blob: 43e9fac5e27882c0070df618238a4f5e313a0d47 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <ftl/details/array_traits.h>
#include <ftl/static_vector.h>
#include <algorithm>
#include <iterator>
#include <utility>
#include <variant>
#include <vector>
#include <ftl/details/type_traits.h>
namespace android::ftl {
template <typename>
struct is_small_vector;
// ftl::StaticVector that promotes to std::vector when full. SmallVector is a drop-in replacement
// for std::vector with statically allocated storage for N elements, whose goal is to improve run
// time by avoiding heap allocation and increasing probability of cache hits. The standard API is
// augmented by an unstable_erase operation that does not preserve order, and a replace operation
// that destructively emplaces.
//
// Unlike std::vector, T does not require copy/move assignment, so may be an object with const data
// members, or be const itself.
//
// SmallVector<T, 0> is a specialization that thinly wraps std::vector.
//
// Example usage:
//
// ftl::SmallVector<char, 3> vector;
// assert(vector.empty());
// assert(!vector.dynamic());
//
// vector = {'a', 'b', 'c'};
// assert(vector.size() == 3u);
// assert(!vector.dynamic());
//
// vector.push_back('d');
// assert(vector.dynamic());
//
// vector.unstable_erase(vector.begin());
// assert(vector == (ftl::SmallVector{'d', 'b', 'c'}));
//
// vector.pop_back();
// assert(vector.back() == 'b');
// assert(vector.dynamic());
//
// const char array[] = "hi";
// vector = ftl::SmallVector(array);
// assert(vector == (ftl::SmallVector{'h', 'i', '\0'}));
// assert(!vector.dynamic());
//
// ftl::SmallVector strings = ftl::init::list<std::string>("abc")("123456", 3u)(3u, '?');
// assert(strings.size() == 3u);
// assert(!strings.dynamic());
//
// assert(strings[0] == "abc");
// assert(strings[1] == "123");
// assert(strings[2] == "???");
//
template <typename T, std::size_t N>
class SmallVector final : details::ArrayTraits<T>, details::ArrayComparators<SmallVector> {
using Static = StaticVector<T, N>;
using Dynamic = SmallVector<T, 0>;
public:
FTL_ARRAY_TRAIT(T, value_type);
FTL_ARRAY_TRAIT(T, size_type);
FTL_ARRAY_TRAIT(T, difference_type);
FTL_ARRAY_TRAIT(T, pointer);
FTL_ARRAY_TRAIT(T, reference);
FTL_ARRAY_TRAIT(T, iterator);
FTL_ARRAY_TRAIT(T, reverse_iterator);
FTL_ARRAY_TRAIT(T, const_pointer);
FTL_ARRAY_TRAIT(T, const_reference);
FTL_ARRAY_TRAIT(T, const_iterator);
FTL_ARRAY_TRAIT(T, const_reverse_iterator);
// Creates an empty vector.
SmallVector() = default;
// Constructs at most N elements. See StaticVector for underlying constructors.
template <typename Arg, typename... Args,
typename = std::enable_if_t<!is_small_vector<details::remove_cvref_t<Arg>>{}>>
SmallVector(Arg&& arg, Args&&... args)
: vector_(std::in_place_type<Static>, std::forward<Arg>(arg), std::forward<Args>(args)...) {}
// Copies or moves elements from a smaller convertible vector.
template <typename U, std::size_t M, typename = std::enable_if_t<(M > 0)>>
SmallVector(SmallVector<U, M> other) : vector_(convert(std::move(other))) {}
void swap(SmallVector& other) { vector_.swap(other.vector_); }
// Returns whether the vector is backed by static or dynamic storage.
bool dynamic() const { return std::holds_alternative<Dynamic>(vector_); }
// Avoid std::visit as it generates a dispatch table.
#define DISPATCH(T, F, ...) \
T F() __VA_ARGS__ { \
return dynamic() ? std::get<Dynamic>(vector_).F() : std::get<Static>(vector_).F(); \
}
DISPATCH(size_type, max_size, const)
DISPATCH(size_type, size, const)
DISPATCH(bool, empty, const)
DISPATCH(iterator, begin, )
DISPATCH(const_iterator, begin, const)
DISPATCH(const_iterator, cbegin, const)
DISPATCH(iterator, end, )
DISPATCH(const_iterator, end, const)
DISPATCH(const_iterator, cend, const)
DISPATCH(reverse_iterator, rbegin, )
DISPATCH(const_reverse_iterator, rbegin, const)
DISPATCH(const_reverse_iterator, crbegin, const)
DISPATCH(reverse_iterator, rend, )
DISPATCH(const_reverse_iterator, rend, const)
DISPATCH(const_reverse_iterator, crend, const)
DISPATCH(iterator, last, )
DISPATCH(const_iterator, last, const)
DISPATCH(reference, front, )
DISPATCH(const_reference, front, const)
DISPATCH(reference, back, )
DISPATCH(const_reference, back, const)
reference operator[](size_type i) {
return dynamic() ? std::get<Dynamic>(vector_)[i] : std::get<Static>(vector_)[i];
}
const_reference operator[](size_type i) const { return const_cast<SmallVector&>(*this)[i]; }
// Replaces an element, and returns a reference to it. The iterator must be dereferenceable, so
// replacing at end() is erroneous.
//
// The element is emplaced via move constructor, so type T does not need to define copy/move
// assignment, e.g. its data members may be const.
//
// The arguments may directly or indirectly refer to the element being replaced.
//
// Iterators to the replaced element point to its replacement, and others remain valid.
//
template <typename... Args>
reference replace(const_iterator it, Args&&... args) {
if (dynamic()) {
return std::get<Dynamic>(vector_).replace(it, std::forward<Args>(args)...);
} else {
return std::get<Static>(vector_).replace(it, std::forward<Args>(args)...);
}
}
// Appends an element, and returns a reference to it.
//
// If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
// Otherwise, only the end() iterator is invalidated.
//
template <typename... Args>
reference emplace_back(Args&&... args) {
constexpr auto kInsertStatic = &Static::template emplace_back<Args...>;
constexpr auto kInsertDynamic = &Dynamic::template emplace_back<Args...>;
return *insert<kInsertStatic, kInsertDynamic>(std::forward<Args>(args)...);
}
// Appends an element.
//
// If the vector reaches its static or dynamic capacity, then all iterators are invalidated.
// Otherwise, only the end() iterator is invalidated.
//
void push_back(const value_type& v) {
constexpr auto kInsertStatic =
static_cast<bool (Static::*)(const value_type&)>(&Static::push_back);
constexpr auto kInsertDynamic =
static_cast<bool (Dynamic::*)(const value_type&)>(&Dynamic::push_back);
insert<kInsertStatic, kInsertDynamic>(v);
}
void push_back(value_type&& v) {
constexpr auto kInsertStatic = static_cast<bool (Static::*)(value_type &&)>(&Static::push_back);
constexpr auto kInsertDynamic =
static_cast<bool (Dynamic::*)(value_type &&)>(&Dynamic::push_back);
insert<kInsertStatic, kInsertDynamic>(std::move(v));
}
// Removes the last element. The vector must not be empty, or the call is erroneous.
//
// The last() and end() iterators are invalidated.
//
DISPATCH(void, pop_back, )
// Removes all elements.
//
// All iterators are invalidated.
//
DISPATCH(void, clear, )
#undef DISPATCH
// Erases an element, but does not preserve order. Rather than shifting subsequent elements,
// this moves the last element to the slot of the erased element.
//
// The last() and end() iterators, as well as those to the erased element, are invalidated.
//
void unstable_erase(iterator it) {
if (dynamic()) {
std::get<Dynamic>(vector_).unstable_erase(it);
} else {
std::get<Static>(vector_).unstable_erase(it);
}
}
// Extracts the elements as std::vector.
std::vector<T> promote() && {
if (dynamic()) {
return std::get<Dynamic>(std::move(vector_)).promote();
} else {
return {std::make_move_iterator(begin()), std::make_move_iterator(end())};
}
}
private:
template <typename, std::size_t>
friend class SmallVector;
template <typename U, std::size_t M>
static std::variant<Static, Dynamic> convert(SmallVector<U, M>&& other) {
using Other = SmallVector<U, M>;
if (other.dynamic()) {
return std::get<typename Other::Dynamic>(std::move(other.vector_));
} else {
return std::get<typename Other::Static>(std::move(other.vector_));
}
}
template <auto InsertStatic, auto InsertDynamic, typename... Args>
auto insert(Args&&... args) {
if (Dynamic* const vector = std::get_if<Dynamic>(&vector_)) {
return (vector->*InsertDynamic)(std::forward<Args>(args)...);
}
auto& vector = std::get<Static>(vector_);
if (vector.full()) {
return (promote(vector).*InsertDynamic)(std::forward<Args>(args)...);
} else {
return (vector.*InsertStatic)(std::forward<Args>(args)...);
}
}
Dynamic& promote(Static& static_vector) {
assert(static_vector.full());
// Allocate double capacity to reduce probability of reallocation.
Dynamic vector;
vector.reserve(Static::max_size() * 2);
std::move(static_vector.begin(), static_vector.end(), std::back_inserter(vector));
return vector_.template emplace<Dynamic>(std::move(vector));
}
std::variant<Static, Dynamic> vector_;
};
// Partial specialization without static storage.
template <typename T>
class SmallVector<T, 0> final : details::ArrayTraits<T>,
details::ArrayComparators<SmallVector>,
details::ArrayIterators<SmallVector<T, 0>, T>,
std::vector<T> {
using details::ArrayTraits<T>::replace_at;
using Iter = details::ArrayIterators<SmallVector, T>;
using Impl = std::vector<T>;
friend Iter;
public:
FTL_ARRAY_TRAIT(T, value_type);
FTL_ARRAY_TRAIT(T, size_type);
FTL_ARRAY_TRAIT(T, difference_type);
FTL_ARRAY_TRAIT(T, pointer);
FTL_ARRAY_TRAIT(T, reference);
FTL_ARRAY_TRAIT(T, iterator);
FTL_ARRAY_TRAIT(T, reverse_iterator);
FTL_ARRAY_TRAIT(T, const_pointer);
FTL_ARRAY_TRAIT(T, const_reference);
FTL_ARRAY_TRAIT(T, const_iterator);
FTL_ARRAY_TRAIT(T, const_reverse_iterator);
// See std::vector for underlying constructors.
using Impl::Impl;
// Copies and moves a vector, respectively.
SmallVector(const SmallVector&) = default;
SmallVector(SmallVector&&) = default;
// Constructs elements in place. See StaticVector for underlying constructor.
template <typename U, std::size_t... Sizes, typename... Types>
SmallVector(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
: SmallVector(SmallVector<T, sizeof...(Sizes)>(std::move(list))) {}
// Copies or moves elements from a convertible vector.
template <typename U, std::size_t M>
SmallVector(SmallVector<U, M> other) : Impl(convert(std::move(other))) {}
SmallVector& operator=(SmallVector other) {
// Define copy/move assignment in terms of copy/move construction.
swap(other);
return *this;
}
void swap(SmallVector& other) { Impl::swap(other); }
using Impl::empty;
using Impl::max_size;
using Impl::size;
using Impl::reserve;
// std::vector iterators are not necessarily raw pointers.
iterator begin() { return Impl::data(); }
iterator end() { return Impl::data() + size(); }
using Iter::begin;
using Iter::end;
using Iter::cbegin;
using Iter::cend;
using Iter::rbegin;
using Iter::rend;
using Iter::crbegin;
using Iter::crend;
using Iter::last;
using Iter::back;
using Iter::front;
using Iter::operator[];
template <typename... Args>
reference replace(const_iterator it, Args&&... args) {
return replace_at(it, std::forward<Args>(args)...);
}
template <typename... Args>
iterator emplace_back(Args&&... args) {
return &Impl::emplace_back(std::forward<Args>(args)...);
}
bool push_back(const value_type& v) {
Impl::push_back(v);
return true;
}
bool push_back(value_type&& v) {
Impl::push_back(std::move(v));
return true;
}
using Impl::clear;
using Impl::pop_back;
void unstable_erase(iterator it) {
if (it != last()) replace(it, std::move(back()));
pop_back();
}
std::vector<T> promote() && { return std::move(*this); }
private:
template <typename U, std::size_t M>
static Impl convert(SmallVector<U, M>&& other) {
if constexpr (std::is_constructible_v<Impl, std::vector<U>&&>) {
return std::move(other).promote();
} else {
SmallVector vector(other.size());
// Consistently with StaticVector, T only requires copy/move construction from U, rather than
// copy/move assignment.
auto it = vector.begin();
for (auto& element : other) {
vector.replace(it++, std::move(element));
}
return vector;
}
}
};
template <typename>
struct is_small_vector : std::false_type {};
template <typename T, std::size_t N>
struct is_small_vector<SmallVector<T, N>> : std::true_type {};
// Deduction guide for array constructor.
template <typename T, std::size_t N>
SmallVector(T (&)[N]) -> SmallVector<std::remove_cv_t<T>, N>;
// Deduction guide for variadic constructor.
template <typename T, typename... Us, typename V = std::decay_t<T>,
typename = std::enable_if_t<(std::is_constructible_v<V, Us> && ...)>>
SmallVector(T&&, Us&&...) -> SmallVector<V, 1 + sizeof...(Us)>;
// Deduction guide for in-place constructor.
template <typename T, std::size_t... Sizes, typename... Types>
SmallVector(InitializerList<T, std::index_sequence<Sizes...>, Types...>&&)
-> SmallVector<T, sizeof...(Sizes)>;
// Deduction guide for StaticVector conversion.
template <typename T, std::size_t N>
SmallVector(StaticVector<T, N>&&) -> SmallVector<T, N>;
template <typename T, std::size_t N>
inline void swap(SmallVector<T, N>& lhs, SmallVector<T, N>& rhs) {
lhs.swap(rhs);
}
} // namespace android::ftl