blob: c3ac0b7cfb92ee5b9ead9a811277e5c986e331f0 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cmath>
#include <fstream>
#include <ios>
#include <iterator>
#include <string>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <input/TfLiteMotionPredictor.h>
namespace android {
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::FloatNear;
TEST(TfLiteMotionPredictorTest, BuffersReadiness) {
TfLiteMotionPredictorBuffers buffers(/*inputLength=*/5);
ASSERT_FALSE(buffers.isReady());
buffers.pushSample(/*timestamp=*/0, {.position = {.x = 100, .y = 100}});
ASSERT_FALSE(buffers.isReady());
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 100}});
ASSERT_FALSE(buffers.isReady());
// Two samples with distinct positions are required.
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 100, .y = 110}});
ASSERT_TRUE(buffers.isReady());
buffers.reset();
ASSERT_FALSE(buffers.isReady());
}
TEST(TfLiteMotionPredictorTest, BuffersRecentData) {
TfLiteMotionPredictorBuffers buffers(/*inputLength=*/5);
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 200}});
ASSERT_EQ(buffers.lastTimestamp(), 1);
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 150, .y = 250}});
ASSERT_EQ(buffers.lastTimestamp(), 2);
ASSERT_TRUE(buffers.isReady());
ASSERT_EQ(buffers.axisFrom().position.x, 100);
ASSERT_EQ(buffers.axisFrom().position.y, 200);
ASSERT_EQ(buffers.axisTo().position.x, 150);
ASSERT_EQ(buffers.axisTo().position.y, 250);
// Position doesn't change, so neither do the axes.
buffers.pushSample(/*timestamp=*/3, {.position = {.x = 150, .y = 250}});
ASSERT_EQ(buffers.lastTimestamp(), 3);
ASSERT_TRUE(buffers.isReady());
ASSERT_EQ(buffers.axisFrom().position.x, 100);
ASSERT_EQ(buffers.axisFrom().position.y, 200);
ASSERT_EQ(buffers.axisTo().position.x, 150);
ASSERT_EQ(buffers.axisTo().position.y, 250);
buffers.pushSample(/*timestamp=*/4, {.position = {.x = 180, .y = 280}});
ASSERT_EQ(buffers.lastTimestamp(), 4);
ASSERT_TRUE(buffers.isReady());
ASSERT_EQ(buffers.axisFrom().position.x, 150);
ASSERT_EQ(buffers.axisFrom().position.y, 250);
ASSERT_EQ(buffers.axisTo().position.x, 180);
ASSERT_EQ(buffers.axisTo().position.y, 280);
}
TEST(TfLiteMotionPredictorTest, BuffersCopyTo) {
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
TfLiteMotionPredictorBuffers buffers(model->inputLength());
buffers.pushSample(/*timestamp=*/1,
{.position = {.x = 10, .y = 10},
.pressure = 0,
.orientation = 0,
.tilt = 0.2});
buffers.pushSample(/*timestamp=*/2,
{.position = {.x = 10, .y = 50},
.pressure = 0.4,
.orientation = M_PI / 4,
.tilt = 0.3});
buffers.pushSample(/*timestamp=*/3,
{.position = {.x = 30, .y = 50},
.pressure = 0.5,
.orientation = -M_PI / 4,
.tilt = 0.4});
buffers.pushSample(/*timestamp=*/3,
{.position = {.x = 30, .y = 60},
.pressure = 0,
.orientation = 0,
.tilt = 0.5});
buffers.copyTo(*model);
const int zeroPadding = model->inputLength() - 3;
ASSERT_GE(zeroPadding, 0);
EXPECT_THAT(model->inputR().subspan(0, zeroPadding), Each(0));
EXPECT_THAT(model->inputPhi().subspan(0, zeroPadding), Each(0));
EXPECT_THAT(model->inputPressure().subspan(0, zeroPadding), Each(0));
EXPECT_THAT(model->inputTilt().subspan(0, zeroPadding), Each(0));
EXPECT_THAT(model->inputOrientation().subspan(0, zeroPadding), Each(0));
EXPECT_THAT(model->inputR().subspan(zeroPadding), ElementsAre(40, 20, 10));
EXPECT_THAT(model->inputPhi().subspan(zeroPadding), ElementsAre(0, -M_PI / 2, M_PI / 2));
EXPECT_THAT(model->inputPressure().subspan(zeroPadding), ElementsAre(0.4, 0.5, 0));
EXPECT_THAT(model->inputTilt().subspan(zeroPadding), ElementsAre(0.3, 0.4, 0.5));
EXPECT_THAT(model->inputOrientation().subspan(zeroPadding),
ElementsAre(FloatNear(-M_PI / 4, 1e-5), FloatNear(M_PI / 4, 1e-5),
FloatNear(M_PI / 2, 1e-5)));
}
TEST(TfLiteMotionPredictorTest, ModelInputOutputLength) {
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
ASSERT_GT(model->inputLength(), 0u);
const size_t inputLength = model->inputLength();
ASSERT_EQ(inputLength, static_cast<size_t>(model->inputR().size()));
ASSERT_EQ(inputLength, static_cast<size_t>(model->inputPhi().size()));
ASSERT_EQ(inputLength, static_cast<size_t>(model->inputPressure().size()));
ASSERT_EQ(inputLength, static_cast<size_t>(model->inputOrientation().size()));
ASSERT_EQ(inputLength, static_cast<size_t>(model->inputTilt().size()));
ASSERT_TRUE(model->invoke());
const size_t outputLength = model->outputLength();
ASSERT_EQ(outputLength, static_cast<size_t>(model->outputR().size()));
ASSERT_EQ(outputLength, static_cast<size_t>(model->outputPhi().size()));
ASSERT_EQ(outputLength, static_cast<size_t>(model->outputPressure().size()));
}
TEST(TfLiteMotionPredictorTest, ModelOutput) {
std::unique_ptr<TfLiteMotionPredictorModel> model = TfLiteMotionPredictorModel::create();
TfLiteMotionPredictorBuffers buffers(model->inputLength());
buffers.pushSample(/*timestamp=*/1, {.position = {.x = 100, .y = 200}, .pressure = 0.2});
buffers.pushSample(/*timestamp=*/2, {.position = {.x = 150, .y = 250}, .pressure = 0.4});
buffers.pushSample(/*timestamp=*/3, {.position = {.x = 180, .y = 280}, .pressure = 0.6});
buffers.copyTo(*model);
ASSERT_TRUE(model->invoke());
// The actual model output is implementation-defined, but it should at least be non-zero and
// non-NaN.
const auto is_valid = [](float value) { return !isnan(value) && value != 0; };
ASSERT_TRUE(std::all_of(model->outputR().begin(), model->outputR().end(), is_valid));
ASSERT_TRUE(std::all_of(model->outputPhi().begin(), model->outputPhi().end(), is_valid));
ASSERT_TRUE(
std::all_of(model->outputPressure().begin(), model->outputPressure().end(), is_valid));
}
} // namespace
} // namespace android