blob: a9655730fca63049b3ba490a6a04e69b2673e25a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <array>
#include <math.h>
#include <android-base/properties.h>
#include <attestation/HmacKeyManager.h>
#include <binder/Parcel.h>
#include <gtest/gtest.h>
#include <gui/constants.h>
#include <input/Input.h>
namespace android {
// Default display id.
static constexpr int32_t DISPLAY_ID = ADISPLAY_ID_DEFAULT;
static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION;
class BaseTest : public testing::Test {
protected:
static constexpr std::array<uint8_t, 32> HMAC = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
};
// --- PointerCoordsTest ---
class PointerCoordsTest : public BaseTest {
};
TEST_F(PointerCoordsTest, ClearSetsBitsToZero) {
PointerCoords coords;
coords.clear();
ASSERT_EQ(0ULL, coords.bits);
ASSERT_FALSE(coords.isResampled);
}
TEST_F(PointerCoordsTest, AxisValues) {
PointerCoords coords;
coords.clear();
// Check invariants when no axes are present.
ASSERT_EQ(0, coords.getAxisValue(0))
<< "getAxisValue should return zero because axis is not present";
ASSERT_EQ(0, coords.getAxisValue(1))
<< "getAxisValue should return zero because axis is not present";
// Set first axis.
ASSERT_EQ(OK, coords.setAxisValue(1, 5));
ASSERT_EQ(5, coords.values[0]);
ASSERT_EQ(0x4000000000000000ULL, coords.bits);
ASSERT_EQ(0, coords.getAxisValue(0))
<< "getAxisValue should return zero because axis is not present";
ASSERT_EQ(5, coords.getAxisValue(1))
<< "getAxisValue should return value of axis";
// Set an axis with a higher id than all others. (appending value at the end)
ASSERT_EQ(OK, coords.setAxisValue(3, 2));
ASSERT_EQ(0x5000000000000000ULL, coords.bits);
ASSERT_EQ(5, coords.values[0]);
ASSERT_EQ(2, coords.values[1]);
ASSERT_EQ(0, coords.getAxisValue(0))
<< "getAxisValue should return zero because axis is not present";
ASSERT_EQ(5, coords.getAxisValue(1))
<< "getAxisValue should return value of axis";
ASSERT_EQ(0, coords.getAxisValue(2))
<< "getAxisValue should return zero because axis is not present";
ASSERT_EQ(2, coords.getAxisValue(3))
<< "getAxisValue should return value of axis";
// Set an axis with an id lower than all others. (prepending value at beginning)
ASSERT_EQ(OK, coords.setAxisValue(0, 4));
ASSERT_EQ(0xd000000000000000ULL, coords.bits);
ASSERT_EQ(4, coords.values[0]);
ASSERT_EQ(5, coords.values[1]);
ASSERT_EQ(2, coords.values[2]);
ASSERT_EQ(4, coords.getAxisValue(0))
<< "getAxisValue should return value of axis";
ASSERT_EQ(5, coords.getAxisValue(1))
<< "getAxisValue should return value of axis";
ASSERT_EQ(0, coords.getAxisValue(2))
<< "getAxisValue should return zero because axis is not present";
ASSERT_EQ(2, coords.getAxisValue(3))
<< "getAxisValue should return value of axis";
// Set an axis with an id between the others. (inserting value in the middle)
ASSERT_EQ(OK, coords.setAxisValue(2, 1));
ASSERT_EQ(0xf000000000000000ULL, coords.bits);
ASSERT_EQ(4, coords.values[0]);
ASSERT_EQ(5, coords.values[1]);
ASSERT_EQ(1, coords.values[2]);
ASSERT_EQ(2, coords.values[3]);
ASSERT_EQ(4, coords.getAxisValue(0))
<< "getAxisValue should return value of axis";
ASSERT_EQ(5, coords.getAxisValue(1))
<< "getAxisValue should return value of axis";
ASSERT_EQ(1, coords.getAxisValue(2))
<< "getAxisValue should return value of axis";
ASSERT_EQ(2, coords.getAxisValue(3))
<< "getAxisValue should return value of axis";
// Set an existing axis value in place.
ASSERT_EQ(OK, coords.setAxisValue(1, 6));
ASSERT_EQ(0xf000000000000000ULL, coords.bits);
ASSERT_EQ(4, coords.values[0]);
ASSERT_EQ(6, coords.values[1]);
ASSERT_EQ(1, coords.values[2]);
ASSERT_EQ(2, coords.values[3]);
ASSERT_EQ(4, coords.getAxisValue(0))
<< "getAxisValue should return value of axis";
ASSERT_EQ(6, coords.getAxisValue(1))
<< "getAxisValue should return value of axis";
ASSERT_EQ(1, coords.getAxisValue(2))
<< "getAxisValue should return value of axis";
ASSERT_EQ(2, coords.getAxisValue(3))
<< "getAxisValue should return value of axis";
// Set maximum number of axes.
for (size_t axis = 4; axis < PointerCoords::MAX_AXES; axis++) {
ASSERT_EQ(OK, coords.setAxisValue(axis, axis));
}
ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits));
// Try to set one more axis beyond maximum number.
// Ensure bits are unchanged.
ASSERT_EQ(NO_MEMORY, coords.setAxisValue(PointerCoords::MAX_AXES, 100));
ASSERT_EQ(PointerCoords::MAX_AXES, __builtin_popcountll(coords.bits));
}
TEST_F(PointerCoordsTest, Parcel) {
Parcel parcel;
PointerCoords inCoords;
inCoords.clear();
PointerCoords outCoords;
// Round trip with empty coords.
inCoords.writeToParcel(&parcel);
parcel.setDataPosition(0);
outCoords.readFromParcel(&parcel);
ASSERT_EQ(0ULL, outCoords.bits);
ASSERT_FALSE(outCoords.isResampled);
// Round trip with some values.
parcel.freeData();
inCoords.setAxisValue(2, 5);
inCoords.setAxisValue(5, 8);
inCoords.isResampled = true;
inCoords.writeToParcel(&parcel);
parcel.setDataPosition(0);
outCoords.readFromParcel(&parcel);
ASSERT_EQ(outCoords.bits, inCoords.bits);
ASSERT_EQ(outCoords.values[0], inCoords.values[0]);
ASSERT_EQ(outCoords.values[1], inCoords.values[1]);
ASSERT_TRUE(outCoords.isResampled);
}
// --- KeyEventTest ---
class KeyEventTest : public BaseTest {
};
TEST_F(KeyEventTest, Properties) {
KeyEvent event;
// Initialize and get properties.
constexpr nsecs_t ARBITRARY_DOWN_TIME = 1;
constexpr nsecs_t ARBITRARY_EVENT_TIME = 2;
const int32_t id = InputEvent::nextId();
event.initialize(id, 2, AINPUT_SOURCE_GAMEPAD, DISPLAY_ID, HMAC, AKEY_EVENT_ACTION_DOWN,
AKEY_EVENT_FLAG_FROM_SYSTEM, AKEYCODE_BUTTON_X, 121, AMETA_ALT_ON, 1,
ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME);
ASSERT_EQ(id, event.getId());
ASSERT_EQ(InputEventType::KEY, event.getType());
ASSERT_EQ(2, event.getDeviceId());
ASSERT_EQ(AINPUT_SOURCE_GAMEPAD, event.getSource());
ASSERT_EQ(DISPLAY_ID, event.getDisplayId());
EXPECT_EQ(HMAC, event.getHmac());
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, event.getAction());
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, event.getFlags());
ASSERT_EQ(AKEYCODE_BUTTON_X, event.getKeyCode());
ASSERT_EQ(121, event.getScanCode());
ASSERT_EQ(AMETA_ALT_ON, event.getMetaState());
ASSERT_EQ(1, event.getRepeatCount());
ASSERT_EQ(ARBITRARY_DOWN_TIME, event.getDownTime());
ASSERT_EQ(ARBITRARY_EVENT_TIME, event.getEventTime());
// Set source.
event.setSource(AINPUT_SOURCE_JOYSTICK);
ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource());
// Set display id.
constexpr int32_t newDisplayId = 2;
event.setDisplayId(newDisplayId);
ASSERT_EQ(newDisplayId, event.getDisplayId());
}
// --- MotionEventTest ---
class MotionEventTest : public BaseTest {
protected:
static constexpr nsecs_t ARBITRARY_DOWN_TIME = 1;
static constexpr nsecs_t ARBITRARY_EVENT_TIME = 2;
static constexpr float X_SCALE = 2.0;
static constexpr float Y_SCALE = 3.0;
static constexpr float X_OFFSET = 1;
static constexpr float Y_OFFSET = 1.1;
static constexpr float RAW_X_SCALE = 4.0;
static constexpr float RAW_Y_SCALE = -5.0;
static constexpr float RAW_X_OFFSET = 12;
static constexpr float RAW_Y_OFFSET = -41.1;
void SetUp() override;
int32_t mId;
ui::Transform mTransform;
ui::Transform mRawTransform;
PointerProperties mPointerProperties[2];
struct Sample {
PointerCoords pointerCoords[2];
};
std::array<Sample, 3> mSamples{};
void initializeEventWithHistory(MotionEvent* event);
void assertEqualsEventWithHistory(const MotionEvent* event);
};
void MotionEventTest::SetUp() {
mId = InputEvent::nextId();
mTransform.set({X_SCALE, 0, X_OFFSET, 0, Y_SCALE, Y_OFFSET, 0, 0, 1});
mRawTransform.set({RAW_X_SCALE, 0, RAW_X_OFFSET, 0, RAW_Y_SCALE, RAW_Y_OFFSET, 0, 0, 1});
mPointerProperties[0].clear();
mPointerProperties[0].id = 1;
mPointerProperties[0].toolType = ToolType::FINGER;
mPointerProperties[1].clear();
mPointerProperties[1].id = 2;
mPointerProperties[1].toolType = ToolType::STYLUS;
mSamples[0].pointerCoords[0].clear();
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 10);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 11);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 12);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 13);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 14);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 15);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 16);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 17);
mSamples[0].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 18);
mSamples[0].pointerCoords[0].isResampled = true;
mSamples[0].pointerCoords[1].clear();
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 20);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 21);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 22);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 23);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 24);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 25);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 26);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 27);
mSamples[0].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 28);
mSamples[1].pointerCoords[0].clear();
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 110);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 111);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 112);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 113);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 114);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 115);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 116);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 117);
mSamples[1].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 118);
mSamples[1].pointerCoords[0].isResampled = true;
mSamples[1].pointerCoords[1].clear();
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 120);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 121);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 122);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 123);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 124);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 125);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 126);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 127);
mSamples[1].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 128);
mSamples[1].pointerCoords[1].isResampled = true;
mSamples[2].pointerCoords[0].clear();
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, 210);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, 211);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 212);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 213);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 214);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 215);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 216);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 217);
mSamples[2].pointerCoords[0].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 218);
mSamples[2].pointerCoords[1].clear();
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_X, 220);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_Y, 221);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 222);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 223);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 224);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 225);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 226);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, 227);
mSamples[2].pointerCoords[1].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 228);
}
void MotionEventTest::initializeEventWithHistory(MotionEvent* event) {
event->initialize(mId, 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC,
AMOTION_EVENT_ACTION_MOVE, 0, AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED,
AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY,
MotionClassification::NONE, mTransform, 2.0f, 2.1f,
AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION,
mRawTransform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 2,
mPointerProperties, mSamples[0].pointerCoords);
event->addSample(ARBITRARY_EVENT_TIME + 1, mSamples[1].pointerCoords);
event->addSample(ARBITRARY_EVENT_TIME + 2, mSamples[2].pointerCoords);
}
void MotionEventTest::assertEqualsEventWithHistory(const MotionEvent* event) {
// Check properties.
ASSERT_EQ(mId, event->getId());
ASSERT_EQ(InputEventType::MOTION, event->getType());
ASSERT_EQ(2, event->getDeviceId());
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, event->getSource());
ASSERT_EQ(DISPLAY_ID, event->getDisplayId());
EXPECT_EQ(HMAC, event->getHmac());
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, event->getAction());
ASSERT_EQ(AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED, event->getFlags());
ASSERT_EQ(AMOTION_EVENT_EDGE_FLAG_TOP, event->getEdgeFlags());
ASSERT_EQ(AMETA_ALT_ON, event->getMetaState());
ASSERT_EQ(AMOTION_EVENT_BUTTON_PRIMARY, event->getButtonState());
ASSERT_EQ(MotionClassification::NONE, event->getClassification());
EXPECT_EQ(mTransform, event->getTransform());
ASSERT_EQ(X_OFFSET, event->getXOffset());
ASSERT_EQ(Y_OFFSET, event->getYOffset());
ASSERT_EQ(2.0f, event->getXPrecision());
ASSERT_EQ(2.1f, event->getYPrecision());
ASSERT_EQ(ARBITRARY_DOWN_TIME, event->getDownTime());
ASSERT_EQ(2U, event->getPointerCount());
ASSERT_EQ(1, event->getPointerId(0));
ASSERT_EQ(ToolType::FINGER, event->getToolType(0));
ASSERT_EQ(2, event->getPointerId(1));
ASSERT_EQ(ToolType::STYLUS, event->getToolType(1));
ASSERT_EQ(2U, event->getHistorySize());
// Check data.
ASSERT_EQ(ARBITRARY_EVENT_TIME, event->getHistoricalEventTime(0));
ASSERT_EQ(ARBITRARY_EVENT_TIME + 1, event->getHistoricalEventTime(1));
ASSERT_EQ(ARBITRARY_EVENT_TIME + 2, event->getEventTime());
// Ensure the underlying PointerCoords are identical.
for (int sampleIdx = 0; sampleIdx < 3; sampleIdx++) {
for (int pointerIdx = 0; pointerIdx < 2; pointerIdx++) {
ASSERT_EQ(mSamples[sampleIdx].pointerCoords[pointerIdx],
event->getSamplePointerCoords()[sampleIdx * 2 + pointerIdx]);
}
}
ASSERT_NEAR(11, event->getHistoricalRawPointerCoords(0, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y),
EPSILON);
ASSERT_NEAR(21, event->getHistoricalRawPointerCoords(1, 0)->getAxisValue(AMOTION_EVENT_AXIS_Y),
EPSILON);
ASSERT_NEAR(111, event->getHistoricalRawPointerCoords(0, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y),
EPSILON);
ASSERT_NEAR(121, event->getHistoricalRawPointerCoords(1, 1)->getAxisValue(AMOTION_EVENT_AXIS_Y),
EPSILON);
ASSERT_NEAR(211, event->getRawPointerCoords(0)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON);
ASSERT_NEAR(221, event->getRawPointerCoords(1)->getAxisValue(AMOTION_EVENT_AXIS_Y), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE,
event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 0), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE,
event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 0), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE,
event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 0, 1), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE,
event->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, 1, 1), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 0),
EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawAxisValue(AMOTION_EVENT_AXIS_Y, 1),
EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 10 * RAW_X_SCALE, event->getHistoricalRawX(0, 0), EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 20 * RAW_X_SCALE, event->getHistoricalRawX(1, 0), EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 110 * RAW_X_SCALE, event->getHistoricalRawX(0, 1), EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 120 * RAW_X_SCALE, event->getHistoricalRawX(1, 1), EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 210 * RAW_X_SCALE, event->getRawX(0), EPSILON);
ASSERT_NEAR(RAW_X_OFFSET + 220 * RAW_X_SCALE, event->getRawX(1), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 11 * RAW_Y_SCALE, event->getHistoricalRawY(0, 0), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 21 * RAW_Y_SCALE, event->getHistoricalRawY(1, 0), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 111 * RAW_Y_SCALE, event->getHistoricalRawY(0, 1), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 121 * RAW_Y_SCALE, event->getHistoricalRawY(1, 1), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 211 * RAW_Y_SCALE, event->getRawY(0), EPSILON);
ASSERT_NEAR(RAW_Y_OFFSET + 221 * RAW_Y_SCALE, event->getRawY(1), EPSILON);
ASSERT_NEAR(X_OFFSET + 10 * X_SCALE, event->getHistoricalX(0, 0), EPSILON);
ASSERT_NEAR(X_OFFSET + 20 * X_SCALE, event->getHistoricalX(1, 0), EPSILON);
ASSERT_NEAR(X_OFFSET + 110 * X_SCALE, event->getHistoricalX(0, 1), EPSILON);
ASSERT_NEAR(X_OFFSET + 120 * X_SCALE, event->getHistoricalX(1, 1), EPSILON);
ASSERT_NEAR(X_OFFSET + 210 * X_SCALE, event->getX(0), EPSILON);
ASSERT_NEAR(X_OFFSET + 220 * X_SCALE, event->getX(1), EPSILON);
ASSERT_NEAR(Y_OFFSET + 11 * Y_SCALE, event->getHistoricalY(0, 0), EPSILON);
ASSERT_NEAR(Y_OFFSET + 21 * Y_SCALE, event->getHistoricalY(1, 0), EPSILON);
ASSERT_NEAR(Y_OFFSET + 111 * Y_SCALE, event->getHistoricalY(0, 1), EPSILON);
ASSERT_NEAR(Y_OFFSET + 121 * Y_SCALE, event->getHistoricalY(1, 1), EPSILON);
ASSERT_NEAR(Y_OFFSET + 211 * Y_SCALE, event->getY(0), EPSILON);
ASSERT_NEAR(Y_OFFSET + 221 * Y_SCALE, event->getY(1), EPSILON);
ASSERT_EQ(12, event->getHistoricalPressure(0, 0));
ASSERT_EQ(22, event->getHistoricalPressure(1, 0));
ASSERT_EQ(112, event->getHistoricalPressure(0, 1));
ASSERT_EQ(122, event->getHistoricalPressure(1, 1));
ASSERT_EQ(212, event->getPressure(0));
ASSERT_EQ(222, event->getPressure(1));
ASSERT_EQ(13, event->getHistoricalSize(0, 0));
ASSERT_EQ(23, event->getHistoricalSize(1, 0));
ASSERT_EQ(113, event->getHistoricalSize(0, 1));
ASSERT_EQ(123, event->getHistoricalSize(1, 1));
ASSERT_EQ(213, event->getSize(0));
ASSERT_EQ(223, event->getSize(1));
ASSERT_EQ(14, event->getHistoricalTouchMajor(0, 0));
ASSERT_EQ(24, event->getHistoricalTouchMajor(1, 0));
ASSERT_EQ(114, event->getHistoricalTouchMajor(0, 1));
ASSERT_EQ(124, event->getHistoricalTouchMajor(1, 1));
ASSERT_EQ(214, event->getTouchMajor(0));
ASSERT_EQ(224, event->getTouchMajor(1));
ASSERT_EQ(15, event->getHistoricalTouchMinor(0, 0));
ASSERT_EQ(25, event->getHistoricalTouchMinor(1, 0));
ASSERT_EQ(115, event->getHistoricalTouchMinor(0, 1));
ASSERT_EQ(125, event->getHistoricalTouchMinor(1, 1));
ASSERT_EQ(215, event->getTouchMinor(0));
ASSERT_EQ(225, event->getTouchMinor(1));
ASSERT_EQ(16, event->getHistoricalToolMajor(0, 0));
ASSERT_EQ(26, event->getHistoricalToolMajor(1, 0));
ASSERT_EQ(116, event->getHistoricalToolMajor(0, 1));
ASSERT_EQ(126, event->getHistoricalToolMajor(1, 1));
ASSERT_EQ(216, event->getToolMajor(0));
ASSERT_EQ(226, event->getToolMajor(1));
ASSERT_EQ(17, event->getHistoricalToolMinor(0, 0));
ASSERT_EQ(27, event->getHistoricalToolMinor(1, 0));
ASSERT_EQ(117, event->getHistoricalToolMinor(0, 1));
ASSERT_EQ(127, event->getHistoricalToolMinor(1, 1));
ASSERT_EQ(217, event->getToolMinor(0));
ASSERT_EQ(227, event->getToolMinor(1));
// Calculate the orientation after scaling, keeping in mind that an orientation of 0 is "up",
// and the positive y direction is "down".
auto toScaledOrientation = [](float angle) {
const float x = sinf(angle) * X_SCALE;
const float y = -cosf(angle) * Y_SCALE;
return atan2f(x, -y);
};
ASSERT_EQ(toScaledOrientation(18), event->getHistoricalOrientation(0, 0));
ASSERT_EQ(toScaledOrientation(28), event->getHistoricalOrientation(1, 0));
ASSERT_EQ(toScaledOrientation(118), event->getHistoricalOrientation(0, 1));
ASSERT_EQ(toScaledOrientation(128), event->getHistoricalOrientation(1, 1));
ASSERT_EQ(toScaledOrientation(218), event->getOrientation(0));
ASSERT_EQ(toScaledOrientation(228), event->getOrientation(1));
ASSERT_TRUE(event->isResampled(0, 0));
ASSERT_FALSE(event->isResampled(1, 0));
ASSERT_TRUE(event->isResampled(0, 1));
ASSERT_TRUE(event->isResampled(1, 1));
ASSERT_FALSE(event->isResampled(0, 2));
ASSERT_FALSE(event->isResampled(1, 2));
}
TEST_F(MotionEventTest, Properties) {
MotionEvent event;
// Initialize, add samples and check properties.
initializeEventWithHistory(&event);
ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event));
// Set source.
event.setSource(AINPUT_SOURCE_JOYSTICK);
ASSERT_EQ(AINPUT_SOURCE_JOYSTICK, event.getSource());
// Set displayId.
constexpr int32_t newDisplayId = 2;
event.setDisplayId(newDisplayId);
ASSERT_EQ(newDisplayId, event.getDisplayId());
// Set action.
event.setAction(AMOTION_EVENT_ACTION_CANCEL);
ASSERT_EQ(AMOTION_EVENT_ACTION_CANCEL, event.getAction());
// Set meta state.
event.setMetaState(AMETA_CTRL_ON);
ASSERT_EQ(AMETA_CTRL_ON, event.getMetaState());
}
TEST_F(MotionEventTest, CopyFrom_KeepHistory) {
MotionEvent event;
initializeEventWithHistory(&event);
MotionEvent copy;
copy.copyFrom(&event, /*keepHistory=*/true);
ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&event));
}
TEST_F(MotionEventTest, CopyFrom_DoNotKeepHistory) {
MotionEvent event;
initializeEventWithHistory(&event);
MotionEvent copy;
copy.copyFrom(&event, /*keepHistory=*/false);
ASSERT_EQ(event.getPointerCount(), copy.getPointerCount());
ASSERT_EQ(0U, copy.getHistorySize());
ASSERT_EQ(event.getPointerId(0), copy.getPointerId(0));
ASSERT_EQ(event.getPointerId(1), copy.getPointerId(1));
ASSERT_EQ(event.getEventTime(), copy.getEventTime());
ASSERT_EQ(event.getX(0), copy.getX(0));
}
TEST_F(MotionEventTest, OffsetLocation) {
MotionEvent event;
initializeEventWithHistory(&event);
event.offsetLocation(5.0f, -2.0f);
ASSERT_EQ(X_OFFSET + 5.0f, event.getXOffset());
ASSERT_EQ(Y_OFFSET - 2.0f, event.getYOffset());
}
TEST_F(MotionEventTest, Scale) {
MotionEvent event;
initializeEventWithHistory(&event);
const float unscaledOrientation = event.getOrientation(0);
event.scale(2.0f);
ASSERT_EQ(X_OFFSET * 2, event.getXOffset());
ASSERT_EQ(Y_OFFSET * 2, event.getYOffset());
ASSERT_NEAR((RAW_X_OFFSET + 210 * RAW_X_SCALE) * 2, event.getRawX(0), EPSILON);
ASSERT_NEAR((RAW_Y_OFFSET + 211 * RAW_Y_SCALE) * 2, event.getRawY(0), EPSILON);
ASSERT_NEAR((X_OFFSET + 210 * X_SCALE) * 2, event.getX(0), EPSILON);
ASSERT_NEAR((Y_OFFSET + 211 * Y_SCALE) * 2, event.getY(0), EPSILON);
ASSERT_EQ(212, event.getPressure(0));
ASSERT_EQ(213, event.getSize(0));
ASSERT_EQ(214 * 2, event.getTouchMajor(0));
ASSERT_EQ(215 * 2, event.getTouchMinor(0));
ASSERT_EQ(216 * 2, event.getToolMajor(0));
ASSERT_EQ(217 * 2, event.getToolMinor(0));
ASSERT_EQ(unscaledOrientation, event.getOrientation(0));
}
TEST_F(MotionEventTest, Parcel) {
Parcel parcel;
MotionEvent inEvent;
initializeEventWithHistory(&inEvent);
MotionEvent outEvent;
// Round trip.
inEvent.writeToParcel(&parcel);
parcel.setDataPosition(0);
outEvent.readFromParcel(&parcel);
ASSERT_NO_FATAL_FAILURE(assertEqualsEventWithHistory(&outEvent));
}
static void setRotationMatrix(std::array<float, 9>& matrix, float angle) {
float sin = sinf(angle);
float cos = cosf(angle);
matrix[0] = cos;
matrix[1] = -sin;
matrix[2] = 0;
matrix[3] = sin;
matrix[4] = cos;
matrix[5] = 0;
matrix[6] = 0;
matrix[7] = 0;
matrix[8] = 1.0f;
}
TEST_F(MotionEventTest, Transform) {
// Generate some points on a circle.
// Each point 'i' is a point on a circle of radius ROTATION centered at (3,2) at an angle
// of ARC * i degrees clockwise relative to the Y axis.
// The geometrical representation is irrelevant to the test, it's just easy to generate
// and check rotation. We set the orientation to the same angle.
// Coordinate system: down is increasing Y, right is increasing X.
static constexpr float PI_180 = float(M_PI / 180);
static constexpr float RADIUS = 10;
static constexpr float ARC = 36;
static constexpr float ROTATION = ARC * 2;
const size_t pointerCount = 11;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
float angle = float(i * ARC * PI_180);
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, sinf(angle) * RADIUS + 3);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, -cosf(angle) * RADIUS + 2);
pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, angle);
}
MotionEvent event;
ui::Transform identityTransform;
event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID,
INVALID_HMAC, AMOTION_EVENT_ACTION_MOVE, /*actionButton=*/0, /*flags=*/0,
AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, /*buttonState=*/0,
MotionClassification::NONE, identityTransform, /*xPrecision=*/0,
/*yPrecision=*/0, /*xCursorPosition=*/3 + RADIUS, /*yCursorPosition=*/2,
identityTransform, /*downTime=*/0, /*eventTime=*/0, pointerCount,
pointerProperties, pointerCoords);
float originalRawX = 0 + 3;
float originalRawY = -RADIUS + 2;
// Check original raw X and Y assumption.
ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);
// Now translate the motion event so the circle's origin is at (0,0).
event.offsetLocation(-3, -2);
// Offsetting the location should preserve the raw X and Y of the first point.
ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);
// Apply a rotation about the origin by ROTATION degrees clockwise.
std::array<float, 9> matrix;
setRotationMatrix(matrix, ROTATION * PI_180);
event.transform(matrix);
// Check the points.
for (size_t i = 0; i < pointerCount; i++) {
float angle = float((i * ARC + ROTATION) * PI_180);
ASSERT_NEAR(sinf(angle) * RADIUS, event.getX(i), 0.001);
ASSERT_NEAR(-cosf(angle) * RADIUS, event.getY(i), 0.001);
ASSERT_NEAR(tanf(angle), tanf(event.getOrientation(i)), 0.1);
}
// Check cursor positions. The original cursor position is at (3 + RADIUS, 2), where the center
// of the circle is (3, 2), so the cursor position is to the right of the center of the circle.
// The choice of triangular functions in this test defines the angle of rotation clockwise
// relative to the y-axis. Therefore the cursor position's angle is 90 degrees. Here we swap the
// triangular function so that we don't have to add the 90 degrees.
ASSERT_NEAR(cosf(PI_180 * ROTATION) * RADIUS, event.getXCursorPosition(), 0.001);
ASSERT_NEAR(sinf(PI_180 * ROTATION) * RADIUS, event.getYCursorPosition(), 0.001);
// Applying the transformation should preserve the raw X and Y of the first point.
ASSERT_NEAR(originalRawX, event.getRawX(0), 0.001);
ASSERT_NEAR(originalRawY, event.getRawY(0), 0.001);
}
MotionEvent createMotionEvent(int32_t source, uint32_t action, float x, float y, float dx, float dy,
const ui::Transform& transform, const ui::Transform& rawTransform) {
std::vector<PointerProperties> pointerProperties;
pointerProperties.push_back(PointerProperties{/*id=*/0, ToolType::FINGER});
std::vector<PointerCoords> pointerCoords;
pointerCoords.emplace_back().clear();
pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_X, x);
pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, y);
pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx);
pointerCoords.back().setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy);
nsecs_t eventTime = systemTime(SYSTEM_TIME_MONOTONIC);
MotionEvent event;
event.initialize(InputEvent::nextId(), /* deviceId */ 1, source,
/* displayId */ 0, INVALID_HMAC, action,
/* actionButton */ 0, /* flags */ 0, /* edgeFlags */ 0, AMETA_NONE,
/* buttonState */ 0, MotionClassification::NONE, transform,
/* xPrecision */ 0, /* yPrecision */ 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, rawTransform, eventTime, eventTime,
pointerCoords.size(), pointerProperties.data(), pointerCoords.data());
return event;
}
MotionEvent createTouchDownEvent(float x, float y, float dx, float dy,
const ui::Transform& transform,
const ui::Transform& rawTransform) {
return createMotionEvent(AINPUT_SOURCE_TOUCHSCREEN, AMOTION_EVENT_ACTION_DOWN, x, y, dx, dy,
transform, rawTransform);
}
TEST_F(MotionEventTest, ApplyTransform) {
// Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
ui::Transform identity;
ui::Transform transform(ui::Transform::ROT_90, 800, 400);
transform.set(transform.tx() + 20, transform.ty() + 40);
ui::Transform rawTransform(ui::Transform::ROT_90, 800, 400);
MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform);
ASSERT_EQ(700, event.getRawX(0));
ASSERT_EQ(60, event.getRawY(0));
ASSERT_NE(event.getRawX(0), event.getX(0));
ASSERT_NE(event.getRawY(0), event.getY(0));
// Relative values should be rotated but not translated.
ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0));
ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0));
MotionEvent changedEvent = createTouchDownEvent(60, 100, 42, 96, identity, identity);
const std::array<float, 9> rowMajor{transform[0][0], transform[1][0], transform[2][0],
transform[0][1], transform[1][1], transform[2][1],
transform[0][2], transform[1][2], transform[2][2]};
changedEvent.applyTransform(rowMajor);
// transformContent effectively rotates the raw coordinates, so those should now include
// both rotation AND offset.
ASSERT_EQ(720, changedEvent.getRawX(0));
ASSERT_EQ(100, changedEvent.getRawY(0));
// Relative values should be rotated but not translated.
ASSERT_EQ(-96, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0));
ASSERT_EQ(42, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0));
// The transformed output should be the same then.
ASSERT_NEAR(event.getX(0), changedEvent.getX(0), 0.001);
ASSERT_NEAR(event.getY(0), changedEvent.getY(0), 0.001);
ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0),
changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), 0.001);
ASSERT_NEAR(event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0),
changedEvent.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), 0.001);
}
TEST_F(MotionEventTest, JoystickAndTouchpadAreNotTransformed) {
constexpr static std::array kNonTransformedSources =
{std::pair(AINPUT_SOURCE_TOUCHPAD, AMOTION_EVENT_ACTION_DOWN),
std::pair(AINPUT_SOURCE_JOYSTICK, AMOTION_EVENT_ACTION_MOVE),
std::pair(AINPUT_SOURCE_MOUSE_RELATIVE, AMOTION_EVENT_ACTION_MOVE)};
// Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
ui::Transform transform(ui::Transform::ROT_90, 800, 400);
transform.set(transform.tx() + 20, transform.ty() + 40);
for (const auto& [source, action] : kNonTransformedSources) {
const MotionEvent event =
createMotionEvent(source, action, 60, 100, 0, 0, transform, transform);
// These events should not be transformed in any way.
ASSERT_EQ(60, event.getX(0));
ASSERT_EQ(100, event.getY(0));
ASSERT_EQ(event.getRawX(0), event.getX(0));
ASSERT_EQ(event.getRawY(0), event.getY(0));
}
}
TEST_F(MotionEventTest, NonPointerSourcesAreNotTranslated) {
constexpr static std::array kNonPointerSources = {std::pair(AINPUT_SOURCE_TRACKBALL,
AMOTION_EVENT_ACTION_DOWN),
std::pair(AINPUT_SOURCE_TOUCH_NAVIGATION,
AMOTION_EVENT_ACTION_MOVE)};
// Create a rotate-90 transform with an offset (like a window which isn't fullscreen).
ui::Transform transform(ui::Transform::ROT_90, 800, 400);
transform.set(transform.tx() + 20, transform.ty() + 40);
for (const auto& [source, action] : kNonPointerSources) {
const MotionEvent event =
createMotionEvent(source, action, 60, 100, 42, 96, transform, transform);
// Since this event comes from a non-pointer source, it should include rotation but not
// translation/offset.
ASSERT_EQ(-100, event.getX(0));
ASSERT_EQ(60, event.getY(0));
ASSERT_EQ(event.getRawX(0), event.getX(0));
ASSERT_EQ(event.getRawY(0), event.getY(0));
}
}
TEST_F(MotionEventTest, AxesAreCorrectlyTransformed) {
const ui::Transform identity;
ui::Transform transform;
transform.set({1.1, -2.2, 3.3, -4.4, 5.5, -6.6, 0, 0, 1});
ui::Transform rawTransform;
rawTransform.set({-6.6, 5.5, -4.4, 3.3, -2.2, 1.1, 0, 0, 1});
auto transformWithoutTranslation = [](const ui::Transform& t, float x, float y) {
auto newPoint = t.transform(x, y);
auto newOrigin = t.transform(0, 0);
return newPoint - newOrigin;
};
const MotionEvent event = createTouchDownEvent(60, 100, 42, 96, transform, rawTransform);
// The x and y axes should have the window transform applied.
const auto newPoint = transform.transform(60, 100);
ASSERT_NEAR(newPoint.x, event.getX(0), EPSILON);
ASSERT_NEAR(newPoint.y, event.getY(0), EPSILON);
// The raw values should have the display transform applied.
const auto raw = rawTransform.transform(60, 100);
ASSERT_NEAR(raw.x, event.getRawX(0), EPSILON);
ASSERT_NEAR(raw.y, event.getRawY(0), EPSILON);
// Relative values should have the window transform applied without any translation.
const auto rel = transformWithoutTranslation(transform, 42, 96);
ASSERT_NEAR(rel.x, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, 0), EPSILON);
ASSERT_NEAR(rel.y, event.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, 0), EPSILON);
}
TEST_F(MotionEventTest, Initialize_SetsClassification) {
std::array<MotionClassification, 3> classifications = {
MotionClassification::NONE,
MotionClassification::AMBIGUOUS_GESTURE,
MotionClassification::DEEP_PRESS,
};
MotionEvent event;
constexpr size_t pointerCount = 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
}
ui::Transform identityTransform;
for (MotionClassification classification : classifications) {
event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_TOUCHSCREEN,
DISPLAY_ID, INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0,
AMOTION_EVENT_EDGE_FLAG_NONE, AMETA_NONE, 0, classification,
identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION,
AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, /*downTime=*/0,
/*eventTime=*/0, pointerCount, pointerProperties, pointerCoords);
ASSERT_EQ(classification, event.getClassification());
}
}
TEST_F(MotionEventTest, Initialize_SetsCursorPosition) {
MotionEvent event;
constexpr size_t pointerCount = 1;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (size_t i = 0; i < pointerCount; i++) {
pointerProperties[i].clear();
pointerProperties[i].id = i;
pointerCoords[i].clear();
}
ui::Transform identityTransform;
event.initialize(InputEvent::nextId(), /*deviceId=*/0, AINPUT_SOURCE_MOUSE, DISPLAY_ID,
INVALID_HMAC, AMOTION_EVENT_ACTION_DOWN, 0, 0, AMOTION_EVENT_EDGE_FLAG_NONE,
AMETA_NONE, 0, MotionClassification::NONE, identityTransform, 0, 0,
/*xCursorPosition=*/280, /*yCursorPosition=*/540, identityTransform,
/*downTime=*/0, /*eventTime=*/0, pointerCount, pointerProperties,
pointerCoords);
event.offsetLocation(20, 60);
ASSERT_EQ(280, event.getRawXCursorPosition());
ASSERT_EQ(540, event.getRawYCursorPosition());
ASSERT_EQ(300, event.getXCursorPosition());
ASSERT_EQ(600, event.getYCursorPosition());
}
TEST_F(MotionEventTest, SetCursorPosition) {
MotionEvent event;
initializeEventWithHistory(&event);
event.setSource(AINPUT_SOURCE_MOUSE);
event.setCursorPosition(3, 4);
ASSERT_EQ(3, event.getXCursorPosition());
ASSERT_EQ(4, event.getYCursorPosition());
}
TEST_F(MotionEventTest, CoordinatesAreRoundedAppropriately) {
// These are specifically integral values, since we are testing for rounding.
const vec2 EXPECTED{400.f, 700.f};
// Pick a transform such that transforming the point with its inverse and bringing that
// back to the original coordinate space results in a non-zero error amount due to the
// nature of floating point arithmetics. This can happen when the display is scaled.
// For example, the 'adb shell wm size' command can be used to set an override for the
// logical display size, which could result in the display being scaled.
constexpr float scale = 720.f / 1080.f;
ui::Transform transform;
transform.set(scale, 0, 0, scale);
ASSERT_NE(EXPECTED, transform.transform(transform.inverse().transform(EXPECTED)));
// Store the inverse-transformed values in the motion event.
const vec2 rawCoords = transform.inverse().transform(EXPECTED);
PointerCoords pc{};
pc.setAxisValue(AMOTION_EVENT_AXIS_X, rawCoords.x);
pc.setAxisValue(AMOTION_EVENT_AXIS_Y, rawCoords.y);
PointerProperties pp{};
MotionEvent event;
event.initialize(InputEvent::nextId(), 2, AINPUT_SOURCE_TOUCHSCREEN, DISPLAY_ID, HMAC,
AMOTION_EVENT_ACTION_MOVE, 0, AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED,
AMOTION_EVENT_EDGE_FLAG_TOP, AMETA_ALT_ON, AMOTION_EVENT_BUTTON_PRIMARY,
MotionClassification::NONE, transform, 2.0f, 2.1f, rawCoords.x, rawCoords.y,
transform, ARBITRARY_DOWN_TIME, ARBITRARY_EVENT_TIME, 1, &pp, &pc);
// When using the getters from the MotionEvent to obtain the coordinates, the transformed
// values should be rounded by an appropriate amount so that they now precisely equal the
// original coordinates.
ASSERT_EQ(EXPECTED.x, event.getX(0));
ASSERT_EQ(EXPECTED.y, event.getY(0));
ASSERT_EQ(EXPECTED.x, event.getRawX(0));
ASSERT_EQ(EXPECTED.y, event.getRawY(0));
ASSERT_EQ(EXPECTED.x, event.getXCursorPosition());
ASSERT_EQ(EXPECTED.y, event.getYCursorPosition());
}
} // namespace android