blob: 91c2d1f3be5aed3ab0ebfeb2d61366b76a0be32d [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AidlSensorHalWrapper.h"
#include "ISensorsWrapper.h"
#include "SensorDeviceUtils.h"
#include "android/hardware/sensors/2.0/types.h"
#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
#include <aidlcommonsupport/NativeHandle.h>
#include <android-base/logging.h>
#include <android/binder_manager.h>
#include <aidl/sensors/convert.h>
using ::aidl::android::hardware::sensors::AdditionalInfo;
using ::aidl::android::hardware::sensors::DynamicSensorInfo;
using ::aidl::android::hardware::sensors::Event;
using ::aidl::android::hardware::sensors::ISensors;
using ::aidl::android::hardware::sensors::SensorInfo;
using ::aidl::android::hardware::sensors::SensorStatus;
using ::aidl::android::hardware::sensors::SensorType;
using ::android::AidlMessageQueue;
using ::android::hardware::EventFlag;
using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
using ::android::hardware::sensors::implementation::convertToStatus;
using ::android::hardware::sensors::implementation::convertToSensor;
using ::android::hardware::sensors::implementation::convertToSensorEvent;
using ::android::hardware::sensors::implementation::convertFromSensorEvent;
namespace android {
namespace {
void serviceDied(void *cookie) {
ALOGW("Sensors HAL died, attempting to reconnect.");
((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
}
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
} // anonymous namespace
class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
public:
AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
: mSensorDeviceCallback(sensorDeviceCallback) {}
::ndk::ScopedAStatus onDynamicSensorsConnected(
const std::vector<SensorInfo> &sensorInfos) override {
std::vector<sensor_t> sensors;
for (const SensorInfo &sensorInfo : sensorInfos) {
sensor_t sensor;
convertToSensor(sensorInfo, &sensor);
sensors.push_back(sensor);
}
mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
return ::ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus onDynamicSensorsDisconnected(
const std::vector<int32_t> &sensorHandles) override {
mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
return ::ndk::ScopedAStatus::ok();
}
private:
ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
};
AidlSensorHalWrapper::AidlSensorHalWrapper()
: mEventQueueFlag(nullptr),
mWakeLockQueueFlag(nullptr),
mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
bool AidlSensorHalWrapper::supportsPolling() {
return false;
}
bool AidlSensorHalWrapper::supportsMessageQueues() {
return true;
}
bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
mSensorDeviceCallback = callback;
mSensors = nullptr;
auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
if (mSensors != nullptr) {
AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
}
ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
if (binder.get() != nullptr) {
mSensors = ISensors::fromBinder(binder);
mEventQueue = std::make_unique<AidlMessageQueue<
Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
/*configureEventFlagWord=*/true);
mWakeLockQueue = std::make_unique<AidlMessageQueue<
int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
/*configureEventFlagWord=*/true);
if (mEventQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mEventQueueFlag);
}
EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
if (mWakeLockQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
}
EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
} else {
ALOGE("Could not connect to declared sensors AIDL HAL");
}
}
return mSensors != nullptr;
}
void AidlSensorHalWrapper::prepareForReconnect() {
mReconnecting = true;
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
}
ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
return 0;
}
ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
ssize_t eventsRead = 0;
size_t availableEvents = mEventQueue->availableToRead();
if (availableEvents == 0) {
uint32_t eventFlagState = 0;
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
// able to be called with the correct number of events to read. If the specified number of
// events is not available, then read() would return no events, possibly introducing
// additional latency in delivering events to applications.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
asBaseType(INTERNAL_WAKE),
&eventFlagState);
}
availableEvents = mEventQueue->availableToRead();
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
ALOGD("Event FMQ internal wake, returning from poll with no events");
return DEAD_OBJECT;
} else if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mInHalBypassMode &&
availableEvents == 0) {
ALOGD("Event FMQ internal wake due to HAL Bypass Mode, returning from poll with no "
"events");
return OK;
}
}
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
if (eventsToRead > 0) {
if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
// Notify the Sensors HAL that sensor events have been read. This is required to support
// the use of writeBlocking by the Sensors HAL.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
}
for (size_t i = 0; i < eventsToRead; i++) {
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
}
eventsRead = eventsToRead;
} else {
ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
availableEvents);
}
}
return eventsRead;
}
std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
std::vector<sensor_t> sensorsFound;
if (mSensors != nullptr) {
std::vector<SensorInfo> list;
mSensors->getSensorsList(&list);
for (size_t i = 0; i < list.size(); i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
sensorsFound.push_back(sensor);
}
}
return sensorsFound;
}
status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
if (mSensors == nullptr) return NO_INIT;
if (mode == SensorService::Mode::HAL_BYPASS_REPLAY_DATA_INJECTION) {
if (!mInHalBypassMode) {
mInHalBypassMode = true;
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
return OK;
} else {
if (mInHalBypassMode) {
mInHalBypassMode = false;
}
}
return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
}
status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->activate(sensorHandle, enabled));
}
status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
}
status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->flush(sensorHandle));
}
status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
if (mSensors == nullptr) return NO_INIT;
Event ev;
convertFromSensorEvent(*event, &ev);
return convertToStatus(mSensors->injectSensorData(ev));
}
status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
int32_t *channelHandle) {
if (mSensors == nullptr) return NO_INIT;
ISensors::SharedMemInfo::SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
ISensors::SharedMemInfo::SharedMemFormat format =
ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
ISensors::SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<int32_t>(memory->size),
.memoryHandle = dupToAidl(memory->handle),
};
return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
}
status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
}
status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t *config) {
if (mSensors == nullptr) return NO_INIT;
ISensors::RateLevel rate;
switch (config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = ISensors::RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = ISensors::RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = ISensors::RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = ISensors::RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
int32_t token;
status_t status = convertToStatus(
mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token));
if (status == OK && rate != ISensors::RateLevel::STOP) {
status = static_cast<status_t>(token);
}
return status;
}
void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
int signedCount = (int)count;
if (mWakeLockQueue->write(&signedCount)) {
mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
} else {
ALOGW("Failed to write wake lock handled");
}
}
} // namespace android