blob: 835f8b89c3f0a37dbfe2a5cc59c5782a45278040 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cinttypes>
#include <memory>
#include <optional>
#include <CursorInputMapper.h>
#include <InputDevice.h>
#include <InputMapper.h>
#include <InputReader.h>
#include <InputReaderBase.h>
#include <InputReaderFactory.h>
#include <JoystickInputMapper.h>
#include <KeyboardInputMapper.h>
#include <MultiTouchInputMapper.h>
#include <PeripheralController.h>
#include <SensorInputMapper.h>
#include <SingleTouchInputMapper.h>
#include <SwitchInputMapper.h>
#include <TestEventMatchers.h>
#include <TestInputListener.h>
#include <TouchInputMapper.h>
#include <UinputDevice.h>
#include <VibratorInputMapper.h>
#include <android-base/thread_annotations.h>
#include <com_android_input_flags.h>
#include <ftl/enum.h>
#include <gtest/gtest.h>
#include <gui/constants.h>
#include <ui/Rotation.h>
#include <thread>
#include "FakeEventHub.h"
#include "FakeInputReaderPolicy.h"
#include "FakePointerController.h"
#include "InputMapperTest.h"
#include "InstrumentedInputReader.h"
#include "TestConstants.h"
#include "input/DisplayViewport.h"
#include "input/Input.h"
namespace android {
using namespace ftl::flag_operators;
using testing::AllOf;
using std::chrono_literals::operator""ms;
using std::chrono_literals::operator""s;
// Arbitrary display properties.
static constexpr int32_t DISPLAY_ID = 0;
static const std::string DISPLAY_UNIQUE_ID = "local:1";
static constexpr int32_t SECONDARY_DISPLAY_ID = DISPLAY_ID + 1;
static const std::string SECONDARY_DISPLAY_UNIQUE_ID = "local:2";
static constexpr int32_t DISPLAY_WIDTH = 480;
static constexpr int32_t DISPLAY_HEIGHT = 800;
static constexpr int32_t VIRTUAL_DISPLAY_ID = 1;
static constexpr int32_t VIRTUAL_DISPLAY_WIDTH = 400;
static constexpr int32_t VIRTUAL_DISPLAY_HEIGHT = 500;
static const char* VIRTUAL_DISPLAY_UNIQUE_ID = "virtual:1";
static constexpr std::optional<uint8_t> NO_PORT = std::nullopt; // no physical port is specified
static constexpr int32_t FIRST_SLOT = 0;
static constexpr int32_t SECOND_SLOT = 1;
static constexpr int32_t THIRD_SLOT = 2;
static constexpr int32_t INVALID_TRACKING_ID = -1;
static constexpr int32_t FIRST_TRACKING_ID = 0;
static constexpr int32_t SECOND_TRACKING_ID = 1;
static constexpr int32_t THIRD_TRACKING_ID = 2;
static constexpr int32_t LIGHT_BRIGHTNESS = 0x55000000;
static constexpr int32_t LIGHT_COLOR = 0x7F448866;
static constexpr int32_t LIGHT_PLAYER_ID = 2;
static constexpr int32_t ACTION_POINTER_0_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_0_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_1_DOWN =
AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr int32_t ACTION_POINTER_1_UP =
AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
static constexpr uint32_t STYLUS_FUSION_SOURCE =
AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_BLUETOOTH_STYLUS;
// Minimum timestamp separation between subsequent input events from a Bluetooth device.
static constexpr nsecs_t MIN_BLUETOOTH_TIMESTAMP_DELTA = ms2ns(4);
namespace input_flags = com::android::input::flags;
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
static inline float avg(float x, float y) {
return (x + y) / 2;
}
// Mapping for light color name and the light color
const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED},
{"green", LightColor::GREEN},
{"blue", LightColor::BLUE}};
static ui::Rotation getInverseRotation(ui::Rotation orientation) {
switch (orientation) {
case ui::ROTATION_90:
return ui::ROTATION_270;
case ui::ROTATION_270:
return ui::ROTATION_90;
default:
return orientation;
}
}
static void assertAxisResolution(MultiTouchInputMapper& mapper, int axis, float resolution) {
InputDeviceInfo info;
mapper.populateDeviceInfo(info);
const InputDeviceInfo::MotionRange* motionRange =
info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN);
ASSERT_NEAR(motionRange->resolution, resolution, EPSILON);
}
static void assertAxisNotPresent(MultiTouchInputMapper& mapper, int axis) {
InputDeviceInfo info;
mapper.populateDeviceInfo(info);
const InputDeviceInfo::MotionRange* motionRange =
info.getMotionRange(axis, AINPUT_SOURCE_TOUCHSCREEN);
ASSERT_EQ(nullptr, motionRange);
}
[[maybe_unused]] static void dumpReader(InputReader& reader) {
std::string dump;
reader.dump(dump);
std::istringstream iss(dump);
for (std::string line; std::getline(iss, line);) {
ALOGE("%s", line.c_str());
std::this_thread::sleep_for(1ms);
}
}
// --- FakeInputMapper ---
class FakeInputMapper : public InputMapper {
uint32_t mSources;
int32_t mKeyboardType;
int32_t mMetaState;
KeyedVector<int32_t, int32_t> mKeyCodeStates;
KeyedVector<int32_t, int32_t> mScanCodeStates;
KeyedVector<int32_t, int32_t> mSwitchStates;
// fake mapping which would normally come from keyCharacterMap
std::unordered_map<int32_t, int32_t> mKeyCodeMapping;
std::vector<int32_t> mSupportedKeyCodes;
std::list<NotifyArgs> mProcessResult;
std::mutex mLock;
std::condition_variable mStateChangedCondition;
bool mConfigureWasCalled GUARDED_BY(mLock);
bool mResetWasCalled GUARDED_BY(mLock);
bool mProcessWasCalled GUARDED_BY(mLock);
RawEvent mLastEvent GUARDED_BY(mLock);
std::optional<DisplayViewport> mViewport;
public:
FakeInputMapper(InputDeviceContext& deviceContext, const InputReaderConfiguration& readerConfig,
uint32_t sources)
: InputMapper(deviceContext, readerConfig),
mSources(sources),
mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE),
mMetaState(0),
mConfigureWasCalled(false),
mResetWasCalled(false),
mProcessWasCalled(false) {}
virtual ~FakeInputMapper() {}
void setKeyboardType(int32_t keyboardType) {
mKeyboardType = keyboardType;
}
void setMetaState(int32_t metaState) {
mMetaState = metaState;
}
// Sets the return value for the `process` call.
void setProcessResult(std::list<NotifyArgs> notifyArgs) {
mProcessResult.clear();
for (auto notifyArg : notifyArgs) {
mProcessResult.push_back(notifyArg);
}
}
void assertConfigureWasCalled() {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool configureCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mConfigureWasCalled;
});
if (!configureCalled) {
FAIL() << "Expected configure() to have been called.";
}
mConfigureWasCalled = false;
}
void assertResetWasCalled() {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool resetCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mResetWasCalled;
});
if (!resetCalled) {
FAIL() << "Expected reset() to have been called.";
}
mResetWasCalled = false;
}
void assertResetWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_FALSE(mResetWasCalled) << "Expected reset to not have been called.";
}
void assertProcessWasCalled(RawEvent* outLastEvent = nullptr) {
std::unique_lock<std::mutex> lock(mLock);
base::ScopedLockAssertion assumeLocked(mLock);
const bool processCalled =
mStateChangedCondition.wait_for(lock, WAIT_TIMEOUT, [this]() REQUIRES(mLock) {
return mProcessWasCalled;
});
if (!processCalled) {
FAIL() << "Expected process() to have been called.";
}
if (outLastEvent) {
*outLastEvent = mLastEvent;
}
mProcessWasCalled = false;
}
void assertProcessWasNotCalled() {
std::scoped_lock lock(mLock);
ASSERT_FALSE(mProcessWasCalled) << "Expected process to not have been called.";
}
void setKeyCodeState(int32_t keyCode, int32_t state) {
mKeyCodeStates.replaceValueFor(keyCode, state);
}
void setScanCodeState(int32_t scanCode, int32_t state) {
mScanCodeStates.replaceValueFor(scanCode, state);
}
void setSwitchState(int32_t switchCode, int32_t state) {
mSwitchStates.replaceValueFor(switchCode, state);
}
void addSupportedKeyCode(int32_t keyCode) {
mSupportedKeyCodes.push_back(keyCode);
}
void addKeyCodeMapping(int32_t fromKeyCode, int32_t toKeyCode) {
mKeyCodeMapping.insert_or_assign(fromKeyCode, toKeyCode);
}
private:
uint32_t getSources() const override { return mSources; }
void populateDeviceInfo(InputDeviceInfo& deviceInfo) override {
InputMapper::populateDeviceInfo(deviceInfo);
if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) {
deviceInfo.setKeyboardType(mKeyboardType);
}
}
std::list<NotifyArgs> reconfigure(nsecs_t, const InputReaderConfiguration& config,
ConfigurationChanges changes) override {
std::scoped_lock<std::mutex> lock(mLock);
mConfigureWasCalled = true;
// Find the associated viewport if exist.
const std::optional<uint8_t> displayPort = getDeviceContext().getAssociatedDisplayPort();
if (displayPort && changes.test(InputReaderConfiguration::Change::DISPLAY_INFO)) {
mViewport = config.getDisplayViewportByPort(*displayPort);
}
mStateChangedCondition.notify_all();
return {};
}
std::list<NotifyArgs> reset(nsecs_t) override {
std::scoped_lock<std::mutex> lock(mLock);
mResetWasCalled = true;
mStateChangedCondition.notify_all();
return {};
}
std::list<NotifyArgs> process(const RawEvent* rawEvent) override {
std::scoped_lock<std::mutex> lock(mLock);
mLastEvent = *rawEvent;
mProcessWasCalled = true;
mStateChangedCondition.notify_all();
return mProcessResult;
}
int32_t getKeyCodeState(uint32_t, int32_t keyCode) override {
ssize_t index = mKeyCodeStates.indexOfKey(keyCode);
return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
int32_t getKeyCodeForKeyLocation(int32_t locationKeyCode) const override {
auto it = mKeyCodeMapping.find(locationKeyCode);
return it != mKeyCodeMapping.end() ? it->second : locationKeyCode;
}
int32_t getScanCodeState(uint32_t, int32_t scanCode) override {
ssize_t index = mScanCodeStates.indexOfKey(scanCode);
return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
int32_t getSwitchState(uint32_t, int32_t switchCode) override {
ssize_t index = mSwitchStates.indexOfKey(switchCode);
return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN;
}
// Return true if the device has non-empty key layout.
bool markSupportedKeyCodes(uint32_t, const std::vector<int32_t>& keyCodes,
uint8_t* outFlags) override {
for (size_t i = 0; i < keyCodes.size(); i++) {
for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) {
if (keyCodes[i] == mSupportedKeyCodes[j]) {
outFlags[i] = 1;
}
}
}
bool result = mSupportedKeyCodes.size() > 0;
return result;
}
virtual int32_t getMetaState() {
return mMetaState;
}
virtual void fadePointer() {
}
virtual std::optional<int32_t> getAssociatedDisplay() {
if (mViewport) {
return std::make_optional(mViewport->displayId);
}
return std::nullopt;
}
};
// --- InputReaderPolicyTest ---
class InputReaderPolicyTest : public testing::Test {
protected:
sp<FakeInputReaderPolicy> mFakePolicy;
void SetUp() override { mFakePolicy = sp<FakeInputReaderPolicy>::make(); }
void TearDown() override { mFakePolicy.clear(); }
};
/**
* Check that empty set of viewports is an acceptable configuration.
* Also try to get internal viewport two different ways - by type and by uniqueId.
*
* There will be confusion if two viewports with empty uniqueId and identical type are present.
* Such configuration is not currently allowed.
*/
TEST_F(InputReaderPolicyTest, Viewports_GetCleared) {
static const std::string uniqueId = "local:0";
// We didn't add any viewports yet, so there shouldn't be any.
std::optional<DisplayViewport> internalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_FALSE(internalViewport);
// Add an internal viewport, then clear it
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, uniqueId, NO_PORT, ViewportType::INTERNAL);
// Check matching by uniqueId
internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(ViewportType::INTERNAL, internalViewport->type);
// Check matching by viewport type
internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(uniqueId, internalViewport->uniqueId);
mFakePolicy->clearViewports();
// Make sure nothing is found after clear
internalViewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId);
ASSERT_FALSE(internalViewport);
internalViewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_FALSE(internalViewport);
}
TEST_F(InputReaderPolicyTest, Viewports_GetByType) {
const std::string internalUniqueId = "local:0";
const std::string externalUniqueId = "local:1";
const std::string virtualUniqueId1 = "virtual:2";
const std::string virtualUniqueId2 = "virtual:3";
constexpr int32_t virtualDisplayId1 = 2;
constexpr int32_t virtualDisplayId2 = 3;
// Add an internal viewport
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, internalUniqueId, NO_PORT,
ViewportType::INTERNAL);
// Add an external viewport
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, externalUniqueId, NO_PORT,
ViewportType::EXTERNAL);
// Add an virtual viewport
mFakePolicy->addDisplayViewport(virtualDisplayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, virtualUniqueId1, NO_PORT,
ViewportType::VIRTUAL);
// Add another virtual viewport
mFakePolicy->addDisplayViewport(virtualDisplayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, virtualUniqueId2, NO_PORT,
ViewportType::VIRTUAL);
// Check matching by type for internal
std::optional<DisplayViewport> internalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(internalViewport);
ASSERT_EQ(internalUniqueId, internalViewport->uniqueId);
// Check matching by type for external
std::optional<DisplayViewport> externalViewport =
mFakePolicy->getDisplayViewportByType(ViewportType::EXTERNAL);
ASSERT_TRUE(externalViewport);
ASSERT_EQ(externalUniqueId, externalViewport->uniqueId);
// Check matching by uniqueId for virtual viewport #1
std::optional<DisplayViewport> virtualViewport1 =
mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId1);
ASSERT_TRUE(virtualViewport1);
ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport1->type);
ASSERT_EQ(virtualUniqueId1, virtualViewport1->uniqueId);
ASSERT_EQ(virtualDisplayId1, virtualViewport1->displayId);
// Check matching by uniqueId for virtual viewport #2
std::optional<DisplayViewport> virtualViewport2 =
mFakePolicy->getDisplayViewportByUniqueId(virtualUniqueId2);
ASSERT_TRUE(virtualViewport2);
ASSERT_EQ(ViewportType::VIRTUAL, virtualViewport2->type);
ASSERT_EQ(virtualUniqueId2, virtualViewport2->uniqueId);
ASSERT_EQ(virtualDisplayId2, virtualViewport2->displayId);
}
/**
* We can have 2 viewports of the same kind. We can distinguish them by uniqueId, and confirm
* that lookup works by checking display id.
* Check that 2 viewports of each kind is possible, for all existing viewport types.
*/
TEST_F(InputReaderPolicyTest, Viewports_TwoOfSameType) {
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t displayId1 = 2;
constexpr int32_t displayId2 = 3;
std::vector<ViewportType> types = {ViewportType::INTERNAL, ViewportType::EXTERNAL,
ViewportType::VIRTUAL};
for (const ViewportType& type : types) {
mFakePolicy->clearViewports();
// Add a viewport
mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, uniqueId1, NO_PORT, type);
// Add another viewport
mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, uniqueId2, NO_PORT, type);
// Check that correct display viewport was returned by comparing the display IDs.
std::optional<DisplayViewport> viewport1 =
mFakePolicy->getDisplayViewportByUniqueId(uniqueId1);
ASSERT_TRUE(viewport1);
ASSERT_EQ(displayId1, viewport1->displayId);
ASSERT_EQ(type, viewport1->type);
std::optional<DisplayViewport> viewport2 =
mFakePolicy->getDisplayViewportByUniqueId(uniqueId2);
ASSERT_TRUE(viewport2);
ASSERT_EQ(displayId2, viewport2->displayId);
ASSERT_EQ(type, viewport2->type);
// When there are multiple viewports of the same kind, and uniqueId is not specified
// in the call to getDisplayViewport, then that situation is not supported.
// The viewports can be stored in any order, so we cannot rely on the order, since that
// is just implementation detail.
// However, we can check that it still returns *a* viewport, we just cannot assert
// which one specifically is returned.
std::optional<DisplayViewport> someViewport = mFakePolicy->getDisplayViewportByType(type);
ASSERT_TRUE(someViewport);
}
}
/**
* When we have multiple internal displays make sure we always return the default display when
* querying by type.
*/
TEST_F(InputReaderPolicyTest, Viewports_ByTypeReturnsDefaultForInternal) {
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t nonDefaultDisplayId = 2;
static_assert(nonDefaultDisplayId != ADISPLAY_ID_DEFAULT,
"Test display ID should not be ADISPLAY_ID_DEFAULT");
// Add the default display first and ensure it gets returned.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, uniqueId1, NO_PORT,
ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, uniqueId2, NO_PORT,
ViewportType::INTERNAL);
std::optional<DisplayViewport> viewport =
mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(viewport);
ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId);
ASSERT_EQ(ViewportType::INTERNAL, viewport->type);
// Add the default display second to make sure order doesn't matter.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(nonDefaultDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, uniqueId2, NO_PORT,
ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(ADISPLAY_ID_DEFAULT, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, uniqueId1, NO_PORT,
ViewportType::INTERNAL);
viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
ASSERT_TRUE(viewport);
ASSERT_EQ(ADISPLAY_ID_DEFAULT, viewport->displayId);
ASSERT_EQ(ViewportType::INTERNAL, viewport->type);
}
/**
* Check getDisplayViewportByPort
*/
TEST_F(InputReaderPolicyTest, Viewports_GetByPort) {
constexpr ViewportType type = ViewportType::EXTERNAL;
const std::string uniqueId1 = "uniqueId1";
const std::string uniqueId2 = "uniqueId2";
constexpr int32_t displayId1 = 1;
constexpr int32_t displayId2 = 2;
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
const uint8_t hdmi3 = 2;
mFakePolicy->clearViewports();
// Add a viewport that's associated with some display port that's not of interest.
mFakePolicy->addDisplayViewport(displayId1, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, uniqueId1, hdmi3, type);
// Add another viewport, connected to HDMI1 port
mFakePolicy->addDisplayViewport(displayId2, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, uniqueId2, hdmi1, type);
// Check that correct display viewport was returned by comparing the display ports.
std::optional<DisplayViewport> hdmi1Viewport = mFakePolicy->getDisplayViewportByPort(hdmi1);
ASSERT_TRUE(hdmi1Viewport);
ASSERT_EQ(displayId2, hdmi1Viewport->displayId);
ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId);
// Check that we can still get the same viewport using the uniqueId
hdmi1Viewport = mFakePolicy->getDisplayViewportByUniqueId(uniqueId2);
ASSERT_TRUE(hdmi1Viewport);
ASSERT_EQ(displayId2, hdmi1Viewport->displayId);
ASSERT_EQ(uniqueId2, hdmi1Viewport->uniqueId);
ASSERT_EQ(type, hdmi1Viewport->type);
// Check that we cannot find a port with "HDMI2", because we never added one
std::optional<DisplayViewport> hdmi2Viewport = mFakePolicy->getDisplayViewportByPort(hdmi2);
ASSERT_FALSE(hdmi2Viewport);
}
// --- InputReaderTest ---
class InputReaderTest : public testing::Test {
protected:
std::unique_ptr<TestInputListener> mFakeListener;
sp<FakeInputReaderPolicy> mFakePolicy;
std::shared_ptr<FakeEventHub> mFakeEventHub;
std::unique_ptr<InstrumentedInputReader> mReader;
void SetUp() override {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
}
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
void addDevice(int32_t eventHubId, const std::string& name,
ftl::Flags<InputDeviceClass> classes, const PropertyMap* configuration) {
mFakeEventHub->addDevice(eventHubId, name, classes);
if (configuration) {
mFakeEventHub->addConfigurationMap(eventHubId, configuration);
}
mFakeEventHub->finishDeviceScan();
mReader->loopOnce();
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyInputDevicesChangedWasCalled());
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
}
void disableDevice(int32_t deviceId) {
mFakePolicy->addDisabledDevice(deviceId);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::ENABLED_STATE);
}
void enableDevice(int32_t deviceId) {
mFakePolicy->removeDisabledDevice(deviceId);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::ENABLED_STATE);
}
FakeInputMapper& addDeviceWithFakeInputMapper(int32_t deviceId, int32_t eventHubId,
const std::string& name,
ftl::Flags<InputDeviceClass> classes,
uint32_t sources,
const PropertyMap* configuration) {
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, name);
FakeInputMapper& mapper =
device->addMapper<FakeInputMapper>(eventHubId,
mFakePolicy->getReaderConfiguration(), sources);
mReader->pushNextDevice(device);
addDevice(eventHubId, name, classes, configuration);
return mapper;
}
};
TEST_F(InputReaderTest, PolicyGetInputDevices) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", InputDeviceClass::KEYBOARD, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(2, "ignored", ftl::Flags<InputDeviceClass>(0),
nullptr)); // no classes so device will be ignored
// Should also have received a notification describing the new input devices.
const std::vector<InputDeviceInfo>& inputDevices = mFakePolicy->getInputDevices();
ASSERT_EQ(1U, inputDevices.size());
ASSERT_EQ(END_RESERVED_ID + 1, inputDevices[0].getId());
ASSERT_STREQ("keyboard", inputDevices[0].getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, inputDevices[0].getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, inputDevices[0].getSources());
ASSERT_EQ(0U, inputDevices[0].getMotionRanges().size());
}
TEST_F(InputReaderTest, InputDeviceRecreatedOnSysfsNodeChanged) {
ASSERT_NO_FATAL_FAILURE(addDevice(1, "keyboard", InputDeviceClass::KEYBOARD, nullptr));
mFakeEventHub->setSysfsRootPath(1, "xyz");
// Should also have received a notification describing the new input device.
ASSERT_EQ(1U, mFakePolicy->getInputDevices().size());
InputDeviceInfo inputDevice = mFakePolicy->getInputDevices()[0];
ASSERT_EQ(0U, inputDevice.getLights().size());
RawLightInfo infoMonolight = {.id = 123,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(/*rawId=*/123, std::move(infoMonolight));
mReader->sysfsNodeChanged("xyz");
mReader->loopOnce();
// Should also have received a notification describing the new recreated input device.
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
inputDevice = mFakePolicy->getInputDevices()[0];
ASSERT_EQ(1U, inputDevice.getLights().size());
}
TEST_F(InputReaderTest, GetMergedInputDevices) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
// Push same device instance for next device to be added, so they'll have same identifier.
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[0], "fake1", InputDeviceClass::KEYBOARD, nullptr));
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr));
// Two devices will be merged to one input device as they have same identifier
ASSERT_EQ(1U, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderTest, GetMergedInputDevicesEnabled) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
// Push same device instance for next device to be added, so they'll have same identifier.
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
// Sensor device is initially disabled
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1",
InputDeviceClass::KEYBOARD | InputDeviceClass::SENSOR,
nullptr));
// Device is disabled because the only sub device is a sensor device and disabled initially.
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_FALSE(device->isEnabled());
ASSERT_NO_FATAL_FAILURE(
addDevice(eventHubIds[1], "fake2", InputDeviceClass::KEYBOARD, nullptr));
// The merged device is enabled if any sub device is enabled
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
ASSERT_TRUE(device->isEnabled());
}
TEST_F(InputReaderTest, WhenEnabledChanges_SendsDeviceResetNotification) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass(InputDeviceClass::KEYBOARD);
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), true);
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), false);
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(device->isEnabled(), false);
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_EQ(device->isEnabled(), true);
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0,
AINPUT_SOURCE_ANY, AKEYCODE_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
AKEYCODE_A))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "keyboard",
InputDeviceClass::KEYBOARD,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(0, AKEYCODE_Y))
<< "Should return unknown when the device with the specified id is not found.";
ASSERT_EQ(AKEYCODE_Z, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y))
<< "Should return correct mapping when device id is valid and mapping exists.";
ASSERT_EQ(AKEYCODE_A, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_A))
<< "Should return the location key code when device id is valid and there's no "
"mapping.";
}
TEST_F(InputReaderTest, GetKeyCodeForKeyLocation_NoKeyboardMapper) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper = addDeviceWithFakeInputMapper(deviceId, eventHubId, "joystick",
InputDeviceClass::JOYSTICK,
AINPUT_SOURCE_GAMEPAD, nullptr);
mapper.addKeyCodeMapping(AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_UNKNOWN, mReader->getKeyCodeForKeyLocation(deviceId, AKEYCODE_Y))
<< "Should return unknown when the device id is valid but there is no keyboard mapper";
}
TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setScanCodeState(KEY_A, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0,
AINPUT_SOURCE_ANY, KEY_A))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getScanCodeState(deviceId, AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getScanCodeState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
KEY_A))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.setSwitchState(SW_LID, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0,
AINPUT_SOURCE_ANY, SW_LID))
<< "Should return unknown when the device id is >= 0 but unknown.";
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getSwitchState(deviceId, AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is valid but the sources are not "
"supported by the device.";
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getSwitchState(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
SW_LID))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1,
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
}
TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mapper.addSupportedKeyCode(AKEYCODE_A);
mapper.addSupportedKeyCode(AKEYCODE_B);
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2};
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, keyCodes, flags))
<< "Should return false when device id is >= 0 but unknown.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(deviceId, AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return false when device id is valid but the sources are not supported by "
"the device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(mReader->hasKeys(deviceId, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL,
keyCodes, flags))
<< "Should return value provided by mapper when device id is valid and the device "
"supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return false when the device id is < 0 but the sources are not supported by "
"any device.";
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
flags[3] = 1;
ASSERT_TRUE(
mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should return value provided by mapper when device id is < 0 and one of the "
"devices supports some of the sources.";
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
}
TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) {
constexpr int32_t eventHubId = 1;
addDevice(eventHubId, "ignored", InputDeviceClass::KEYBOARD, nullptr);
NotifyConfigurationChangedArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
}
TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr nsecs_t when = 0;
constexpr int32_t eventHubId = 1;
constexpr nsecs_t readTime = 2;
FakeInputMapper& mapper =
addDeviceWithFakeInputMapper(deviceId, eventHubId, "fake", deviceClass,
AINPUT_SOURCE_KEYBOARD, nullptr);
mFakeEventHub->enqueueEvent(when, readTime, eventHubId, EV_KEY, KEY_A, 1);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
RawEvent event;
ASSERT_NO_FATAL_FAILURE(mapper.assertProcessWasCalled(&event));
ASSERT_EQ(when, event.when);
ASSERT_EQ(readTime, event.readTime);
ASSERT_EQ(eventHubId, event.deviceId);
ASSERT_EQ(EV_KEY, event.type);
ASSERT_EQ(KEY_A, event.code);
ASSERT_EQ(1, event.value);
}
TEST_F(InputReaderTest, DeviceReset_RandomId) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
int32_t prevId = resetArgs.id;
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_NE(prevId, resetArgs.id);
prevId = resetArgs.id;
}
TEST_F(InputReaderTest, DeviceReset_GenerateIdWithInputReaderSource) {
constexpr int32_t deviceId = 1;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(deviceId, "fake", deviceClass, nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(IdGenerator::Source::INPUT_READER, IdGenerator::getSource(resetArgs.id));
}
TEST_F(InputReaderTest, Device_CanDispatchToDisplay) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "USB1";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakeInputMapper& mapper =
device->addMapper<FakeInputMapper>(eventHubId, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_TOUCHSCREEN);
mReader->pushNextDevice(device);
const uint8_t hdmi1 = 1;
// Associated touch screen with second display.
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
// Add default and second display.
mFakePolicy->clearViewports();
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, "local:0", NO_PORT, ViewportType::INTERNAL);
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, "local:1", hdmi1,
ViewportType::EXTERNAL);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::DISPLAY_INFO);
mReader->loopOnce();
// Add the device, and make sure all of the callbacks are triggered.
// The device is added after the input port associations are processed since
// we do not yet support dynamic device-to-display associations.
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled());
// Device should only dispatch to the specified display.
ASSERT_EQ(deviceId, device->getId());
ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, DISPLAY_ID));
ASSERT_TRUE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID));
// Can't dispatch event from a disabled device.
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_FALSE(mReader->canDispatchToDisplay(deviceId, SECONDARY_DISPLAY_ID));
}
TEST_F(InputReaderTest, WhenEnabledChanges_AllSubdevicesAreUpdated) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
// Must add at least one mapper or the device will be ignored!
device->addMapper<FakeInputMapper>(eventHubIds[0], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
device->addMapper<FakeInputMapper>(eventHubIds[1], mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyConfigurationChangedWasCalled(nullptr));
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_TRUE(device->isEnabled());
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
disableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_FALSE(device->isEnabled());
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_FALSE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
enableDevice(deviceId);
mReader->loopOnce();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(deviceId, resetArgs.deviceId);
ASSERT_TRUE(device->isEnabled());
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[0]));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(eventHubIds[1]));
}
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToSubdeviceMappers) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
constexpr ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD;
constexpr int32_t eventHubIds[2] = {END_RESERVED_ID, END_RESERVED_ID + 1};
// Add two subdevices to device
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake");
FakeInputMapper& mapperDevice1 =
device->addMapper<FakeInputMapper>(eventHubIds[0],
mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
FakeInputMapper& mapperDevice2 =
device->addMapper<FakeInputMapper>(eventHubIds[1],
mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[0], "fake1", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubIds[1], "fake2", deviceClass, nullptr));
mapperDevice1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapperDevice2.setKeyCodeState(AKEYCODE_B, AKEY_STATE_DOWN);
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_A));
ASSERT_EQ(AKEY_STATE_DOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_B));
ASSERT_EQ(AKEY_STATE_UNKNOWN,
mReader->getKeyCodeState(deviceId, AINPUT_SOURCE_KEYBOARD, AKEYCODE_C));
}
TEST_F(InputReaderTest, ChangingPointerCaptureNotifiesInputListener) {
NotifyPointerCaptureChangedArgs args;
auto request = mFakePolicy->setPointerCapture(true);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasCalled(&args);
ASSERT_TRUE(args.request.enable) << "Pointer Capture should be enabled.";
ASSERT_EQ(args.request, request) << "Pointer Capture sequence number should match.";
mFakePolicy->setPointerCapture(false);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasCalled(&args);
ASSERT_FALSE(args.request.enable) << "Pointer Capture should be disabled.";
// Verify that the Pointer Capture state is not updated when the configuration value
// does not change.
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::POINTER_CAPTURE);
mReader->loopOnce();
mFakeListener->assertNotifyCaptureWasNotCalled();
}
class FakeVibratorInputMapper : public FakeInputMapper {
public:
FakeVibratorInputMapper(InputDeviceContext& deviceContext,
const InputReaderConfiguration& readerConfig, uint32_t sources)
: FakeInputMapper(deviceContext, readerConfig, sources) {}
std::vector<int32_t> getVibratorIds() override { return getDeviceContext().getVibratorIds(); }
};
TEST_F(InputReaderTest, VibratorGetVibratorIds) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::VIBRATOR;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakeVibratorInputMapper& mapper =
device->addMapper<FakeVibratorInputMapper>(eventHubId,
mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_NO_FATAL_FAILURE(mapper.assertConfigureWasCalled());
ASSERT_EQ(mapper.getVibratorIds().size(), 2U);
ASSERT_EQ(mReader->getVibratorIds(deviceId).size(), 2U);
}
// --- FakePeripheralController ---
class FakePeripheralController : public PeripheralControllerInterface {
public:
FakePeripheralController(InputDeviceContext& deviceContext) : mDeviceContext(deviceContext) {}
~FakePeripheralController() override {}
int32_t getEventHubId() const { return getDeviceContext().getEventHubId(); }
void populateDeviceInfo(InputDeviceInfo* deviceInfo) override {}
void dump(std::string& dump) override {}
std::optional<int32_t> getBatteryCapacity(int32_t batteryId) override {
return getDeviceContext().getBatteryCapacity(batteryId);
}
std::optional<int32_t> getBatteryStatus(int32_t batteryId) override {
return getDeviceContext().getBatteryStatus(batteryId);
}
bool setLightColor(int32_t lightId, int32_t color) override {
getDeviceContext().setLightBrightness(lightId, color >> 24);
return true;
}
std::optional<int32_t> getLightColor(int32_t lightId) override {
std::optional<int32_t> result = getDeviceContext().getLightBrightness(lightId);
if (!result.has_value()) {
return std::nullopt;
}
return result.value() << 24;
}
bool setLightPlayerId(int32_t lightId, int32_t playerId) override { return true; }
std::optional<int32_t> getLightPlayerId(int32_t lightId) override { return std::nullopt; }
private:
InputDeviceContext& mDeviceContext;
inline int32_t getDeviceId() { return mDeviceContext.getId(); }
inline InputDeviceContext& getDeviceContext() { return mDeviceContext; }
inline InputDeviceContext& getDeviceContext() const { return mDeviceContext; }
};
TEST_F(InputReaderTest, BatteryGetCapacity) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY),
FakeEventHub::BATTERY_CAPACITY);
ASSERT_EQ(mReader->getBatteryCapacity(deviceId), FakeEventHub::BATTERY_CAPACITY);
}
TEST_F(InputReaderTest, BatteryGetStatus) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY),
FakeEventHub::BATTERY_STATUS);
ASSERT_EQ(mReader->getBatteryStatus(deviceId), FakeEventHub::BATTERY_STATUS);
}
TEST_F(InputReaderTest, BatteryGetDevicePath) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass =
InputDeviceClass::KEYBOARD | InputDeviceClass::BATTERY;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_EQ(mReader->getBatteryDevicePath(deviceId), FakeEventHub::BATTERY_DEVPATH);
}
TEST_F(InputReaderTest, LightGetColor) {
constexpr int32_t deviceId = END_RESERVED_ID + 1000;
ftl::Flags<InputDeviceClass> deviceClass = InputDeviceClass::KEYBOARD | InputDeviceClass::LIGHT;
constexpr int32_t eventHubId = 1;
const char* DEVICE_LOCATION = "BLUETOOTH";
std::shared_ptr<InputDevice> device = mReader->newDevice(deviceId, "fake", DEVICE_LOCATION);
FakePeripheralController& controller =
device->addController<FakePeripheralController>(eventHubId);
mReader->pushNextDevice(device);
RawLightInfo info = {.id = 1,
.name = "Mono",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(/*rawId=*/1, std::move(info));
mFakeEventHub->fakeLightBrightness(/*rawId=*/1, 0x55);
ASSERT_NO_FATAL_FAILURE(addDevice(eventHubId, "fake", deviceClass, nullptr));
ASSERT_TRUE(controller.setLightColor(/*lightId=*/1, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(/*lightId=*/1), LIGHT_BRIGHTNESS);
ASSERT_TRUE(mReader->setLightColor(deviceId, /*lightId=*/1, LIGHT_BRIGHTNESS));
ASSERT_EQ(mReader->getLightColor(deviceId, /*lightId=*/1), LIGHT_BRIGHTNESS);
}
// --- InputReaderIntegrationTest ---
// These tests create and interact with the InputReader only through its interface.
// The InputReader is started during SetUp(), which starts its processing in its own
// thread. The tests use linux uinput to emulate input devices.
// NOTE: Interacting with the physical device while these tests are running may cause
// the tests to fail.
class InputReaderIntegrationTest : public testing::Test {
protected:
std::unique_ptr<TestInputListener> mTestListener;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<InputReaderInterface> mReader;
std::shared_ptr<FakePointerController> mFakePointerController;
constexpr static auto EVENT_HAPPENED_TIMEOUT = 2000ms;
constexpr static auto EVENT_DID_NOT_HAPPEN_TIMEOUT = 30ms;
void SetUp() override {
#if !defined(__ANDROID__)
GTEST_SKIP();
#endif
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakePointerController = std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(mFakePointerController);
setupInputReader();
}
void TearDown() override {
#if !defined(__ANDROID__)
return;
#endif
ASSERT_EQ(mReader->stop(), OK);
mReader.reset();
mTestListener.reset();
mFakePolicy.clear();
}
std::optional<InputDeviceInfo> waitForDevice(const std::string& deviceName) {
std::chrono::time_point start = std::chrono::steady_clock::now();
while (true) {
const std::vector<InputDeviceInfo> inputDevices = mFakePolicy->getInputDevices();
const auto& it = std::find_if(inputDevices.begin(), inputDevices.end(),
[&deviceName](const InputDeviceInfo& info) {
return info.getIdentifier().name == deviceName;
});
if (it != inputDevices.end()) {
return std::make_optional(*it);
}
std::this_thread::sleep_for(1ms);
std::chrono::duration elapsed = std::chrono::steady_clock::now() - start;
if (elapsed > 5s) {
return {};
}
}
}
void setupInputReader() {
mTestListener = std::make_unique<TestInputListener>(EVENT_HAPPENED_TIMEOUT,
EVENT_DID_NOT_HAPPEN_TIMEOUT);
mReader = std::make_unique<InputReader>(std::make_shared<EventHub>(), mFakePolicy,
*mTestListener);
ASSERT_EQ(mReader->start(), OK);
// Since this test is run on a real device, all the input devices connected
// to the test device will show up in mReader. We wait for those input devices to
// show up before beginning the tests.
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyInputDevicesChangedWasCalled());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
}
};
TEST_F(InputReaderIntegrationTest, TestInvalidDevice) {
// An invalid input device that is only used for this test.
class InvalidUinputDevice : public UinputDevice {
public:
InvalidUinputDevice() : UinputDevice("Invalid Device", /*productId=*/99) {}
private:
void configureDevice(int fd, uinput_user_dev* device) override {}
};
const size_t numDevices = mFakePolicy->getInputDevices().size();
// UinputDevice does not set any event or key bits, so InputReader should not
// consider it as a valid device.
std::unique_ptr<UinputDevice> invalidDevice = createUinputDevice<InvalidUinputDevice>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size());
invalidDevice.reset();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesNotChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasNotCalled());
ASSERT_EQ(numDevices, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderIntegrationTest, AddNewDevice) {
const size_t initialNumDevices = mFakePolicy->getInputDevices().size();
std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_EQ(initialNumDevices + 1, mFakePolicy->getInputDevices().size());
const auto device = waitForDevice(keyboard->getName());
ASSERT_TRUE(device.has_value());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, device->getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources());
ASSERT_EQ(0U, device->getMotionRanges().size());
keyboard.reset();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_EQ(initialNumDevices, mFakePolicy->getInputDevices().size());
}
TEST_F(InputReaderIntegrationTest, SendsEventsToInputListener) {
std::unique_ptr<UinputHomeKey> keyboard = createUinputDevice<UinputHomeKey>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
NotifyConfigurationChangedArgs configChangedArgs;
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyConfigurationChangedWasCalled(&configChangedArgs));
int32_t prevId = configChangedArgs.id;
nsecs_t prevTimestamp = configChangedArgs.eventTime;
NotifyKeyArgs keyArgs;
keyboard->pressAndReleaseHomeKey();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_NE(prevId, keyArgs.id);
prevId = keyArgs.id;
ASSERT_LE(prevTimestamp, keyArgs.eventTime);
ASSERT_LE(keyArgs.eventTime, keyArgs.readTime);
prevTimestamp = keyArgs.eventTime;
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_NE(prevId, keyArgs.id);
ASSERT_LE(prevTimestamp, keyArgs.eventTime);
ASSERT_LE(keyArgs.eventTime, keyArgs.readTime);
}
TEST_F(InputReaderIntegrationTest, ExternalStylusesButtons) {
std::unique_ptr<UinputExternalStylus> stylus = createUinputDevice<UinputExternalStylus>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
const auto device = waitForDevice(stylus->getName());
ASSERT_TRUE(device.has_value());
// An external stylus with buttons should also be recognized as a keyboard.
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_STYLUS, device->getSources())
<< "Unexpected source " << inputEventSourceToString(device->getSources()).c_str();
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, device->getKeyboardType());
const auto DOWN =
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD));
const auto UP = AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD));
stylus->pressAndReleaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY))));
stylus->pressAndReleaseKey(BTN_STYLUS2);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_SECONDARY))));
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_SECONDARY))));
stylus->pressAndReleaseKey(BTN_STYLUS3);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(DOWN, WithKeyCode(AKEYCODE_STYLUS_BUTTON_TERTIARY))));
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(
AllOf(UP, WithKeyCode(AKEYCODE_STYLUS_BUTTON_TERTIARY))));
}
TEST_F(InputReaderIntegrationTest, KeyboardWithStylusButtons) {
std::unique_ptr<UinputKeyboard> keyboard =
createUinputDevice<UinputKeyboard>("KeyboardWithStylusButtons", /*productId=*/99,
std::initializer_list<int>{KEY_Q, KEY_W, KEY_E,
KEY_R, KEY_T, KEY_Y,
BTN_STYLUS, BTN_STYLUS2,
BTN_STYLUS3});
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
const auto device = waitForDevice(keyboard->getName());
ASSERT_TRUE(device.has_value());
// An alphabetical keyboard that reports stylus buttons should not be recognized as a stylus.
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources())
<< "Unexpected source " << inputEventSourceToString(device->getSources()).c_str();
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, device->getKeyboardType());
}
TEST_F(InputReaderIntegrationTest, HidUsageKeyboardIsNotAStylus) {
// Create a Uinput keyboard that simulates a keyboard that can report HID usage codes. The
// hid-input driver reports HID usage codes using the value for EV_MSC MSC_SCAN event.
std::unique_ptr<UinputKeyboardWithHidUsage> keyboard =
createUinputDevice<UinputKeyboardWithHidUsage>(
std::initializer_list<int>{KEY_VOLUMEUP, KEY_VOLUMEDOWN});
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
const auto device = waitForDevice(keyboard->getName());
ASSERT_TRUE(device.has_value());
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, device->getSources())
<< "Unexpected source " << inputEventSourceToString(device->getSources()).c_str();
// If a device supports reporting HID usage codes, it shouldn't automatically support
// stylus keys.
const std::vector<int> keycodes{AKEYCODE_STYLUS_BUTTON_PRIMARY};
uint8_t outFlags[] = {0};
ASSERT_TRUE(mReader->hasKeys(device->getId(), AINPUT_SOURCE_KEYBOARD, keycodes, outFlags));
ASSERT_EQ(0, outFlags[0]) << "Keyboard should not have stylus button";
}
/**
* The Steam controller sends BTN_GEAR_DOWN and BTN_GEAR_UP for the two "paddle" buttons
* on the back. In this test, we make sure that BTN_GEAR_DOWN / BTN_WHEEL and BTN_GEAR_UP
* are passed to the listener.
*/
static_assert(BTN_GEAR_DOWN == BTN_WHEEL);
TEST_F(InputReaderIntegrationTest, SendsGearDownAndUpToInputListener) {
std::unique_ptr<UinputSteamController> controller = createUinputDevice<UinputSteamController>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
NotifyKeyArgs keyArgs;
controller->pressAndReleaseKey(BTN_GEAR_DOWN);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP
ASSERT_EQ(BTN_GEAR_DOWN, keyArgs.scanCode);
controller->pressAndReleaseKey(BTN_GEAR_UP);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_DOWN
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasCalled(&keyArgs)); // ACTION_UP
ASSERT_EQ(BTN_GEAR_UP, keyArgs.scanCode);
}
// --- TouchIntegrationTest ---
class BaseTouchIntegrationTest : public InputReaderIntegrationTest {
protected:
const std::string UNIQUE_ID = "local:0";
void SetUp() override {
#if !defined(__ANDROID__)
GTEST_SKIP();
#endif
InputReaderIntegrationTest::SetUp();
// At least add an internal display.
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
mDevice = createUinputDevice<UinputTouchScreen>(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto info = waitForDevice(mDevice->getName());
ASSERT_TRUE(info);
mDeviceInfo = *info;
}
void setDisplayInfoAndReconfigure(int32_t displayId, int32_t width, int32_t height,
ui::Rotation orientation, const std::string& uniqueId,
std::optional<uint8_t> physicalPort,
ViewportType viewportType) {
mFakePolicy->addDisplayViewport(displayId, width, height, orientation, /*isActive=*/true,
uniqueId, physicalPort, viewportType);
mReader->requestRefreshConfiguration(InputReaderConfiguration::Change::DISPLAY_INFO);
}
void assertReceivedMotion(int32_t action, const std::vector<Point>& points) {
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
EXPECT_EQ(action, args.action);
ASSERT_EQ(points.size(), args.getPointerCount());
for (size_t i = 0; i < args.getPointerCount(); i++) {
EXPECT_EQ(points[i].x, args.pointerCoords[i].getX());
EXPECT_EQ(points[i].y, args.pointerCoords[i].getY());
}
}
std::unique_ptr<UinputTouchScreen> mDevice;
InputDeviceInfo mDeviceInfo;
};
enum class TouchIntegrationTestDisplays { DISPLAY_INTERNAL, DISPLAY_INPUT_PORT, DISPLAY_UNIQUE_ID };
class TouchIntegrationTest : public BaseTouchIntegrationTest,
public testing::WithParamInterface<TouchIntegrationTestDisplays> {
protected:
static constexpr std::optional<uint8_t> DISPLAY_PORT = 0;
const std::string INPUT_PORT = "uinput_touch/input0";
void SetUp() override {
#if !defined(__ANDROID__)
GTEST_SKIP();
#endif
if (GetParam() == TouchIntegrationTestDisplays::DISPLAY_INTERNAL) {
BaseTouchIntegrationTest::SetUp();
return;
}
// setup policy with a input-port or UniqueId association to the display
bool isInputPortAssociation =
GetParam() == TouchIntegrationTestDisplays::DISPLAY_INPUT_PORT;
mFakePolicy = sp<FakeInputReaderPolicy>::make();
if (isInputPortAssociation) {
mFakePolicy->addInputPortAssociation(INPUT_PORT, DISPLAY_PORT.value());
} else {
mFakePolicy->addInputUniqueIdAssociation(INPUT_PORT, UNIQUE_ID);
}
mFakePointerController = std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(mFakePointerController);
InputReaderIntegrationTest::setupInputReader();
mDevice = createUinputDevice<UinputTouchScreen>(Rect(0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT),
INPUT_PORT);
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
// Add a display linked to a physical port or UniqueId.
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
UNIQUE_ID, isInputPortAssociation ? DISPLAY_PORT : NO_PORT,
ViewportType::INTERNAL);
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto info = waitForDevice(mDevice->getName());
ASSERT_TRUE(info);
mDeviceInfo = *info;
}
};
TEST_P(TouchIntegrationTest, MultiTouchDeviceSource) {
// The UinputTouchScreen is an MT device that supports MT_TOOL_TYPE and also supports stylus
// buttons. It should show up as a touchscreen, stylus, and keyboard (for reporting button
// presses).
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD,
mDeviceInfo.getSources());
}
TEST_P(TouchIntegrationTest, InputEvent_ProcessSingleTouch) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_MOVE
mDevice->sendMove(centerPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// ACTION_UP
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
TEST_P(TouchIntegrationTest, InputEvent_ProcessMultiTouch) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
// ACTION_MOVE (Second slot)
mDevice->sendMove(secondPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// ACTION_POINTER_UP (Second slot)
mDevice->sendPointerUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_UP, args.action);
// ACTION_UP
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
/**
* What happens when a pointer goes up while another pointer moves in the same frame? Are POINTER_UP
* events guaranteed to contain the same data as a preceding MOVE, or can they contain different
* data?
* In this test, we try to send a change in coordinates in Pointer 0 in the same frame as the
* liftoff of Pointer 1. We check that POINTER_UP event is generated first, and the MOVE event
* for Pointer 0 only is generated after.
* Suppose we are only interested in learning the movement of Pointer 0. If we only observe MOVE
* events, we will not miss any information.
* Even though the Pointer 1 up event contains updated Pointer 0 coordinates, there is another MOVE
* event generated afterwards that contains the newest movement of pointer 0.
* This is important for palm rejection. If there is a subsequent InputListener stage that detects
* palms, and wants to cancel Pointer 1, then it is safe to simply drop POINTER_1_UP event without
* losing information about non-palm pointers.
*/
TEST_P(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerUp) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint});
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint});
// ACTION_MOVE (First slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendMove(centerPoint + Point(5, 5));
// ACTION_POINTER_UP (Second slot)
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendPointerUp();
// Send a single sync for the above 2 pointer updates
mDevice->sendSync();
// First, we should get POINTER_UP for the second pointer
assertReceivedMotion(ACTION_POINTER_1_UP,
{/*first pointer */ centerPoint + Point(5, 5),
/*second pointer*/ secondPoint});
// Next, the MOVE event for the first pointer
assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)});
}
/**
* Similar scenario as above. The difference is that when the second pointer goes up, it will first
* move, and then it will go up, all in the same frame.
* In this scenario, the movement of the second pointer just prior to liftoff is ignored, and never
* gets sent to the listener.
*/
TEST_P(TouchIntegrationTest, MultiTouch_PointerMoveAndSecondPointerMoveAndUp) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
assertReceivedMotion(AMOTION_EVENT_ACTION_DOWN, {centerPoint});
// ACTION_POINTER_DOWN (Second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
assertReceivedMotion(ACTION_POINTER_1_DOWN, {centerPoint, secondPoint});
// ACTION_MOVE (First slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendMove(centerPoint + Point(5, 5));
// ACTION_POINTER_UP (Second slot)
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendMove(secondPoint + Point(6, 6));
mDevice->sendPointerUp();
// Send a single sync for the above 2 pointer updates
mDevice->sendSync();
// First, we should get POINTER_UP for the second pointer
// The movement of the second pointer during the liftoff frame is ignored.
// The coordinates 'secondPoint + Point(6, 6)' are never sent to the listener.
assertReceivedMotion(ACTION_POINTER_1_UP,
{/*first pointer */ centerPoint + Point(5, 5),
/*second pointer*/ secondPoint});
// Next, the MOVE event for the first pointer
assertReceivedMotion(AMOTION_EVENT_ACTION_MOVE, {centerPoint + Point(5, 5)});
}
TEST_P(TouchIntegrationTest, InputEvent_ProcessPalm) {
NotifyMotionArgs args;
const Point centerPoint = mDevice->getCenterPoint();
// ACTION_DOWN
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
// ACTION_POINTER_DOWN (second slot)
const Point secondPoint = centerPoint + Point(100, 100);
mDevice->sendSlot(SECOND_SLOT);
mDevice->sendTrackingId(SECOND_TRACKING_ID);
mDevice->sendDown(secondPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
// ACTION_MOVE (second slot)
mDevice->sendMove(secondPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// Send MT_TOOL_PALM (second slot), which indicates that the touch IC has determined this to be
// a palm event.
// Expect to receive the ACTION_POINTER_UP with cancel flag.
mDevice->sendToolType(MT_TOOL_PALM);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_UP, args.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, args.flags);
// Send up to second slot, expect first slot send moving.
mDevice->sendPointerUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// Send ACTION_UP (first slot)
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
/**
* Some drivers historically have reported axis values outside of the range specified in the
* evdev axis info. Ensure we don't crash when this happens. For example, a driver may report a
* pressure value greater than the reported maximum, since it unclear what specific meaning the
* maximum value for pressure has (beyond the maximum value that can be produced by a sensor),
* and no units for pressure (resolution) is specified by the evdev documentation.
*/
TEST_P(TouchIntegrationTest, AcceptsAxisValuesOutsideReportedRange) {
const Point centerPoint = mDevice->getCenterPoint();
// Down with pressure outside the reported range
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendPressure(UinputTouchScreen::RAW_PRESSURE_MAX + 2);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Move to a point outside the reported range
mDevice->sendMove(Point(DISPLAY_WIDTH, DISPLAY_HEIGHT) + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_MOVE)));
// Up
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
}
TEST_P(TouchIntegrationTest, NotifiesPolicyWhenStylusGestureStarted) {
const Point centerPoint = mDevice->getCenterPoint();
// Send down with the pen tool selected. The policy should be notified of the stylus presence.
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_PEN);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotified(mDeviceInfo.getId()));
// Release the stylus touch.
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotNotified());
// Touch down with the finger, without the pen tool selected. The policy is not notified.
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_FINGER);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::FINGER))));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotNotified());
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
// Send a move event with the stylus tool without BTN_TOUCH to generate a hover enter.
// The policy should be notified of the stylus presence.
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_PEN);
mDevice->sendMove(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertStylusGestureNotified(mDeviceInfo.getId()));
}
TEST_P(TouchIntegrationTest, ExternalStylusConnectedDuringTouchGesture) {
const Point centerPoint = mDevice->getCenterPoint();
// Down
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Move
mDevice->sendMove(centerPoint + Point(1, 1));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_MOVE)));
// Connecting an external stylus mid-gesture should not interrupt the ongoing gesture stream.
auto externalStylus = createUinputDevice<UinputExternalStylus>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto stylusInfo = waitForDevice(externalStylus->getName());
ASSERT_TRUE(stylusInfo);
// Move
mDevice->sendMove(centerPoint + Point(2, 2));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_MOVE)));
// Disconnecting an external stylus mid-gesture should not interrupt the ongoing gesture stream.
externalStylus.reset();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
// Up
mDevice->sendUp();
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
}
INSTANTIATE_TEST_SUITE_P(TouchIntegrationTestDisplayVariants, TouchIntegrationTest,
testing::Values(TouchIntegrationTestDisplays::DISPLAY_INTERNAL,
TouchIntegrationTestDisplays::DISPLAY_INPUT_PORT,
TouchIntegrationTestDisplays::DISPLAY_UNIQUE_ID));
// --- StylusButtonIntegrationTest ---
// Verify the behavior of button presses reported by various kinds of styluses, including buttons
// reported by the touchscreen's device, by a fused external stylus, and by an un-fused external
// stylus.
template <typename UinputStylusDevice>
class StylusButtonIntegrationTest : public BaseTouchIntegrationTest {
protected:
void SetUp() override {
#if !defined(__ANDROID__)
GTEST_SKIP();
#endif
BaseTouchIntegrationTest::SetUp();
mTouchscreen = mDevice.get();
mTouchscreenInfo = mDeviceInfo;
setUpStylusDevice();
}
UinputStylusDevice* mStylus{nullptr};
InputDeviceInfo mStylusInfo{};
UinputTouchScreen* mTouchscreen{nullptr};
InputDeviceInfo mTouchscreenInfo{};
private:
// When we are attempting to test stylus button events that are sent from the touchscreen,
// use the same Uinput device for the touchscreen and the stylus.
template <typename T = UinputStylusDevice>
std::enable_if_t<std::is_same_v<UinputTouchScreen, T>, void> setUpStylusDevice() {
mStylus = mDevice.get();
mStylusInfo = mDeviceInfo;
}
// When we are attempting to stylus buttons from an external stylus being merged with touches
// from a touchscreen, create a new Uinput device through which stylus buttons can be injected.
template <typename T = UinputStylusDevice>
std::enable_if_t<!std::is_same_v<UinputTouchScreen, T>, void> setUpStylusDevice() {
mStylusDeviceLifecycleTracker = createUinputDevice<T>();
mStylus = mStylusDeviceLifecycleTracker.get();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto info = waitForDevice(mStylus->getName());
ASSERT_TRUE(info);
mStylusInfo = *info;
}
std::unique_ptr<UinputStylusDevice> mStylusDeviceLifecycleTracker{};
// Hide the base class's device to expose it with a different name for readability.
using BaseTouchIntegrationTest::mDevice;
using BaseTouchIntegrationTest::mDeviceInfo;
};
using StylusButtonIntegrationTestTypes =
::testing::Types<UinputTouchScreen, UinputExternalStylus, UinputExternalStylusWithPressure>;
TYPED_TEST_SUITE(StylusButtonIntegrationTest, StylusButtonIntegrationTestTypes);
TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsGenerateKeyEvents) {
const auto stylusId = TestFixture::mStylusInfo.getId();
TestFixture::mStylus->pressKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
TestFixture::mStylus->releaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
}
TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsSurroundingTouchGesture) {
const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint();
const auto touchscreenId = TestFixture::mTouchscreenInfo.getId();
const auto stylusId = TestFixture::mStylusInfo.getId();
// Press the stylus button.
TestFixture::mStylus->pressKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
// Start and finish a stylus gesture.
TestFixture::mTouchscreen->sendSlot(FIRST_SLOT);
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendDown(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::STYLUS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY),
WithDeviceId(touchscreenId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithToolType(ToolType::STYLUS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY),
WithDeviceId(touchscreenId))));
TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
// Release the stylus button.
TestFixture::mStylus->releaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
}
TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsSurroundingHoveringTouchGesture) {
const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint();
const auto touchscreenId = TestFixture::mTouchscreenInfo.getId();
const auto stylusId = TestFixture::mStylusInfo.getId();
auto toolTypeDevice =
AllOf(WithToolType(ToolType::STYLUS), WithDeviceId(touchscreenId));
// Press the stylus button.
TestFixture::mStylus->pressKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
// Start hovering with the stylus.
TestFixture::mTouchscreen->sendSlot(FIRST_SLOT);
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendMove(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
// Touch down with the stylus.
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendDown(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
// Stop touching with the stylus, and start hovering.
TestFixture::mTouchscreen->sendUp();
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendMove(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
// Stop hovering.
TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE),
WithButtonState(0))));
// TODO(b/257971675): Fix inconsistent button state when exiting hover.
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(toolTypeDevice, WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
// Release the stylus button.
TestFixture::mStylus->releaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
}
TYPED_TEST(StylusButtonIntegrationTest, StylusButtonsWithinTouchGesture) {
const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint();
const auto touchscreenId = TestFixture::mTouchscreenInfo.getId();
const auto stylusId = TestFixture::mStylusInfo.getId();
// Start a stylus gesture.
TestFixture::mTouchscreen->sendSlot(FIRST_SLOT);
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendDown(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
// Press and release a stylus button. Each change in button state also generates a MOVE event.
TestFixture::mStylus->pressKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::STYLUS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY),
WithDeviceId(touchscreenId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithToolType(ToolType::STYLUS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY),
WithDeviceId(touchscreenId))));
TestFixture::mStylus->releaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
// Finish the stylus gesture.
TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
}
TYPED_TEST(StylusButtonIntegrationTest, StylusButtonMotionEventsDisabled) {
TestFixture::mFakePolicy->setStylusButtonMotionEventsEnabled(false);
TestFixture::mReader->requestRefreshConfiguration(
InputReaderConfiguration::Change::STYLUS_BUTTON_REPORTING);
const Point centerPoint = TestFixture::mTouchscreen->getCenterPoint();
const auto touchscreenId = TestFixture::mTouchscreenInfo.getId();
const auto stylusId = TestFixture::mStylusInfo.getId();
// Start a stylus gesture. By the time this event is processed, the configuration change that
// was requested is guaranteed to be completed.
TestFixture::mTouchscreen->sendSlot(FIRST_SLOT);
TestFixture::mTouchscreen->sendTrackingId(FIRST_TRACKING_ID);
TestFixture::mTouchscreen->sendToolType(MT_TOOL_PEN);
TestFixture::mTouchscreen->sendDown(centerPoint);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
// Press and release a stylus button. Each change only generates a MOVE motion event.
// Key events are unaffected.
TestFixture::mStylus->pressKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_DOWN), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
TestFixture::mStylus->releaseKey(BTN_STYLUS);
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyKeyWasCalled(
AllOf(WithKeyAction(AKEY_EVENT_ACTION_UP), WithSource(AINPUT_SOURCE_KEYBOARD),
WithKeyCode(AKEYCODE_STYLUS_BUTTON_PRIMARY), WithDeviceId(stylusId))));
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
// Finish the stylus gesture.
TestFixture::mTouchscreen->sendTrackingId(INVALID_TRACKING_ID);
TestFixture::mTouchscreen->sendSync();
ASSERT_NO_FATAL_FAILURE(TestFixture::mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithToolType(ToolType::STYLUS), WithButtonState(0),
WithDeviceId(touchscreenId))));
}
// --- ExternalStylusIntegrationTest ---
// Verify the behavior of an external stylus. An external stylus can report pressure or button
// data independently of the touchscreen, which is then sent as a MotionEvent as part of an
// ongoing stylus gesture that is being emitted by the touchscreen.
using ExternalStylusIntegrationTest = BaseTouchIntegrationTest;
TEST_F(ExternalStylusIntegrationTest, ExternalStylusConnectionChangesTouchscreenSource) {
// Create an external stylus capable of reporting pressure data that
// should be fused with a touch pointer.
std::unique_ptr<UinputExternalStylusWithPressure> stylus =
createUinputDevice<UinputExternalStylusWithPressure>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto stylusInfo = waitForDevice(stylus->getName());
ASSERT_TRUE(stylusInfo);
// Connecting an external stylus changes the source of the touchscreen.
const auto deviceInfo = waitForDevice(mDevice->getName());
ASSERT_TRUE(deviceInfo);
ASSERT_TRUE(isFromSource(deviceInfo->getSources(), STYLUS_FUSION_SOURCE));
}
TEST_F(ExternalStylusIntegrationTest, FusedExternalStylusPressureReported) {
const Point centerPoint = mDevice->getCenterPoint();
// Create an external stylus capable of reporting pressure data that
// should be fused with a touch pointer.
std::unique_ptr<UinputExternalStylusWithPressure> stylus =
createUinputDevice<UinputExternalStylusWithPressure>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto stylusInfo = waitForDevice(stylus->getName());
ASSERT_TRUE(stylusInfo);
ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources());
const auto touchscreenId = mDeviceInfo.getId();
// Set a pressure value on the stylus. It doesn't generate any events.
const auto& RAW_PRESSURE_MAX = UinputExternalStylusWithPressure::RAW_PRESSURE_MAX;
stylus->setPressure(100);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
// Start a finger gesture, and ensure it shows up as stylus gesture
// with the pressure set by the external stylus.
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_FINGER);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithToolType(ToolType::STYLUS),
WithButtonState(0), WithSource(STYLUS_FUSION_SOURCE), WithDeviceId(touchscreenId),
WithPressure(100.f / RAW_PRESSURE_MAX))));
// Change the pressure on the external stylus, and ensure the touchscreen generates a MOVE
// event with the updated pressure.
stylus->setPressure(200);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithToolType(ToolType::STYLUS),
WithButtonState(0), WithSource(STYLUS_FUSION_SOURCE), WithDeviceId(touchscreenId),
WithPressure(200.f / RAW_PRESSURE_MAX))));
// The external stylus did not generate any events.
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled());
}
TEST_F(ExternalStylusIntegrationTest, FusedExternalStylusPressureNotReported) {
const Point centerPoint = mDevice->getCenterPoint();
// Create an external stylus capable of reporting pressure data that
// should be fused with a touch pointer.
std::unique_ptr<UinputExternalStylusWithPressure> stylus =
createUinputDevice<UinputExternalStylusWithPressure>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto stylusInfo = waitForDevice(stylus->getName());
ASSERT_TRUE(stylusInfo);
ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources());
const auto touchscreenId = mDeviceInfo.getId();
// Set a pressure value of 0 on the stylus. It doesn't generate any events.
const auto& RAW_PRESSURE_MAX = UinputExternalStylusWithPressure::RAW_PRESSURE_MAX;
// Send a non-zero value first to prevent the kernel from consuming the zero event.
stylus->setPressure(100);
stylus->setPressure(0);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
// Start a finger gesture. The touch device will withhold generating any touches for
// up to 72 milliseconds while waiting for pressure data from the external stylus.
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_FINGER);
mDevice->sendDown(centerPoint);
const auto syncTime = std::chrono::system_clock::now();
// After 72 ms, the event *will* be generated. If we wait the full 72 ms to check that NO event
// is generated in that period, there will be a race condition between the event being generated
// and the test's wait timeout expiring. Thus, we wait for a shorter duration in the test, which
// will reduce the liklihood of the race condition occurring.
const auto waitUntilTimeForNoEvent =
syncTime + std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT / 2));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled(waitUntilTimeForNoEvent));
// Since the external stylus did not report a pressure value within the timeout,
// it shows up as a finger pointer.
const auto waitUntilTimeForEvent = syncTime +
std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT)) + EVENT_HAPPENED_TIMEOUT;
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(AllOf(WithMotionAction(
AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN |
AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::FINGER),
WithDeviceId(touchscreenId),
WithPressure(1.f)),
waitUntilTimeForEvent));
// Change the pressure on the external stylus. Since the pressure was not present at the start
// of the gesture, it is ignored for now.
stylus->setPressure(200);
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
// Finish the finger gesture.
mDevice->sendTrackingId(INVALID_TRACKING_ID);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::FINGER))));
// Start a new gesture. Since we have a valid pressure value, it shows up as a stylus.
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_FINGER);
mDevice->sendDown(centerPoint);
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithSource(STYLUS_FUSION_SOURCE),
WithToolType(ToolType::STYLUS), WithButtonState(0), WithDeviceId(touchscreenId),
WithPressure(200.f / RAW_PRESSURE_MAX))));
// The external stylus did not generate any events.
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled());
}
TEST_F(ExternalStylusIntegrationTest, UnfusedExternalStylus) {
const Point centerPoint = mDevice->getCenterPoint();
// Create an external stylus device that does not support pressure. It should not affect any
// touch pointers.
std::unique_ptr<UinputExternalStylus> stylus = createUinputDevice<UinputExternalStylus>();
ASSERT_NO_FATAL_FAILURE(mFakePolicy->assertInputDevicesChanged());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyConfigurationChangedWasCalled());
const auto stylusInfo = waitForDevice(stylus->getName());
ASSERT_TRUE(stylusInfo);
ASSERT_EQ(AINPUT_SOURCE_STYLUS | AINPUT_SOURCE_KEYBOARD, stylusInfo->getSources());
const auto touchscreenId = mDeviceInfo.getId();
// Start a finger gesture and ensure a finger pointer is generated for it, without waiting for
// pressure data from the external stylus.
mDevice->sendSlot(FIRST_SLOT);
mDevice->sendTrackingId(FIRST_TRACKING_ID);
mDevice->sendToolType(MT_TOOL_FINGER);
mDevice->sendDown(centerPoint);
auto waitUntil = std::chrono::system_clock::now() +
std::chrono::milliseconds(ns2ms(EXTERNAL_STYLUS_DATA_TIMEOUT));
mDevice->sendSync();
ASSERT_NO_FATAL_FAILURE(
mTestListener->assertNotifyMotionWasCalled(AllOf(WithMotionAction(
AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::FINGER),
WithSource(AINPUT_SOURCE_TOUCHSCREEN |
AINPUT_SOURCE_STYLUS),
WithButtonState(0),
WithDeviceId(touchscreenId),
WithPressure(1.f)),
waitUntil));
// The external stylus did not generate any events.
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mTestListener->assertNotifyKeyWasNotCalled());
}
// --- InputDeviceTest ---
class InputDeviceTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const char* DEVICE_LOCATION;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const int32_t DEVICE_CONTROLLER_NUMBER;
static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES;
static const int32_t EVENTHUB_ID;
static const std::string DEVICE_BLUETOOTH_ADDRESS;
std::shared_ptr<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<TestInputListener> mFakeListener;
std::unique_ptr<InstrumentedInputReader> mReader;
std::shared_ptr<InputDevice> mDevice;
void SetUp() override {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
InputDeviceIdentifier identifier;
identifier.name = DEVICE_NAME;
identifier.location = DEVICE_LOCATION;
identifier.bluetoothAddress = DEVICE_BLUETOOTH_ADDRESS;
mDevice = std::make_shared<InputDevice>(mReader->getContext(), DEVICE_ID, DEVICE_GENERATION,
identifier);
mReader->pushNextDevice(mDevice);
mFakeEventHub->addDevice(EVENTHUB_ID, DEVICE_NAME, ftl::Flags<InputDeviceClass>(0));
mReader->loopOnce();
}
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
};
const char* InputDeviceTest::DEVICE_NAME = "device";
const char* InputDeviceTest::DEVICE_LOCATION = "USB1";
const int32_t InputDeviceTest::DEVICE_ID = END_RESERVED_ID + 1000;
const int32_t InputDeviceTest::DEVICE_GENERATION = 2;
const int32_t InputDeviceTest::DEVICE_CONTROLLER_NUMBER = 0;
const ftl::Flags<InputDeviceClass> InputDeviceTest::DEVICE_CLASSES =
InputDeviceClass::KEYBOARD | InputDeviceClass::TOUCH | InputDeviceClass::JOYSTICK;
const int32_t InputDeviceTest::EVENTHUB_ID = 1;
const std::string InputDeviceTest::DEVICE_BLUETOOTH_ADDRESS = "11:AA:22:BB:33:CC";
TEST_F(InputDeviceTest, ImmutableProperties) {
ASSERT_EQ(DEVICE_ID, mDevice->getId());
ASSERT_STREQ(DEVICE_NAME, mDevice->getName().c_str());
ASSERT_EQ(ftl::Flags<InputDeviceClass>(0), mDevice->getClasses());
}
TEST_F(InputDeviceTest, WhenDeviceCreated_EnabledIsFalse) {
ASSERT_EQ(mDevice->isEnabled(), false);
}
TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) {
// Configuration.
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
// Reset.
unused += mDevice->reset(ARBITRARY_TIME);
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_TRUE(mDevice->isIgnored());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources());
InputDeviceInfo info = mDevice->getDeviceInfo();
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType());
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources());
// State queries.
ASSERT_EQ(0, mDevice->getMetaState());
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown key code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown scan code state.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0))
<< "Ignored device should return unknown switch state.";
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B};
uint8_t flags[2] = { 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags))
<< "Ignored device should never mark any key codes.";
ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged.";
}
TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) {
// Configuration.
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "key", "value");
FakeInputMapper& mapper1 =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
mapper1.setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mapper1.setMetaState(AMETA_ALT_ON);
mapper1.addSupportedKeyCode(AKEYCODE_A);
mapper1.addSupportedKeyCode(AKEYCODE_B);
mapper1.setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
mapper1.setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP);
mapper1.setScanCodeState(2, AKEY_STATE_DOWN);
mapper1.setScanCodeState(3, AKEY_STATE_UP);
mapper1.setSwitchState(4, AKEY_STATE_DOWN);
FakeInputMapper& mapper2 =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_TOUCHSCREEN);
mapper2.setMetaState(AMETA_SHIFT_ON);
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
std::optional<std::string> propertyValue = mDevice->getConfiguration().getString("key");
ASSERT_TRUE(propertyValue.has_value())
<< "Device should have read configuration during configuration phase.";
ASSERT_EQ("value", *propertyValue);
ASSERT_NO_FATAL_FAILURE(mapper1.assertConfigureWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertConfigureWasCalled());
// Reset
unused += mDevice->reset(ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mapper1.assertResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertResetWasCalled());
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(ARBITRARY_TIME, resetArgs.eventTime);
ASSERT_EQ(DEVICE_ID, resetArgs.deviceId);
// Metadata.
ASSERT_FALSE(mDevice->isIgnored());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources());
InputDeviceInfo info = mDevice->getDeviceInfo();
ASSERT_EQ(DEVICE_ID, info.getId());
ASSERT_STREQ(DEVICE_NAME, info.getIdentifier().name.c_str());
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType());
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources());
// State queries.
ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState())
<< "Should query mappers and combine meta states.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown key code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown scan code state when source not supported.";
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
<< "Should return unknown switch state when source not supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3))
<< "Should query mapper when source is supported.";
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4))
<< "Should query mapper when source is supported.";
const std::vector<int32_t> keyCodes{AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2};
uint8_t flags[4] = { 0, 0, 0, 1 };
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, keyCodes, flags))
<< "Should do nothing when source is unsupported.";
ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported.";
ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported.";
ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, keyCodes, flags))
<< "Should query mapper when source is supported.";
ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set.";
ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set.";
ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged.";
ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged.";
// Event handling.
RawEvent event;
event.deviceId = EVENTHUB_ID;
unused += mDevice->process(&event, 1);
ASSERT_NO_FATAL_FAILURE(mapper1.assertProcessWasCalled());
ASSERT_NO_FATAL_FAILURE(mapper2.assertProcessWasCalled());
}
TEST_F(InputDeviceTest, Configure_SmoothScrollViewBehaviorNotSet) {
// Set some behavior to force the configuration to be update.
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "1");
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
ASSERT_FALSE(mDevice->getDeviceInfo().getViewBehavior().shouldSmoothScroll.has_value());
}
TEST_F(InputDeviceTest, Configure_SmoothScrollViewBehaviorEnabled) {
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.viewBehavior_smoothScroll", "1");
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
ASSERT_TRUE(mDevice->getDeviceInfo().getViewBehavior().shouldSmoothScroll.value_or(false));
}
TEST_F(InputDeviceTest, WakeDevice_AddsWakeFlagToProcessNotifyArgs) {
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "1");
FakeInputMapper& mapper =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
NotifyMotionArgs args1;
NotifySwitchArgs args2;
NotifyKeyArgs args3;
mapper.setProcessResult({args1, args2, args3});
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
RawEvent event;
event.deviceId = EVENTHUB_ID;
std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1);
for (auto& arg : notifyArgs) {
if (const auto notifyMotionArgs = std::get_if<NotifyMotionArgs>(&arg)) {
ASSERT_EQ(POLICY_FLAG_WAKE, notifyMotionArgs->policyFlags);
} else if (const auto notifySwitchArgs = std::get_if<NotifySwitchArgs>(&arg)) {
ASSERT_EQ(POLICY_FLAG_WAKE, notifySwitchArgs->policyFlags);
} else if (const auto notifyKeyArgs = std::get_if<NotifyKeyArgs>(&arg)) {
ASSERT_EQ(POLICY_FLAG_WAKE, notifyKeyArgs->policyFlags);
}
}
}
TEST_F(InputDeviceTest, NotWakeDevice_DoesNotAddWakeFlagToProcessNotifyArgs) {
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "0");
FakeInputMapper& mapper =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
NotifyMotionArgs args;
mapper.setProcessResult({args});
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
RawEvent event;
event.deviceId = EVENTHUB_ID;
std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1);
// POLICY_FLAG_WAKE is not added to the NotifyArgs.
ASSERT_EQ(0u, std::get<NotifyMotionArgs>(notifyArgs.front()).policyFlags);
}
TEST_F(InputDeviceTest, NotWakeDevice_DoesNotRemoveExistingWakeFlagFromProcessNotifyArgs) {
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "device.wake", "0");
FakeInputMapper& mapper =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
NotifyMotionArgs args;
args.policyFlags = POLICY_FLAG_WAKE;
mapper.setProcessResult({args});
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
RawEvent event;
event.deviceId = EVENTHUB_ID;
std::list<NotifyArgs> notifyArgs = mDevice->process(&event, 1);
// The POLICY_FLAG_WAKE is preserved, despite the device being a non-wake device.
ASSERT_EQ(POLICY_FLAG_WAKE, std::get<NotifyMotionArgs>(notifyArgs.front()).policyFlags);
}
// A single input device is associated with a specific display. Check that:
// 1. Device is disabled if the viewport corresponding to the associated display is not found
// 2. Device is disabled when configure API is called
TEST_F(InputDeviceTest, Configure_AssignsDisplayPort) {
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_TOUCHSCREEN);
// First Configuration.
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
// Device should be enabled by default.
ASSERT_TRUE(mDevice->isEnabled());
// Prepare associated info.
constexpr uint8_t hdmi = 1;
const std::string UNIQUE_ID = "local:1";
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
// Device should be disabled because it is associated with a specific display via
// input port <-> display port association, but the corresponding display is not found
ASSERT_FALSE(mDevice->isEnabled());
// Prepare displays.
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /*isActive=*/true, UNIQUE_ID, hdmi,
ViewportType::INTERNAL);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled after set disable.
mFakePolicy->addDisabledDevice(mDevice->getId());
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::ENABLED_STATE);
ASSERT_FALSE(mDevice->isEnabled());
// Device should still be disabled even found the associated display.
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
}
TEST_F(InputDeviceTest, Configure_AssignsDisplayUniqueId) {
// Device should be enabled by default.
mFakePolicy->clearViewports();
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled because it is associated with a specific display, but the
// corresponding display is not found.
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
// Device should be enabled when a display is found.
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_TRUE(mDevice->isEnabled());
// Device should be disabled after set disable.
mFakePolicy->addDisabledDevice(mDevice->getId());
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::ENABLED_STATE);
ASSERT_FALSE(mDevice->isEnabled());
// Device should still be disabled even found the associated display.
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_FALSE(mDevice->isEnabled());
}
TEST_F(InputDeviceTest, Configure_UniqueId_CorrectlyMatches) {
mFakePolicy->clearViewports();
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, DISPLAY_UNIQUE_ID);
mFakePolicy->addDisplayViewport(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, /* isActive= */ true, DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
const auto initialGeneration = mDevice->getGeneration();
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_EQ(DISPLAY_UNIQUE_ID, mDevice->getAssociatedDisplayUniqueId());
ASSERT_GT(mDevice->getGeneration(), initialGeneration);
ASSERT_EQ(mDevice->getDeviceInfo().getAssociatedDisplayId(), SECONDARY_DISPLAY_ID);
}
/**
* This test reproduces a crash caused by a dangling reference that remains after device is added
* and removed. The reference is accessed in InputDevice::dump(..);
*/
TEST_F(InputDeviceTest, DumpDoesNotCrash) {
constexpr int32_t TEST_EVENTHUB_ID = 10;
mFakeEventHub->addDevice(TEST_EVENTHUB_ID, "Test EventHub device", InputDeviceClass::BATTERY);
InputDevice device(mReader->getContext(), /*id=*/1, /*generation=*/2, /*identifier=*/{});
auto _ = device.addEventHubDevice(ARBITRARY_TIME, TEST_EVENTHUB_ID,
mFakePolicy->getReaderConfiguration());
device.removeEventHubDevice(TEST_EVENTHUB_ID);
std::string dumpStr, eventHubDevStr;
device.dump(dumpStr, eventHubDevStr);
}
TEST_F(InputDeviceTest, GetBluetoothAddress) {
const auto& address = mReader->getBluetoothAddress(DEVICE_ID);
ASSERT_TRUE(address);
ASSERT_EQ(DEVICE_BLUETOOTH_ADDRESS, *address);
}
TEST_F(InputDeviceTest, KernelBufferOverflowResetsMappers) {
mFakePolicy->clearViewports();
FakeInputMapper& mapper =
mDevice->addMapper<FakeInputMapper>(EVENTHUB_ID, mFakePolicy->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
mapper.assertConfigureWasCalled();
mapper.assertResetWasNotCalled();
RawEvent event{.when = ARBITRARY_TIME,
.readTime = ARBITRARY_TIME,
.deviceId = EVENTHUB_ID,
.type = EV_SYN,
.code = SYN_REPORT,
.value = 0};
// Events are processed normally.
unused = mDevice->process(&event, /*count=*/1);
mapper.assertProcessWasCalled();
// Simulate a kernel buffer overflow, which generates a SYN_DROPPED event.
event.type = EV_SYN;
event.code = SYN_DROPPED;
event.value = 0;
unused = mDevice->process(&event, /*count=*/1);
mapper.assertProcessWasNotCalled();
// All events until the next SYN_REPORT should be dropped.
event.type = EV_KEY;
event.code = KEY_A;
event.value = 1;
unused = mDevice->process(&event, /*count=*/1);
mapper.assertProcessWasNotCalled();
// We get the SYN_REPORT event now, which is not forwarded to mappers.
// This should reset the mapper.
event.type = EV_SYN;
event.code = SYN_REPORT;
event.value = 0;
unused = mDevice->process(&event, /*count=*/1);
mapper.assertProcessWasNotCalled();
mapper.assertResetWasCalled();
// The mapper receives events normally now.
event.type = EV_KEY;
event.code = KEY_B;
event.value = 1;
unused = mDevice->process(&event, /*count=*/1);
mapper.assertProcessWasCalled();
}
// --- SwitchInputMapperTest ---
class SwitchInputMapperTest : public InputMapperTest {
protected:
};
TEST_F(SwitchInputMapperTest, GetSources) {
SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>();
ASSERT_EQ(uint32_t(AINPUT_SOURCE_SWITCH), mapper.getSources());
}
TEST_F(SwitchInputMapperTest, GetSwitchState) {
SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>();
mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 1);
ASSERT_EQ(1, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
mFakeEventHub->setSwitchState(EVENTHUB_ID, SW_LID, 0);
ASSERT_EQ(0, mapper.getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
}
TEST_F(SwitchInputMapperTest, Process) {
SwitchInputMapper& mapper = constructAndAddMapper<SwitchInputMapper>();
std::list<NotifyArgs> out;
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_LID, 1);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_JACK_PHYSICAL_INSERT, 1);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SW, SW_HEADPHONE_INSERT, 0);
ASSERT_TRUE(out.empty());
out = process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
ASSERT_EQ(1u, out.size());
const NotifySwitchArgs& args = std::get<NotifySwitchArgs>(*out.begin());
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT), args.switchValues);
ASSERT_EQ((1U << SW_LID) | (1U << SW_JACK_PHYSICAL_INSERT) | (1 << SW_HEADPHONE_INSERT),
args.switchMask);
ASSERT_EQ(uint32_t(0), args.policyFlags);
}
// --- VibratorInputMapperTest ---
class VibratorInputMapperTest : public InputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::VIBRATOR); }
};
TEST_F(VibratorInputMapperTest, GetSources) {
VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mapper.getSources());
}
TEST_F(VibratorInputMapperTest, GetVibratorIds) {
VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>();
ASSERT_EQ(mapper.getVibratorIds().size(), 2U);
}
TEST_F(VibratorInputMapperTest, Vibrate) {
constexpr uint8_t DEFAULT_AMPLITUDE = 192;
constexpr int32_t VIBRATION_TOKEN = 100;
VibratorInputMapper& mapper = constructAndAddMapper<VibratorInputMapper>();
VibrationElement pattern(2);
VibrationSequence sequence(2);
pattern.duration = std::chrono::milliseconds(200);
pattern.channels = {{/*vibratorId=*/0, DEFAULT_AMPLITUDE / 2},
{/*vibratorId=*/1, DEFAULT_AMPLITUDE}};
sequence.addElement(pattern);
pattern.duration = std::chrono::milliseconds(500);
pattern.channels = {{/*vibratorId=*/0, DEFAULT_AMPLITUDE / 4},
{/*vibratorId=*/1, DEFAULT_AMPLITUDE}};
sequence.addElement(pattern);
std::vector<int64_t> timings = {0, 1};
std::vector<uint8_t> amplitudes = {DEFAULT_AMPLITUDE, DEFAULT_AMPLITUDE / 2};
ASSERT_FALSE(mapper.isVibrating());
// Start vibrating
std::list<NotifyArgs> out = mapper.vibrate(sequence, /*repeat=*/-1, VIBRATION_TOKEN);
ASSERT_TRUE(mapper.isVibrating());
// Verify vibrator state listener was notified.
mReader->loopOnce();
ASSERT_EQ(1u, out.size());
const NotifyVibratorStateArgs& vibrateArgs = std::get<NotifyVibratorStateArgs>(*out.begin());
ASSERT_EQ(DEVICE_ID, vibrateArgs.deviceId);
ASSERT_TRUE(vibrateArgs.isOn);
// Stop vibrating
out = mapper.cancelVibrate(VIBRATION_TOKEN);
ASSERT_FALSE(mapper.isVibrating());
// Verify vibrator state listener was notified.
mReader->loopOnce();
ASSERT_EQ(1u, out.size());
const NotifyVibratorStateArgs& cancelArgs = std::get<NotifyVibratorStateArgs>(*out.begin());
ASSERT_EQ(DEVICE_ID, cancelArgs.deviceId);
ASSERT_FALSE(cancelArgs.isOn);
}
// --- SensorInputMapperTest ---
class SensorInputMapperTest : public InputMapperTest {
protected:
static const int32_t ACCEL_RAW_MIN;
static const int32_t ACCEL_RAW_MAX;
static const int32_t ACCEL_RAW_FUZZ;
static const int32_t ACCEL_RAW_FLAT;
static const int32_t ACCEL_RAW_RESOLUTION;
static const int32_t GYRO_RAW_MIN;
static const int32_t GYRO_RAW_MAX;
static const int32_t GYRO_RAW_FUZZ;
static const int32_t GYRO_RAW_FLAT;
static const int32_t GYRO_RAW_RESOLUTION;
static const float GRAVITY_MS2_UNIT;
static const float DEGREE_RADIAN_UNIT;
void prepareAccelAxes();
void prepareGyroAxes();
void setAccelProperties();
void setGyroProperties();
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::SENSOR); }
};
const int32_t SensorInputMapperTest::ACCEL_RAW_MIN = -32768;
const int32_t SensorInputMapperTest::ACCEL_RAW_MAX = 32768;
const int32_t SensorInputMapperTest::ACCEL_RAW_FUZZ = 16;
const int32_t SensorInputMapperTest::ACCEL_RAW_FLAT = 0;
const int32_t SensorInputMapperTest::ACCEL_RAW_RESOLUTION = 8192;
const int32_t SensorInputMapperTest::GYRO_RAW_MIN = -2097152;
const int32_t SensorInputMapperTest::GYRO_RAW_MAX = 2097152;
const int32_t SensorInputMapperTest::GYRO_RAW_FUZZ = 16;
const int32_t SensorInputMapperTest::GYRO_RAW_FLAT = 0;
const int32_t SensorInputMapperTest::GYRO_RAW_RESOLUTION = 1024;
const float SensorInputMapperTest::GRAVITY_MS2_UNIT = 9.80665f;
const float SensorInputMapperTest::DEGREE_RADIAN_UNIT = 0.0174533f;
void SensorInputMapperTest::prepareAccelAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Z, ACCEL_RAW_MIN, ACCEL_RAW_MAX, ACCEL_RAW_FUZZ,
ACCEL_RAW_FLAT, ACCEL_RAW_RESOLUTION);
}
void SensorInputMapperTest::prepareGyroAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RX, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RY, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_RZ, GYRO_RAW_MIN, GYRO_RAW_MAX, GYRO_RAW_FUZZ,
GYRO_RAW_FLAT, GYRO_RAW_RESOLUTION);
}
void SensorInputMapperTest::setAccelProperties() {
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 0, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 0);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 1, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 1);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 2, InputDeviceSensorType::ACCELEROMETER,
/* sensorDataIndex */ 2);
mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP);
addConfigurationProperty("sensor.accelerometer.reportingMode", "0");
addConfigurationProperty("sensor.accelerometer.maxDelay", "100000");
addConfigurationProperty("sensor.accelerometer.minDelay", "5000");
addConfigurationProperty("sensor.accelerometer.power", "1.5");
}
void SensorInputMapperTest::setGyroProperties() {
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 3, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 0);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 4, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 1);
mFakeEventHub->addSensorAxis(EVENTHUB_ID, /* absCode */ 5, InputDeviceSensorType::GYROSCOPE,
/* sensorDataIndex */ 2);
mFakeEventHub->setMscEvent(EVENTHUB_ID, MSC_TIMESTAMP);
addConfigurationProperty("sensor.gyroscope.reportingMode", "0");
addConfigurationProperty("sensor.gyroscope.maxDelay", "100000");
addConfigurationProperty("sensor.gyroscope.minDelay", "5000");
addConfigurationProperty("sensor.gyroscope.power", "0.8");
}
TEST_F(SensorInputMapperTest, GetSources) {
SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>();
ASSERT_EQ(static_cast<uint32_t>(AINPUT_SOURCE_SENSOR), mapper.getSources());
}
TEST_F(SensorInputMapperTest, ProcessAccelerometerSensor) {
setAccelProperties();
prepareAccelAxes();
SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>();
ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::ACCELEROMETER,
std::chrono::microseconds(10000),
std::chrono::microseconds(0)));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, 20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, -20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Z, 40000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
NotifySensorArgs args;
std::vector<float> values = {20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT,
-20000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT,
40000.0f / ACCEL_RAW_RESOLUTION * GRAVITY_MS2_UNIT};
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args));
ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR);
ASSERT_EQ(args.deviceId, DEVICE_ID);
ASSERT_EQ(args.sensorType, InputDeviceSensorType::ACCELEROMETER);
ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH);
ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME);
ASSERT_EQ(args.values, values);
mapper.flushSensor(InputDeviceSensorType::ACCELEROMETER);
}
TEST_F(SensorInputMapperTest, ProcessGyroscopeSensor) {
setGyroProperties();
prepareGyroAxes();
SensorInputMapper& mapper = constructAndAddMapper<SensorInputMapper>();
ASSERT_TRUE(mapper.enableSensor(InputDeviceSensorType::GYROSCOPE,
std::chrono::microseconds(10000),
std::chrono::microseconds(0)));
ASSERT_TRUE(mFakeEventHub->isDeviceEnabled(EVENTHUB_ID));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RX, 20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RY, -20000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_RZ, 40000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_TIMESTAMP, 1000);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
NotifySensorArgs args;
std::vector<float> values = {20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT,
-20000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT,
40000.0f / GYRO_RAW_RESOLUTION * DEGREE_RADIAN_UNIT};
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifySensorWasCalled(&args));
ASSERT_EQ(args.source, AINPUT_SOURCE_SENSOR);
ASSERT_EQ(args.deviceId, DEVICE_ID);
ASSERT_EQ(args.sensorType, InputDeviceSensorType::GYROSCOPE);
ASSERT_EQ(args.accuracy, InputDeviceSensorAccuracy::ACCURACY_HIGH);
ASSERT_EQ(args.hwTimestamp, ARBITRARY_TIME);
ASSERT_EQ(args.values, values);
mapper.flushSensor(InputDeviceSensorType::GYROSCOPE);
}
// --- KeyboardInputMapperTest ---
class KeyboardInputMapperTest : public InputMapperTest {
protected:
const std::string UNIQUE_ID = "local:0";
const KeyboardLayoutInfo DEVICE_KEYBOARD_LAYOUT_INFO = KeyboardLayoutInfo("en-US", "qwerty");
void prepareDisplay(ui::Rotation orientation);
void testDPadKeyRotation(KeyboardInputMapper& mapper, int32_t originalScanCode,
int32_t originalKeyCode, int32_t rotatedKeyCode,
int32_t displayId = ADISPLAY_ID_NONE);
};
/* Similar to setDisplayInfoAndReconfigure, but pre-populates all parameters except for the
* orientation.
*/
void KeyboardInputMapperTest::prepareDisplay(ui::Rotation orientation) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID,
NO_PORT, ViewportType::INTERNAL);
}
void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper& mapper,
int32_t originalScanCode, int32_t originalKeyCode,
int32_t rotatedKeyCode, int32_t displayId) {
NotifyKeyArgs args;
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
ASSERT_EQ(displayId, args.displayId);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, originalScanCode, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(originalScanCode, args.scanCode);
ASSERT_EQ(rotatedKeyCode, args.keyCode);
ASSERT_EQ(displayId, args.displayId);
}
TEST_F(KeyboardInputMapperTest, GetSources) {
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper.getSources());
}
TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) {
const int32_t USAGE_A = 0x070004;
const int32_t USAGE_UNKNOWN = 0x07ffff;
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Key down by scan code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by scan code.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down by usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, 0, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up by usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_A);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, 0, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_A, args.keyCode);
ASSERT_EQ(0, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key down with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UNKNOWN, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Key up with unknown scan code or usage code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, USAGE_UNKNOWN);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_UNKNOWN, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(0, args.keyCode);
ASSERT_EQ(KEY_UNKNOWN, args.scanCode);
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
ASSERT_EQ(0U, args.policyFlags);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
}
TEST_F(KeyboardInputMapperTest, Process_KeyRemapping) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_B, 0, AKEYCODE_B, 0);
mFakeEventHub->addKeyRemapping(EVENTHUB_ID, AKEYCODE_A, AKEYCODE_B);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Key down by scan code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_A, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEYCODE_B, args.keyCode);
// Key up by scan code.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEYCODE_B, args.keyCode);
}
/**
* Ensure that the readTime is set to the time when the EV_KEY is received.
*/
TEST_F(KeyboardInputMapperTest, Process_SendsReadTime) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Key down
process(mapper, ARBITRARY_TIME, /*readTime=*/12, EV_KEY, KEY_HOME, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(12, args.readTime);
// Key up
process(mapper, ARBITRARY_TIME, /*readTime=*/15, EV_KEY, KEY_HOME, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(15, args.readTime);
}
TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFTSHIFT, 0, AKEYCODE_SHIFT_LEFT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Metakey down.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled());
// Key down.
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_A, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
// Key up.
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, KEY_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper.getMetaState());
// Metakey up.
process(mapper, ARBITRARY_TIME + 3, READ_TIME, EV_KEY, KEY_LEFTSHIFT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertUpdateGlobalMetaStateWasCalled());
}
TEST_F(KeyboardInputMapperTest, Process_WhenNotOrientationAware_ShouldNotRotateDPad) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
prepareDisplay(ui::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
}
TEST_F(KeyboardInputMapperTest, Process_WhenOrientationAware_ShouldRotateDPad) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
addConfigurationProperty("keyboard.orientationAware", "1");
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
prepareDisplay(ui::ROTATION_0);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
clearViewports();
prepareDisplay(ui::ROTATION_90);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
clearViewports();
prepareDisplay(ui::ROTATION_180);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
clearViewports();
prepareDisplay(ui::ROTATION_270);
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_UP, DISPLAY_ID));
// Special case: if orientation changes while key is down, we still emit the same keycode
// in the key up as we did in the key down.
NotifyKeyArgs args;
clearViewports();
prepareDisplay(ui::ROTATION_270);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
clearViewports();
prepareDisplay(ui::ROTATION_180);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(KEY_UP, args.scanCode);
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_NotOrientationAware) {
// If the keyboard is not orientation aware,
// key events should not be associated with a specific display id
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Display id should be ADISPLAY_ID_NONE without any display configuration.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId);
prepareDisplay(ui::ROTATION_0);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ADISPLAY_ID_NONE, args.displayId);
}
TEST_F(KeyboardInputMapperTest, DisplayIdConfigurationChange_OrientationAware) {
// If the keyboard is orientation aware,
// key events should be associated with the internal viewport
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
addConfigurationProperty("keyboard.orientationAware", "1");
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Display id should be ADISPLAY_ID_NONE without any display configuration.
// ^--- already checked by the previous test
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DISPLAY_ID, args.displayId);
constexpr int32_t newDisplayId = 2;
clearViewports();
setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UP, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(newDisplayId, args.displayId);
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeState) {
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 1);
ASSERT_EQ(1, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
mFakeEventHub->setKeyCodeState(EVENTHUB_ID, AKEYCODE_A, 0);
ASSERT_EQ(0, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
}
TEST_F(KeyboardInputMapperTest, GetKeyCodeForKeyLocation) {
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->addKeyCodeMapping(EVENTHUB_ID, AKEYCODE_Y, AKEYCODE_Z);
ASSERT_EQ(AKEYCODE_Z, mapper.getKeyCodeForKeyLocation(AKEYCODE_Y))
<< "If a mapping is available, the result is equal to the mapping";
ASSERT_EQ(AKEYCODE_A, mapper.getKeyCodeForKeyLocation(AKEYCODE_A))
<< "If no mapping is available, the result is the key location";
}
TEST_F(KeyboardInputMapperTest, GetScanCodeState) {
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 1);
ASSERT_EQ(1, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
mFakeEventHub->setScanCodeState(EVENTHUB_ID, KEY_A, 0);
ASSERT_EQ(0, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
}
TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) {
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_A, 0, AKEYCODE_A, 0);
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_A, AKEYCODE_B}, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) {
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle caps lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
// Toggle num lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock off.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
}
TEST_F(KeyboardInputMapperTest, NoMetaStateWhenMetaKeysNotPresent) {
mFakeEventHub->addKey(EVENTHUB_ID, BTN_A, 0, AKEYCODE_BUTTON_A, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_B, 0, AKEYCODE_BUTTON_B, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_X, 0, AKEYCODE_BUTTON_X, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_Y, 0, AKEYCODE_BUTTON_Y, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC);
// Meta state should be AMETA_NONE after reset
std::list<NotifyArgs> unused = mapper.reset(ARBITRARY_TIME);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Meta state should be AMETA_NONE with update, as device doesn't have the keys.
mapper.updateMetaState(AKEYCODE_NUM_LOCK);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
NotifyKeyArgs args;
// Press button "A"
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_A, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode);
// Button up.
process(mapper, ARBITRARY_TIME + 2, READ_TIME, EV_KEY, BTN_A, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AMETA_NONE, args.metaState);
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_BUTTON_A, args.keyCode);
}
TEST_F(KeyboardInputMapperTest, Configure_AssignsDisplayPort) {
// keyboard 1.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
// keyboard 2.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_UP, 0, AKEYCODE_DPAD_UP, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_RIGHT, 0, AKEYCODE_DPAD_RIGHT, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID);
KeyboardInputMapper& mapper2 =
device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID,
mFakePolicy
->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
unused += device2->reset(ARBITRARY_TIME);
// Prepared displays and associated info.
constexpr uint8_t hdmi1 = 0;
constexpr uint8_t hdmi2 = 1;
const std::string SECONDARY_UNIQUE_ID = "local:1";
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(USB2, hdmi2);
// No associated display viewport found, should disable the device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_FALSE(device2->isEnabled());
// Prepare second display.
constexpr int32_t newDisplayId = 2;
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
UNIQUE_ID, hdmi1, ViewportType::INTERNAL);
setDisplayInfoAndReconfigure(newDisplayId, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
SECONDARY_UNIQUE_ID, hdmi2, ViewportType::EXTERNAL);
// Default device will reconfigure above, need additional reconfiguration for another device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO);
// Device should be enabled after the associated display is found.
ASSERT_TRUE(mDevice->isEnabled());
ASSERT_TRUE(device2->isEnabled());
// Test pad key events
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, DISPLAY_ID));
ASSERT_NO_FATAL_FAILURE(
testDPadKeyRotation(mapper2, KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_RIGHT, AKEYCODE_DPAD_RIGHT,
AKEYCODE_DPAD_RIGHT, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_DOWN, AKEYCODE_DPAD_DOWN,
AKEYCODE_DPAD_DOWN, newDisplayId));
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper2, KEY_LEFT, AKEYCODE_DPAD_LEFT,
AKEYCODE_DPAD_LEFT, newDisplayId));
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleAfterReattach) {
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
// Initialization should have turned all of the lights off.
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
// Toggle caps lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
// Toggle num lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper.getMetaState());
// Toggle scroll lock on.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper.getMetaState());
mFakeEventHub->removeDevice(EVENTHUB_ID);
mReader->loopOnce();
// keyboard 2 should default toggle keys.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID);
KeyboardInputMapper& mapper2 =
device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID,
mFakePolicy
->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
unused += device2->reset(ARBITRARY_TIME);
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_CAPSL));
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_NUML));
ASSERT_TRUE(mFakeEventHub->getLedState(SECOND_EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON,
mapper2.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_toggleCapsLockState) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
// Suppose we have two mappers. (DPAD + KEYBOARD)
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_DPAD,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper.getMetaState());
mReader->toggleCapsLockState(DEVICE_ID);
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleInMultiDevices) {
// keyboard 1.
mFakeEventHub->addLed(EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
KeyboardInputMapper& mapper1 =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// keyboard 2.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "KEYBOARD2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_CAPSL, true /*initially on*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_NUML, false /*initially off*/);
mFakeEventHub->addLed(SECOND_EVENTHUB_ID, LED_SCROLLL, false /*initially off*/);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_CAPSLOCK, 0, AKEYCODE_CAPS_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_NUMLOCK, 0, AKEYCODE_NUM_LOCK, 0);
mFakeEventHub->addKey(SECOND_EVENTHUB_ID, KEY_SCROLLLOCK, 0, AKEYCODE_SCROLL_LOCK, 0);
device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID);
KeyboardInputMapper& mapper2 =
device2->constructAndAddMapper<KeyboardInputMapper>(SECOND_EVENTHUB_ID,
mFakePolicy
->getReaderConfiguration(),
AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
unused += device2->reset(ARBITRARY_TIME);
// Initial metastate is AMETA_NONE.
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle num lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_NUMLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_NUML));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle caps lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_CAPSLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_CAPSL));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
// Toggle scroll lock on and off.
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_TRUE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper1.getMetaState());
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper2.getMetaState());
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 1);
process(mapper1, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_SCROLLLOCK, 0);
ASSERT_FALSE(mFakeEventHub->getLedState(EVENTHUB_ID, LED_SCROLLL));
ASSERT_EQ(AMETA_NONE, mapper1.getMetaState());
ASSERT_EQ(AMETA_NONE, mapper2.getMetaState());
}
TEST_F(KeyboardInputMapperTest, Process_DisabledDevice) {
const int32_t USAGE_A = 0x070004;
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, 0, USAGE_A, AKEYCODE_A, POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
// Key down by scan code.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
// Disable device, it should synthesize cancellation events for down events.
mFakePolicy->addDisabledDevice(DEVICE_ID);
configureDevice(InputReaderConfiguration::Change::ENABLED_STATE);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_CANCELED, args.flags);
}
TEST_F(KeyboardInputMapperTest, Configure_AssignKeyboardLayoutInfo) {
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
uint32_t generation = mReader->getContext()->getGeneration();
mFakePolicy->addKeyboardLayoutAssociation(DEVICE_LOCATION, DEVICE_KEYBOARD_LAYOUT_INFO);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::KEYBOARD_LAYOUT_ASSOCIATION);
InputDeviceInfo deviceInfo = mDevice->getDeviceInfo();
ASSERT_EQ(DEVICE_KEYBOARD_LAYOUT_INFO.languageTag,
deviceInfo.getKeyboardLayoutInfo()->languageTag);
ASSERT_EQ(DEVICE_KEYBOARD_LAYOUT_INFO.layoutType,
deviceInfo.getKeyboardLayoutInfo()->layoutType);
ASSERT_TRUE(mReader->getContext()->getGeneration() != generation);
// Call change layout association with the same values: Generation shouldn't change
generation = mReader->getContext()->getGeneration();
mFakePolicy->addKeyboardLayoutAssociation(DEVICE_LOCATION, DEVICE_KEYBOARD_LAYOUT_INFO);
unused += mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::KEYBOARD_LAYOUT_ASSOCIATION);
ASSERT_TRUE(mReader->getContext()->getGeneration() == generation);
}
TEST_F(KeyboardInputMapperTest, LayoutInfoCorrectlyMapped) {
mFakeEventHub->setRawLayoutInfo(EVENTHUB_ID,
RawLayoutInfo{.languageTag = "en", .layoutType = "extended"});
// Configuration
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
InputReaderConfiguration config;
std::list<NotifyArgs> unused = mDevice->configure(ARBITRARY_TIME, config, /*changes=*/{});
ASSERT_EQ("en", mDevice->getDeviceInfo().getKeyboardLayoutInfo()->languageTag);
ASSERT_EQ("extended", mDevice->getDeviceInfo().getKeyboardLayoutInfo()->layoutType);
}
TEST_F(KeyboardInputMapperTest, Process_GesureEventToSetFlagKeepTouchMode) {
mFakeEventHub->addKey(EVENTHUB_ID, KEY_LEFT, 0, AKEYCODE_DPAD_LEFT, POLICY_FLAG_GESTURE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
NotifyKeyArgs args;
// Key down
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_LEFT, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_KEEP_TOUCH_MODE, args.flags);
}
// --- KeyboardInputMapperTest_ExternalDevice ---
class KeyboardInputMapperTest_ExternalDevice : public InputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); }
};
TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior_AlphabeticKeyboard) {
// For external devices, keys will trigger wake on key down. Media keys should also trigger
// wake if triggered from external devices.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE,
POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
}
TEST_F(KeyboardInputMapperTest_ExternalDevice, WakeBehavior_NoneAlphabeticKeyboard) {
// For external devices, keys will trigger wake on key down. Media keys should not trigger
// wake if triggered from external non-alphaebtic keyboard (e.g. headsets).
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAYPAUSE, 0, AKEYCODE_MEDIA_PLAY_PAUSE,
POLICY_FLAG_WAKE);
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAYPAUSE, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
}
TEST_F(KeyboardInputMapperTest_ExternalDevice, DoNotWakeByDefaultBehavior) {
// Tv Remote key's wake behavior is prescribed by the keylayout file.
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_DOWN, 0, AKEYCODE_DPAD_DOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_PLAY, 0, AKEYCODE_MEDIA_PLAY, POLICY_FLAG_WAKE);
addConfigurationProperty("keyboard.doNotWakeByDefault", "1");
KeyboardInputMapper& mapper =
constructAndAddMapper<KeyboardInputMapper>(AINPUT_SOURCE_KEYBOARD,
AINPUT_KEYBOARD_TYPE_ALPHABETIC);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_HOME, 1);
NotifyKeyArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_HOME, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_DOWN, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_DOWN, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(uint32_t(0), args.policyFlags);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_PLAY, 1);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
process(mapper, ARBITRARY_TIME + 1, READ_TIME, EV_KEY, KEY_PLAY, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
}
// --- TouchInputMapperTest ---
class TouchInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
static const int32_t RAW_TOUCH_MIN;
static const int32_t RAW_TOUCH_MAX;
static const int32_t RAW_TOOL_MIN;
static const int32_t RAW_TOOL_MAX;
static const int32_t RAW_PRESSURE_MIN;
static const int32_t RAW_PRESSURE_MAX;
static const int32_t RAW_ORIENTATION_MIN;
static const int32_t RAW_ORIENTATION_MAX;
static const int32_t RAW_DISTANCE_MIN;
static const int32_t RAW_DISTANCE_MAX;
static const int32_t RAW_TILT_MIN;
static const int32_t RAW_TILT_MAX;
static const int32_t RAW_ID_MIN;
static const int32_t RAW_ID_MAX;
static const int32_t RAW_SLOT_MIN;
static const int32_t RAW_SLOT_MAX;
static const float X_PRECISION;
static const float Y_PRECISION;
static const float X_PRECISION_VIRTUAL;
static const float Y_PRECISION_VIRTUAL;
static const float GEOMETRIC_SCALE;
static const TouchAffineTransformation AFFINE_TRANSFORM;
static const VirtualKeyDefinition VIRTUAL_KEYS[2];
const std::string UNIQUE_ID = "local:0";
const std::string SECONDARY_UNIQUE_ID = "local:1";
enum Axes {
POSITION = 1 << 0,
TOUCH = 1 << 1,
TOOL = 1 << 2,
PRESSURE = 1 << 3,
ORIENTATION = 1 << 4,
MINOR = 1 << 5,
ID = 1 << 6,
DISTANCE = 1 << 7,
TILT = 1 << 8,
SLOT = 1 << 9,
TOOL_TYPE = 1 << 10,
};
void prepareDisplay(ui::Rotation orientation, std::optional<uint8_t> port = NO_PORT);
void prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port = NO_PORT);
void prepareVirtualDisplay(ui::Rotation orientation);
void prepareVirtualKeys();
void prepareLocationCalibration();
int32_t toRawX(float displayX);
int32_t toRawY(float displayY);
int32_t toRotatedRawX(float displayX);
int32_t toRotatedRawY(float displayY);
float toCookedX(float rawX, float rawY);
float toCookedY(float rawX, float rawY);
float toDisplayX(int32_t rawX);
float toDisplayX(int32_t rawX, int32_t displayWidth);
float toDisplayY(int32_t rawY);
float toDisplayY(int32_t rawY, int32_t displayHeight);
};
const int32_t TouchInputMapperTest::RAW_X_MIN = 25;
const int32_t TouchInputMapperTest::RAW_X_MAX = 1019;
const int32_t TouchInputMapperTest::RAW_Y_MIN = 30;
const int32_t TouchInputMapperTest::RAW_Y_MAX = 1009;
const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31;
const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = 0;
const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = 255;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7;
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MIN = 0;
const int32_t TouchInputMapperTest::RAW_DISTANCE_MAX = 7;
const int32_t TouchInputMapperTest::RAW_TILT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_TILT_MAX = 150;
const int32_t TouchInputMapperTest::RAW_ID_MIN = 0;
const int32_t TouchInputMapperTest::RAW_ID_MAX = 9;
const int32_t TouchInputMapperTest::RAW_SLOT_MIN = 0;
const int32_t TouchInputMapperTest::RAW_SLOT_MAX = 9;
const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT;
const float TouchInputMapperTest::X_PRECISION_VIRTUAL =
float(RAW_X_MAX - RAW_X_MIN + 1) / VIRTUAL_DISPLAY_WIDTH;
const float TouchInputMapperTest::Y_PRECISION_VIRTUAL =
float(RAW_Y_MAX - RAW_Y_MIN + 1) / VIRTUAL_DISPLAY_HEIGHT;
const TouchAffineTransformation TouchInputMapperTest::AFFINE_TRANSFORM =
TouchAffineTransformation(1, -2, 3, -4, 5, -6);
const float TouchInputMapperTest::GEOMETRIC_SCALE =
avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN + 1),
float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN + 1));
const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = {
{ KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 },
{ KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 },
};
void TouchInputMapperTest::prepareDisplay(ui::Rotation orientation, std::optional<uint8_t> port) {
setDisplayInfoAndReconfigure(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation, UNIQUE_ID,
port, ViewportType::INTERNAL);
}
void TouchInputMapperTest::prepareSecondaryDisplay(ViewportType type, std::optional<uint8_t> port) {
setDisplayInfoAndReconfigure(SECONDARY_DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT,
ui::ROTATION_0, SECONDARY_UNIQUE_ID, port, type);
}
void TouchInputMapperTest::prepareVirtualDisplay(ui::Rotation orientation) {
setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH, VIRTUAL_DISPLAY_HEIGHT,
orientation, VIRTUAL_DISPLAY_UNIQUE_ID, NO_PORT,
ViewportType::VIRTUAL);
}
void TouchInputMapperTest::prepareVirtualKeys() {
mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[0]);
mFakeEventHub->addVirtualKeyDefinition(EVENTHUB_ID, VIRTUAL_KEYS[1]);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_HOME, 0, AKEYCODE_HOME, POLICY_FLAG_WAKE);
mFakeEventHub->addKey(EVENTHUB_ID, KEY_MENU, 0, AKEYCODE_MENU, POLICY_FLAG_WAKE);
}
void TouchInputMapperTest::prepareLocationCalibration() {
mFakePolicy->setTouchAffineTransformation(AFFINE_TRANSFORM);
}
int32_t TouchInputMapperTest::toRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_WIDTH + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_HEIGHT + RAW_Y_MIN);
}
int32_t TouchInputMapperTest::toRotatedRawX(float displayX) {
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN + 1) / DISPLAY_HEIGHT + RAW_X_MIN);
}
int32_t TouchInputMapperTest::toRotatedRawY(float displayY) {
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN + 1) / DISPLAY_WIDTH + RAW_Y_MIN);
}
float TouchInputMapperTest::toCookedX(float rawX, float rawY) {
AFFINE_TRANSFORM.applyTo(rawX, rawY);
return rawX;
}
float TouchInputMapperTest::toCookedY(float rawX, float rawY) {
AFFINE_TRANSFORM.applyTo(rawX, rawY);
return rawY;
}
float TouchInputMapperTest::toDisplayX(int32_t rawX) {
return toDisplayX(rawX, DISPLAY_WIDTH);
}
float TouchInputMapperTest::toDisplayX(int32_t rawX, int32_t displayWidth) {
return float(rawX - RAW_X_MIN) * displayWidth / (RAW_X_MAX - RAW_X_MIN + 1);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY) {
return toDisplayY(rawY, DISPLAY_HEIGHT);
}
float TouchInputMapperTest::toDisplayY(int32_t rawY, int32_t displayHeight) {
return float(rawY - RAW_Y_MIN) * displayHeight / (RAW_Y_MAX - RAW_Y_MIN + 1);
}
// --- SingleTouchInputMapperTest ---
class SingleTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareButtons();
void prepareAxes(int axes);
void processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y);
void processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y);
void processUp(SingleTouchInputMapper& mappery);
void processPressure(SingleTouchInputMapper& mapper, int32_t pressure);
void processToolMajor(SingleTouchInputMapper& mapper, int32_t toolMajor);
void processDistance(SingleTouchInputMapper& mapper, int32_t distance);
void processTilt(SingleTouchInputMapper& mapper, int32_t tiltX, int32_t tiltY);
void processKey(SingleTouchInputMapper& mapper, int32_t code, int32_t value);
void processSync(SingleTouchInputMapper& mapper);
};
void SingleTouchInputMapperTest::prepareButtons() {
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
}
void SingleTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MIN,
RAW_PRESSURE_MAX, 0, 0);
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0,
0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_DISTANCE, RAW_DISTANCE_MIN,
RAW_DISTANCE_MAX, 0, 0);
}
if (axes & TILT) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_X, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_TILT_Y, RAW_TILT_MIN, RAW_TILT_MAX, 0, 0);
}
}
void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper& mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper& mapper, int32_t x, int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_Y, y);
}
void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 0);
}
void SingleTouchInputMapperTest::processPressure(SingleTouchInputMapper& mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_PRESSURE, pressure);
}
void SingleTouchInputMapperTest::processToolMajor(SingleTouchInputMapper& mapper,
int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TOOL_WIDTH, toolMajor);
}
void SingleTouchInputMapperTest::processDistance(SingleTouchInputMapper& mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_DISTANCE, distance);
}
void SingleTouchInputMapperTest::processTilt(SingleTouchInputMapper& mapper, int32_t tiltX,
int32_t tiltY) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_X, tiltX);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_TILT_Y, tiltY);
}
void SingleTouchInputMapperTest::processKey(SingleTouchInputMapper& mapper, int32_t code,
int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value);
}
void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsNotSpecifiedAndNotACursor_ReturnsPointer) {
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
}
TEST_F(SingleTouchInputMapperTest, GetSources_WhenDeviceTypeIsTouchScreen_ReturnsTouchScreen) {
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
}
TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper.getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
}
TEST_F(SingleTouchInputMapperTest, GetScanCodeState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Unknown key.
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
// Virtual key is down.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
// Virtual key is up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled());
ASSERT_EQ(AKEY_STATE_UP, mapper.getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
}
TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
uint8_t flags[2] = { 0, 0 };
ASSERT_TRUE(
mapper.markSupportedKeyCodes(AINPUT_SOURCE_ANY, {AKEYCODE_HOME, AKEYCODE_A}, flags));
ASSERT_TRUE(flags[0]);
ASSERT_FALSE(flags[1]);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs args;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Release virtual key.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&args));
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
ASSERT_EQ(DEVICE_ID, args.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
ASSERT_EQ(KEY_HOME, args.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
// Should not have sent any motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyKeyArgs keyArgs;
// Press virtual key.
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
// Move out of bounds. This should generate a cancel and a pointer down since we moved
// into the display area.
y -= 100;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| AKEY_EVENT_FLAG_CANCELED, keyArgs.flags);
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Keep moving out of bounds. Should generate a pointer move.
y -= 50;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release out of bounds. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Initially go down out of bounds.
int32_t x = -10;
int32_t y = -10;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Move into the display area. Should generate a pointer down.
x = 50;
y = 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Release. Should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture_VirtualDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.displayId", VIRTUAL_DISPLAY_UNIQUE_ID);
prepareVirtualDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(VIRTUAL_DISPLAY_ID, motionArgs.displayId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x, VIRTUAL_DISPLAY_WIDTH), toDisplayY(y, VIRTUAL_DISPLAY_HEIGHT),
1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION_VIRTUAL, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION_VIRTUAL, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
prepareVirtualKeys();
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Down.
int32_t x = 100;
int32_t y = 125;
processDown(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x += 50;
y += 75;
processMove(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationAware_DoesNotRotateMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// InputReader works in the un-rotated coordinate space, so orientation-aware devices do not
// need to be rotated. Touchscreens are orientation-aware by default.
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Rotation 90.
prepareDisplay(ui::ROTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenNotOrientationAware_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Rotation 0.
clearViewports();
prepareDisplay(ui::ROTATION_0);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 90.
clearViewports();
prepareDisplay(ui::ROTATION_90);
processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 180.
clearViewports();
prepareDisplay(ui::ROTATION_180);
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Rotation 270.
clearViewports();
prepareDisplay(ui::ROTATION_270);
processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
ASSERT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation0_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_0");
clearViewports();
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 0.
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation90_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_90");
clearViewports();
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 90.
processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation180_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_180");
clearViewports();
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 180.
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientation270_RotatesMotions) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
addConfigurationProperty("touch.orientation", "ORIENTATION_270");
clearViewports();
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 270.
processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenOrientationSpecified_RotatesMotionWithDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
addConfigurationProperty("touch.orientation", "ORIENTATION_90");
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs args;
// Orientation 90, Rotation 0.
clearViewports();
prepareDisplay(ui::ROTATION_0);
processDown(mapper, RAW_X_MAX - toRotatedRawX(75) + RAW_X_MIN, toRotatedRawY(50));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 90.
clearViewports();
prepareDisplay(ui::ROTATION_90);
processDown(mapper, toRawX(50), toRawY(75));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 180.
clearViewports();
prepareDisplay(ui::ROTATION_180);
processDown(mapper, toRotatedRawX(75), RAW_Y_MAX - toRotatedRawY(50) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
// Orientation 90, Rotation 270.
clearViewports();
prepareDisplay(ui::ROTATION_270);
processDown(mapper, RAW_X_MAX - toRawX(50) + RAW_X_MIN, RAW_Y_MAX - toRawY(75) + RAW_Y_MIN);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_NEAR(50, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(75, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
TEST_F(SingleTouchInputMapperTest, Process_IgnoresTouchesOutsidePhysicalFrame) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareButtons();
prepareAxes(POSITION);
addConfigurationProperty("touch.orientationAware", "1");
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Set a physical frame in the display viewport.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->physicalLeft = 20;
viewport->physicalTop = 600;
viewport->physicalRight = 30;
viewport->physicalBottom = 610;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// Start the touch.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1);
processSync(mapper);
// Expect all input starting outside the physical frame to be ignored.
const std::array<Point, 6> outsidePoints = {
{{0, 0}, {19, 605}, {31, 605}, {25, 599}, {25, 611}, {DISPLAY_WIDTH, DISPLAY_HEIGHT}}};
for (const auto& p : outsidePoints) {
processMove(mapper, toRawX(p.x), toRawY(p.y));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
// Move the touch into the physical frame.
processMove(mapper, toRawX(25), toRawY(605));
processSync(mapper);
NotifyMotionArgs args;
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
EXPECT_NEAR(25, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(605, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
// Once the touch down is reported, continue reporting input, even if it is outside the frame.
for (const auto& p : outsidePoints) {
processMove(mapper, toRawX(p.x), toRawY(p.y));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
EXPECT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
EXPECT_NEAR(p.x, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X), 1);
EXPECT_NEAR(p.y, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y), 1);
}
processUp(mapper);
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(
mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
}
TEST_F(SingleTouchInputMapperTest, Process_DoesntCheckPhysicalFrameForTouchpads) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(fakePointerController);
addConfigurationProperty("touch.deviceType", "pointer");
prepareAxes(POSITION);
prepareDisplay(ui::ROTATION_0);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Set a physical frame in the display viewport.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->physicalLeft = 20;
viewport->physicalTop = 600;
viewport->physicalRight = 30;
viewport->physicalBottom = 610;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// Start the touch.
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, BTN_TOUCH, 1);
processSync(mapper);
// Expect all input starting outside the physical frame to result in NotifyMotionArgs being
// produced.
const std::array<Point, 6> outsidePoints = {
{{0, 0}, {19, 605}, {31, 605}, {25, 599}, {25, 611}, {DISPLAY_WIDTH, DISPLAY_HEIGHT}}};
for (const auto& p : outsidePoints) {
processMove(mapper, toRawX(p.x), toRawY(p.y));
processSync(mapper);
EXPECT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled());
}
}
TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE | TOOL | DISTANCE | TILT);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 10;
int32_t rawToolMajor = 12;
int32_t rawDistance = 2;
int32_t rawTiltX = 30;
int32_t rawTiltY = 110;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = float(rawToolMajor) / RAW_TOOL_MAX;
float tool = float(rawToolMajor) * GEOMETRIC_SCALE;
float distance = float(rawDistance);
float tiltCenter = (RAW_TILT_MAX + RAW_TILT_MIN) * 0.5f;
float tiltScale = M_PI / 180;
float tiltXAngle = (rawTiltX - tiltCenter) * tiltScale;
float tiltYAngle = (rawTiltY - tiltCenter) * tiltScale;
float orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle));
float tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle));
processDown(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processToolMajor(mapper, rawToolMajor);
processDistance(mapper, rawDistance);
processTilt(mapper, rawTiltX, rawTiltY);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, tool, tool, tool, tool, orientation, distance));
ASSERT_EQ(tilt, args.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_TILT));
}
TEST_F(SingleTouchInputMapperTest, Process_XYAxes_AffineCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareLocationCalibration();
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
int32_t rawX = 100;
int32_t rawY = 200;
float x = toDisplayX(toCookedX(rawX, rawY));
float y = toDisplayY(toCookedY(rawX, rawY));
processDown(mapper, rawX, rawY);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllButtons) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// release touch
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(SingleTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// air-brush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(SingleTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_FINGER, 0, AKEYCODE_UNKNOWN, 0);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processKey(mapper, BTN_TOOL_FINGER, 1);
processMove(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Process_WhenAbsPressureIsPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processDown(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processMove(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure is non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(SingleTouchInputMapperTest, Reset_CancelsOngoingGesture) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Touch down.
processDown(mapper, 100, 200);
processPressure(mapper, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Reset the mapper. This should cancel the ongoing gesture.
resetMapper(mapper, ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_CANCEL)));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, Reset_RecreatesTouchState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION | PRESSURE);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Set the initial state for the touch pointer.
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 100);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 200);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_PRESSURE, RAW_PRESSURE_MAX);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1);
// Reset the mapper. When the mapper is reset, we expect it to attempt to recreate the touch
// state by reading the current axis values. Since there was no ongoing gesture, calling reset
// does not generate any events.
resetMapper(mapper, ARBITRARY_TIME);
// Send a sync to simulate an empty touch frame where nothing changes. The mapper should use
// the recreated touch state to generate a down event.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest,
Process_WhenViewportDisplayIdChanged_TouchIsCanceledAndDeviceIsReset) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Down.
processDown(mapper, 100, 200);
processSync(mapper);
// We should receive a down event
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Change display id
clearViewports();
prepareSecondaryDisplay(ViewportType::INTERNAL);
// We should receive a cancel event
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Then receive reset called
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
}
TEST_F(SingleTouchInputMapperTest,
Process_WhenViewportActiveStatusChanged_TouchIsCanceledAndDeviceIsReset) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
NotifyMotionArgs motionArgs;
// Start a new gesture.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Make the viewport inactive. This will put the device in disabled mode.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->isActive = false;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// We should receive a cancel event for the ongoing gesture.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Then we should be notified that the device was reset.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// No events are generated while the viewport is inactive.
processMove(mapper, 101, 201);
processSync(mapper);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Start a new gesture while the viewport is still inactive.
processDown(mapper, 300, 400);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_X, 300);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_Y, 400);
mFakeEventHub->setScanCodeState(EVENTHUB_ID, BTN_TOUCH, 1);
processSync(mapper);
// Make the viewport active again. The device should resume processing events.
viewport->isActive = true;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// The device is reset because it changes back to direct mode, without generating any events.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// In the next sync, the touch state that was recreated when the device was reset is reported.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// No more events.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, ButtonIsReleasedOnTouchUp) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// Press a stylus button.
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
// Start a touch gesture and ensure the BUTTON_PRESS event is generated.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithCoords(toDisplayX(100), toDisplayY(200)),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithCoords(toDisplayX(100), toDisplayY(200)),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
// Release the touch gesture. Ensure that the BUTTON_RELEASE event is generated even though
// the button has not actually been released, since there will be no pointers through which the
// button state can be reported. The event is generated at the location of the pointer before
// it went up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE),
WithCoords(toDisplayX(100), toDisplayY(200)), WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithCoords(toDisplayX(100), toDisplayY(200)), WithButtonState(0))));
}
TEST_F(SingleTouchInputMapperTest, StylusButtonMotionEventsDisabled) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakePolicy->setStylusButtonMotionEventsEnabled(false);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// Press a stylus button.
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
// Start a touch gesture and ensure that the stylus button is not reported.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithButtonState(0))));
// Release and press the stylus button again.
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0))));
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0))));
// Release the touch gesture.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(SingleTouchInputMapperTest, WhenDeviceTypeIsSetToTouchNavigation_setsCorrectType) {
mFakePolicy->addDeviceTypeAssociation(DEVICE_LOCATION, "touchNavigation");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
ASSERT_EQ(AINPUT_SOURCE_TOUCH_NAVIGATION, mapper.getSources());
}
TEST_F(SingleTouchInputMapperTest, Process_WhenConfigEnabled_ShouldShowDirectStylusPointer) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setStylusPointerIconEnabled(true);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
processKey(mapper, BTN_TOOL_PEN, 1);
processMove(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithToolType(ToolType::STYLUS),
WithPointerCoords(0, toDisplayX(100), toDisplayY(200)))));
ASSERT_TRUE(fakePointerController->isPointerShown());
ASSERT_NO_FATAL_FAILURE(
fakePointerController->assertPosition(toDisplayX(100), toDisplayY(200)));
}
TEST_F(SingleTouchInputMapperTest, Process_WhenConfigDisabled_ShouldNotShowDirectStylusPointer) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setStylusPointerIconEnabled(false);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
processKey(mapper, BTN_TOOL_PEN, 1);
processMove(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithToolType(ToolType::STYLUS),
WithPointerCoords(0, toDisplayX(100), toDisplayY(200)))));
ASSERT_FALSE(fakePointerController->isPointerShown());
}
TEST_F(SingleTouchInputMapperTest, WhenDeviceTypeIsChangedToTouchNavigation_updatesDeviceType) {
// Initialize the device without setting device source to touch navigation.
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Ensure that the device is created as a touchscreen, not touch navigation.
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
// Add device type association after the device was created.
mFakePolicy->addDeviceTypeAssociation(DEVICE_LOCATION, "touchNavigation");
// Send update to the mapper.
std::list<NotifyArgs> unused2 =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DEVICE_TYPE /*changes*/);
// Check whether device type update was successful.
ASSERT_EQ(AINPUT_SOURCE_TOUCH_NAVIGATION, mDevice->getSources());
}
TEST_F(SingleTouchInputMapperTest, HoverEventsOutsidePhysicalFrameAreIgnored) {
// Initialize the device without setting device source to touch navigation.
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
// Set a physical frame in the display viewport.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->physicalLeft = 0;
viewport->physicalTop = 0;
viewport->physicalRight = DISPLAY_WIDTH / 2;
viewport->physicalBottom = DISPLAY_HEIGHT / 2;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Hovering inside the physical frame produces events.
processKey(mapper, BTN_TOOL_PEN, 1);
processMove(mapper, RAW_X_MIN + 1, RAW_Y_MIN + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER)));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE)));
// Leaving the physical frame ends the hovering gesture.
processMove(mapper, RAW_X_MAX - 1, RAW_Y_MAX - 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_HOVER_EXIT)));
// Moving outside the physical frame does not produce events.
processMove(mapper, RAW_X_MAX - 2, RAW_Y_MAX - 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Re-entering the physical frame produces events.
processMove(mapper, RAW_X_MIN, RAW_Y_MIN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER)));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_HOVER_MOVE)));
}
// --- TouchDisplayProjectionTest ---
class TouchDisplayProjectionTest : public SingleTouchInputMapperTest {
public:
// The values inside DisplayViewport are expected to be pre-rotated. This updates the current
// DisplayViewport to pre-rotate the values. The viewport's physical display will be set to the
// rotated equivalent of the given un-rotated physical display bounds.
void configurePhysicalDisplay(ui::Rotation orientation, Rect naturalPhysicalDisplay,
int32_t naturalDisplayWidth = DISPLAY_WIDTH,
int32_t naturalDisplayHeight = DISPLAY_HEIGHT) {
uint32_t inverseRotationFlags;
auto rotatedWidth = naturalDisplayWidth;
auto rotatedHeight = naturalDisplayHeight;
switch (orientation) {
case ui::ROTATION_90:
inverseRotationFlags = ui::Transform::ROT_270;
std::swap(rotatedWidth, rotatedHeight);
break;
case ui::ROTATION_180:
inverseRotationFlags = ui::Transform::ROT_180;
break;
case ui::ROTATION_270:
inverseRotationFlags = ui::Transform::ROT_90;
std::swap(rotatedWidth, rotatedHeight);
break;
case ui::ROTATION_0:
inverseRotationFlags = ui::Transform::ROT_0;
break;
}
const ui::Transform rotation(inverseRotationFlags, rotatedWidth, rotatedHeight);
const Rect rotatedPhysicalDisplay = rotation.transform(naturalPhysicalDisplay);
std::optional<DisplayViewport> internalViewport =
*mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
DisplayViewport& v = *internalViewport;
v.displayId = DISPLAY_ID;
v.orientation = orientation;
v.logicalLeft = 0;
v.logicalTop = 0;
v.logicalRight = 100;
v.logicalBottom = 100;
v.physicalLeft = rotatedPhysicalDisplay.left;
v.physicalTop = rotatedPhysicalDisplay.top;
v.physicalRight = rotatedPhysicalDisplay.right;
v.physicalBottom = rotatedPhysicalDisplay.bottom;
v.deviceWidth = rotatedWidth;
v.deviceHeight = rotatedHeight;
v.isActive = true;
v.uniqueId = UNIQUE_ID;
v.type = ViewportType::INTERNAL;
mFakePolicy->updateViewport(v);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
}
void assertReceivedMove(const Point& point) {
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], point.x, point.y,
1, 0, 0, 0, 0, 0, 0, 0));
}
};
TEST_F(TouchDisplayProjectionTest, IgnoresTouchesOutsidePhysicalDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Configure the DisplayViewport such that the logical display maps to a subsection of
// the display panel called the physical display. Here, the physical display is bounded by the
// points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800.
static const Rect kPhysicalDisplay{10, 20, 70, 160};
static const std::array<Point, 6> kPointsOutsidePhysicalDisplay{
{{-10, -10}, {0, 0}, {5, 100}, {50, 15}, {75, 100}, {50, 165}}};
for (auto orientation : {ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180, ui::ROTATION_270}) {
configurePhysicalDisplay(orientation, kPhysicalDisplay);
// Touches outside the physical display should be ignored, and should not generate any
// events. Ensure touches at the following points that lie outside of the physical display
// area do not generate any events.
for (const auto& point : kPointsOutsidePhysicalDisplay) {
processDown(mapper, toRawX(point.x), toRawY(point.y));
processSync(mapper);
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled())
<< "Unexpected event generated for touch outside physical display at point: "
<< point.x << ", " << point.y;
}
}
}
TEST_F(TouchDisplayProjectionTest, EmitsTouchDownAfterEnteringPhysicalDisplay) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Configure the DisplayViewport such that the logical display maps to a subsection of
// the display panel called the physical display. Here, the physical display is bounded by the
// points (10, 20) and (70, 160) inside the display space, which is of the size 400 x 800.
static const Rect kPhysicalDisplay{10, 20, 70, 160};
for (auto orientation : {ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180, ui::ROTATION_270}) {
configurePhysicalDisplay(orientation, kPhysicalDisplay);
// Touches that start outside the physical display should be ignored until it enters the
// physical display bounds, at which point it should generate a down event. Start a touch at
// the point (5, 100), which is outside the physical display bounds.
static const Point kOutsidePoint{5, 100};
processDown(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Move the touch into the physical display area. This should generate a pointer down.
processMove(mapper, toRawX(11), toRawY(21));
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 11, 21, 1, 0, 0, 0, 0, 0, 0, 0));
// Move the touch inside the physical display area. This should generate a pointer move.
processMove(mapper, toRawX(69), toRawY(159));
processSync(mapper);
assertReceivedMove({69, 159});
// Move outside the physical display area. Since the pointer is already down, this should
// now continue generating events.
processMove(mapper, toRawX(kOutsidePoint.x), toRawY(kOutsidePoint.y));
processSync(mapper);
assertReceivedMove(kOutsidePoint);
// Release. This should generate a pointer up.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], kOutsidePoint.x,
kOutsidePoint.y, 1, 0, 0, 0, 0, 0, 0, 0));
// Ensure no more events were generated.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
}
// --- TouchscreenPrecisionTests ---
// This test suite is used to ensure that touchscreen devices are scaled and configured correctly
// in various orientations and with different display rotations. We configure the touchscreen to
// have a higher resolution than that of the display by an integer scale factor in each axis so that
// we can enforce that coordinates match precisely as expected.
class TouchscreenPrecisionTestsFixture : public TouchDisplayProjectionTest,
public ::testing::WithParamInterface<ui::Rotation> {
public:
void SetUp() override {
SingleTouchInputMapperTest::SetUp();
// Prepare the raw axes to have twice the resolution of the display in the X axis and
// four times the resolution of the display in the Y axis.
prepareButtons();
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, PRECISION_RAW_X_MIN, PRECISION_RAW_X_MAX,
PRECISION_RAW_X_FLAT, PRECISION_RAW_X_FUZZ,
PRECISION_RAW_X_RES);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, PRECISION_RAW_Y_MIN, PRECISION_RAW_Y_MAX,
PRECISION_RAW_Y_FLAT, PRECISION_RAW_Y_FUZZ,
PRECISION_RAW_Y_RES);
}
static const int32_t PRECISION_RAW_X_MIN = TouchInputMapperTest::RAW_X_MIN;
static const int32_t PRECISION_RAW_X_MAX = PRECISION_RAW_X_MIN + DISPLAY_WIDTH * 2 - 1;
static const int32_t PRECISION_RAW_Y_MIN = TouchInputMapperTest::RAW_Y_MIN;
static const int32_t PRECISION_RAW_Y_MAX = PRECISION_RAW_Y_MIN + DISPLAY_HEIGHT * 4 - 1;
static const int32_t PRECISION_RAW_X_RES = 50; // units per millimeter
static const int32_t PRECISION_RAW_Y_RES = 100; // units per millimeter
static const int32_t PRECISION_RAW_X_FLAT = 16;
static const int32_t PRECISION_RAW_Y_FLAT = 32;
static const int32_t PRECISION_RAW_X_FUZZ = 4;
static const int32_t PRECISION_RAW_Y_FUZZ = 8;
static const std::array<Point, 4> kRawCorners;
};
const std::array<Point, 4> TouchscreenPrecisionTestsFixture::kRawCorners = {{
{PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MIN}, // left-top
{PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MIN}, // right-top
{PRECISION_RAW_X_MAX, PRECISION_RAW_Y_MAX}, // right-bottom
{PRECISION_RAW_X_MIN, PRECISION_RAW_Y_MAX}, // left-bottom
}};
// Tests for how the touchscreen is oriented relative to the natural orientation of the display.
// For example, if a touchscreen is configured with an orientation of 90 degrees, it is a portrait
// touchscreen panel that is used on a device whose natural display orientation is in landscape.
TEST_P(TouchscreenPrecisionTestsFixture, OrientationPrecision) {
enum class Orientation {
ORIENTATION_0 = ui::toRotationInt(ui::ROTATION_0),
ORIENTATION_90 = ui::toRotationInt(ui::ROTATION_90),
ORIENTATION_180 = ui::toRotationInt(ui::ROTATION_180),
ORIENTATION_270 = ui::toRotationInt(ui::ROTATION_270),
ftl_last = ORIENTATION_270,
};
using Orientation::ORIENTATION_0, Orientation::ORIENTATION_90, Orientation::ORIENTATION_180,
Orientation::ORIENTATION_270;
static const std::map<Orientation, std::array<vec2, 4> /*mappedCorners*/> kMappedCorners = {
{ORIENTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}},
{ORIENTATION_90, {{{0, 479.5}, {0, 0}, {799.75, 0}, {799.75, 479.5}}}},
{ORIENTATION_180, {{{479.5, 799.75}, {0, 799.75}, {0, 0}, {479.5, 0}}}},
{ORIENTATION_270, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}},
};
const auto touchscreenOrientation = static_cast<Orientation>(ui::toRotationInt(GetParam()));
// Configure the touchscreen as being installed in the one of the four different orientations
// relative to the display.
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.orientation", ftl::enum_string(touchscreenOrientation).c_str());
prepareDisplay(ui::ROTATION_0);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// If the touchscreen is installed in a rotated orientation relative to the display (i.e. in
// orientations of either 90 or 270) this means the display's natural resolution will be
// flipped.
const bool displayRotated =
touchscreenOrientation == ORIENTATION_90 || touchscreenOrientation == ORIENTATION_270;
const int32_t width = displayRotated ? DISPLAY_HEIGHT : DISPLAY_WIDTH;
const int32_t height = displayRotated ? DISPLAY_WIDTH : DISPLAY_HEIGHT;
const Rect physicalFrame{0, 0, width, height};
configurePhysicalDisplay(ui::ROTATION_0, physicalFrame, width, height);
const auto& expectedPoints = kMappedCorners.at(touchscreenOrientation);
const float expectedPrecisionX = displayRotated ? 4 : 2;
const float expectedPrecisionY = displayRotated ? 2 : 4;
// Test all four corners.
for (int i = 0; i < 4; i++) {
const auto& raw = kRawCorners[i];
processDown(mapper, raw.x, raw.y);
processSync(mapper);
const auto& expected = expectedPoints[i];
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithCoords(expected.x, expected.y),
WithPrecision(expectedPrecisionX, expectedPrecisionY))))
<< "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
<< "with touchscreen orientation "
<< ftl::enum_string(touchscreenOrientation).c_str() << ", expected point ("
<< expected.x << ", " << expected.y << ").";
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithCoords(expected.x, expected.y))));
}
}
TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionWhenOrientationAware) {
static const std::map<ui::Rotation /*rotation*/, std::array<vec2, 4> /*mappedCorners*/>
kMappedCorners = {
{ui::ROTATION_0, {{{0, 0}, {479.5, 0}, {479.5, 799.75}, {0, 799.75}}}},
{ui::ROTATION_90, {{{0.5, 0}, {480, 0}, {480, 799.75}, {0.5, 799.75}}}},
{ui::ROTATION_180, {{{0.5, 0.25}, {480, 0.25}, {480, 800}, {0.5, 800}}}},
{ui::ROTATION_270, {{{0, 0.25}, {479.5, 0.25}, {479.5, 800}, {0, 800}}}},
};
const ui::Rotation displayRotation = GetParam();
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(displayRotation);
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
const auto& expectedPoints = kMappedCorners.at(displayRotation);
// Test all four corners.
for (int i = 0; i < 4; i++) {
const auto& expected = expectedPoints[i];
const auto& raw = kRawCorners[i];
processDown(mapper, raw.x, raw.y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithCoords(expected.x, expected.y), WithPrecision(2, 4))))
<< "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
<< "with display rotation " << ui::toCString(displayRotation)
<< ", expected point (" << expected.x << ", " << expected.y << ").";
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithCoords(expected.x, expected.y))));
}
}
TEST_P(TouchscreenPrecisionTestsFixture, RotationPrecisionOrientationAwareInOri270) {
static const std::map<ui::Rotation /*orientation*/, std::array<vec2, 4> /*mappedCorners*/>
kMappedCorners = {
{ui::ROTATION_0, {{{799.75, 0}, {799.75, 479.5}, {0, 479.5}, {0, 0}}}},
{ui::ROTATION_90, {{{800, 0}, {800, 479.5}, {0.25, 479.5}, {0.25, 0}}}},
{ui::ROTATION_180, {{{800, 0.5}, {800, 480}, {0.25, 480}, {0.25, 0.5}}}},
{ui::ROTATION_270, {{{799.75, 0.5}, {799.75, 480}, {0, 480}, {0, 0.5}}}},
};
const ui::Rotation displayRotation = GetParam();
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.orientation", "ORIENTATION_270");
SingleTouchInputMapper& mapper = constructAndAddMapper<SingleTouchInputMapper>();
// Ori 270, so width and height swapped
const Rect physicalFrame{0, 0, DISPLAY_HEIGHT, DISPLAY_WIDTH};
prepareDisplay(displayRotation);
configurePhysicalDisplay(displayRotation, physicalFrame, DISPLAY_HEIGHT, DISPLAY_WIDTH);
const auto& expectedPoints = kMappedCorners.at(displayRotation);
// Test all four corners.
for (int i = 0; i < 4; i++) {
const auto& expected = expectedPoints[i];
const auto& raw = kRawCorners[i];
processDown(mapper, raw.x, raw.y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithCoords(expected.x, expected.y), WithPrecision(4, 2))))
<< "Failed to process raw point (" << raw.x << ", " << raw.y << ") "
<< "with display rotation " << ui::toCString(displayRotation)
<< ", expected point (" << expected.x << ", " << expected.y << ").";
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithCoords(expected.x, expected.y))));
}
}
TEST_P(TouchscreenPrecisionTestsFixture, MotionRangesAreOrientedInRotatedDisplay) {
const ui::Rotation displayRotation = GetParam();
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(displayRotation);
__attribute__((unused)) SingleTouchInputMapper& mapper =
constructAndAddMapper<SingleTouchInputMapper>();
const InputDeviceInfo deviceInfo = mDevice->getDeviceInfo();
// MotionRanges use display pixels as their units
const auto* xRange = deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_X, AINPUT_SOURCE_TOUCHSCREEN);
const auto* yRange = deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_Y, AINPUT_SOURCE_TOUCHSCREEN);
// The MotionRanges should be oriented in the rotated display's coordinate space
const bool displayRotated =
displayRotation == ui::ROTATION_90 || displayRotation == ui::ROTATION_270;
constexpr float MAX_X = 479.5;
constexpr float MAX_Y = 799.75;
EXPECT_EQ(xRange->min, 0.f);
EXPECT_EQ(yRange->min, 0.f);
EXPECT_EQ(xRange->max, displayRotated ? MAX_Y : MAX_X);
EXPECT_EQ(yRange->max, displayRotated ? MAX_X : MAX_Y);
EXPECT_EQ(xRange->flat, 8.f);
EXPECT_EQ(yRange->flat, 8.f);
EXPECT_EQ(xRange->fuzz, 2.f);
EXPECT_EQ(yRange->fuzz, 2.f);
EXPECT_EQ(xRange->resolution, 25.f); // pixels per millimeter
EXPECT_EQ(yRange->resolution, 25.f); // pixels per millimeter
}
// Run the precision tests for all rotations.
INSTANTIATE_TEST_SUITE_P(TouchscreenPrecisionTests, TouchscreenPrecisionTestsFixture,
::testing::Values(ui::ROTATION_0, ui::ROTATION_90, ui::ROTATION_180,
ui::ROTATION_270),
[](const testing::TestParamInfo<ui::Rotation>& testParamInfo) {
return ftl::enum_string(testParamInfo.param);
});
// --- ExternalStylusFusionTest ---
class ExternalStylusFusionTest : public SingleTouchInputMapperTest {
public:
SingleTouchInputMapper& initializeInputMapperWithExternalStylus() {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareButtons();
prepareAxes(POSITION);
auto& mapper = constructAndAddMapper<SingleTouchInputMapper>();
mStylusState.when = ARBITRARY_TIME;
mStylusState.pressure = 0.f;
mStylusState.toolType = ToolType::STYLUS;
mReader->getContext()->setExternalStylusDevices({mExternalStylusDeviceInfo});
configureDevice(InputReaderConfiguration::Change::EXTERNAL_STYLUS_PRESENCE);
processExternalStylusState(mapper);
return mapper;
}
std::list<NotifyArgs> processExternalStylusState(InputMapper& mapper) {
std::list<NotifyArgs> generatedArgs = mapper.updateExternalStylusState(mStylusState);
for (const NotifyArgs& args : generatedArgs) {
mFakeListener->notify(args);
}
// Loop the reader to flush the input listener queue.
mReader->loopOnce();
return generatedArgs;
}
protected:
StylusState mStylusState{};
void testStartFusedStylusGesture(SingleTouchInputMapper& mapper) {
auto toolTypeSource =
AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS));
// The first pointer is withheld.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested(
ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT));
// The external stylus reports pressure. The withheld finger pointer is released as a
// stylus.
mStylusState.pressure = 1.f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// Subsequent pointer events are not withheld.
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
void testSuccessfulFusionGesture(SingleTouchInputMapper& mapper) {
ASSERT_NO_FATAL_FAILURE(testStartFusedStylusGesture(mapper));
// Releasing the touch pointer ends the gesture.
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithSource(STYLUS_FUSION_SOURCE),
WithToolType(ToolType::STYLUS))));
mStylusState.pressure = 0.f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
void testUnsuccessfulFusionGesture(SingleTouchInputMapper& mapper) {
// When stylus fusion is not successful, events should be reported with the original source.
// In this case, it is from a touchscreen.
auto toolTypeSource =
AllOf(WithSource(AINPUT_SOURCE_TOUCHSCREEN), WithToolType(ToolType::FINGER));
// The first pointer is withheld when an external stylus is connected,
// and a timeout is requested.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested(
ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT));
// If the timeout expires early, it is requested again.
handleTimeout(mapper, ARBITRARY_TIME + 1);
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasRequested(
ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT));
// When the timeout expires, the withheld touch is released as a finger pointer.
handleTimeout(mapper, ARBITRARY_TIME + EXTERNAL_STYLUS_DATA_TIMEOUT);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN))));
// Subsequent pointer events are not withheld.
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE))));
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
private:
InputDeviceInfo mExternalStylusDeviceInfo{};
};
TEST_F(ExternalStylusFusionTest, UsesBluetoothStylusSource) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
ASSERT_EQ(STYLUS_FUSION_SOURCE, mapper.getSources());
}
TEST_F(ExternalStylusFusionTest, UnsuccessfulFusion) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper));
}
TEST_F(ExternalStylusFusionTest, SuccessfulFusion_TouchFirst) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper));
}
// Test a successful stylus fusion gesture where the pressure is reported by the external
// before the touch is reported by the touchscreen.
TEST_F(ExternalStylusFusionTest, SuccessfulFusion_PressureFirst) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS));
// The external stylus reports pressure first. It is ignored for now.
mStylusState.pressure = 1.f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// When the touch goes down afterwards, it is reported as a stylus pointer.
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE))));
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(ExternalStylusFusionTest, FusionIsRepeatedForEachNewGesture) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper));
ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper));
ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper));
ASSERT_NO_FATAL_FAILURE(testSuccessfulFusionGesture(mapper));
ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper));
ASSERT_NO_FATAL_FAILURE(testUnsuccessfulFusionGesture(mapper));
}
TEST_F(ExternalStylusFusionTest, FusedPointerReportsPressureChanges) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS));
mStylusState.pressure = 0.8f;
processExternalStylusState(mapper);
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithPressure(0.8f))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// The external stylus reports a pressure change. We wait for some time for a touch event.
mStylusState.pressure = 0.6f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is reported within the timeout, it reports the updated pressure.
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithPressure(0.6f))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// There is another pressure change.
mStylusState.pressure = 0.5f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is not reported within the timeout, a move event is generated to report
// the new pressure.
handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithPressure(0.5f))));
// If a zero pressure is reported before the touch goes up, the previous pressure value is
// repeated indefinitely.
mStylusState.pressure = 0.0f;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
processMove(mapper, 102, 202);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithPressure(0.5f))));
processMove(mapper, 103, 203);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithPressure(0.5f))));
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithSource(STYLUS_FUSION_SOURCE),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(ExternalStylusFusionTest, FusedPointerReportsToolTypeChanges) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
auto source = WithSource(STYLUS_FUSION_SOURCE);
mStylusState.pressure = 1.f;
mStylusState.toolType = ToolType::ERASER;
processExternalStylusState(mapper);
processDown(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithToolType(ToolType::ERASER))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// The external stylus reports a tool change. We wait for some time for a touch event.
mStylusState.toolType = ToolType::STYLUS;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is reported within the timeout, it reports the updated pressure.
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// There is another tool type change.
mStylusState.toolType = ToolType::FINGER;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is not reported within the timeout, a move event is generated to report
// the new tool type.
handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithToolType(ToolType::FINGER))));
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(source, WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithToolType(ToolType::FINGER))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(ExternalStylusFusionTest, FusedPointerReportsButtons) {
SingleTouchInputMapper& mapper = initializeInputMapperWithExternalStylus();
auto toolTypeSource = AllOf(WithSource(STYLUS_FUSION_SOURCE), WithToolType(ToolType::STYLUS));
ASSERT_NO_FATAL_FAILURE(testStartFusedStylusGesture(mapper));
// The external stylus reports a button change. We wait for some time for a touch event.
mStylusState.buttons = AMOTION_EVENT_BUTTON_STYLUS_PRIMARY;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is reported within the timeout, it reports the updated button state.
processMove(mapper, 101, 201);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
// The button is now released.
mStylusState.buttons = 0;
processExternalStylusState(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
ASSERT_NO_FATAL_FAILURE(
mReader->getContext()->assertTimeoutWasRequested(ARBITRARY_TIME + TOUCH_DATA_TIMEOUT));
// If a touch is not reported within the timeout, a move event is generated to report
// the new button state.
handleTimeout(mapper, ARBITRARY_TIME + TOUCH_DATA_TIMEOUT);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE),
WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithButtonState(0))));
processUp(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(toolTypeSource, WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mReader->getContext()->assertTimeoutWasNotRequested());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
// --- MultiTouchInputMapperTest ---
class MultiTouchInputMapperTest : public TouchInputMapperTest {
protected:
void prepareAxes(int axes);
void processPosition(MultiTouchInputMapper& mapper, int32_t x, int32_t y);
void processTouchMajor(MultiTouchInputMapper& mapper, int32_t touchMajor);
void processTouchMinor(MultiTouchInputMapper& mapper, int32_t touchMinor);
void processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor);
void processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor);
void processOrientation(MultiTouchInputMapper& mapper, int32_t orientation);
void processPressure(MultiTouchInputMapper& mapper, int32_t pressure);
void processDistance(MultiTouchInputMapper& mapper, int32_t distance);
void processId(MultiTouchInputMapper& mapper, int32_t id);
void processSlot(MultiTouchInputMapper& mapper, int32_t slot);
void processToolType(MultiTouchInputMapper& mapper, int32_t toolType);
void processKey(MultiTouchInputMapper& mapper, int32_t code, int32_t value);
void processHidUsage(MultiTouchInputMapper& mapper, int32_t usageCode, int32_t value);
void processMTSync(MultiTouchInputMapper& mapper);
void processSync(MultiTouchInputMapper& mapper, nsecs_t eventTime = ARBITRARY_TIME,
nsecs_t readTime = READ_TIME);
};
void MultiTouchInputMapperTest::prepareAxes(int axes) {
if (axes & POSITION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
if (axes & TOUCH) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN,
RAW_TOUCH_MAX, 0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN,
RAW_TOUCH_MAX, 0, 0);
}
}
if (axes & TOOL) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
0, 0);
if (axes & MINOR) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN,
RAW_TOOL_MAX, 0, 0);
}
}
if (axes & ORIENTATION) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_ORIENTATION, RAW_ORIENTATION_MIN,
RAW_ORIENTATION_MAX, 0, 0);
}
if (axes & PRESSURE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_PRESSURE, RAW_PRESSURE_MIN,
RAW_PRESSURE_MAX, 0, 0);
}
if (axes & DISTANCE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_DISTANCE, RAW_DISTANCE_MIN,
RAW_DISTANCE_MAX, 0, 0);
}
if (axes & ID) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX, 0,
0);
}
if (axes & SLOT) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX, 0, 0);
mFakeEventHub->setAbsoluteAxisValue(EVENTHUB_ID, ABS_MT_SLOT, 0);
}
if (axes & TOOL_TYPE) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOOL_TYPE, 0, MT_TOOL_MAX, 0, 0);
}
}
void MultiTouchInputMapperTest::processPosition(MultiTouchInputMapper& mapper, int32_t x,
int32_t y) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_X, x);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_POSITION_Y, y);
}
void MultiTouchInputMapperTest::processTouchMajor(MultiTouchInputMapper& mapper,
int32_t touchMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MAJOR, touchMajor);
}
void MultiTouchInputMapperTest::processTouchMinor(MultiTouchInputMapper& mapper,
int32_t touchMinor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOUCH_MINOR, touchMinor);
}
void MultiTouchInputMapperTest::processToolMajor(MultiTouchInputMapper& mapper, int32_t toolMajor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MAJOR, toolMajor);
}
void MultiTouchInputMapperTest::processToolMinor(MultiTouchInputMapper& mapper, int32_t toolMinor) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_WIDTH_MINOR, toolMinor);
}
void MultiTouchInputMapperTest::processOrientation(MultiTouchInputMapper& mapper,
int32_t orientation) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_ORIENTATION, orientation);
}
void MultiTouchInputMapperTest::processPressure(MultiTouchInputMapper& mapper, int32_t pressure) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_PRESSURE, pressure);
}
void MultiTouchInputMapperTest::processDistance(MultiTouchInputMapper& mapper, int32_t distance) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_DISTANCE, distance);
}
void MultiTouchInputMapperTest::processId(MultiTouchInputMapper& mapper, int32_t id) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TRACKING_ID, id);
}
void MultiTouchInputMapperTest::processSlot(MultiTouchInputMapper& mapper, int32_t slot) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_SLOT, slot);
}
void MultiTouchInputMapperTest::processToolType(MultiTouchInputMapper& mapper, int32_t toolType) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, ABS_MT_TOOL_TYPE, toolType);
}
void MultiTouchInputMapperTest::processKey(MultiTouchInputMapper& mapper, int32_t code,
int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, code, value);
}
void MultiTouchInputMapperTest::processHidUsage(MultiTouchInputMapper& mapper, int32_t usageCode,
int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_MSC, MSC_SCAN, usageCode);
process(mapper, ARBITRARY_TIME, READ_TIME, EV_KEY, KEY_UNKNOWN, value);
}
void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_MT_REPORT, 0);
}
void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper& mapper, nsecs_t eventTime,
nsecs_t readTime) {
process(mapper, eventTime, readTime, EV_SYN, SYN_REPORT, 0);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.flags);
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_EQ(0, motionArgs.edgeFlags);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, AxisResolution_IsPopulated) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 10);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 11);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX,
/*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 12);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_TOUCH_MINOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX,
/*flat*/ 0, /*fuzz*/ 0, /*resolution*/ 13);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
/*flat*/ 0, /*flat*/ 0, /*resolution*/ 14);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_WIDTH_MINOR, RAW_TOOL_MIN, RAW_TOOL_MAX,
/*flat*/ 0, /*flat*/ 0, /*resolution*/ 15);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// X and Y axes
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_X, 10 / X_PRECISION);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_Y, 11 / Y_PRECISION);
// Touch major and minor
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR, 12 * GEOMETRIC_SCALE);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR, 13 * GEOMETRIC_SCALE);
// Tool major and minor
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR, 14 * GEOMETRIC_SCALE);
assertAxisResolution(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR, 15 * GEOMETRIC_SCALE);
}
TEST_F(MultiTouchInputMapperTest, TouchMajorAndMinorAxes_DoNotAppearIfNotSupported) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 10);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, /*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ 11);
// We do not add ABS_MT_TOUCH_MAJOR / MINOR or ABS_MT_WIDTH_MAJOR / MINOR axes
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Touch major and minor
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MAJOR);
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOUCH_MINOR);
// Tool major and minor
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MAJOR);
assertAxisNotPresent(mapper, AMOTION_EVENT_AXIS_TOOL_MINOR);
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processMTSync(mapper);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processId(mapper, 2);
processMTSync(mapper);
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processPosition(mapper, x3, y3);
processId(mapper, 3);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithSlots) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
prepareVirtualKeys();
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mReader->getContext()->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
NotifyMotionArgs motionArgs;
// Two fingers down at once.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
processSlot(mapper, 0);
processPosition(mapper, x1, y1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// First finger up.
x2 += 15; y2 -= 20;
processSlot(mapper, 0);
processId(mapper, -1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Move.
x2 += 20; y2 -= 25;
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(1, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// New finger down.
int32_t x3 = 700, y3 = 300;
processPosition(mapper, x2, y2);
processSlot(mapper, 0);
processId(mapper, 3);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_DOWN, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
// Second finger up.
x3 += 30; y3 -= 20;
processSlot(mapper, 1);
processId(mapper, -1);
processSlot(mapper, 0);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(size_t(2), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1, motionArgs.pointerProperties[1].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Last finger up.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(size_t(1), motionArgs.getPointerCount());
ASSERT_EQ(0, motionArgs.pointerProperties[0].id);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0, 0));
// Should not have sent any more keys or motions.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR | DISTANCE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 7;
int32_t rawTouchMinor = 6;
int32_t rawToolMajor = 9;
int32_t rawToolMinor = 8;
int32_t rawPressure = 11;
int32_t rawDistance = 0;
int32_t rawOrientation = 3;
int32_t id = 5;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2;
float distance = float(rawDistance);
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processPressure(mapper, rawPressure);
processOrientation(mapper, rawOrientation);
processDistance(mapper, rawDistance);
processId(mapper, id);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor,
orientation, distance));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL | MINOR);
addConfigurationProperty("touch.size.calibration", "geometric");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 140;
int32_t rawTouchMinor = 120;
int32_t rawToolMajor = 180;
int32_t rawToolMinor = 160;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = avg(rawTouchMajor, rawTouchMinor) / RAW_TOUCH_MAX;
float toolMajor = float(rawToolMajor) * GEOMETRIC_SCALE;
float toolMinor = float(rawToolMinor) * GEOMETRIC_SCALE;
float touchMajor = float(rawTouchMajor) * GEOMETRIC_SCALE;
float touchMinor = float(rawTouchMinor) * GEOMETRIC_SCALE;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processTouchMinor(mapper, rawTouchMinor);
processToolMajor(mapper, rawToolMajor);
processToolMinor(mapper, rawToolMinor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touchMajor, touchMinor, toolMajor, toolMinor, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_SummedLinearCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "diameter");
addConfigurationProperty("touch.size.scale", "10");
addConfigurationProperty("touch.size.bias", "160");
addConfigurationProperty("touch.size.isSummed", "1");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
// Note: We only provide a single common touch/tool value because the device is assumed
// not to emit separate values for each pointer (isSummed = 1).
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawX2 = 150;
int32_t rawY2 = 250;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float x2 = toDisplayX(rawX2);
float y2 = toDisplayY(rawY2);
float size = float(rawTouchMajor) / 2 / RAW_TOUCH_MAX;
float touch = float(rawTouchMajor) / 2 * 10.0f + 160.0f;
float tool = float(rawToolMajor) / 2 * 10.0f + 160.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processPosition(mapper, rawX2, rawY2);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
ASSERT_EQ(size_t(2), args.getPointerCount());
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1],
x2, y2, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_AreaCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | TOUCH | TOOL);
addConfigurationProperty("touch.size.calibration", "area");
addConfigurationProperty("touch.size.scale", "43");
addConfigurationProperty("touch.size.bias", "3");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawTouchMajor = 5;
int32_t rawToolMajor = 8;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float size = float(rawTouchMajor) / RAW_TOUCH_MAX;
float touch = sqrtf(rawTouchMajor) * 43.0f + 3.0f;
float tool = sqrtf(rawToolMajor) * 43.0f + 3.0f;
processPosition(mapper, rawX, rawY);
processTouchMajor(mapper, rawTouchMajor);
processToolMajor(mapper, rawToolMajor);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, 1.0f, size, touch, touch, tool, tool, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_PressureAxis_AmplitudeCalibration) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | PRESSURE);
addConfigurationProperty("touch.pressure.calibration", "amplitude");
addConfigurationProperty("touch.pressure.scale", "0.01");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
InputDeviceInfo info;
mapper.populateDeviceInfo(info);
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info,
AINPUT_MOTION_RANGE_PRESSURE, AINPUT_SOURCE_TOUCHSCREEN,
0.0f, RAW_PRESSURE_MAX * 0.01, 0.0f, 0.0f));
// These calculations are based on the input device calibration documentation.
int32_t rawX = 100;
int32_t rawY = 200;
int32_t rawPressure = 60;
float x = toDisplayX(rawX);
float y = toDisplayY(rawY);
float pressure = float(rawPressure) * 0.01f;
processPosition(mapper, rawX, rawY);
processPressure(mapper, rawPressure);
processMTSync(mapper);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
x, y, pressure, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllButtons) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
NotifyKeyArgs keyArgs;
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_LEFT, release BTN_LEFT
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_RIGHT + BTN_MIDDLE, release BTN_RIGHT, release BTN_MIDDLE
processKey(mapper, BTN_RIGHT, 1);
processKey(mapper, BTN_MIDDLE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_SECONDARY | AMOTION_EVENT_BUTTON_TERTIARY,
motionArgs.buttonState);
processKey(mapper, BTN_RIGHT, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_TERTIARY, motionArgs.buttonState);
processKey(mapper, BTN_MIDDLE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_BACK, release BTN_BACK
processKey(mapper, BTN_BACK, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_BACK, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_SIDE, release BTN_SIDE
processKey(mapper, BTN_SIDE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_BACK, motionArgs.buttonState);
processKey(mapper, BTN_SIDE, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_BACK, keyArgs.keyCode);
// press BTN_FORWARD, release BTN_FORWARD
processKey(mapper, BTN_FORWARD, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_FORWARD, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
// press BTN_EXTRA, release BTN_EXTRA
processKey(mapper, BTN_EXTRA, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_FORWARD, motionArgs.buttonState);
processKey(mapper, BTN_EXTRA, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasCalled(&keyArgs));
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
ASSERT_EQ(AKEYCODE_FORWARD, keyArgs.keyCode);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyKeyWasNotCalled());
// press BTN_STYLUS, release BTN_STYLUS
processKey(mapper, BTN_STYLUS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// press BTN_STYLUS2, release BTN_STYLUS2
processKey(mapper, BTN_STYLUS2, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY, motionArgs.buttonState);
processKey(mapper, BTN_STYLUS2, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
// release touch
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(0, motionArgs.buttonState);
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleMappedStylusButtons) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mFakeEventHub->addKey(EVENTHUB_ID, BTN_A, 0, AKEYCODE_STYLUS_BUTTON_PRIMARY, 0);
mFakeEventHub->addKey(EVENTHUB_ID, 0, 0xabcd, AKEYCODE_STYLUS_BUTTON_SECONDARY, 0);
// Touch down.
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithButtonState(0))));
// Press and release button mapped to the primary stylus button.
processKey(mapper, BTN_A, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_PRIMARY))));
processKey(mapper, BTN_A, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0))));
// Press and release the HID usage mapped to the secondary stylus button.
processHidUsage(mapper, 0xabcd, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_PRESS),
WithButtonState(AMOTION_EVENT_BUTTON_STYLUS_SECONDARY))));
processHidUsage(mapper, 0xabcd, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_BUTTON_RELEASE), WithButtonState(0))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE), WithButtonState(0))));
// Release touch.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP), WithButtonState(0))));
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleAllToolTypes) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// eraser
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType);
// stylus
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// brush
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_BRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// pencil
processKey(mapper, BTN_TOOL_BRUSH, 0);
processKey(mapper, BTN_TOOL_PENCIL, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// air-brush
processKey(mapper, BTN_TOOL_PENCIL, 0);
processKey(mapper, BTN_TOOL_AIRBRUSH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// mouse
processKey(mapper, BTN_TOOL_AIRBRUSH, 0);
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// lens
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_LENS, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// double-tap
processKey(mapper, BTN_TOOL_LENS, 0);
processKey(mapper, BTN_TOOL_DOUBLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// triple-tap
processKey(mapper, BTN_TOOL_DOUBLETAP, 0);
processKey(mapper, BTN_TOOL_TRIPLETAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// quad-tap
processKey(mapper, BTN_TOOL_TRIPLETAP, 0);
processKey(mapper, BTN_TOOL_QUADTAP, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// finger
processKey(mapper, BTN_TOOL_QUADTAP, 0);
processKey(mapper, BTN_TOOL_FINGER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// stylus trumps finger
processKey(mapper, BTN_TOOL_PEN, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// eraser trumps stylus
processKey(mapper, BTN_TOOL_RUBBER, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::ERASER, motionArgs.pointerProperties[0].toolType);
// mouse trumps eraser
processKey(mapper, BTN_TOOL_MOUSE, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::MOUSE, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_FINGER
processToolType(mapper, MT_TOOL_FINGER); // this is the first time we send MT_TOOL_TYPE
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// MT tool type trumps BTN tool types: MT_TOOL_PEN
processToolType(mapper, MT_TOOL_PEN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::STYLUS, motionArgs.pointerProperties[0].toolType);
// back to default tool type
processToolType(mapper, -1); // use a deliberately undefined tool type, for testing
processKey(mapper, BTN_TOOL_MOUSE, 0);
processKey(mapper, BTN_TOOL_RUBBER, 0);
processKey(mapper, BTN_TOOL_PEN, 0);
processKey(mapper, BTN_TOOL_FINGER, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
}
TEST_F(MultiTouchInputMapperTest, Process_WhenBtnTouchPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because BTN_TOUCH not sent yet, pressure defaults to 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when BTN_TOUCH is pressed, pressure defaults to 1
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when BTN_TOUCH is released, hover restored
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
TEST_F(MultiTouchInputMapperTest, Process_WhenAbsMTPressureIsPresent_HoversIfItsValueIsZero) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// initially hovering because pressure is 0
processId(mapper, 1);
processPosition(mapper, 100, 200);
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(100), toDisplayY(200), 0, 0, 0, 0, 0, 0, 0, 0));
// move a little
processPosition(mapper, 150, 250);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// down when pressure becomes non-zero
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
// up when pressure becomes 0, hover restored
processPressure(mapper, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_ENTER, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
// exit hover when pointer goes away
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_EXIT, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
toDisplayX(150), toDisplayY(250), 0, 0, 0, 0, 0, 0, 0, 0));
}
/**
* Set the input device port <--> display port associations, and check that the
* events are routed to the display that matches the display port.
* This can be checked by looking at the displayId of the resulting NotifyMotionArgs.
*/
TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayPort) {
const std::string usb2 = "USB2";
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
const std::string secondaryUniqueId = "uniqueId2";
constexpr ViewportType type = ViewportType::EXTERNAL;
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(usb2, hdmi2);
// We are intentionally not adding the viewport for display 1 yet. Since the port association
// for this input device is specified, and the matching viewport is not present,
// the input device should be disabled (at the mapper level).
// Add viewport for display 2 on hdmi2
prepareSecondaryDisplay(type, hdmi2);
// Send a touch event
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Add viewport for display 1 on hdmi1
prepareDisplay(ui::ROTATION_0, hdmi1);
// Send a touch event again
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Configure_AssignsDisplayUniqueId) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID);
prepareDisplay(ui::ROTATION_0);
prepareVirtualDisplay(ui::ROTATION_0);
// Send a touch event
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShouldHandleDisplayId) {
// Setup for second display.
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(100, 200);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setDefaultPointerDisplayId(SECONDARY_DISPLAY_ID);
prepareSecondaryDisplay(ViewportType::EXTERNAL);
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Check source is mouse that would obtain the PointerController.
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
NotifyMotionArgs motionArgs;
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, motionArgs.action);
ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId);
}
/**
* Ensure that the readTime is set to the SYN_REPORT value when processing touch events.
*/
TEST_F(MultiTouchInputMapperTest, Process_SendsReadTime) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
prepareDisplay(ui::ROTATION_0);
process(mapper, 10, /*readTime=*/11, EV_ABS, ABS_MT_TRACKING_ID, 1);
process(mapper, 15, /*readTime=*/16, EV_ABS, ABS_MT_POSITION_X, 100);
process(mapper, 20, /*readTime=*/21, EV_ABS, ABS_MT_POSITION_Y, 100);
process(mapper, 25, /*readTime=*/26, EV_SYN, SYN_REPORT, 0);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(26, args.readTime);
process(mapper, 30, /*readTime=*/31, EV_ABS, ABS_MT_POSITION_X, 110);
process(mapper, 30, /*readTime=*/32, EV_ABS, ABS_MT_POSITION_Y, 220);
process(mapper, 30, /*readTime=*/33, EV_SYN, SYN_REPORT, 0);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(33, args.readTime);
}
/**
* When the viewport is not active (isActive=false), the touch mapper should be disabled and the
* events should not be delivered to the listener.
*/
TEST_F(MultiTouchInputMapperTest, WhenViewportIsNotActive_TouchesAreDropped) {
addConfigurationProperty("touch.deviceType", "touchScreen");
// Don't set touch.enableForInactiveViewport to verify the default behavior.
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/false, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
processPosition(mapper, 100, 100);
processSync(mapper);
mFakeListener->assertNotifyMotionWasNotCalled();
}
/**
* When the viewport is not active (isActive=false) and touch.enableForInactiveViewport is true,
* the touch mapper can process the events and the events can be delivered to the listener.
*/
TEST_F(MultiTouchInputMapperTest, WhenViewportIsNotActive_TouchesAreProcessed) {
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.enableForInactiveViewport", "1");
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/false, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
}
/**
* When the viewport is deactivated (isActive transitions from true to false),
* and touch.enableForInactiveViewport is false, touches prior to the transition
* should be cancelled.
*/
TEST_F(MultiTouchInputMapperTest, Process_DeactivateViewport_AbortTouches) {
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.enableForInactiveViewport", "0");
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
std::optional<DisplayViewport> optionalDisplayViewport =
mFakePolicy->getDisplayViewportByUniqueId(UNIQUE_ID);
ASSERT_TRUE(optionalDisplayViewport.has_value());
DisplayViewport displayViewport = *optionalDisplayViewport;
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Finger down
int32_t x = 100, y = 100;
processPosition(mapper, x, y);
processSync(mapper);
NotifyMotionArgs motionArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
// Deactivate display viewport
displayViewport.isActive = false;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// The ongoing touch should be canceled immediately
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Finger move is ignored
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Reactivate display viewport
displayViewport.isActive = true;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// Finger move again starts new gesture
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
EXPECT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
}
/**
* When the viewport is deactivated (isActive transitions from true to false),
* and touch.enableForInactiveViewport is true, touches prior to the transition
* should not be cancelled.
*/
TEST_F(MultiTouchInputMapperTest, Process_DeactivateViewport_TouchesNotAborted) {
addConfigurationProperty("touch.deviceType", "touchScreen");
addConfigurationProperty("touch.enableForInactiveViewport", "1");
mFakePolicy->addDisplayViewport(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, ui::ROTATION_0,
/*isActive=*/true, UNIQUE_ID, NO_PORT, ViewportType::INTERNAL);
std::optional<DisplayViewport> optionalDisplayViewport =
mFakePolicy->getDisplayViewportByUniqueId(UNIQUE_ID);
ASSERT_TRUE(optionalDisplayViewport.has_value());
DisplayViewport displayViewport = *optionalDisplayViewport;
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Finger down
int32_t x = 100, y = 100;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Deactivate display viewport
displayViewport.isActive = false;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// The ongoing touch should not be canceled
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Finger move is not ignored
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_MOVE)));
// Reactivate display viewport
displayViewport.isActive = true;
ASSERT_TRUE(mFakePolicy->updateViewport(displayViewport));
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
// Finger move continues and does not start new gesture
x += 10, y += 10;
processPosition(mapper, x, y);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_MOVE)));
}
TEST_F(MultiTouchInputMapperTest, Process_Pointer_ShowTouches) {
// Setup the first touch screen device.
prepareAxes(POSITION | ID | SLOT);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Create the second touch screen device, and enable multi fingers.
const std::string USB2 = "USB2";
const std::string DEVICE_NAME2 = "TOUCHSCREEN2";
constexpr int32_t SECOND_DEVICE_ID = DEVICE_ID + 1;
constexpr int32_t SECOND_EVENTHUB_ID = EVENTHUB_ID + 1;
std::shared_ptr<InputDevice> device2 =
newDevice(SECOND_DEVICE_ID, DEVICE_NAME2, USB2, SECOND_EVENTHUB_ID,
ftl::Flags<InputDeviceClass>(0));
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX,
/*flat=*/0, /*fuzz=*/0);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX,
/*flat=*/0, /*fuzz=*/0);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_TRACKING_ID, RAW_ID_MIN, RAW_ID_MAX,
/*flat=*/0, /*fuzz=*/0);
mFakeEventHub->addAbsoluteAxis(SECOND_EVENTHUB_ID, ABS_MT_SLOT, RAW_SLOT_MIN, RAW_SLOT_MAX,
/*flat=*/0, /*fuzz=*/0);
mFakeEventHub->setAbsoluteAxisValue(SECOND_EVENTHUB_ID, ABS_MT_SLOT, /*value=*/0);
mFakeEventHub->addConfigurationProperty(SECOND_EVENTHUB_ID, String8("touch.deviceType"),
String8("touchScreen"));
// Setup the second touch screen device.
device2->addEmptyEventHubDevice(SECOND_EVENTHUB_ID);
MultiTouchInputMapper& mapper2 = device2->constructAndAddMapper<
MultiTouchInputMapper>(SECOND_EVENTHUB_ID, mFakePolicy->getReaderConfiguration());
std::list<NotifyArgs> unused =
device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
unused += device2->reset(ARBITRARY_TIME);
// Setup PointerController.
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(fakePointerController);
// Setup policy for associated displays and show touches.
const uint8_t hdmi1 = 0;
const uint8_t hdmi2 = 1;
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi1);
mFakePolicy->addInputPortAssociation(USB2, hdmi2);
mFakePolicy->setShowTouches(true);
// Create displays.
prepareDisplay(ui::ROTATION_0, hdmi1);
prepareSecondaryDisplay(ViewportType::EXTERNAL, hdmi2);
// Default device will reconfigure above, need additional reconfiguration for another device.
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::DISPLAY_INFO |
InputReaderConfiguration::Change::SHOW_TOUCHES);
// Two fingers down at default display.
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
processPosition(mapper, x1, y1);
processId(mapper, 1);
processSlot(mapper, 1);
processPosition(mapper, x2, y2);
processId(mapper, 2);
processSync(mapper);
std::map<int32_t, std::vector<int32_t>>::const_iterator iter =
fakePointerController->getSpots().find(DISPLAY_ID);
ASSERT_TRUE(iter != fakePointerController->getSpots().end());
ASSERT_EQ(size_t(2), iter->second.size());
// Two fingers down at second display.
processPosition(mapper2, x1, y1);
processId(mapper2, 1);
processSlot(mapper2, 1);
processPosition(mapper2, x2, y2);
processId(mapper2, 2);
processSync(mapper2);
iter = fakePointerController->getSpots().find(SECONDARY_DISPLAY_ID);
ASSERT_TRUE(iter != fakePointerController->getSpots().end());
ASSERT_EQ(size_t(2), iter->second.size());
// Disable the show touches configuration and ensure the spots are cleared.
mFakePolicy->setShowTouches(false);
unused += device2->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
InputReaderConfiguration::Change::SHOW_TOUCHES);
ASSERT_TRUE(fakePointerController->getSpots().empty());
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_ReceivedByListener) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
// Subsequent touch events should not have any videoframes
// This is implemented separately in FakeEventHub,
// but that should match the behaviour of TouchVideoDevice.
processPosition(mapper, 200, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(std::vector<TouchVideoFrame>(), motionArgs.videoFrames);
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_AreNotRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
NotifyMotionArgs motionArgs;
// Test all 4 orientations
for (ui::Rotation orientation : ftl::enum_range<ui::Rotation>()) {
SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation));
clearViewports();
prepareDisplay(orientation);
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
}
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_AreRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Unrotated video frame
TouchVideoFrame frame(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
NotifyMotionArgs motionArgs;
// Test all 4 orientations
for (ui::Rotation orientation : ftl::enum_range<ui::Rotation>()) {
SCOPED_TRACE("Orientation " + StringPrintf("%i", orientation));
clearViewports();
prepareDisplay(orientation);
std::vector<TouchVideoFrame> frames{frame};
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
// We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction
// compared to the display. This is so that when the window transform (which contains the
// display rotation) is applied later by InputDispatcher, the coordinates end up in the
// window's coordinate space.
frames[0].rotate(getInverseRotation(orientation));
ASSERT_EQ(frames, motionArgs.videoFrames);
// Release finger.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
}
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_MultipleFramesAreNotRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Unrotated video frames. There's no rule that they must all have the same dimensions,
// so mix these.
TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3});
TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4});
std::vector<TouchVideoFrame> frames{frame1, frame2, frame3};
NotifyMotionArgs motionArgs;
prepareDisplay(ui::ROTATION_90);
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(frames, motionArgs.videoFrames);
}
TEST_F(MultiTouchInputMapperTest, VideoFrames_WhenNotOrientationAware_MultipleFramesAreRotated) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
// Since InputReader works in the un-rotated coordinate space, only devices that are not
// orientation-aware are affected by display rotation.
addConfigurationProperty("touch.orientationAware", "0");
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// Unrotated video frames. There's no rule that they must all have the same dimensions,
// so mix these.
TouchVideoFrame frame1(3, 2, {1, 2, 3, 4, 5, 6}, {1, 2});
TouchVideoFrame frame2(3, 3, {0, 1, 2, 3, 4, 5, 6, 7, 8}, {1, 3});
TouchVideoFrame frame3(2, 2, {10, 20, 10, 0}, {1, 4});
std::vector<TouchVideoFrame> frames{frame1, frame2, frame3};
NotifyMotionArgs motionArgs;
prepareDisplay(ui::ROTATION_90);
mFakeEventHub->setVideoFrames({{EVENTHUB_ID, frames}});
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
std::for_each(frames.begin(), frames.end(), [](TouchVideoFrame& frame) {
// We expect the raw coordinates of the MotionEvent to be rotated in the inverse direction
// compared to the display. This is so that when the window transform (which contains the
// display rotation) is applied later by InputDispatcher, the coordinates end up in the
// window's coordinate space.
frame.rotate(getInverseRotation(ui::ROTATION_90));
});
ASSERT_EQ(frames, motionArgs.videoFrames);
}
/**
* If we had defined port associations, but the viewport is not ready, the touch device would be
* expected to be disabled, and it should be enabled after the viewport has found.
*/
TEST_F(MultiTouchInputMapperTest, Configure_EnabledForAssociatedDisplay) {
constexpr uint8_t hdmi2 = 1;
const std::string secondaryUniqueId = "uniqueId2";
constexpr ViewportType type = ViewportType::EXTERNAL;
mFakePolicy->addInputPortAssociation(DEVICE_LOCATION, hdmi2);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareAxes(POSITION);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
ASSERT_EQ(mDevice->isEnabled(), false);
// Add display on hdmi2, the device should be enabled and can receive touch event.
prepareSecondaryDisplay(type, hdmi2);
ASSERT_EQ(mDevice->isEnabled(), true);
// Send a touch event.
processPosition(mapper, 100, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(SECONDARY_DISPLAY_ID, args.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandleSingleTouch) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
// finger down
processId(mapper, 1);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// finger move
processId(mapper, 1);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// finger up.
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// new finger down
processId(mapper, 1);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
}
/**
* Test single touch should be canceled when received the MT_TOOL_PALM event, and the following
* MOVE and UP events should be ignored.
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_SinglePointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// Tool changed to MT_TOOL_PALM expect sending the cancel event.
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// Ignore the following MOVE and UP events if had detect a palm event.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// new finger down
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_FINGER);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger,
* and the rest active fingers could still be allowed to receive the events
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_TwoPointers) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[1].toolType);
// If the tool type of the first finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// The following MOVE events of second finger should be processed.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 1, y2 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// First finger up. It used to be in palm mode, and we already generated ACTION_POINTER_UP for
// it. Second finger receive move.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// Second finger keeps moving.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 2, y2 + 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// Second finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event, if only 1 finger
* is active, it should send CANCEL after receiving the MT_TOOL_PALM event.
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_ShouldCancelWhenAllTouchIsPalm) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220, x3 = 140, y3 = 240;
// First finger down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// If the tool type of the first finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_0_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// Second finger keeps moving.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2 + 1, y2 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// second finger becomes palm, receive cancel due to only 1 finger is active.
processId(mapper, SECOND_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
// third finger down.
processSlot(mapper, THIRD_SLOT);
processId(mapper, THIRD_TRACKING_ID);
processToolType(mapper, MT_TOOL_FINGER);
processPosition(mapper, x3, y3);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// third finger move
processId(mapper, THIRD_TRACKING_ID);
processPosition(mapper, x3 + 1, y3 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger up, third finger receive move.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// second finger up, third finger receive move.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// third finger up.
processSlot(mapper, THIRD_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent POINTER_UP when received the MT_TOOL_PALM event from some finger,
* and the active finger could still be allowed to receive the events
*/
TEST_F(MultiTouchInputMapperTest, Process_ShouldHandlePalmToolType_KeepFirstPointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// default tool type is finger
constexpr int32_t x1 = 100, y1 = 200, x2 = 120, y2 = 220;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
// If the tool type of the second finger changes to MT_TOOL_PALM,
// we expect to receive ACTION_POINTER_UP with cancel flag.
processId(mapper, SECOND_TRACKING_ID);
processToolType(mapper, MT_TOOL_PALM);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
// The following MOVE event should be processed.
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 1, y1 + 1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// second finger up.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger keep moving
processSlot(mapper, FIRST_SLOT);
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 2, y1 + 2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
// first finger up.
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_NE(AMOTION_EVENT_FLAG_CANCELED, motionArgs.flags);
}
/**
* Test multi-touch should sent ACTION_POINTER_UP/ACTION_UP when received the INVALID_TRACKING_ID,
* to prevent the driver side may send unexpected data after set tracking id as INVALID_TRACKING_ID
* cause slot be valid again.
*/
TEST_F(MultiTouchInputMapperTest, Process_MultiTouch_WithInvalidTrackingId) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
constexpr int32_t x1 = 100, y1 = 200, x2 = 0, y2 = 0;
// First finger down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// First finger move.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1 + 1, y1 + 1);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_DOWN, motionArgs.action);
ASSERT_EQ(uint32_t(2), motionArgs.getPointerCount());
// second finger up with some unexpected data.
processSlot(mapper, SECOND_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processPosition(mapper, x2, y2);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ACTION_POINTER_1_UP, motionArgs.action);
ASSERT_EQ(uint32_t(2), motionArgs.getPointerCount());
// first finger up with some unexpected data.
processSlot(mapper, FIRST_SLOT);
processId(mapper, INVALID_TRACKING_ID);
processPosition(mapper, x2, y2);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
ASSERT_EQ(uint32_t(1), motionArgs.getPointerCount());
}
TEST_F(MultiTouchInputMapperTest, Reset_RepopulatesMultiTouchState) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// First finger down.
constexpr int32_t x1 = 100, y1 = 200, x2 = 300, y2 = 400;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
// Second finger down.
processSlot(mapper, SECOND_SLOT);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(
mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(ACTION_POINTER_1_DOWN)));
// Set MT Slot state to be repopulated for the required slots
std::vector<int32_t> mtSlotValues(RAW_SLOT_MAX + 1, -1);
mtSlotValues[0] = FIRST_TRACKING_ID;
mtSlotValues[1] = SECOND_TRACKING_ID;
mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_TRACKING_ID, mtSlotValues);
mtSlotValues[0] = x1;
mtSlotValues[1] = x2;
mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_POSITION_X, mtSlotValues);
mtSlotValues[0] = y1;
mtSlotValues[1] = y2;
mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_POSITION_Y, mtSlotValues);
mtSlotValues[0] = RAW_PRESSURE_MAX;
mtSlotValues[1] = RAW_PRESSURE_MAX;
mFakeEventHub->setMtSlotValues(EVENTHUB_ID, ABS_MT_PRESSURE, mtSlotValues);
// Reset the mapper. When the mapper is reset, we expect the current multi-touch state to be
// repopulated. Resetting should cancel the ongoing gesture.
resetMapper(mapper, ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_CANCEL)));
// Send a sync to simulate an empty touch frame where nothing changes. The mapper should use
// the existing touch state to generate a down event.
processPosition(mapper, 301, 302);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(ACTION_POINTER_1_DOWN), WithPressure(1.f))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, Reset_PreservesLastTouchState_NoPointersDown) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// First finger touches down and releases.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, 100, 200);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
WithMotionAction(AMOTION_EVENT_ACTION_DOWN)));
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(
mFakeListener->assertNotifyMotionWasCalled(WithMotionAction(AMOTION_EVENT_ACTION_UP)));
// Reset the mapper. When the mapper is reset, we expect it to restore the latest
// raw state where no pointers are down.
resetMapper(mapper, ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Send an empty sync frame. Since there are no pointers, no events are generated.
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
TEST_F(MultiTouchInputMapperTest, StylusSourceIsAddedDynamicallyFromToolType) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE | TOOL_TYPE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// Even if the device supports reporting the ABS_MT_TOOL_TYPE axis, which could give it the
// ability to report MT_TOOL_PEN, we do not report the device as coming from a stylus source.
// Due to limitations in the evdev protocol, we cannot say for certain that a device is capable
// of reporting stylus events just because it supports ABS_MT_TOOL_TYPE.
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
// However, if the device ever ends up reporting an event with MT_TOOL_PEN, it should be
// reported with the stylus source.
processId(mapper, FIRST_TRACKING_ID);
processToolType(mapper, MT_TOOL_PEN);
processPosition(mapper, 100, 200);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
// Now that we know the device supports styluses, ensure that the device is re-configured with
// the stylus source.
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS, mapper.getSources());
{
const auto& devices = mReader->getInputDevices();
auto deviceInfo =
std::find_if(devices.begin(), devices.end(),
[](const InputDeviceInfo& info) { return info.getId() == DEVICE_ID; });
LOG_ALWAYS_FATAL_IF(deviceInfo == devices.end(), "Cannot find InputDevice");
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS, deviceInfo->getSources());
}
// Ensure the device was not reset to prevent interruptions of any ongoing gestures.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasNotCalled());
processId(mapper, INVALID_TRACKING_ID);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithSource(AINPUT_SOURCE_TOUCHSCREEN | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
}
TEST_F(MultiTouchInputMapperTest, Process_WhenConfigEnabled_ShouldShowDirectStylusPointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE | PRESSURE);
// Add BTN_TOOL_PEN to statically show stylus support, since using ABS_MT_TOOL_TYPE can only
// indicate stylus presence dynamically.
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setStylusPointerIconEnabled(true);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
processId(mapper, FIRST_TRACKING_ID);
processPressure(mapper, RAW_PRESSURE_MIN);
processPosition(mapper, 100, 200);
processToolType(mapper, MT_TOOL_PEN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithToolType(ToolType::STYLUS),
WithPointerCoords(0, toDisplayX(100), toDisplayY(200)))));
ASSERT_TRUE(fakePointerController->isPointerShown());
ASSERT_NO_FATAL_FAILURE(
fakePointerController->assertPosition(toDisplayX(100), toDisplayY(200)));
}
TEST_F(MultiTouchInputMapperTest, Process_WhenConfigDisabled_ShouldNotShowDirectStylusPointer) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | TOOL_TYPE | PRESSURE);
// Add BTN_TOOL_PEN to statically show stylus support, since using ABS_MT_TOOL_TYPE can only
// indicate stylus presence dynamically.
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setStylusPointerIconEnabled(false);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
processId(mapper, FIRST_TRACKING_ID);
processPressure(mapper, RAW_PRESSURE_MIN);
processPosition(mapper, 100, 200);
processToolType(mapper, MT_TOOL_PEN);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_HOVER_ENTER),
WithToolType(ToolType::STYLUS),
WithPointerCoords(0, toDisplayX(100), toDisplayY(200)))));
ASSERT_FALSE(fakePointerController->isPointerShown());
}
// --- MultiTouchInputMapperTest_ExternalDevice ---
class MultiTouchInputMapperTest_ExternalDevice : public MultiTouchInputMapperTest {
protected:
void SetUp() override { InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL); }
};
/**
* Expect fallback to internal viewport if device is external and external viewport is not present.
*/
TEST_F(MultiTouchInputMapperTest_ExternalDevice, Viewports_Fallback) {
prepareAxes(POSITION);
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper.getSources());
NotifyMotionArgs motionArgs;
// Expect the event to be sent to the internal viewport,
// because an external viewport is not present.
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ADISPLAY_ID_DEFAULT, motionArgs.displayId);
// Expect the event to be sent to the external viewport if it is present.
prepareSecondaryDisplay(ViewportType::EXTERNAL);
processPosition(mapper, 100, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(SECONDARY_DISPLAY_ID, motionArgs.displayId);
}
TEST_F(MultiTouchInputMapperTest, Process_TouchpadCapture) {
// we need a pointer controller for mouse mode of touchpad (start pointer at 0,0)
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
// prepare device and capture
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerCapture(true);
mFakePolicy->setPointerController(fakePointerController);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// captured touchpad should be a touchpad source
NotifyDeviceResetArgs resetArgs;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources());
InputDeviceInfo deviceInfo = mDevice->getDeviceInfo();
const InputDeviceInfo::MotionRange* relRangeX =
deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, AINPUT_SOURCE_TOUCHPAD);
ASSERT_NE(relRangeX, nullptr);
ASSERT_EQ(relRangeX->min, -(RAW_X_MAX - RAW_X_MIN));
ASSERT_EQ(relRangeX->max, RAW_X_MAX - RAW_X_MIN);
const InputDeviceInfo::MotionRange* relRangeY =
deviceInfo.getMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, AINPUT_SOURCE_TOUCHPAD);
ASSERT_NE(relRangeY, nullptr);
ASSERT_EQ(relRangeY->min, -(RAW_Y_MAX - RAW_Y_MIN));
ASSERT_EQ(relRangeY->max, RAW_Y_MAX - RAW_Y_MIN);
// run captured pointer tests - note that this is unscaled, so input listener events should be
// identical to what the hardware sends (accounting for any
// calibration).
// FINGER 0 DOWN
processSlot(mapper, 0);
processId(mapper, 1);
processPosition(mapper, 100 + RAW_X_MIN, 100 + RAW_Y_MIN);
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
// expect coord[0] to contain initial location of touch 0
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_EQ(1U, args.getPointerCount());
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, args.source);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 DOWN
processSlot(mapper, 1);
processId(mapper, 2);
processPosition(mapper, 560 + RAW_X_MIN, 154 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain previous location, coord[1] to contain new touch 1 location
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(ACTION_POINTER_1_DOWN, args.action);
ASSERT_EQ(2U, args.getPointerCount());
ASSERT_EQ(0, args.pointerProperties[0].id);
ASSERT_EQ(1, args.pointerProperties[1].id);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 560, 154, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 MOVE
processPosition(mapper, 540 + RAW_X_MIN, 690 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain previous location, coord[1] to contain new touch 1 location
// from move
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 100, 100, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 0 MOVE
processSlot(mapper, 0);
processPosition(mapper, 50 + RAW_X_MIN, 800 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain new touch 0 location, coord[1] to contain previous location
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 50, 800, 1, 0, 0, 0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[1], 540, 690, 1, 0, 0, 0, 0, 0, 0, 0));
// BUTTON DOWN
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
// touchinputmapper design sends a move before button press
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
// BUTTON UP
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
// touchinputmapper design sends a move after button release
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
// FINGER 0 UP
processId(mapper, -1);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | 0x0000, args.action);
// FINGER 1 MOVE
processSlot(mapper, 1);
processPosition(mapper, 320 + RAW_X_MIN, 900 + RAW_Y_MIN);
processSync(mapper);
// expect coord[0] to contain new location of touch 1, and properties[0].id to contain 1
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
ASSERT_EQ(1U, args.getPointerCount());
ASSERT_EQ(1, args.pointerProperties[0].id);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 320, 900, 1, 0, 0, 0, 0, 0, 0, 0));
// FINGER 1 UP
processId(mapper, -1);
processKey(mapper, BTN_TOUCH, 0);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
// non captured touchpad should be a mouse source
mFakePolicy->setPointerCapture(false);
configureDevice(InputReaderConfiguration::Change::POINTER_CAPTURE);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled(&resetArgs));
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
}
TEST_F(MultiTouchInputMapperTest, Process_UnCapturedTouchpadPointer) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
// prepare device and capture
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOUCH, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// run uncaptured pointer tests - pushes out generic events
// FINGER 0 DOWN
processId(mapper, 3);
processPosition(mapper, 100, 100);
processKey(mapper, BTN_TOUCH, 1);
processSync(mapper);
// start at (100,100), cursor should be at (0,0) * scale
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(args.pointerCoords[0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
// FINGER 0 MOVE
processPosition(mapper, 200, 200);
processSync(mapper);
// compute scaling to help with touch position checking
float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN);
float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT);
float scale =
mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal;
// translate from (100,100) -> (200,200), cursor should have changed to (100,100) * scale)
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_HOVER_MOVE, args.action);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0], 100 * scale, 100 * scale, 0,
0, 0, 0, 0, 0, 0, 0));
// BUTTON DOWN
processKey(mapper, BTN_LEFT, 1);
processSync(mapper);
// touchinputmapper design sends a move before button press
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_PRESS, args.action);
// BUTTON UP
processKey(mapper, BTN_LEFT, 0);
processSync(mapper);
// touchinputmapper design sends a move after button release
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_BUTTON_RELEASE, args.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
}
TEST_F(MultiTouchInputMapperTest, WhenCapturedAndNotCaptured_GetSources) {
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_LEFT, 0, AKEYCODE_UNKNOWN, 0);
mFakePolicy->setPointerController(fakePointerController);
mFakePolicy->setPointerCapture(false);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
// uncaptured touchpad should be a pointer device
ASSERT_EQ(AINPUT_SOURCE_MOUSE, mapper.getSources());
// captured touchpad should be a touchpad device
mFakePolicy->setPointerCapture(true);
configureDevice(InputReaderConfiguration::Change::POINTER_CAPTURE);
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper.getSources());
}
// --- BluetoothMultiTouchInputMapperTest ---
class BluetoothMultiTouchInputMapperTest : public MultiTouchInputMapperTest {
protected:
void SetUp() override {
InputMapperTest::SetUp(DEVICE_CLASSES | InputDeviceClass::EXTERNAL, BUS_BLUETOOTH);
}
};
TEST_F(BluetoothMultiTouchInputMapperTest, TimestampSmoothening) {
addConfigurationProperty("touch.deviceType", "touchScreen");
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION | ID | SLOT | PRESSURE);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
nsecs_t kernelEventTime = ARBITRARY_TIME;
nsecs_t expectedEventTime = ARBITRARY_TIME;
// Touch down.
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, 100, 200);
processPressure(mapper, RAW_PRESSURE_MAX);
processSync(mapper, ARBITRARY_TIME);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN), WithEventTime(ARBITRARY_TIME))));
// Process several events that come in quick succession, according to their timestamps.
for (int i = 0; i < 3; i++) {
constexpr static nsecs_t delta = ms2ns(1);
static_assert(delta < MIN_BLUETOOTH_TIMESTAMP_DELTA);
kernelEventTime += delta;
expectedEventTime += MIN_BLUETOOTH_TIMESTAMP_DELTA;
processPosition(mapper, 101 + i, 201 + i);
processSync(mapper, kernelEventTime);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithEventTime(expectedEventTime))));
}
// Release the touch.
processId(mapper, INVALID_TRACKING_ID);
processPressure(mapper, RAW_PRESSURE_MIN);
processSync(mapper, ARBITRARY_TIME + ms2ns(50));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_UP),
WithEventTime(ARBITRARY_TIME + ms2ns(50)))));
}
// --- MultiTouchPointerModeTest ---
class MultiTouchPointerModeTest : public MultiTouchInputMapperTest {
protected:
float mPointerMovementScale;
float mPointerXZoomScale;
void preparePointerMode(int xAxisResolution, int yAxisResolution) {
addConfigurationProperty("touch.deviceType", "pointer");
std::shared_ptr<FakePointerController> fakePointerController =
std::make_shared<FakePointerController>();
fakePointerController->setBounds(0, 0, DISPLAY_WIDTH - 1, DISPLAY_HEIGHT - 1);
fakePointerController->setPosition(0, 0);
prepareDisplay(ui::ROTATION_0);
prepareAxes(POSITION);
prepareAbsoluteAxisResolution(xAxisResolution, yAxisResolution);
// In order to enable swipe and freeform gesture in pointer mode, pointer capture
// needs to be disabled, and the pointer gesture needs to be enabled.
mFakePolicy->setPointerCapture(false);
mFakePolicy->setPointerGestureEnabled(true);
mFakePolicy->setPointerController(fakePointerController);
float rawDiagonal = hypotf(RAW_X_MAX - RAW_X_MIN, RAW_Y_MAX - RAW_Y_MIN);
float displayDiagonal = hypotf(DISPLAY_WIDTH, DISPLAY_HEIGHT);
mPointerMovementScale =
mFakePolicy->getPointerGestureMovementSpeedRatio() * displayDiagonal / rawDiagonal;
mPointerXZoomScale =
mFakePolicy->getPointerGestureZoomSpeedRatio() * displayDiagonal / rawDiagonal;
}
void prepareAbsoluteAxisResolution(int xAxisResolution, int yAxisResolution) {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX,
/*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ xAxisResolution);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX,
/*flat*/ 0,
/*fuzz*/ 0, /*resolution*/ yAxisResolution);
}
};
/**
* Two fingers down on a pointer mode touch pad. The width
* of the two finger is larger than 1/4 of the touch pack diagnal length. However, it
* is smaller than the fixed min physical length 30mm. Two fingers' distance must
* be greater than the both value to be freeform gesture, so that after two
* fingers start to move downwards, the gesture should be swipe.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthSwipe) {
// The min freeform gesture width is 25units/mm x 30mm = 750
// which is greater than fraction of the diagnal length of the touchpad (349).
// Thus, MaxSwipWidth is 750.
preparePointerMode(/*xResolution=*/25, /*yResolution=*/25);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once.
// The two fingers are 450 units apart, expects the current gesture to be PRESS
// Pointer's initial position is used the [0,0] coordinate.
int32_t x1 = 100, y1 = 125, x2 = 550, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
// It should be recognized as a SWIPE gesture when two fingers start to move down,
// that there should be 1 pointer.
int32_t movingDistance = 200;
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
}
/**
* Two fingers down on a pointer mode touch pad. The width of the two finger is larger
* than the minimum freeform gesture width, 30mm. However, it is smaller than 1/4 of
* the touch pack diagnal length. Two fingers' distance must be greater than the both
* value to be freeform gesture, so that after two fingers start to move downwards,
* the gesture should be swipe.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthLowResolutionSwipe) {
// The min freeform gesture width is 5units/mm x 30mm = 150
// which is greater than fraction of the diagnal length of the touchpad (349).
// Thus, MaxSwipWidth is the fraction of the diagnal length, 349.
preparePointerMode(/*xResolution=*/5, /*yResolution=*/5);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once.
// The two fingers are 250 units apart, expects the current gesture to be PRESS
// Pointer's initial position is used the [0,0] coordinate.
int32_t x1 = 100, y1 = 125, x2 = 350, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
// It should be recognized as a SWIPE gesture when two fingers start to move down,
// and there should be 1 pointer.
int32_t movingDistance = 200;
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification);
// New coordinate is the scaled relative coordinate from the initial coordinate.
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], 0,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
}
/**
* Touch the touch pad with two fingers with a distance wider than the minimum freeform
* gesture width and 1/4 of the diagnal length of the touchpad. Expect to receive
* freeform gestures after two fingers start to move downwards.
*/
TEST_F(MultiTouchPointerModeTest, PointerGestureMaxSwipeWidthFreeform) {
preparePointerMode(/*xResolution=*/25, /*yResolution=*/25);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Two fingers down at once. Wider than the max swipe width.
// The gesture is expected to be PRESS, then transformed to FREEFORM
int32_t x1 = 100, y1 = 125, x2 = 900, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
// One pointer for PRESS, and its coordinate is used as the origin for pointer coordinates.
ASSERT_NO_FATAL_FAILURE(
assertPointerCoords(motionArgs.pointerCoords[0], 0, 0, 1, 0, 0, 0, 0, 0, 0, 0));
int32_t movingDistance = 200;
// Move two fingers down, expect a cancel event because gesture is changing to freeform,
// then two down events for two pointers.
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
// The previous PRESS gesture is cancelled, because it is transformed to freeform
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_EQ(2U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN, motionArgs.action & AMOTION_EVENT_ACTION_MASK);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
// Two pointers' scaled relative coordinates from their initial centroid.
// Initial y coordinates are 0 as y1 and y2 have the same value.
float cookedX1 = (x1 - x2) / 2 * mPointerXZoomScale;
float cookedX2 = (x2 - x1) / 2 * mPointerXZoomScale;
// When pointers move, the new coordinates equal to the initial coordinates plus
// scaled moving distance.
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2,
movingDistance * mPointerMovementScale, 1, 0, 0, 0,
0, 0, 0, 0));
// Move two fingers down again, expect one MOVE motion event.
y1 += movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(2U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(ToolType::FINGER, motionArgs.pointerProperties[0].toolType);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0], cookedX1,
movingDistance * 2 * mPointerMovementScale, 1, 0, 0,
0, 0, 0, 0, 0));
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1], cookedX2,
movingDistance * 2 * mPointerMovementScale, 1, 0, 0,
0, 0, 0, 0, 0));
}
TEST_F(MultiTouchPointerModeTest, TwoFingerSwipeOffsets) {
preparePointerMode(/*xResolution=*/25, /*yResolution=*/25);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
NotifyMotionArgs motionArgs;
// Place two fingers down.
int32_t x1 = 100, y1 = 125, x2 = 550, y2 = 125;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
ASSERT_EQ(MotionClassification::NONE, motionArgs.classification);
ASSERT_EQ(0, motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET));
ASSERT_EQ(0, motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET));
// Move the two fingers down and to the left.
int32_t movingDistance = 200;
x1 -= movingDistance;
y1 += movingDistance;
x2 -= movingDistance;
y2 += movingDistance;
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, x1, y1);
processMTSync(mapper);
processId(mapper, SECOND_TRACKING_ID);
processPosition(mapper, x2, y2);
processMTSync(mapper);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&motionArgs));
ASSERT_EQ(1U, motionArgs.getPointerCount());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
ASSERT_EQ(MotionClassification::TWO_FINGER_SWIPE, motionArgs.classification);
ASSERT_LT(motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET), 0);
ASSERT_GT(motionArgs.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET), 0);
}
TEST_F(MultiTouchPointerModeTest, WhenViewportActiveStatusChanged_PointerGestureIsReset) {
preparePointerMode(/*xResolution=*/25, /*yResolution=*/25);
mFakeEventHub->addKey(EVENTHUB_ID, BTN_TOOL_PEN, 0, AKEYCODE_UNKNOWN, 0);
MultiTouchInputMapper& mapper = constructAndAddMapper<MultiTouchInputMapper>();
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyDeviceResetWasCalled());
// Start a stylus gesture.
processKey(mapper, BTN_TOOL_PEN, 1);
processId(mapper, FIRST_TRACKING_ID);
processPosition(mapper, 100, 200);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_DOWN),
WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
// TODO(b/257078296): Pointer mode generates extra event.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_MOVE),
WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
// Make the viewport inactive. This will put the device in disabled mode, and the ongoing stylus
// gesture should be disabled.
auto viewport = mFakePolicy->getDisplayViewportByType(ViewportType::INTERNAL);
viewport->isActive = false;
mFakePolicy->updateViewport(*viewport);
configureDevice(InputReaderConfiguration::Change::DISPLAY_INFO);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL),
WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
// TODO(b/257078296): Pointer mode generates extra event.
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(
AllOf(WithMotionAction(AMOTION_EVENT_ACTION_CANCEL),
WithSource(AINPUT_SOURCE_MOUSE | AINPUT_SOURCE_STYLUS),
WithToolType(ToolType::STYLUS))));
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasNotCalled());
}
// --- JoystickInputMapperTest ---
class JoystickInputMapperTest : public InputMapperTest {
protected:
static const int32_t RAW_X_MIN;
static const int32_t RAW_X_MAX;
static const int32_t RAW_Y_MIN;
static const int32_t RAW_Y_MAX;
void SetUp() override {
InputMapperTest::SetUp(InputDeviceClass::JOYSTICK | InputDeviceClass::EXTERNAL);
}
void prepareAxes() {
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
mFakeEventHub->addAbsoluteAxis(EVENTHUB_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
}
void processAxis(JoystickInputMapper& mapper, int32_t axis, int32_t value) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_ABS, axis, value);
}
void processSync(JoystickInputMapper& mapper) {
process(mapper, ARBITRARY_TIME, READ_TIME, EV_SYN, SYN_REPORT, 0);
}
void prepareVirtualDisplay(ui::Rotation orientation) {
setDisplayInfoAndReconfigure(VIRTUAL_DISPLAY_ID, VIRTUAL_DISPLAY_WIDTH,
VIRTUAL_DISPLAY_HEIGHT, orientation, VIRTUAL_DISPLAY_UNIQUE_ID,
NO_PORT, ViewportType::VIRTUAL);
}
};
const int32_t JoystickInputMapperTest::RAW_X_MIN = -32767;
const int32_t JoystickInputMapperTest::RAW_X_MAX = 32767;
const int32_t JoystickInputMapperTest::RAW_Y_MIN = -32767;
const int32_t JoystickInputMapperTest::RAW_Y_MAX = 32767;
TEST_F(JoystickInputMapperTest, Configure_AssignsDisplayUniqueId) {
prepareAxes();
JoystickInputMapper& mapper = constructAndAddMapper<JoystickInputMapper>();
mFakePolicy->addInputUniqueIdAssociation(DEVICE_LOCATION, VIRTUAL_DISPLAY_UNIQUE_ID);
prepareVirtualDisplay(ui::ROTATION_0);
// Send an axis event
processAxis(mapper, ABS_X, 100);
processSync(mapper);
NotifyMotionArgs args;
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
// Send another axis event
processAxis(mapper, ABS_Y, 100);
processSync(mapper);
ASSERT_NO_FATAL_FAILURE(mFakeListener->assertNotifyMotionWasCalled(&args));
ASSERT_EQ(VIRTUAL_DISPLAY_ID, args.displayId);
}
// --- PeripheralControllerTest ---
class PeripheralControllerTest : public testing::Test {
protected:
static const char* DEVICE_NAME;
static const char* DEVICE_LOCATION;
static const int32_t DEVICE_ID;
static const int32_t DEVICE_GENERATION;
static const int32_t DEVICE_CONTROLLER_NUMBER;
static const ftl::Flags<InputDeviceClass> DEVICE_CLASSES;
static const int32_t EVENTHUB_ID;
std::shared_ptr<FakeEventHub> mFakeEventHub;
sp<FakeInputReaderPolicy> mFakePolicy;
std::unique_ptr<TestInputListener> mFakeListener;
std::unique_ptr<InstrumentedInputReader> mReader;
std::shared_ptr<InputDevice> mDevice;
virtual void SetUp(ftl::Flags<InputDeviceClass> classes) {
mFakeEventHub = std::make_unique<FakeEventHub>();
mFakePolicy = sp<FakeInputReaderPolicy>::make();
mFakeListener = std::make_unique<TestInputListener>();
mReader = std::make_unique<InstrumentedInputReader>(mFakeEventHub, mFakePolicy,
*mFakeListener);
mDevice = newDevice(DEVICE_ID, DEVICE_NAME, DEVICE_LOCATION, EVENTHUB_ID, classes);
}
void SetUp() override { SetUp(DEVICE_CLASSES); }
void TearDown() override {
mFakeListener.reset();
mFakePolicy.clear();
}
std::shared_ptr<InputDevice> newDevice(int32_t deviceId, const std::string& name,
const std::string& location, int32_t eventHubId,
ftl::Flags<InputDeviceClass> classes) {
InputDeviceIdentifier identifier;
identifier.name = name;
identifier.location = location;
std::shared_ptr<InputDevice> device =
std::make_shared<InputDevice>(mReader->getContext(), deviceId, DEVICE_GENERATION,
identifier);
mReader->pushNextDevice(device);
mFakeEventHub->addDevice(eventHubId, name, classes);
mReader->loopOnce();
return device;
}
template <class T, typename... Args>
T& addControllerAndConfigure(Args... args) {
T& controller = mDevice->addController<T>(EVENTHUB_ID, args...);
return controller;
}
};
const char* PeripheralControllerTest::DEVICE_NAME = "device";
const char* PeripheralControllerTest::DEVICE_LOCATION = "BLUETOOTH";
const int32_t PeripheralControllerTest::DEVICE_ID = END_RESERVED_ID + 1000;
const int32_t PeripheralControllerTest::DEVICE_GENERATION = 2;
const int32_t PeripheralControllerTest::DEVICE_CONTROLLER_NUMBER = 0;
const ftl::Flags<InputDeviceClass> PeripheralControllerTest::DEVICE_CLASSES =
ftl::Flags<InputDeviceClass>(0); // not needed for current tests
const int32_t PeripheralControllerTest::EVENTHUB_ID = 1;
// --- BatteryControllerTest ---
class BatteryControllerTest : public PeripheralControllerTest {
protected:
void SetUp() override {
PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::BATTERY);
}
};
TEST_F(BatteryControllerTest, GetBatteryCapacity) {
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
ASSERT_TRUE(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY));
ASSERT_EQ(controller.getBatteryCapacity(FakeEventHub::DEFAULT_BATTERY).value_or(-1),
FakeEventHub::BATTERY_CAPACITY);
}
TEST_F(BatteryControllerTest, GetBatteryStatus) {
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
ASSERT_TRUE(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY));
ASSERT_EQ(controller.getBatteryStatus(FakeEventHub::DEFAULT_BATTERY).value_or(-1),
FakeEventHub::BATTERY_STATUS);
}
// --- LightControllerTest ---
class LightControllerTest : public PeripheralControllerTest {
protected:
void SetUp() override {
PeripheralControllerTest::SetUp(DEVICE_CLASSES | InputDeviceClass::LIGHT);
}
};
TEST_F(LightControllerTest, MonoLight) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_light",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS);
}
TEST_F(LightControllerTest, MonoKeyboardBacklight) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_BRIGHTNESS));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_BRIGHTNESS);
}
TEST_F(LightControllerTest, Ignore_MonoLight_WithPreferredBacklightLevels) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_light",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels",
"0,100,200");
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size());
}
TEST_F(LightControllerTest, KeyboardBacklight_WithNoPreferredBacklightLevels) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size());
}
TEST_F(LightControllerTest, KeyboardBacklight_WithPreferredBacklightLevels) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels",
"0,100,200");
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(3U, lights[0].preferredBrightnessLevels.size());
std::set<BrightnessLevel>::iterator it = lights[0].preferredBrightnessLevels.begin();
ASSERT_EQ(BrightnessLevel(0), *it);
std::advance(it, 1);
ASSERT_EQ(BrightnessLevel(100), *it);
std::advance(it, 1);
ASSERT_EQ(BrightnessLevel(200), *it);
}
TEST_F(LightControllerTest, KeyboardBacklight_WithWrongPreferredBacklightLevels) {
RawLightInfo infoMono = {.id = 1,
.name = "mono_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoMono.id, std::move(infoMono));
mFakeEventHub->addConfigurationProperty(EVENTHUB_ID, "keyboard.backlight.brightnessLevels",
"0,100,200,300,400,500");
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
std::list<NotifyArgs> unused =
mDevice->configure(ARBITRARY_TIME, mFakePolicy->getReaderConfiguration(),
/*changes=*/{});
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(0U, lights[0].preferredBrightnessLevels.size());
}
TEST_F(LightControllerTest, RGBLight) {
RawLightInfo infoRed = {.id = 1,
.name = "red",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, CorrectRGBKeyboardBacklight) {
RawLightInfo infoRed = {.id = 1,
.name = "red_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, IncorrectRGBKeyboardBacklight) {
RawLightInfo infoRed = {.id = 1,
.name = "red",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::RED,
.path = ""};
RawLightInfo infoGreen = {.id = 2,
.name = "green",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GREEN,
.path = ""};
RawLightInfo infoBlue = {.id = 3,
.name = "blue",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::BLUE,
.path = ""};
RawLightInfo infoGlobal = {.id = 3,
.name = "global_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS | InputLightClass::GLOBAL |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoRed.id, std::move(infoRed));
mFakeEventHub->addRawLightInfo(infoGreen.id, std::move(infoGreen));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoBlue));
mFakeEventHub->addRawLightInfo(infoBlue.id, std::move(infoGlobal));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, MultiColorRGBLight) {
RawLightInfo infoColor = {.id = 1,
.name = "multi_color",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::MULTI_INTENSITY |
InputLightClass::MULTI_INDEX,
.path = ""};
mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::INPUT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, MultiColorRGBKeyboardBacklight) {
RawLightInfo infoColor = {.id = 1,
.name = "multi_color_keyboard_backlight",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS |
InputLightClass::MULTI_INTENSITY |
InputLightClass::MULTI_INDEX |
InputLightClass::KEYBOARD_BACKLIGHT,
.path = ""};
mFakeEventHub->addRawLightInfo(infoColor.id, std::move(infoColor));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::KEYBOARD_BACKLIGHT, lights[0].type);
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_TRUE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_TRUE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_EQ(controller.getLightColor(lights[0].id).value_or(-1), LIGHT_COLOR);
}
TEST_F(LightControllerTest, PlayerIdLight) {
RawLightInfo info1 = {.id = 1,
.name = "player1",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info2 = {.id = 2,
.name = "player2",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info3 = {.id = 3,
.name = "player3",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
RawLightInfo info4 = {.id = 4,
.name = "player4",
.maxBrightness = 255,
.flags = InputLightClass::BRIGHTNESS,
.path = ""};
mFakeEventHub->addRawLightInfo(info1.id, std::move(info1));
mFakeEventHub->addRawLightInfo(info2.id, std::move(info2));
mFakeEventHub->addRawLightInfo(info3.id, std::move(info3));
mFakeEventHub->addRawLightInfo(info4.id, std::move(info4));
PeripheralController& controller = addControllerAndConfigure<PeripheralController>();
InputDeviceInfo info;
controller.populateDeviceInfo(&info);
std::vector<InputDeviceLightInfo> lights = info.getLights();
ASSERT_EQ(1U, lights.size());
ASSERT_EQ(InputDeviceLightType::PLAYER_ID, lights[0].type);
ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::BRIGHTNESS));
ASSERT_FALSE(lights[0].capabilityFlags.test(InputDeviceLightCapability::RGB));
ASSERT_FALSE(controller.setLightColor(lights[0].id, LIGHT_COLOR));
ASSERT_TRUE(controller.setLightPlayerId(lights[0].id, LIGHT_PLAYER_ID));
ASSERT_EQ(controller.getLightPlayerId(lights[0].id).value_or(-1), LIGHT_PLAYER_ID);
}
} // namespace android