MIN; |
| static const int32_t PRECISION_RAW_X_MAX = PRECISION_RAW_X_MIN + DISPLAY_WIDTH * 2 - 1; |
| static const int32_t PRECISION_RAW_Y_MIN = TouchInputMapperTest::RAW_Y_MIN; |
| static const int32_t PRECISION_RAW_Y_MAX = PRECISION_RAW_Y_MIN + DISPLAY_HEIGHT * 4 - 1; |
| |
| static const int32_t PRECISION_RAW_X_RES = 50; // units per millimeter |
| static const int32_t PRECISION_RAW_Y_RES = 100; // units per millimeter |
| |
| static const int32_t PRECISION_RAW_X_FLAT = 16; |
| static const int32_t PRECISION_RAW_Y_FLAT = 32; |
| |
| static const int32_t PRECISION_RAW_X_FUZZ = 4; |
| static const int32_t PRECISION_RAW_Y_FUZZ = 8; |
| |
| static const std::array<Point, 4> kRawCorners; |
| }; |
| |
| const std::array<Point, 4> TouchscreenPrecisionTestsFixture::kRawCorners = {{ |
| {PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MIN}, // left-top |
| {PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MIN}, // right-top |
| {PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MAX}, // right-bottom |
| {PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MAX}, // left-bottom |
| }}; |
| |
| // Tests for how the touchscreen is oriented relative to the natural orientation of the display. |
| // For example, if a touchscreen is configured with an orientation of 90 degrees, it is a portrait |
| // touchscreen panel that is used on a device whose natural display orientation is in landscape. |
| TEST_P(TouchscreenPrecisionTestsFixture, OrientationPrecision) { |
| enum class Orientation { |
| ORIENTATION_0 = ui::toRotationInt(ui::ROTATION_0), |
| ORIENTATION_90 = ui::toRotationInt(ui::ROTATION_90), |
| ORIENTATION_180 = ui::toRotationInt(ui::ROTATION_180), |
| ORIENTATION_270 = ui::toRotationInt(ui::ROTATION_270), |
| ftl_last = ORIENTATION_270, |
| }; |
| using Orientation::ORIENTATION_0, Orientation::ORIENTATION_90, Orientation::ORIENTATION_180, |
| Orientation::ORIENTATION_270; |
| static const std::map<Orientation, std::array<vec2, 4> /*mappedCorners*/> kMappedCorners = { |
| {ORIENTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}}, |
| {ORIENTATION_90, {{{0, 479.5}, {0, 0}, {799.75, 0}, {799.75, 479.5}}}}, |
| {ORIENTATION_180, {{{479.5, 799.75}, {0, 799.75}, {0, 0}, {479.5, 0}}}}, |
| {ORIENTATION_270, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}}, |
| }; |
| |
| const auto touchscreenOrientation = static_cast<Orientation>(ui::toRotationInt(GetParam())); |
| |
| // Configure the touchscreen as being installed in the one of the four different orientations |
| // relative to the display. |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.orientation", ftl::enum_string(touchscreenOrientation).c_str()); |
| prepareDisplay(ui::ROTATION_0); |
| |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // If the touchscreen is installed in a rotated orientation relative to the display (i.e. in |
| // orientations of either 90 or 270) this means the display's natural resolution will be |
| // flipped. |
| const bool displayRotated = |
| touchscreenOrientation == ORIENTATION_90 || touchscreenOrientation == ORIENTATION_270; |
| const int32_t width = displayRotated ? DISPLAY_HEIGHT : DISPLAY_WIDTH; |
| const int32_t height = displayRotated ? DISPLAY_WIDTH : DISPLAY_HEIGHT; |
| const Rect physicalFrame{0, 0, width, height}; |
| configurePhysicalDisplay(ui::ROTATION_0, physicalFrame, width, height); |
| |
| const auto& expectedPoints = kMappedCorners.at(touchscreenOrientation); |
| const float expectedPrecisionX = displayRotated ? 4 : 2; |
| const float expectedPrecisionY = displayRotated ? 2 : 4; |
| |
| // Test all four corners. |
| for (int i = 0; i < 4; i++) { |
| const auto& raw = kRawCorners[i]; |
| processDown(mapper, raw.x, raw.y); |
| processSync(mapper); |
| const auto& expected = expectedPoints[i]; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithCoords(expected.x, expected.y), |
| WithPrecision(expectedPrecisionX, expectedPrecisionY)))) |
| << "Failed to process raw point (" << raw.x << ", " << raw.y << ") " |
| << "with touchscreen orientation " |
| << ftl::enum_string(touchscreenOrientation).c_str() << ", expected point (" |
| << expected.x << ", " << expected.y << ")."; |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithCoords(expected.x, expected.y)))); |
| } |
| } |
| |
| TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionWhenOrientationAware) { |
| static const std::map<ui::Rotation /*rotation*/, std::array<vec2, 4> /*mappedCorners*/> |
| kMappedCorners = { |
| {ui::ROTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}}, |
| {ui::ROTATION_90, {{{0.5, 0}, {480, 0}, {480, 799.75}, {0.5, 799.75}}}}, |
| {ui::ROTATION_180, {{{0.5, 0.25}, {480, 0.25}, {480, 800}, {0.5, 800}}}}, |
| {ui::ROTATION_270, {{{0, 0.25}, {479.5, 0.25}, {479.5, 800}, {0, 800}}}}, |
| }; |
| |
| const ui::Rotation displayRotation = GetParam(); |
| |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(displayRotation); |
| |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| const auto& expectedPoints = kMappedCorners.at(displayRotation); |
| |
| // Test all four corners. |
| for (int i = 0; i < 4; i++) { |
| const auto& expected = expectedPoints[i]; |
| const auto& raw = kRawCorners[i]; |
| processDown(mapper, raw.x, raw.y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithCoords(expected.x, expected.y), WithPrecision(2, 4)))) |
| << "Failed to process raw point (" << raw.x << ", " << raw.y << ") " |
| << "with display rotation " << ui::toCString(displayRotation) |
| << ", expected point (" << expected.x << ", " << expected.y << ")."; |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithCoords(expected.x, expected.y)))); |
| } |
| } |
| |
| TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionOrientationAwareInOri270) { |
| static const std::map<ui::Rotation /*orientation*/, std::array<vec2, 4> /*mappedCorners*/> |
| kMappedCorners = { |
| {ui::ROTATION_0, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}}, |
| {ui::ROTATION_90, {{{800, 0}, {800, 479.5}, {0.25, 479.5}, {0.25, 0}}}}, |
| {ui::ROTATION_180, {{{800, 0.5}, {800, 480}, {0.25, 480}, {0.25, 0.5}}}}, |
| {ui::ROTATION_270, {{{799.75, 0.5}, {799.75, 480}, {0, 480}, {0, 0.5}}}}, |
| }; |
| |
| const ui::Rotation displayRotation = GetParam(); |
| |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.orientation", "ORIENTATION_270"); |
| |
| SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| // Ori 270, so width and height swapped |
| const Rect physicalFrame{0, 0, DISPLAY_HEIGHT, DISPLAY_WIDTH}; |
| prepareDisplay(displayRotation); |
| configurePhysicalDisplay(displayRotation, physicalFrame, DISPLAY_HEIGHT, DISPLAY_WIDTH); |
| |
| const auto& expectedPoints = kMappedCorners.at(displayRotation); |
| |
| // Test all four corners. |
| for (int i = 0; i < 4; i++) { |
| const auto& expected = expectedPoints[i]; |
| const auto& raw = kRawCorners[i]; |
| processDown(mapper, raw.x, raw.y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithCoords(expected.x, expected.y), WithPrecision(4, 2)))) |
| << "Failed to process raw point (" << raw.x << ", " << raw.y << ") " |
| << "with display rotation " << ui::toCString(displayRotation) |
| << ", expected point (" << expected.x << ", " << expected.y << ")."; |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithCoords(expected.x, expected.y)))); |
| } |
| } |
| |
| TEST_P(TouchscreenPrecisionTestsFixture, MotionRangesAreOrientedInRotatedDisplay) { |
| const ui::Rotation displayRotation = GetParam(); |
| |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(displayRotation); |
| |
| __attribute__((unused)) SingleTouchInputMapper& mapper = |
| constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| const InputDeviceInfo deviceInfo = mDevice->getDeviceInfo(); |
| // MotionRanges use display pixels as their units |
| const auto* xRange = deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_X, AINPUT_SOURCE_TOUCHSCREEN); |
| const auto* yRange = deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_Y, AINPUT_SOURCE_TOUCHSCREEN); |
| |
| // The MotionRanges should be oriented in the rotated display's coordinate space |
| const bool displayRotated = |
| displayRotation == ui::ROTATION_90 || displayRotation == ui::ROTATION_270; |
| |
| constexpr float MAX_X = 479.5; |
| constexpr float MAX_Y = 799.75; |
| EXPECT_EQ(xRange->min, 0.f); |
| EXPECT_EQ(yRange->min, 0.f); |
| EXPECT_EQ(xRange->max, displayRotated ? MAX_Y : MAX_X); |
| EXPECT_EQ(yRange->max, displayRotated ? MAX_X : MAX_Y); |
| |
| EXPECT_EQ(xRange->flat, 8.f); |
| EXPECT_EQ(yRange->flat, 8.f); |
| |
| EXPECT_EQ(xRange->fuzz, 2.f); |
| EXPECT_EQ(yRange->fuzz, 2.f); |
| |
| EXPECT_EQ(xRange->resolution, 25.f); // pixels per millimeter |
| EXPECT_EQ(yRange->resolution, 25.f); // pixels per millimeter |
| } |
| |
| // Run the precision tests for all rotations. |
| INSTANTIATE_TEST_SUITE_P(TouchscreenPrecisionTests, TouchscreenPrecisionTestsFixture, |
| ::testing::Values(ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180, |
| ui::ROTATION_270), |
| [](const testing::TestParamInfo<ui::Rotation>& testParamInfo) { |
| return ftl::enum_string(testParamInfo.param); |
| }); |
| |
| // --- ExternalStylusFusionTest --- |
| |
| class ExternalStylusFusionTest : public SingleTouchInputMapperTest { |
| public: |
| SingleTouchInputMapper& initializeInputMapperWithExternalStylus() { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareButtons(); |
| prepareAxes(POSITION); |
| auto& mapper = constructAndAddMapper<SingleTouchInputMapper>(); |
| |
| mStylusState.when = ARBITRARY_TIME; |
| mStylusState.pressure = 0.f; |
| mStylusState.toolType = ToolType::STYLUS; |
| mReader->getContext()->setExternalStylusDevices({mExternalStylusDeviceInfo}); |
| configureDevice(InputReaderConfiguration::Change::EXTERNAL_STYLUS_PRESENCE); |
| processExternalStylusState(mapper); |
| return mapper; |
| } |
| |
| std::list<NotifyArgs> processExternalStylusState(InputMapper& mapper) { |
| std::list<NotifyArgs> generatedArgs = mapper.updateExternalStylusState(mStylusState); |
| for (const NotifyArgs& args : generatedArgs) { |
| mFakeListener->notify(args); |
| } |
| // Loop the reader to flush the input listener queue. |
| mReader->loopOnce(); |
| return generatedArgs; |
| } |
| |
| protected: |
| StylusState mStylusState{}; |
| |
| void testStartFusedStylusGesture(SingleTouchInputMapper& mapper) { |
| auto toolTypeSource = |
| AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS)); |
| |
| // The first pointer is withheld. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested( |
| ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT)); |
| |
| // The external stylus reports pressure. The withheld finger pointer is released as a |
| // stylus. |
| mStylusState.pressure = 1.f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // Subsequent pointer events are not withheld. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| void testSuccessfulFusionGesture(SingleTouchInputMapper& mapper) { |
| ASSERT_NO_FATAL_FAILURE(testStartFusedStylusGesture(mapper)); |
| |
| // Releasing the touch pointer ends the gesture. |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithSource(STYLUS_FUSION_SOURCE), |
| WithToolType(ToolType::STYLUS)))); |
| |
| mStylusState.pressure = 0.f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| void testUnsuccessfulFusionGesture(SingleTouchInputMapper& mapper) { |
| // When stylus fusion is not successful, events should be reported with the original source. |
| // In this case, it is from a touchscreen. |
| auto toolTypeSource = |
| AllOf(WithSource(AINPUT_SOURCE_TOUCHSCREEN), WithToolType(ToolType::FINGER)); |
| |
| // The first pointer is withheld when an external stylus is connected, |
| // and a timeout is requested. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested( |
| ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT)); |
| |
| // If the timeout expires early, it is requested again. |
| handleTimeout(mapper, ARBITRARY_TIME + 1); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested( |
| ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT)); |
| |
| // When the timeout expires, the withheld touch is released as a finger pointer. |
| handleTimeout(mapper, ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN)))); |
| |
| // Subsequent pointer events are not withheld. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE)))); |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| private: |
| InputDeviceInfo mExternalStylusDeviceInfo{}; |
| }; |
| |
| TEST_F(ExternalStylusFusionTest, UsesBluetoothStylusSource) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| ASSERT_EQ(STYLUS_FUSION_SOURCE, mapper.getSources()); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, UnsuccessfulFusion) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper)); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, SuccessfulFusion_TouchFirst) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper)); |
| } |
| |
| // Test a successful stylus fusion gesture where the pressure is reported by the external |
| // before the touch is reported by the touchscreen. |
| TEST_F(ExternalStylusFusionTest, SuccessfulFusion_PressureFirst) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS)); |
| |
| // The external stylus reports pressure first. It is ignored for now. |
| mStylusState.pressure = 1.f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // When the touch goes down afterwards, it is reported as a stylus pointer. |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE)))); |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, FusionIsRepeatedForEachNewGesture) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| |
| ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper)); |
| ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper)); |
| |
| ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper)); |
| ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper)); |
| ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper)); |
| ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper)); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, FusedPointerReportsPressureChanges) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS)); |
| |
| mStylusState.pressure = 0.8f; |
| processExternalStylusState(mapper); |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithPressure(0.8f)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // The external stylus reports a pressure change. We wait for some time for a touch event. |
| mStylusState.pressure = 0.6f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is reported within the timeout, it reports the updated pressure. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithPressure(0.6f)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // There is another pressure change. |
| mStylusState.pressure = 0.5f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is not reported within the timeout, a move event is generated to report |
| // the new pressure. |
| handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithPressure(0.5f)))); |
| |
| // If a zero pressure is reported before the touch goes up, the previous pressure value is |
| // repeated indefinitely. |
| mStylusState.pressure = 0.0f; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| processMove(mapper, 102, 202); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithPressure(0.5f)))); |
| processMove(mapper, 103, 203); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithPressure(0.5f)))); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithSource(STYLUS_FUSION_SOURCE), |
| WithToolType(ToolType::STYLUS)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, FusedPointerReportsToolTypeChanges) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| auto source = WithSource(STYLUS_FUSION_SOURCE); |
| |
| mStylusState.pressure = 1.f; |
| mStylusState.toolType = ToolType::ERASER; |
| processExternalStylusState(mapper); |
| processDown(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithToolType(ToolType::ERASER)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // The external stylus reports a tool change. We wait for some time for a touch event. |
| mStylusState.toolType = ToolType::STYLUS; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is reported within the timeout, it reports the updated pressure. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::STYLUS)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // There is another tool type change. |
| mStylusState.toolType = ToolType::FINGER; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is not reported within the timeout, a move event is generated to report |
| // the new tool type. |
| handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithToolType(ToolType::FINGER)))); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithToolType(ToolType::FINGER)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(ExternalStylusFusionTest, FusedPointerReportsButtons) { |
| SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus(); |
| auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS)); |
| |
| ASSERT_NO_FATAL_FAILURE(testStartFusedStylusGesture(mapper)); |
| |
| // The external stylus reports a button change. We wait for some time for a touch event. |
| mStylusState.buttons = AMOTION_EVENT_BUTTON_STYLUS_PRIMARY; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is reported within the timeout, it reports the updated button state. |
| processMove(mapper, 101, 201); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| |
| // The button is now released. |
| mStylusState.buttons = 0; |
| processExternalStylusState(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE( |
| mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT)); |
| |
| // If a touch is not reported within the timeout, a move event is generated to report |
| // the new button state. |
| handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), |
| WithButtonState(0)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithButtonState(0)))); |
| |
| processUp(mapper); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| // --- MultiTouchInputMapperTest --- |
| |
| class MultiTouchInputMapperTest : public TouchInputMapperTest { |
| protected: |
| void prepareAxes(int axes); |
| |
| void processPosition(MultiTouchInputMapper& mapper, int32_t x, int32_t y); |
| void processTouchMajor(MultiTouchInputMapper& mapper, int32_t touchMajor); |
| void processTouchMinor(MultiTouchInputMapper& mapper, int32_t touchMinor); |
| void processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor); |
| void processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor); |
| void processOrientation(MultiTouchInputMapper& mapper, int32_t orientation); |
| void processPressure(MultiTouchInputMapper& mapper, int32_t pressure); |
| void processDistance(MultiTouchInputMapper& mapper, int32_t distance); |
| void processId(MultiTouchInputMapper& mapper, int32_t id); |
| void processSlot(MultiTouchInputMapper& mapper, int32_t slot); |
| void processToolType(MultiTouchInputMapper& mapper, int32_t toolType); |
| void processKey(MultiTouchInputMapper& mapper, int32_t code, int32_t value); |
| void processHidUsage(MultiTouchInputMapper& mapper, int32_t usageCode, int32_t value); |
| void processMTSync(MultiTouchInputMapper& mapper); |
| void processSync(MultiTouchInputMapper& mapper, nsecs_t eventTime = ARBITRARY_TIME, |
| nsecs_t readTime = READ_TIME); |
| }; |
| |
| void MultiTouchInputMapperTest::prepareAxes(int axes) { |
| if (axes & POSITION) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); |
| } |
| if (axes & TOUCH) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, |
| RAW_TOUCH_MAX, 0, 0); |
| if (axes & MINOR) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, |
| RAW_TOUCH_MAX, 0, 0); |
| } |
| } |
| if (axes & TOOL) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, |
| 0, 0); |
| if (axes & MINOR) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN, |
| RAW_TOOL_MAX, 0, 0); |
| } |
| } |
| if (axes & ORIENTATION) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_ORIENTATION, RAW_ORIENTATION_MIN, |
| RAW_ORIENTATION_MAX, 0, 0); |
| } |
| if (axes & PRESSURE) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_PRESSURE, RAW_PRESSURE_MIN, |
| RAW_PRESSURE_MAX, 0, 0); |
| } |
| if (axes & DISTANCE) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_DISTANCE, RAW_DISTANCE_MIN, |
| RAW_DISTANCE_MAX, 0, 0); |
| } |
| if (axes & ID) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0, |
| 0); |
| } |
| if (axes & SLOT) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, 0, 0); |
| mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_MT_SLOT, 0); |
| } |
| if (axes & TOOL_TYPE) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOOL_TYPE, 0, MT_TOOL_MAX, 0, 0); |
| } |
| } |
| |
| void MultiTouchInputMapperTest::processPosition(MultiTouchInputMapper& mapper, int32_t x, |
| int32_t y) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_X, x); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_Y, y); |
| } |
| |
| void MultiTouchInputMapperTest::processTouchMajor(MultiTouchInputMapper& mapper, |
| int32_t touchMajor) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MAJOR, touchMajor); |
| } |
| |
| void MultiTouchInputMapperTest::processTouchMinor(MultiTouchInputMapper& mapper, |
| int32_t touchMinor) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MINOR, touchMinor); |
| } |
| |
| void MultiTouchInputMapperTest::processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MAJOR, toolMajor); |
| } |
| |
| void MultiTouchInputMapperTest::processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MINOR, toolMinor); |
| } |
| |
| void MultiTouchInputMapperTest::processOrientation(MultiTouchInputMapper& mapper, |
| int32_t orientation) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_ORIENTATION, orientation); |
| } |
| |
| void MultiTouchInputMapperTest::processPressure(MultiTouchInputMapper& mapper, int32_t pressure) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_PRESSURE, pressure); |
| } |
| |
| void MultiTouchInputMapperTest::processDistance(MultiTouchInputMapper& mapper, int32_t distance) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_DISTANCE, distance); |
| } |
| |
| void MultiTouchInputMapperTest::processId(MultiTouchInputMapper& mapper, int32_t id) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TRACKING_ID, id); |
| } |
| |
| void MultiTouchInputMapperTest::processSlot(MultiTouchInputMapper& mapper, int32_t slot) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_SLOT, slot); |
| } |
| |
| void MultiTouchInputMapperTest::processToolType(MultiTouchInputMapper& mapper, int32_t toolType) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOOL_TYPE, toolType); |
| } |
| |
| void MultiTouchInputMapperTest::processKey(MultiTouchInputMapper& mapper, int32_t code, |
| int32_t value) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value); |
| } |
| |
| void MultiTouchInputMapperTest::processHidUsage(MultiTouchInputMapper& mapper, int32_t usageCode, |
| int32_t value) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, usageCode); |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UNKNOWN, value); |
| } |
| |
| void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper& mapper) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_MT_REPORT, 0); |
| } |
| |
| void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper& mapper, nsecs_t eventTime, |
| nsecs_t readTime) { |
| process(mapper, eventTime, readTime, EV_SYN, SYN_REPORT, 0); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION); |
| prepareVirtualKeys(); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. |
| int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Move. |
| x1 += 10; y1 += 15; x2 += 5; y2 -= 10; |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // First finger up. |
| x2 += 15; y2 -= 20; |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Move. |
| x2 += 20; y2 -= 25; |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // New finger down. |
| int32_t x3 = 700, y3 = 300; |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processPosition(mapper, x3, y3); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Second finger up. |
| x3 += 30; y3 -= 20; |
| processPosition(mapper, x3, y3); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Last finger up. |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime); |
| ASSERT_EQ(DEVICE_ID, motionArgs.deviceId); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source); |
| ASSERT_EQ(uint32_t(0), motionArgs.policyFlags); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.flags); |
| ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| ASSERT_EQ(0, motionArgs.edgeFlags); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON); |
| ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON); |
| ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, AxisResolution_IsPopulated) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ 10); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ 11); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, |
| /*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 12); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, |
| /*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 13); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, |
| /*flat*/ 0, /*flat*/ 0, /*resolution*/ 14); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN, RAW_TOOL_MAX, |
| /*flat*/ 0, /*flat*/ 0, /*resolution*/ 15); |
| |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // X and Y axes |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_X, 10 / X_PRECISION); |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_Y, 11 / Y_PRECISION); |
| // Touch major and minor |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR, 12 * GEOMETRIC_SCALE); |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR, 13 * GEOMETRIC_SCALE); |
| // Tool major and minor |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR, 14 * GEOMETRIC_SCALE); |
| assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR, 15 * GEOMETRIC_SCALE); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, TouchMajorAndMinorAxes_DoNotAppearIfNotSupported) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ 10); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ 11); |
| |
| // We do not add ABS_MT_TOUCH_MAJOR / MINOR or ABS_MT_WIDTH_MAJOR / MINOR axes |
| |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // Touch major and minor |
| assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR); |
| assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR); |
| // Tool major and minor |
| assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR); |
| assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID); |
| prepareVirtualKeys(); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. |
| int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; |
| processPosition(mapper, x1, y1); |
| processId(mapper, 1); |
| processMTSync(mapper); |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Move. |
| x1 += 10; y1 += 15; x2 += 5; y2 -= 10; |
| processPosition(mapper, x1, y1); |
| processId(mapper, 1); |
| processMTSync(mapper); |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // First finger up. |
| x2 += 15; y2 -= 20; |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Move. |
| x2 += 20; y2 -= 25; |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // New finger down. |
| int32_t x3 = 700, y3 = 300; |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processMTSync(mapper); |
| processPosition(mapper, x3, y3); |
| processId(mapper, 3); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Second finger up. |
| x3 += 30; y3 -= 20; |
| processPosition(mapper, x3, y3); |
| processId(mapper, 3); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Last finger up. |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithSlots) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| prepareVirtualKeys(); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. |
| int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; |
| processPosition(mapper, x1, y1); |
| processId(mapper, 1); |
| processSlot(mapper, 1); |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Move. |
| x1 += 10; y1 += 15; x2 += 5; y2 -= 10; |
| processSlot(mapper, 0); |
| processPosition(mapper, x1, y1); |
| processSlot(mapper, 1); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // First finger up. |
| x2 += 15; y2 -= 20; |
| processSlot(mapper, 0); |
| processId(mapper, -1); |
| processSlot(mapper, 1); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Move. |
| x2 += 20; y2 -= 25; |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(1, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // New finger down. |
| int32_t x3 = 700, y3 = 300; |
| processPosition(mapper, x2, y2); |
| processSlot(mapper, 0); |
| processId(mapper, 3); |
| processPosition(mapper, x3, y3); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Second finger up. |
| x3 += 30; y3 -= 20; |
| processSlot(mapper, 1); |
| processId(mapper, -1); |
| processSlot(mapper, 0); |
| processPosition(mapper, x3, y3); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action); |
| ASSERT_EQ(size_t(2), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1, motionArgs.pointerProperties[1].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], |
| toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Last finger up. |
| processId(mapper, -1); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(size_t(1), motionArgs.getPointerCount()); |
| ASSERT_EQ(0, motionArgs.pointerProperties[0].id); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // Should not have sent any more keys or motions. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR | DISTANCE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // These calculations are based on the input device calibration documentation. |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawTouchMajor = 7; |
| int32_t rawTouchMinor = 6; |
| int32_t rawToolMajor = 9; |
| int32_t rawToolMinor = 8; |
| int32_t rawPressure = 11; |
| int32_t rawDistance = 0; |
| int32_t rawOrientation = 3; |
| int32_t id = 5; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float pressure = float(rawPressure) / RAW_PRESSURE_MAX; |
| float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX; |
| float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE; |
| float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE; |
| float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE; |
| float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE; |
| float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2; |
| float distance = float(rawDistance); |
| |
| processPosition(mapper, rawX, rawY); |
| processTouchMajor(mapper, rawTouchMajor); |
| processTouchMinor(mapper, rawTouchMinor); |
| processToolMajor(mapper, rawToolMajor); |
| processToolMinor(mapper, rawToolMinor); |
| processPressure(mapper, rawPressure); |
| processOrientation(mapper, rawOrientation); |
| processDistance(mapper, rawDistance); |
| processId(mapper, id); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(0, args.pointerProperties[0].id); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, |
| orientation, distance)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | TOUCH | TOOL | MINOR); |
| addConfigurationProperty("touch.size.calibration", "geometric"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // These calculations are based on the input device calibration documentation. |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawTouchMajor = 140; |
| int32_t rawTouchMinor = 120; |
| int32_t rawToolMajor = 180; |
| int32_t rawToolMinor = 160; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX; |
| float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE; |
| float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE; |
| float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE; |
| float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE; |
| |
| processPosition(mapper, rawX, rawY); |
| processTouchMajor(mapper, rawTouchMajor); |
| processTouchMinor(mapper, rawTouchMinor); |
| processToolMajor(mapper, rawToolMajor); |
| processToolMinor(mapper, rawToolMinor); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, 1.0f, size, touchMajor, touchMinor, toolMajor, toolMinor, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_SummedLinearCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | TOUCH | TOOL); |
| addConfigurationProperty("touch.size.calibration", "diameter"); |
| addConfigurationProperty("touch.size.scale", "10"); |
| addConfigurationProperty("touch.size.bias", "160"); |
| addConfigurationProperty("touch.size.isSummed", "1"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // These calculations are based on the input device calibration documentation. |
| // Note: We only provide a single common touch/tool value because the device is assumed |
| // not to emit separate values for each pointer (isSummed = 1). |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawX2 = 150; |
| int32_t rawY2 = 250; |
| int32_t rawTouchMajor = 5; |
| int32_t rawToolMajor = 8; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float x2 = toDisplayX(rawX2); |
| float y2 = toDisplayY(rawY2); |
| float size = float(rawTouchMajor) / 2 / RAW_TOUCH_MAX; |
| float touch = float(rawTouchMajor) / 2 * 10.0f + 160.0f; |
| float tool = float(rawToolMajor) / 2 * 10.0f + 160.0f; |
| |
| processPosition(mapper, rawX, rawY); |
| processTouchMajor(mapper, rawTouchMajor); |
| processToolMajor(mapper, rawToolMajor); |
| processMTSync(mapper); |
| processPosition(mapper, rawX2, rawY2); |
| processTouchMajor(mapper, rawTouchMajor); |
| processToolMajor(mapper, rawToolMajor); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action); |
| ASSERT_EQ(size_t(2), args.getPointerCount()); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, 1.0f, size, touch, touch, tool, tool, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1], |
| x2, y2, 1.0f, size, touch, touch, tool, tool, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_AreaCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | TOUCH | TOOL); |
| addConfigurationProperty("touch.size.calibration", "area"); |
| addConfigurationProperty("touch.size.scale", "43"); |
| addConfigurationProperty("touch.size.bias", "3"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // These calculations are based on the input device calibration documentation. |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawTouchMajor = 5; |
| int32_t rawToolMajor = 8; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float size = float(rawTouchMajor) / RAW_TOUCH_MAX; |
| float touch = sqrtf(rawTouchMajor) * 43.0f + 3.0f; |
| float tool = sqrtf(rawToolMajor) * 43.0f + 3.0f; |
| |
| processPosition(mapper, rawX, rawY); |
| processTouchMajor(mapper, rawTouchMajor); |
| processToolMajor(mapper, rawToolMajor); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, 1.0f, size, touch, touch, tool, tool, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_PressureAxis_AmplitudeCalibration) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | PRESSURE); |
| addConfigurationProperty("touch.pressure.calibration", "amplitude"); |
| addConfigurationProperty("touch.pressure.scale", "0.01"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| InputDeviceInfo info; |
| mapper.populateDeviceInfo(info); |
| ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, |
| AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TOUCHSCREEN, |
| 0.0f, RAW_PRESSURE_MAX * 0.01, 0.0f, 0.0f)); |
| |
| // These calculations are based on the input device calibration documentation. |
| int32_t rawX = 100; |
| int32_t rawY = 200; |
| int32_t rawPressure = 60; |
| |
| float x = toDisplayX(rawX); |
| float y = toDisplayY(rawY); |
| float pressure = float(rawPressure) * 0.01f; |
| |
| processPosition(mapper, rawX, rawY); |
| processPressure(mapper, rawPressure); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], |
| x, y, pressure, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllButtons) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| NotifyKeyArgs keyArgs; |
| |
| processId(mapper, 1); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_LEFT, release BTN_LEFT |
| processKey(mapper, BTN_LEFT, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_LEFT, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE |
| processKey(mapper, BTN_RIGHT, 1); |
| processKey(mapper, BTN_MIDDLE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, |
| motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY, |
| motionArgs.buttonState); |
| |
| processKey(mapper, BTN_RIGHT, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_MIDDLE, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_BACK, release BTN_BACK |
| processKey(mapper, BTN_BACK, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_BACK, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| // press BTN_SIDE, release BTN_SIDE |
| processKey(mapper, BTN_SIDE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_SIDE, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode); |
| |
| // press BTN_FORWARD, release BTN_FORWARD |
| processKey(mapper, BTN_FORWARD, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_FORWARD, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| // press BTN_EXTRA, release BTN_EXTRA |
| processKey(mapper, BTN_EXTRA, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_EXTRA, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs)); |
| ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action); |
| ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled()); |
| |
| // press BTN_STYLUS, release BTN_STYLUS |
| processKey(mapper, BTN_STYLUS, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_STYLUS, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // press BTN_STYLUS2, release BTN_STYLUS2 |
| processKey(mapper, BTN_STYLUS2, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState); |
| |
| processKey(mapper, BTN_STYLUS2, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| |
| // release touch |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(0, motionArgs.buttonState); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleMappedStylusButtons) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_A, 0, AKEYCODE_STYLUS_BUTTON_PRIMARY, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, 0, 0xabcd, AKEYCODE_STYLUS_BUTTON_SECONDARY, 0); |
| |
| // Touch down. |
| processId(mapper, 1); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithButtonState(0)))); |
| |
| // Press and release button mapped to the primary stylus button. |
| processKey(mapper, BTN_A, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY)))); |
| |
| processKey(mapper, BTN_A, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), WithButtonState(0)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0)))); |
| |
| // Press and release the HID usage mapped to the secondary stylus button. |
| processHidUsage(mapper, 0xabcd, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS), |
| WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY)))); |
| |
| processHidUsage(mapper, 0xabcd, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), WithButtonState(0)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0)))); |
| |
| // Release touch. |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0)))); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllToolTypes) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // default tool type is finger |
| processId(mapper, 1); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // eraser |
| processKey(mapper, BTN_TOOL_RUBBER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType); |
| |
| // stylus |
| processKey(mapper, BTN_TOOL_RUBBER, 0); |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // brush |
| processKey(mapper, BTN_TOOL_PEN, 0); |
| processKey(mapper, BTN_TOOL_BRUSH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // pencil |
| processKey(mapper, BTN_TOOL_BRUSH, 0); |
| processKey(mapper, BTN_TOOL_PENCIL, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // air-brush |
| processKey(mapper, BTN_TOOL_PENCIL, 0); |
| processKey(mapper, BTN_TOOL_AIRBRUSH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // mouse |
| processKey(mapper, BTN_TOOL_AIRBRUSH, 0); |
| processKey(mapper, BTN_TOOL_MOUSE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // lens |
| processKey(mapper, BTN_TOOL_MOUSE, 0); |
| processKey(mapper, BTN_TOOL_LENS, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // double-tap |
| processKey(mapper, BTN_TOOL_LENS, 0); |
| processKey(mapper, BTN_TOOL_DOUBLETAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // triple-tap |
| processKey(mapper, BTN_TOOL_DOUBLETAP, 0); |
| processKey(mapper, BTN_TOOL_TRIPLETAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // quad-tap |
| processKey(mapper, BTN_TOOL_TRIPLETAP, 0); |
| processKey(mapper, BTN_TOOL_QUADTAP, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // finger |
| processKey(mapper, BTN_TOOL_QUADTAP, 0); |
| processKey(mapper, BTN_TOOL_FINGER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // stylus trumps finger |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // eraser trumps stylus |
| processKey(mapper, BTN_TOOL_RUBBER, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType); |
| |
| // mouse trumps eraser |
| processKey(mapper, BTN_TOOL_MOUSE, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType); |
| |
| // MT tool type trumps BTN tool types: MT_TOOL_FINGER |
| processToolType(mapper, MT_TOOL_FINGER); // this is the first time we send MT_TOOL_TYPE |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // MT tool type trumps BTN tool types: MT_TOOL_PEN |
| processToolType(mapper, MT_TOOL_PEN); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType); |
| |
| // back to default tool type |
| processToolType(mapper, -1); // use a deliberately undefined tool type, for testing |
| processKey(mapper, BTN_TOOL_MOUSE, 0); |
| processKey(mapper, BTN_TOOL_RUBBER, 0); |
| processKey(mapper, BTN_TOOL_PEN, 0); |
| processKey(mapper, BTN_TOOL_FINGER, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0 |
| processId(mapper, 1); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // move a little |
| processPosition(mapper, 150, 250); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // down when BTN_TOUCH is pressed, pressure defaults to 1 |
| processKey(mapper, BTN_TOUCH, 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // up when BTN_TOUCH is released, hover restored |
| processKey(mapper, BTN_TOUCH, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // exit hover when pointer goes away |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_WhenAbsMTPressureIsPresent_HoversIfItsValueIsZero) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // initially hovering because pressure is 0 |
| processId(mapper, 1); |
| processPosition(mapper, 100, 200); |
| processPressure(mapper, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // move a little |
| processPosition(mapper, 150, 250); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // down when pressure becomes non-zero |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // up when pressure becomes 0, hover restored |
| processPressure(mapper, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // exit hover when pointer goes away |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], |
| toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0)); |
| } |
| |
| /** |
| * Set the input device port <--> display port associations, and check that the |
| * events are routed to the display that matches the display port. |
| * This can be checked by looking at the displayId of the resulting NotifyMotionArgs. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayPort) { |
| const std::string usb2 = "USB2"; |
| const uint8_t hdmi1 = 0; |
| const uint8_t hdmi2 = 1; |
| const std::string secondaryUniqueId = "uniqueId2"; |
| constexpr ViewportType type = ViewportType::EXTERNAL; |
| |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); |
| mFakePolicy->addInputPortAssociation(usb2, hdmi2); |
| |
| // We are intentionally not adding the viewport for display 1 yet. Since the port association |
| // for this input device is specified, and the matching viewport is not present, |
| // the input device should be disabled (at the mapper level). |
| |
| // Add viewport for display 2 on hdmi2 |
| prepareSecondaryDisplay(type, hdmi2); |
| // Send a touch event |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Add viewport for display 1 on hdmi1 |
| prepareDisplay(ui::ROTATION_0, hdmi1); |
| // Send a touch event again |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(DISPLAY_ID, args.displayId); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayUniqueId) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID); |
| |
| prepareDisplay(ui::ROTATION_0); |
| prepareVirtualDisplay(ui::ROTATION_0); |
| |
| // Send a touch event |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShouldHandleDisplayId) { |
| // Setup for second display. |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1); |
| fakePointerController->setPosition(100, 200); |
| mFakePolicy->setPointerController(fakePointerController); |
| |
| mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID); |
| prepareSecondaryDisplay(ViewportType::EXTERNAL); |
| |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // Check source is mouse that would obtain the PointerController. |
| ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); |
| |
| NotifyMotionArgs motionArgs; |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action); |
| ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId); |
| } |
| |
| /** |
| * Ensure that the readTime is set to the SYN_REPORT value when processing touch events. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_SendsReadTime) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| prepareDisplay(ui::ROTATION_0); |
| process(mapper, 10, /*readTime=*/11, EV_ABS, ABS_MT_TRACKING_ID, 1); |
| process(mapper, 15, /*readTime=*/16, EV_ABS, ABS_MT_POSITION_X, 100); |
| process(mapper, 20, /*readTime=*/21, EV_ABS, ABS_MT_POSITION_Y, 100); |
| process(mapper, 25, /*readTime=*/26, EV_SYN, SYN_REPORT, 0); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(26, args.readTime); |
| |
| process(mapper, 30, /*readTime=*/31, EV_ABS, ABS_MT_POSITION_X, 110); |
| process(mapper, 30, /*readTime=*/32, EV_ABS, ABS_MT_POSITION_Y, 220); |
| process(mapper, 30, /*readTime=*/33, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(33, args.readTime); |
| } |
| |
| /** |
| * When the viewport is not active (isActive=false), the touch mapper should be disabled and the |
| * events should not be delivered to the listener. |
| */ |
| TEST_F(MultiTouchInputMapperTest, WhenViewportIsNotActive_TouchesAreDropped) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| // Don't set touch.enableForInactiveViewport to verify the default behavior. |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/false, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| mFakeListener->assertNotifyMotionWasNotCalled(); |
| } |
| |
| /** |
| * When the viewport is not active (isActive=false) and touch.enableForInactiveViewport is true, |
| * the touch mapper can process the events and the events can be delivered to the listener. |
| */ |
| TEST_F(MultiTouchInputMapperTest, WhenViewportIsNotActive_TouchesAreProcessed) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.enableForInactiveViewport", "1"); |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/false, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| } |
| |
| /** |
| * When the viewport is deactivated (isActive transitions from true to false), |
| * and touch.enableForInactiveViewport is false, touches prior to the transition |
| * should be cancelled. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_DeactivateViewport_AbortTouches) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.enableForInactiveViewport", "0"); |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| std::optional<DisplayViewport> optionalDisplayViewport = |
| mFakePolicy->getDisplayViewportByUniqueId(UNIQUE_ID); |
| ASSERT_TRUE(optionalDisplayViewport.has_value()); |
| DisplayViewport displayViewport = *optionalDisplayViewport; |
| |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // Finger down |
| int32_t x = 100, y = 100; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| |
| NotifyMotionArgs motionArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| |
| // Deactivate display viewport |
| displayViewport.isActive = false; |
| ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport)); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // The ongoing touch should be canceled immediately |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| |
| // Finger move is ignored |
| x += 10, y += 10; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Reactivate display viewport |
| displayViewport.isActive = true; |
| ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport)); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // Finger move again starts new gesture |
| x += 10, y += 10; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| } |
| |
| /** |
| * When the viewport is deactivated (isActive transitions from true to false), |
| * and touch.enableForInactiveViewport is true, touches prior to the transition |
| * should not be cancelled. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_DeactivateViewport_TouchesNotAborted) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| addConfigurationProperty("touch.enableForInactiveViewport", "1"); |
| mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0, |
| /*isActive=*/true, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL); |
| std::optional<DisplayViewport> optionalDisplayViewport = |
| mFakePolicy->getDisplayViewportByUniqueId(UNIQUE_ID); |
| ASSERT_TRUE(optionalDisplayViewport.has_value()); |
| DisplayViewport displayViewport = *optionalDisplayViewport; |
| |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // Finger down |
| int32_t x = 100, y = 100; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // Deactivate display viewport |
| displayViewport.isActive = false; |
| ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport)); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // The ongoing touch should not be canceled |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Finger move is not ignored |
| x += 10, y += 10; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_MOVE))); |
| |
| // Reactivate display viewport |
| displayViewport.isActive = true; |
| ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport)); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| |
| // Finger move continues and does not start new gesture |
| x += 10, y += 10; |
| processPosition(mapper, x, y); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_MOVE))); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShowTouches) { |
| // Setup the first touch screen device. |
| prepareAxes(POSITION | ID | SLOT); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // Create the second touch screen device, and enable multi fingers. |
| const std::string USB2 = "USB2"; |
| const std::string DEVICE_NAME2 = "TOUCHSCREEN2"; |
| constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1; |
| constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1; |
| std::shared_ptr<InputDevice> device2 = |
| newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID, |
| ftl::Flags<InputDeviceClass>(0)); |
| |
| mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, |
| /*flat=*/0, /*fuzz=*/0); |
| mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, |
| /*flat=*/0, /*fuzz=*/0); |
| mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, |
| /*flat=*/0, /*fuzz=*/0); |
| mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, |
| /*flat=*/0, /*fuzz=*/0); |
| mFakeEventHub->setAbsoluteAxisValue(SECOND_EVENTHUB_ID, ABS_MT_SLOT, /*value=*/0); |
| mFakeEventHub->addConfigurationProperty(SECOND_EVENTHUB_ID, String8("touch.deviceType"), |
| String8("touchScreen")); |
| |
| // Setup the second touch screen device. |
| device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID); |
| MultiTouchInputMapper& mapper2 = device2->constructAndAddMapper< |
| MultiTouchInputMapper>(SECOND_EVENTHUB_ID, mFakePolicy->getReaderConfiguration()); |
| std::list<NotifyArgs> unused = |
| device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| unused += device2->reset(ARBITRARY_TIME); |
| |
| // Setup PointerController. |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(fakePointerController); |
| |
| // Setup policy for associated displays and show touches. |
| const uint8_t hdmi1 = 0; |
| const uint8_t hdmi2 = 1; |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1); |
| mFakePolicy->addInputPortAssociation(USB2, hdmi2); |
| mFakePolicy->setShowTouches(true); |
| |
| // Create displays. |
| prepareDisplay(ui::ROTATION_0, hdmi1); |
| prepareSecondaryDisplay(ViewportType::EXTERNAL, hdmi2); |
| |
| // Default device will reconfigure above, need additional reconfiguration for another device. |
| unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::DISPLAY_INFO | |
| InputReaderConfiguration::Change::SHOW_TOUCHES); |
| |
| // Two fingers down at default display. |
| int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500; |
| processPosition(mapper, x1, y1); |
| processId(mapper, 1); |
| processSlot(mapper, 1); |
| processPosition(mapper, x2, y2); |
| processId(mapper, 2); |
| processSync(mapper); |
| |
| std::map<int32_t, std::vector<int32_t>>::const_iterator iter = |
| fakePointerController->getSpots().find(DISPLAY_ID); |
| ASSERT_TRUE(iter != fakePointerController->getSpots().end()); |
| ASSERT_EQ(size_t(2), iter->second.size()); |
| |
| // Two fingers down at second display. |
| processPosition(mapper2, x1, y1); |
| processId(mapper2, 1); |
| processSlot(mapper2, 1); |
| processPosition(mapper2, x2, y2); |
| processId(mapper2, 2); |
| processSync(mapper2); |
| |
| iter = fakePointerController->getSpots().find(SECONDARY_DISPLAY_ID); |
| ASSERT_TRUE(iter != fakePointerController->getSpots().end()); |
| ASSERT_EQ(size_t(2), iter->second.size()); |
| |
| // Disable the show touches configuration and ensure the spots are cleared. |
| mFakePolicy->setShowTouches(false); |
| unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| InputReaderConfiguration::Change::SHOW_TOUCHES); |
| |
| ASSERT_TRUE(fakePointerController->getSpots().empty()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, VideoFrames_ReceivedByListener) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| // Unrotated video frame |
| TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); |
| std::vector<TouchVideoFrame> frames{frame}; |
| mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(frames, motionArgs.videoFrames); |
| |
| // Subsequent touch events should not have any videoframes |
| // This is implemented separately in FakeEventHub, |
| // but that should match the behaviour of TouchVideoDevice. |
| processPosition(mapper, 200, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(std::vector<TouchVideoFrame>(), motionArgs.videoFrames); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, VideoFrames_AreNotRotated) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| // Unrotated video frame |
| TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); |
| NotifyMotionArgs motionArgs; |
| |
| // Test all 4 orientations |
| for (ui::Rotation orientation : ftl::enum_range<ui::Rotation>()) { |
| SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation)); |
| clearViewports(); |
| prepareDisplay(orientation); |
| std::vector<TouchVideoFrame> frames{frame}; |
| mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(frames, motionArgs.videoFrames); |
| } |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_AreRotated) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| // Since InputReader works in the un-rotated coordinate space, only devices that are not |
| // orientation-aware are affected by display rotation. |
| addConfigurationProperty("touch.orientationAware", "0"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| // Unrotated video frame |
| TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); |
| NotifyMotionArgs motionArgs; |
| |
| // Test all 4 orientations |
| for (ui::Rotation orientation : ftl::enum_range<ui::Rotation>()) { |
| SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation)); |
| clearViewports(); |
| prepareDisplay(orientation); |
| std::vector<TouchVideoFrame> frames{frame}; |
| mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| // We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction |
| // compared to the display. This is so that when the window transform (which contains the |
| // display rotation) is applied later by InputDispatcher, the coordinates end up in the |
| // window's coordinate space. |
| frames[0].rotate(getInverseRotation(orientation)); |
| ASSERT_EQ(frames, motionArgs.videoFrames); |
| |
| // Release finger. |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| } |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, VideoFrames_MultipleFramesAreNotRotated) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| // Unrotated video frames. There's no rule that they must all have the same dimensions, |
| // so mix these. |
| TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); |
| TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3}); |
| TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4}); |
| std::vector<TouchVideoFrame> frames{frame1, frame2, frame3}; |
| NotifyMotionArgs motionArgs; |
| |
| prepareDisplay(ui::ROTATION_90); |
| mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(frames, motionArgs.videoFrames); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_MultipleFramesAreRotated) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| // Since InputReader works in the un-rotated coordinate space, only devices that are not |
| // orientation-aware are affected by display rotation. |
| addConfigurationProperty("touch.orientationAware", "0"); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| // Unrotated video frames. There's no rule that they must all have the same dimensions, |
| // so mix these. |
| TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2}); |
| TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3}); |
| TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4}); |
| std::vector<TouchVideoFrame> frames{frame1, frame2, frame3}; |
| NotifyMotionArgs motionArgs; |
| |
| prepareDisplay(ui::ROTATION_90); |
| mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}}); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| std::for_each(frames.begin(), frames.end(), [](TouchVideoFrame& frame) { |
| // We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction |
| // compared to the display. This is so that when the window transform (which contains the |
| // display rotation) is applied later by InputDispatcher, the coordinates end up in the |
| // window's coordinate space. |
| frame.rotate(getInverseRotation(ui::ROTATION_90)); |
| }); |
| ASSERT_EQ(frames, motionArgs.videoFrames); |
| } |
| |
| /** |
| * If we had defined port associations, but the viewport is not ready, the touch device would be |
| * expected to be disabled, and it should be enabled after the viewport has found. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Configure_EnabledForAssociatedDisplay) { |
| constexpr uint8_t hdmi2 = 1; |
| const std::string secondaryUniqueId = "uniqueId2"; |
| constexpr ViewportType type = ViewportType::EXTERNAL; |
| |
| mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi2); |
| |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareAxes(POSITION); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| ASSERT_EQ(mDevice->isEnabled(), false); |
| |
| // Add display on hdmi2, the device should be enabled and can receive touch event. |
| prepareSecondaryDisplay(type, hdmi2); |
| ASSERT_EQ(mDevice->isEnabled(), true); |
| |
| // Send a touch event. |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(SECONDARY_DISPLAY_ID, args.displayId); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleSingleTouch) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; |
| // finger down |
| processId(mapper, 1); |
| processPosition(mapper, x1, y1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // finger move |
| processId(mapper, 1); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // finger up. |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // new finger down |
| processId(mapper, 1); |
| processPosition(mapper, x3, y3); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| } |
| |
| /** |
| * Test single touch should be canceled when received the MT_TOOL_PALM event, and the following |
| * MOVE and UP events should be ignored. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_SinglePointer) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // default tool type is finger |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // Tool changed to MT_TOOL_PALM expect sending the cancel event. |
| processToolType(mapper, MT_TOOL_PALM); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| |
| // Ignore the following MOVE and UP events if had detect a palm event. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // finger up. |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // new finger down |
| processId(mapper, FIRST_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_FINGER); |
| processPosition(mapper, x3, y3); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| } |
| |
| /** |
| * Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger, |
| * and the rest active fingers could still be allowed to receive the events |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_TwoPointers) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // default tool type is finger |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220; |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // Second finger down. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType); |
| |
| // If the tool type of the first finger changes to MT_TOOL_PALM, |
| // we expect to receive ACTION_POINTER_UP with cancel flag. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, FIRST_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_PALM); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| |
| // The following MOVE events of second finger should be processed. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2 + 1, y2 + 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // First finger up. It used to be in palm mode, and we already generated ACTION_POINTER_UP for |
| // it. Second finger receive move. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // Second finger keeps moving. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2 + 2, y2 + 2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // Second finger up. |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| } |
| |
| /** |
| * Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event, if only 1 finger |
| * is active, it should send CANCEL after receiving the MT_TOOL_PALM event. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_ShouldCancelWhenAllTouchIsPalm) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240; |
| // First finger down. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // Second finger down. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // If the tool type of the first finger changes to MT_TOOL_PALM, |
| // we expect to receive ACTION_POINTER_UP with cancel flag. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, FIRST_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_PALM); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| |
| // Second finger keeps moving. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2 + 1, y2 + 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| |
| // second finger becomes palm, receive cancel due to only 1 finger is active. |
| processId(mapper, SECOND_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_PALM); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| |
| // third finger down. |
| processSlot(mapper, THIRD_SLOT); |
| processId(mapper, THIRD_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_FINGER); |
| processPosition(mapper, x3, y3); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // third finger move |
| processId(mapper, THIRD_TRACKING_ID); |
| processPosition(mapper, x3 + 1, y3 + 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| |
| // first finger up, third finger receive move. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // second finger up, third finger receive move. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // third finger up. |
| processSlot(mapper, THIRD_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| } |
| |
| /** |
| * Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger, |
| * and the active finger could still be allowed to receive the events |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_KeepFirstPointer) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // default tool type is finger |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220; |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // Second finger down. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| |
| // If the tool type of the second finger changes to MT_TOOL_PALM, |
| // we expect to receive ACTION_POINTER_UP with cancel flag. |
| processId(mapper, SECOND_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_PALM); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action); |
| ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| |
| // The following MOVE event should be processed. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1 + 1, y1 + 1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // second finger up. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| |
| // first finger keep moving |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1 + 2, y1 + 2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| |
| // first finger up. |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags); |
| } |
| |
| /** |
| * Test multi-touch should sent ACTION_POINTER_UP/ACTION_UP when received the INVALID_TRACKING_ID, |
| * to prevent the driver side may send unexpected data after set tracking id as INVALID_TRACKING_ID |
| * cause slot be valid again. |
| */ |
| TEST_F(MultiTouchInputMapperTest, Process_MultiTouch_WithInvalidTrackingId) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 0, y2 = 0; |
| // First finger down. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // First finger move. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1 + 1, y1 + 1); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| |
| // Second finger down. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action); |
| ASSERT_EQ(uint32_t(2), motionArgs.getPointerCount()); |
| |
| // second finger up with some unexpected data. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action); |
| ASSERT_EQ(uint32_t(2), motionArgs.getPointerCount()); |
| |
| // first finger up with some unexpected data. |
| processSlot(mapper, FIRST_SLOT); |
| processId(mapper, INVALID_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action); |
| ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Reset_RepopulatesMultiTouchState) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // First finger down. |
| constexpr int32_t x1 = 100, y1 = 200, x2 = 300, y2 = 400; |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| |
| // Second finger down. |
| processSlot(mapper, SECOND_SLOT); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE( |
| mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(ACTION_POINTER_1_DOWN))); |
| |
| // Set MT Slot state to be repopulated for the required slots |
| std::vector<int32_t> mtSlotValues(RAW_SLOT_MAX + 1, -1); |
| mtSlotValues[0] = FIRST_TRACKING_ID; |
| mtSlotValues[1] = SECOND_TRACKING_ID; |
| mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_TRACKING_ID, mtSlotValues); |
| |
| mtSlotValues[0] = x1; |
| mtSlotValues[1] = x2; |
| mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_POSITION_X, mtSlotValues); |
| |
| mtSlotValues[0] = y1; |
| mtSlotValues[1] = y2; |
| mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_POSITION_Y, mtSlotValues); |
| |
| mtSlotValues[0] = RAW_PRESSURE_MAX; |
| mtSlotValues[1] = RAW_PRESSURE_MAX; |
| mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_PRESSURE, mtSlotValues); |
| |
| // Reset the mapper. When the mapper is reset, we expect the current multi-touch state to be |
| // repopulated. Resetting should cancel the ongoing gesture. |
| resetMapper(mapper, ARBITRARY_TIME); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_CANCEL))); |
| |
| // Send a sync to simulate an empty touch frame where nothing changes. The mapper should use |
| // the existing touch state to generate a down event. |
| processPosition(mapper, 301, 302); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(ACTION_POINTER_1_DOWN), WithPressure(1.f)))); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Reset_PreservesLastTouchState_NoPointersDown) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // First finger touches down and releases. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, 100, 200); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| WithMotionAction(AMOTION_EVENT_ACTION_DOWN))); |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE( |
| mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP))); |
| |
| // Reset the mapper. When the mapper is reset, we expect it to restore the latest |
| // raw state where no pointers are down. |
| resetMapper(mapper, ARBITRARY_TIME); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Send an empty sync frame. Since there are no pointers, no events are generated. |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, StylusSourceIsAddedDynamicallyFromToolType) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE | TOOL_TYPE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| // Even if the device supports reporting the ABS_MT_TOOL_TYPE axis, which could give it the |
| // ability to report MT_TOOL_PEN, we do not report the device as coming from a stylus source. |
| // Due to limitations in the evdev protocol, we cannot say for certain that a device is capable |
| // of reporting stylus events just because it supports ABS_MT_TOOL_TYPE. |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); |
| |
| // However, if the device ever ends up reporting an event with MT_TOOL_PEN, it should be |
| // reported with the stylus source. |
| processId(mapper, FIRST_TRACKING_ID); |
| processToolType(mapper, MT_TOOL_PEN); |
| processPosition(mapper, 100, 200); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| |
| // Now that we know the device supports styluses, ensure that the device is re-configured with |
| // the stylus source. |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS, mapper.getSources()); |
| { |
| const auto& devices = mReader->getInputDevices(); |
| auto deviceInfo = |
| std::find_if(devices.begin(), devices.end(), |
| [](const InputDeviceInfo& info) { return info.getId() == DEVICE_ID; }); |
| LOG_ALWAYS_FATAL_IF(deviceInfo == devices.end(), "Cannot find InputDevice"); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS, deviceInfo->getSources()); |
| } |
| |
| // Ensure the device was not reset to prevent interruptions of any ongoing gestures. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled()); |
| |
| processId(mapper, INVALID_TRACKING_ID); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_WhenConfigEnabled_ShouldShowDirectStylusPointer) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE | PRESSURE); |
| // Add BTN_TOOL_PEN to statically show stylus support, since using ABS_MT_TOOL_TYPE can only |
| // indicate stylus presence dynamically. |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(fakePointerController); |
| mFakePolicy->setStylusPointerIconEnabled(true); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPressure(mapper, RAW_PRESSURE_MIN); |
| processPosition(mapper, 100, 200); |
| processToolType(mapper, MT_TOOL_PEN); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithToolType(ToolType::STYLUS), |
| WithPointerCoords(0, toDisplayX(100), toDisplayY(200))))); |
| ASSERT_TRUE(fakePointerController->isPointerShown()); |
| ASSERT_NO_FATAL_FAILURE( |
| fakePointerController->assertPosition(toDisplayX(100), toDisplayY(200))); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_WhenConfigDisabled_ShouldNotShowDirectStylusPointer) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | TOOL_TYPE | PRESSURE); |
| // Add BTN_TOOL_PEN to statically show stylus support, since using ABS_MT_TOOL_TYPE can only |
| // indicate stylus presence dynamically. |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| mFakePolicy->setPointerController(fakePointerController); |
| mFakePolicy->setStylusPointerIconEnabled(false); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPressure(mapper, RAW_PRESSURE_MIN); |
| processPosition(mapper, 100, 200); |
| processToolType(mapper, MT_TOOL_PEN); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER), |
| WithToolType(ToolType::STYLUS), |
| WithPointerCoords(0, toDisplayX(100), toDisplayY(200))))); |
| ASSERT_FALSE(fakePointerController->isPointerShown()); |
| } |
| |
| // --- MultiTouchInputMapperTest_ExternalDevice --- |
| |
| class MultiTouchInputMapperTest_ExternalDevice : public MultiTouchInputMapperTest { |
| protected: |
| void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); } |
| }; |
| |
| /** |
| * Expect fallback to internal viewport if device is external and external viewport is not present. |
| */ |
| TEST_F(MultiTouchInputMapperTest_ExternalDevice, Viewports_Fallback) { |
| prepareAxes(POSITION); |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources()); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Expect the event to be sent to the internal viewport, |
| // because an external viewport is not present. |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ADISPLAY_ID_DEFAULT, motionArgs.displayId); |
| |
| // Expect the event to be sent to the external viewport if it is present. |
| prepareSecondaryDisplay(ViewportType::EXTERNAL); |
| processPosition(mapper, 100, 100); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_TouchpadCapture) { |
| // we need a pointer controller for mouse mode of touchpad (start pointer at 0,0) |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1); |
| fakePointerController->setPosition(0, 0); |
| |
| // prepare device and capture |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); |
| mFakePolicy->setPointerCapture(true); |
| mFakePolicy->setPointerController(fakePointerController); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // captured touchpad should be a touchpad source |
| NotifyDeviceResetArgs resetArgs; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources()); |
| |
| InputDeviceInfo deviceInfo = mDevice->getDeviceInfo(); |
| |
| const InputDeviceInfo::MotionRange* relRangeX = |
| deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, AINPUT_SOURCE_TOUCHPAD); |
| ASSERT_NE(relRangeX, nullptr); |
| ASSERT_EQ(relRangeX->min, -(RAW_X_MAX - RAW_X_MIN)); |
| ASSERT_EQ(relRangeX->max, RAW_X_MAX - RAW_X_MIN); |
| const InputDeviceInfo::MotionRange* relRangeY = |
| deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, AINPUT_SOURCE_TOUCHPAD); |
| ASSERT_NE(relRangeY, nullptr); |
| ASSERT_EQ(relRangeY->min, -(RAW_Y_MAX - RAW_Y_MIN)); |
| ASSERT_EQ(relRangeY->max, RAW_Y_MAX - RAW_Y_MIN); |
| |
| // run captured pointer tests - note that this is unscaled, so input listener events should be |
| // identical to what the hardware sends (accounting for any |
| // calibration). |
| // FINGER 0 DOWN |
| processSlot(mapper, 0); |
| processId(mapper, 1); |
| processPosition(mapper, 100 + RAW_X_MIN, 100 + RAW_Y_MIN); |
| processKey(mapper, BTN_TOUCH, 1); |
| processSync(mapper); |
| |
| // expect coord[0] to contain initial location of touch 0 |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| ASSERT_EQ(1U, args.getPointerCount()); |
| ASSERT_EQ(0, args.pointerProperties[0].id); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, args.source); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // FINGER 1 DOWN |
| processSlot(mapper, 1); |
| processId(mapper, 2); |
| processPosition(mapper, 560 + RAW_X_MIN, 154 + RAW_Y_MIN); |
| processSync(mapper); |
| |
| // expect coord[0] to contain previous location, coord[1] to contain new touch 1 location |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action); |
| ASSERT_EQ(2U, args.getPointerCount()); |
| ASSERT_EQ(0, args.pointerProperties[0].id); |
| ASSERT_EQ(1, args.pointerProperties[1].id); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[1], 560, 154, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // FINGER 1 MOVE |
| processPosition(mapper, 540 + RAW_X_MIN, 690 + RAW_Y_MIN); |
| processSync(mapper); |
| |
| // expect coord[0] to contain previous location, coord[1] to contain new touch 1 location |
| // from move |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // FINGER 0 MOVE |
| processSlot(mapper, 0); |
| processPosition(mapper, 50 + RAW_X_MIN, 800 + RAW_Y_MIN); |
| processSync(mapper); |
| |
| // expect coord[0] to contain new touch 0 location, coord[1] to contain previous location |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 50, 800, 1, 0, 0, 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // BUTTON DOWN |
| processKey(mapper, BTN_LEFT, 1); |
| processSync(mapper); |
| |
| // touchinputmapper design sends a move before button press |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); |
| |
| // BUTTON UP |
| processKey(mapper, BTN_LEFT, 0); |
| processSync(mapper); |
| |
| // touchinputmapper design sends a move after button release |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| |
| // FINGER 0 UP |
| processId(mapper, -1); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | 0x0000, args.action); |
| |
| // FINGER 1 MOVE |
| processSlot(mapper, 1); |
| processPosition(mapper, 320 + RAW_X_MIN, 900 + RAW_Y_MIN); |
| processSync(mapper); |
| |
| // expect coord[0] to contain new location of touch 1, and properties[0].id to contain 1 |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action); |
| ASSERT_EQ(1U, args.getPointerCount()); |
| ASSERT_EQ(1, args.pointerProperties[0].id); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 320, 900, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // FINGER 1 UP |
| processId(mapper, -1); |
| processKey(mapper, BTN_TOUCH, 0); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); |
| |
| // non captured touchpad should be a mouse source |
| mFakePolicy->setPointerCapture(false); |
| configureDevice(InputReaderConfiguration::Change::POINTER_CAPTURE); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs)); |
| ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, Process_UnCapturedTouchpadPointer) { |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1); |
| fakePointerController->setPosition(0, 0); |
| |
| // prepare device and capture |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0); |
| mFakePolicy->setPointerController(fakePointerController); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| // run uncaptured pointer tests - pushes out generic events |
| // FINGER 0 DOWN |
| processId(mapper, 3); |
| processPosition(mapper, 100, 100); |
| processKey(mapper, BTN_TOUCH, 1); |
| processSync(mapper); |
| |
| // start at (100,100), cursor should be at (0,0) * scale |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(args.pointerCoords[0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // FINGER 0 MOVE |
| processPosition(mapper, 200, 200); |
| processSync(mapper); |
| |
| // compute scaling to help with touch position checking |
| float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN); |
| float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT); |
| float scale = |
| mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal; |
| |
| // translate from (100,100) -> (200,200), cursor should have changed to (100,100) * scale) |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 100 * scale, 100 * scale, 0, |
| 0, 0, 0, 0, 0, 0, 0)); |
| |
| // BUTTON DOWN |
| processKey(mapper, BTN_LEFT, 1); |
| processSync(mapper); |
| |
| // touchinputmapper design sends a move before button press |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action); |
| |
| // BUTTON UP |
| processKey(mapper, BTN_LEFT, 0); |
| processSync(mapper); |
| |
| // touchinputmapper design sends a move after button release |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action); |
| } |
| |
| TEST_F(MultiTouchInputMapperTest, WhenCapturedAndNotCaptured_GetSources) { |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0); |
| mFakePolicy->setPointerController(fakePointerController); |
| mFakePolicy->setPointerCapture(false); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| // uncaptured touchpad should be a pointer device |
| ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources()); |
| |
| // captured touchpad should be a touchpad device |
| mFakePolicy->setPointerCapture(true); |
| configureDevice(InputReaderConfiguration::Change::POINTER_CAPTURE); |
| ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources()); |
| } |
| |
| // --- BluetoothMultiTouchInputMapperTest --- |
| |
| class BluetoothMultiTouchInputMapperTest : public MultiTouchInputMapperTest { |
| protected: |
| void SetUp() override { |
| InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL, BUS_BLUETOOTH); |
| } |
| }; |
| |
| TEST_F(BluetoothMultiTouchInputMapperTest, TimestampSmoothening) { |
| addConfigurationProperty("touch.deviceType", "touchScreen"); |
| prepareDisplay(ui::ROTATION_0); |
| prepareAxes(POSITION | ID | SLOT | PRESSURE); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| nsecs_t kernelEventTime = ARBITRARY_TIME; |
| nsecs_t expectedEventTime = ARBITRARY_TIME; |
| // Touch down. |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, 100, 200); |
| processPressure(mapper, RAW_PRESSURE_MAX); |
| processSync(mapper, ARBITRARY_TIME); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithEventTime(ARBITRARY_TIME)))); |
| |
| // Process several events that come in quick succession, according to their timestamps. |
| for (int i = 0; i < 3; i++) { |
| constexpr static nsecs_t delta = ms2ns(1); |
| static_assert(delta < MIN_BLUETOOTH_TIMESTAMP_DELTA); |
| kernelEventTime += delta; |
| expectedEventTime += MIN_BLUETOOTH_TIMESTAMP_DELTA; |
| |
| processPosition(mapper, 101 + i, 201 + i); |
| processSync(mapper, kernelEventTime); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithEventTime(expectedEventTime)))); |
| } |
| |
| // Release the touch. |
| processId(mapper, INVALID_TRACKING_ID); |
| processPressure(mapper, RAW_PRESSURE_MIN); |
| processSync(mapper, ARBITRARY_TIME + ms2ns(50)); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), |
| WithEventTime(ARBITRARY_TIME + ms2ns(50))))); |
| } |
| |
| // --- MultiTouchPointerModeTest --- |
| |
| class MultiTouchPointerModeTest : public MultiTouchInputMapperTest { |
| protected: |
| float mPointerMovementScale; |
| float mPointerXZoomScale; |
| void preparePointerMode(int xAxisResolution, int yAxisResolution) { |
| addConfigurationProperty("touch.deviceType", "pointer"); |
| std::shared_ptr<FakePointerController> fakePointerController = |
| std::make_shared<FakePointerController>(); |
| fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1); |
| fakePointerController->setPosition(0, 0); |
| prepareDisplay(ui::ROTATION_0); |
| |
| prepareAxes(POSITION); |
| prepareAbsoluteAxisResolution(xAxisResolution, yAxisResolution); |
| // In order to enable swipe and freeform gesture in pointer mode, pointer capture |
| // needs to be disabled, and the pointer gesture needs to be enabled. |
| mFakePolicy->setPointerCapture(false); |
| mFakePolicy->setPointerGestureEnabled(true); |
| mFakePolicy->setPointerController(fakePointerController); |
| |
| float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN); |
| float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT); |
| mPointerMovementScale = |
| mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal; |
| mPointerXZoomScale = |
| mFakePolicy->getPointerGestureZoomSpeedRatio() * displayDiagonal / rawDiagonal; |
| } |
| |
| void prepareAbsoluteAxisResolution(int xAxisResolution, int yAxisResolution) { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, |
| /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ xAxisResolution); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, |
| /*flat*/ 0, |
| /*fuzz*/ 0, /*resolution*/ yAxisResolution); |
| } |
| }; |
| |
| /** |
| * Two fingers down on a pointer mode touch pad. The width |
| * of the two finger is larger than 1/4 of the touch pack diagnal length. However, it |
| * is smaller than the fixed min physical length 30mm. Two fingers' distance must |
| * be greater than the both value to be freeform gesture, so that after two |
| * fingers start to move downwards, the gesture should be swipe. |
| */ |
| TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthSwipe) { |
| // The min freeform gesture width is 25units/mm x 30mm = 750 |
| // which is greater than fraction of the diagnal length of the touchpad (349). |
| // Thus, MaxSwipWidth is 750. |
| preparePointerMode(/*xResolution=*/25, /*yResolution=*/25); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. |
| // The two fingers are 450 units apart, expects the current gesture to be PRESS |
| // Pointer's initial position is used the [0,0] coordinate. |
| int32_t x1 = 100, y1 = 125, x2 = 550, y2 = 125; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // It should be recognized as a SWIPE gesture when two fingers start to move down, |
| // that there should be 1 pointer. |
| int32_t movingDistance = 200; |
| y1 += movingDistance; |
| y2 += movingDistance; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0, |
| movingDistance * mPointerMovementScale, 1, 0, 0, 0, |
| 0, 0, 0, 0)); |
| } |
| |
| /** |
| * Two fingers down on a pointer mode touch pad. The width of the two finger is larger |
| * than the minimum freeform gesture width, 30mm. However, it is smaller than 1/4 of |
| * the touch pack diagnal length. Two fingers' distance must be greater than the both |
| * value to be freeform gesture, so that after two fingers start to move downwards, |
| * the gesture should be swipe. |
| */ |
| TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthLowResolutionSwipe) { |
| // The min freeform gesture width is 5units/mm x 30mm = 150 |
| // which is greater than fraction of the diagnal length of the touchpad (349). |
| // Thus, MaxSwipWidth is the fraction of the diagnal length, 349. |
| preparePointerMode(/*xResolution=*/5, /*yResolution=*/5); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. |
| // The two fingers are 250 units apart, expects the current gesture to be PRESS |
| // Pointer's initial position is used the [0,0] coordinate. |
| int32_t x1 = 100, y1 = 125, x2 = 350, y2 = 125; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| // It should be recognized as a SWIPE gesture when two fingers start to move down, |
| // and there should be 1 pointer. |
| int32_t movingDistance = 200; |
| y1 += movingDistance; |
| y2 += movingDistance; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification); |
| // New coordinate is the scaled relative coordinate from the initial coordinate. |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0, |
| movingDistance * mPointerMovementScale, 1, 0, 0, 0, |
| 0, 0, 0, 0)); |
| } |
| |
| /** |
| * Touch the touch pad with two fingers with a distance wider than the minimum freeform |
| * gesture width and 1/4 of the diagnal length of the touchpad. Expect to receive |
| * freeform gestures after two fingers start to move downwards. |
| */ |
| TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthFreeform) { |
| preparePointerMode(/*xResolution=*/25, /*yResolution=*/25); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| |
| NotifyMotionArgs motionArgs; |
| |
| // Two fingers down at once. Wider than the max swipe width. |
| // The gesture is expected to be PRESS, then transformed to FREEFORM |
| int32_t x1 = 100, y1 = 125, x2 = 900, y2 = 125; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| // One pointer for PRESS, and its coordinate is used as the origin for pointer coordinates. |
| ASSERT_NO_FATAL_FAILURE( |
| assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)); |
| |
| int32_t movingDistance = 200; |
| |
| // Move two fingers down, expect a cancel event because gesture is changing to freeform, |
| // then two down events for two pointers. |
| y1 += movingDistance; |
| y2 += movingDistance; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| // The previous PRESS gesture is cancelled, because it is transformed to freeform |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| ASSERT_EQ(2U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN, motionArgs.action & AMOTION_EVENT_ACTION_MASK); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| // Two pointers' scaled relative coordinates from their initial centroid. |
| // Initial y coordinates are 0 as y1 and y2 have the same value. |
| float cookedX1 = (x1 - x2) / 2 * mPointerXZoomScale; |
| float cookedX2 = (x2 - x1) / 2 * mPointerXZoomScale; |
| // When pointers move, the new coordinates equal to the initial coordinates plus |
| // scaled moving distance. |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1, |
| movingDistance * mPointerMovementScale, 1, 0, 0, 0, |
| 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2, |
| movingDistance * mPointerMovementScale, 1, 0, 0, 0, |
| 0, 0, 0, 0)); |
| |
| // Move two fingers down again, expect one MOVE motion event. |
| y1 += movingDistance; |
| y2 += movingDistance; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(2U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1, |
| movingDistance * 2 * mPointerMovementScale, 1, 0, 0, |
| 0, 0, 0, 0, 0)); |
| ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2, |
| movingDistance * 2 * mPointerMovementScale, 1, 0, 0, |
| 0, 0, 0, 0, 0)); |
| } |
| |
| TEST_F(MultiTouchPointerModeTest, TwoFingerSwipeOffsets) { |
| preparePointerMode(/*xResolution=*/25, /*yResolution=*/25); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| NotifyMotionArgs motionArgs; |
| |
| // Place two fingers down. |
| int32_t x1 = 100, y1 = 125, x2 = 550, y2 = 125; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action); |
| ASSERT_EQ(MotionClassification::NONE, motionArgs.classification); |
| ASSERT_EQ(0, motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET)); |
| ASSERT_EQ(0, motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET)); |
| |
| // Move the two fingers down and to the left. |
| int32_t movingDistance = 200; |
| x1 -= movingDistance; |
| y1 += movingDistance; |
| x2 -= movingDistance; |
| y2 += movingDistance; |
| |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, x1, y1); |
| processMTSync(mapper); |
| processId(mapper, SECOND_TRACKING_ID); |
| processPosition(mapper, x2, y2); |
| processMTSync(mapper); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs)); |
| ASSERT_EQ(1U, motionArgs.getPointerCount()); |
| ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action); |
| ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification); |
| ASSERT_LT(motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET), 0); |
| ASSERT_GT(motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET), 0); |
| } |
| |
| TEST_F(MultiTouchPointerModeTest, WhenViewportActiveStatusChanged_PointerGestureIsReset) { |
| preparePointerMode(/*xResolution=*/25, /*yResolution=*/25); |
| mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0); |
| MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>(); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled()); |
| |
| // Start a stylus gesture. |
| processKey(mapper, BTN_TOOL_PEN, 1); |
| processId(mapper, FIRST_TRACKING_ID); |
| processPosition(mapper, 100, 200); |
| processSync(mapper); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), |
| WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| // TODO(b/257078296): Pointer mode generates extra event. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), |
| WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| |
| // Make the viewport inactive. This will put the device in disabled mode, and the ongoing stylus |
| // gesture should be disabled. |
| auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL); |
| viewport->isActive = false; |
| mFakePolicy->updateViewport(*viewport); |
| configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL), |
| WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| // TODO(b/257078296): Pointer mode generates extra event. |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL), |
| WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS), |
| WithToolType(ToolType::STYLUS)))); |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled()); |
| } |
| |
| // --- JoystickInputMapperTest --- |
| |
| class JoystickInputMapperTest : public InputMapperTest { |
| protected: |
| static const int32_t RAW_X_MIN; |
| static const int32_t RAW_X_MAX; |
| static const int32_t RAW_Y_MIN; |
| static const int32_t RAW_Y_MAX; |
| |
| void SetUp() override { |
| InputMapperTest::SetUp(InputDeviceClass::JOYSTICK | InputDeviceClass::EXTERNAL); |
| } |
| void prepareAxes() { |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0); |
| mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0); |
| } |
| |
| void processAxis(JoystickInputMapper& mapper, int32_t axis, int32_t value) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, axis, value); |
| } |
| |
| void processSync(JoystickInputMapper& mapper) { |
| process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0); |
| } |
| |
| void prepareVirtualDisplay(ui::Rotation orientation) { |
| setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH, |
| VIRTUAL_DISPLAY_HEIGHT, orientation, VIRTUAL_DISPLAY_UNIQUE_ID, |
| NO_PORT, ViewportType::VIRTUAL); |
| } |
| }; |
| |
| const int32_t JoystickInputMapperTest::RAW_X_MIN = -32767; |
| const int32_t JoystickInputMapperTest::RAW_X_MAX = 32767; |
| const int32_t JoystickInputMapperTest::RAW_Y_MIN = -32767; |
| const int32_t JoystickInputMapperTest::RAW_Y_MAX = 32767; |
| |
| TEST_F(JoystickInputMapperTest, Configure_AssignsDisplayUniqueId) { |
| prepareAxes(); |
| JoystickInputMapper& mapper = constructAndAddMapper<JoystickInputMapper>(); |
| |
| mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID); |
| |
| prepareVirtualDisplay(ui::ROTATION_0); |
| |
| // Send an axis event |
| processAxis(mapper, ABS_X, 100); |
| processSync(mapper); |
| |
| NotifyMotionArgs args; |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId); |
| |
| // Send another axis event |
| processAxis(mapper, ABS_Y, 100); |
| processSync(mapper); |
| |
| ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args)); |
| ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId); |
| } |
| |
| // --- PeripheralControllerTest --- |
| |
| class PeripheralControllerTest : public testing::Test { |
| protected: |
| static const char* DEVICE_NAME; |
| static const char* DEVICE_LOCATION; |
| static const int32_t DEVICE_ID; |
| static const int32_t DEVICE_GENERATION; |
| static const int32_t DEVICE_CONTROLLER_NUMBER; |
| static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES; |
| static const int32_t EVENTHUB_ID; |
| |
| std::shared_ptr<FakeEventHub> mFakeEventHub; |
| sp<FakeInputReaderPolicy> mFakePolicy; |
| std::unique_ptr<TestInputListener> mFakeListener; |
| std::unique_ptr<InstrumentedInputReader> mReader; |
| std::shared_ptr<InputDevice> mDevice; |
| |
| virtual void SetUp(ftl::Flags<InputDeviceClass> classes) { |
| mFakeEventHub = std::make_unique<FakeEventHub>(); |
| mFakePolicy = sp<FakeInputReaderPolicy>::make(); |
| mFakeListener = std::make_unique<TestInputListener>(); |
| mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy, |
| *mFakeListener); |
| mDevice = newDevice(DEVICE_ID, DEVICE_NAME, DEVICE_LOCATION, EVENTHUB_ID, classes); |
| } |
| |
| void SetUp() override { SetUp(DEVICE_CLASSES); } |
| |
| void TearDown() override { |
| mFakeListener.reset(); |
| mFakePolicy.clear(); |
| } |
| |
| std::shared_ptr<InputDevice> newDevice(int32_t deviceId, const std::string& name, |
| const std::string& location, int32_t eventHubId, |
| ftl::Flags<InputDeviceClass> classes) { |
| InputDeviceIdentifier identifier; |
| identifier.name = name; |
| identifier.location = location; |
| std::shared_ptr<InputDevice> device = |
| std::make_shared<InputDevice>(mReader->getContext(), deviceId, DEVICE_GENERATION, |
| identifier); |
| mReader->pushNextDevice(device); |
| mFakeEventHub->addDevice(eventHubId, name, classes); |
| mReader->loopOnce(); |
| return device; |
| } |
| |
| template <class T, typename... Args> |
| T& addControllerAndConfigure(Args... args) { |
| T& controller = mDevice->addController<T>(EVENTHUB_ID, args...); |
| |
| return controller; |
| } |
| }; |
| |
| const char* PeripheralControllerTest::DEVICE_NAME = "device"; |
| const char* PeripheralControllerTest::DEVICE_LOCATION = "BLUETOOTH"; |
| const int32_t PeripheralControllerTest::DEVICE_ID = END_RESERVED_ID + 1000; |
| const int32_t PeripheralControllerTest::DEVICE_GENERATION = 2; |
| const int32_t PeripheralControllerTest::DEVICE_CONTROLLER_NUMBER = 0; |
| const ftl::Flags<InputDeviceClass> PeripheralControllerTest::DEVICE_CLASSES = |
| ftl::Flags<InputDeviceClass>(0); // not needed for current tests |
| const int32_t PeripheralControllerTest::EVENTHUB_ID = 1; |
| |
| // --- BatteryControllerTest --- |
| class BatteryControllerTest : public PeripheralControllerTest { |
| protected: |
| void SetUp() override { |
| PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::BATTERY); |
| } |
| }; |
| |
| TEST_F(BatteryControllerTest, GetBatteryCapacity) { |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| |
| ASSERT_TRUE(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY)); |
| ASSERT_EQ(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY).value_or(-1), |
| FakeEventHub::BATTERY_CAPACITY); |
| } |
| |
| TEST_F(BatteryControllerTest, GetBatteryStatus) { |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| |
| ASSERT_TRUE(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY)); |
| ASSERT_EQ(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY).value_or(-1), |
| FakeEventHub::BATTERY_STATUS); |
| } |
| |
| // --- LightControllerTest --- |
| class LightControllerTest : public PeripheralControllerTest { |
| protected: |
| void SetUp() override { |
| PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::LIGHT); |
| } |
| }; |
| |
| TEST_F(LightControllerTest, MonoLight) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_light", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS); |
| } |
| |
| TEST_F(LightControllerTest, MonoKeyboardBacklight) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS); |
| } |
| |
| TEST_F(LightControllerTest, Ignore_MonoLight_WithPreferredBacklightLevels) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_light", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels", |
| "0,100,200"); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size()); |
| } |
| |
| TEST_F(LightControllerTest, KeyboardBacklight_WithNoPreferredBacklightLevels) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size()); |
| } |
| |
| TEST_F(LightControllerTest, KeyboardBacklight_WithPreferredBacklightLevels) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels", |
| "0,100,200"); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(3U, lights[0].preferredBrightnessLevels.size()); |
| std::set<BrightnessLevel>::iterator it = lights[0].preferredBrightnessLevels.begin(); |
| ASSERT_EQ(BrightnessLevel(0), *it); |
| std::advance(it, 1); |
| ASSERT_EQ(BrightnessLevel(100), *it); |
| std::advance(it, 1); |
| ASSERT_EQ(BrightnessLevel(200), *it); |
| } |
| |
| TEST_F(LightControllerTest, KeyboardBacklight_WithWrongPreferredBacklightLevels) { |
| RawLightInfo infoMono = {.id = 1, |
| .name = "mono_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono)); |
| mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels", |
| "0,100,200,300,400,500"); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| std::list<NotifyArgs> unused = |
| mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(), |
| /*changes=*/{}); |
| |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size()); |
| } |
| |
| TEST_F(LightControllerTest, RGBLight) { |
| RawLightInfo infoRed = {.id = 1, |
| .name = "red", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::RED, |
| .path = ""}; |
| RawLightInfo infoGreen = {.id = 2, |
| .name = "green", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN, |
| .path = ""}; |
| RawLightInfo infoBlue = {.id = 3, |
| .name = "blue", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed)); |
| mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen)); |
| mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR); |
| } |
| |
| TEST_F(LightControllerTest, CorrectRGBKeyboardBacklight) { |
| RawLightInfo infoRed = {.id = 1, |
| .name = "red_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::RED | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| RawLightInfo infoGreen = {.id = 2, |
| .name = "green_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| RawLightInfo infoBlue = {.id = 3, |
| .name = "blue_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed)); |
| mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen)); |
| mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR); |
| } |
| |
| TEST_F(LightControllerTest, IncorrectRGBKeyboardBacklight) { |
| RawLightInfo infoRed = {.id = 1, |
| .name = "red", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::RED, |
| .path = ""}; |
| RawLightInfo infoGreen = {.id = 2, |
| .name = "green", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN, |
| .path = ""}; |
| RawLightInfo infoBlue = {.id = 3, |
| .name = "blue", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE, |
| .path = ""}; |
| RawLightInfo infoGlobal = {.id = 3, |
| .name = "global_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | InputLightClass::GLOBAL | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed)); |
| mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen)); |
| mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue)); |
| mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoGlobal)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR); |
| } |
| |
| TEST_F(LightControllerTest, MultiColorRGBLight) { |
| RawLightInfo infoColor = {.id = 1, |
| .name = "multi_color", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::MULTI_INTENSITY | |
| InputLightClass::MULTI_INDEX, |
| .path = ""}; |
| |
| mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR); |
| } |
| |
| TEST_F(LightControllerTest, MultiColorRGBKeyboardBacklight) { |
| RawLightInfo infoColor = {.id = 1, |
| .name = "multi_color_keyboard_backlight", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS | |
| InputLightClass::MULTI_INTENSITY | |
| InputLightClass::MULTI_INDEX | |
| InputLightClass::KEYBOARD_BACKLIGHT, |
| .path = ""}; |
| |
| mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR); |
| } |
| |
| TEST_F(LightControllerTest, PlayerIdLight) { |
| RawLightInfo info1 = {.id = 1, |
| .name = "player1", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| RawLightInfo info2 = {.id = 2, |
| .name = "player2", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| RawLightInfo info3 = {.id = 3, |
| .name = "player3", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| RawLightInfo info4 = {.id = 4, |
| .name = "player4", |
| .maxBrightness = 255, |
| .flags = InputLightClass::BRIGHTNESS, |
| .path = ""}; |
| mFakeEventHub->addRawLightInfo(info1.id, std::move(info1)); |
| mFakeEventHub->addRawLightInfo(info2.id, std::move(info2)); |
| mFakeEventHub->addRawLightInfo(info3.id, std::move(info3)); |
| mFakeEventHub->addRawLightInfo(info4.id, std::move(info4)); |
| |
| PeripheralController& controller = addControllerAndConfigure<PeripheralController>(); |
| InputDeviceInfo info; |
| controller.populateDeviceInfo(&info); |
| std::vector<InputDeviceLightInfo> lights = info.getLights(); |
| ASSERT_EQ(1U, lights.size()); |
| ASSERT_EQ(InputDeviceLightType::PLAYER_ID, lights[0].type); |
| ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS)); |
| ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB)); |
| |
| ASSERT_FALSE(controller.setLightColor(lights[0].id, LIGHT_COLOR)); |
| ASSERT_TRUE(controller.setLightPlayerId(lights[0].id, LIGHT_PLAYER_ID)); |
| ASSERT_EQ(controller.getLightPlayerId(lights[0].id).value_or(-1), LIGHT_PLAYER_ID); |
| } |
| |
| } // namespace android |