blob: 2e296daa226bf423bd774e3e9fa4ccc360f0146a [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "EventHub.h"
#include "UinputDevice.h"
#include <gtest/gtest.h>
#include <inttypes.h>
#include <linux/uinput.h>
#include <log/log.h>
#include <chrono>
#define TAG "EventHub_test"
using android::createUinputDevice;
using android::EventHub;
using android::EventHubInterface;
using android::InputDeviceIdentifier;
using android::RawEvent;
using android::sp;
using android::UinputHomeKey;
using std::chrono_literals::operator""ms;
using std::chrono_literals::operator""s;
static constexpr bool DEBUG = false;
static void dumpEvents(const std::vector<RawEvent>& events) {
for (const RawEvent& event : events) {
if (event.type >= EventHubInterface::FIRST_SYNTHETIC_EVENT) {
switch (event.type) {
case EventHubInterface::DEVICE_ADDED:
ALOGI("Device added: %i", event.deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
ALOGI("Device removed: %i", event.deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
ALOGI("Finished device scan.");
break;
}
} else {
ALOGI("Device %" PRId32 " : time = %" PRId64 ", type %i, code %i, value %i",
event.deviceId, event.when, event.type, event.code, event.value);
}
}
}
// --- EventHubTest ---
class EventHubTest : public testing::Test {
protected:
std::unique_ptr<EventHubInterface> mEventHub;
// We are only going to emulate a single input device currently.
std::unique_ptr<UinputHomeKey> mKeyboard;
int32_t mDeviceId;
virtual void SetUp() override {
#if !defined(__ANDROID__)
GTEST_SKIP() << "It's only possible to interact with uinput on device";
#endif
mEventHub = std::make_unique<EventHub>();
consumeInitialDeviceAddedEvents();
mKeyboard = createUinputDevice<UinputHomeKey>();
ASSERT_NO_FATAL_FAILURE(mDeviceId = waitForDeviceCreation());
}
virtual void TearDown() override {
#if !defined(__ANDROID__)
return;
#endif
mKeyboard.reset();
waitForDeviceClose(mDeviceId);
assertNoMoreEvents();
}
/**
* Return the device id of the created device.
*/
int32_t waitForDeviceCreation();
void waitForDeviceClose(int32_t deviceId);
void consumeInitialDeviceAddedEvents();
void assertNoMoreEvents();
/**
* Read events from the EventHub.
*
* If expectedEvents is set, wait for a significant period of time to try and ensure that
* the expected number of events has been read. The number of returned events
* may be smaller (if timeout has been reached) or larger than expectedEvents.
*
* If expectedEvents is not set, return all of the immediately available events.
*/
std::vector<RawEvent> getEvents(std::optional<size_t> expectedEvents = std::nullopt);
};
std::vector<RawEvent> EventHubTest::getEvents(std::optional<size_t> expectedEvents) {
std::vector<RawEvent> events;
while (true) {
std::chrono::milliseconds timeout = 0s;
if (expectedEvents) {
timeout = 2s;
}
std::vector<RawEvent> newEvents = mEventHub->getEvents(timeout.count());
if (newEvents.empty()) {
break;
}
events.insert(events.end(), newEvents.begin(), newEvents.end());
if (expectedEvents && events.size() >= *expectedEvents) {
break;
}
}
if (DEBUG) {
dumpEvents(events);
}
return events;
}
/**
* Since the test runs on a real platform, there will be existing devices
* in addition to the test devices being added. Therefore, when EventHub is first created,
* it will return a lot of "device added" type of events.
*/
void EventHubTest::consumeInitialDeviceAddedEvents() {
std::vector<RawEvent> events = getEvents();
std::set<int32_t /*deviceId*/> existingDevices;
// All of the events should be DEVICE_ADDED type, except the last one.
for (size_t i = 0; i < events.size() - 1; i++) {
const RawEvent& event = events[i];
EXPECT_EQ(EventHubInterface::DEVICE_ADDED, event.type);
existingDevices.insert(event.deviceId);
}
// None of the existing system devices should be changing while this test is run.
// Check that the returned device ids are unique for all of the existing devices.
EXPECT_EQ(existingDevices.size(), events.size() - 1);
// The last event should be "finished device scan"
EXPECT_EQ(EventHubInterface::FINISHED_DEVICE_SCAN, events[events.size() - 1].type);
}
int32_t EventHubTest::waitForDeviceCreation() {
// Wait a little longer than usual, to ensure input device has time to be created
std::vector<RawEvent> events = getEvents(2);
if (events.size() != 2) {
ADD_FAILURE() << "Instead of 2 events, received " << events.size();
return 0; // this value is unused
}
const RawEvent& deviceAddedEvent = events[0];
EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_ADDED), deviceAddedEvent.type);
InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceAddedEvent.deviceId);
const int32_t deviceId = deviceAddedEvent.deviceId;
EXPECT_EQ(identifier.name, mKeyboard->getName());
const RawEvent& finishedDeviceScanEvent = events[1];
EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN),
finishedDeviceScanEvent.type);
return deviceId;
}
void EventHubTest::waitForDeviceClose(int32_t deviceId) {
std::vector<RawEvent> events = getEvents(2);
ASSERT_EQ(2U, events.size());
const RawEvent& deviceRemovedEvent = events[0];
EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_REMOVED), deviceRemovedEvent.type);
EXPECT_EQ(deviceId, deviceRemovedEvent.deviceId);
const RawEvent& finishedDeviceScanEvent = events[1];
EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN),
finishedDeviceScanEvent.type);
}
void EventHubTest::assertNoMoreEvents() {
std::vector<RawEvent> events = getEvents();
ASSERT_TRUE(events.empty());
}
/**
* Ensure that two identical devices get assigned unique descriptors from EventHub.
*/
TEST_F(EventHubTest, DevicesWithMatchingUniqueIdsAreUnique) {
std::unique_ptr<UinputHomeKey> keyboard2 = createUinputDevice<UinputHomeKey>();
int32_t deviceId2;
ASSERT_NO_FATAL_FAILURE(deviceId2 = waitForDeviceCreation());
ASSERT_NE(mEventHub->getDeviceIdentifier(mDeviceId).descriptor,
mEventHub->getDeviceIdentifier(deviceId2).descriptor);
keyboard2.reset();
waitForDeviceClose(deviceId2);
}
/**
* Ensure that input_events are generated with monotonic clock.
* That means input_event should receive a timestamp that is in the future of the time
* before the event was sent.
* Input system uses CLOCK_MONOTONIC everywhere in the code base.
*/
TEST_F(EventHubTest, InputEvent_TimestampIsMonotonic) {
nsecs_t lastEventTime = systemTime(SYSTEM_TIME_MONOTONIC);
ASSERT_NO_FATAL_FAILURE(mKeyboard->pressAndReleaseHomeKey());
std::vector<RawEvent> events = getEvents(4);
ASSERT_EQ(4U, events.size()) << "Expected to receive 2 keys and 2 syncs, total of 4 events";
for (const RawEvent& event : events) {
// Cannot use strict comparison because the events may happen too quickly
ASSERT_LE(lastEventTime, event.when) << "Event must have occurred after the key was sent";
ASSERT_LT(std::chrono::nanoseconds(event.when - lastEventTime), 100ms)
<< "Event times are too far apart";
lastEventTime = event.when; // Ensure all returned events are monotonic
}
}
// --- BitArrayTest ---
class BitArrayTest : public testing::Test {
protected:
static constexpr size_t SINGLE_ELE_BITS = 32UL;
static constexpr size_t MULTI_ELE_BITS = 256UL;
virtual void SetUp() override {
mBitmaskSingle.loadFromBuffer(mBufferSingle);
mBitmaskMulti.loadFromBuffer(mBufferMulti);
}
android::BitArray<SINGLE_ELE_BITS> mBitmaskSingle;
android::BitArray<MULTI_ELE_BITS> mBitmaskMulti;
private:
const typename android::BitArray<SINGLE_ELE_BITS>::Buffer mBufferSingle = {
0x800F0F0FUL // bit 0 - 31
};
const typename android::BitArray<MULTI_ELE_BITS>::Buffer mBufferMulti = {
0xFFFFFFFFUL, // bit 0 - 31
0x01000001UL, // bit 32 - 63
0x00000000UL, // bit 64 - 95
0x80000000UL, // bit 96 - 127
0x00000000UL, // bit 128 - 159
0x00000000UL, // bit 160 - 191
0x80000008UL, // bit 192 - 223
0x00000000UL, // bit 224 - 255
};
};
TEST_F(BitArrayTest, SetBit) {
ASSERT_TRUE(mBitmaskSingle.test(0));
ASSERT_TRUE(mBitmaskSingle.test(31));
ASSERT_FALSE(mBitmaskSingle.test(7));
ASSERT_TRUE(mBitmaskMulti.test(32));
ASSERT_TRUE(mBitmaskMulti.test(56));
ASSERT_FALSE(mBitmaskMulti.test(192));
ASSERT_TRUE(mBitmaskMulti.test(223));
ASSERT_FALSE(mBitmaskMulti.test(255));
}
TEST_F(BitArrayTest, AnyBit) {
ASSERT_TRUE(mBitmaskSingle.any(31, 32));
ASSERT_FALSE(mBitmaskSingle.any(12, 16));
ASSERT_TRUE(mBitmaskMulti.any(31, 32));
ASSERT_FALSE(mBitmaskMulti.any(33, 33));
ASSERT_TRUE(mBitmaskMulti.any(32, 55));
ASSERT_TRUE(mBitmaskMulti.any(33, 57));
ASSERT_FALSE(mBitmaskMulti.any(33, 55));
ASSERT_FALSE(mBitmaskMulti.any(130, 190));
ASSERT_FALSE(mBitmaskMulti.any(128, 195));
ASSERT_TRUE(mBitmaskMulti.any(128, 196));
ASSERT_TRUE(mBitmaskMulti.any(128, 224));
ASSERT_FALSE(mBitmaskMulti.any(255, 256));
}
TEST_F(BitArrayTest, SetBit_InvalidBitIndex) {
ASSERT_FALSE(mBitmaskSingle.test(32));
ASSERT_FALSE(mBitmaskMulti.test(256));
}
TEST_F(BitArrayTest, AnyBit_InvalidBitIndex) {
ASSERT_FALSE(mBitmaskSingle.any(32, 32));
ASSERT_FALSE(mBitmaskSingle.any(33, 34));
ASSERT_FALSE(mBitmaskMulti.any(256, 256));
ASSERT_FALSE(mBitmaskMulti.any(257, 258));
ASSERT_FALSE(mBitmaskMulti.any(0, 0));
}