| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "EventHub.h" |
| |
| #include "UinputDevice.h" |
| |
| #include <gtest/gtest.h> |
| #include <inttypes.h> |
| #include <linux/uinput.h> |
| #include <log/log.h> |
| #include <chrono> |
| |
| #define TAG "EventHub_test" |
| |
| using android::createUinputDevice; |
| using android::EventHub; |
| using android::EventHubInterface; |
| using android::InputDeviceIdentifier; |
| using android::RawEvent; |
| using android::sp; |
| using android::UinputHomeKey; |
| using std::chrono_literals::operator""ms; |
| using std::chrono_literals::operator""s; |
| |
| static constexpr bool DEBUG = false; |
| |
| static void dumpEvents(const std::vector<RawEvent>& events) { |
| for (const RawEvent& event : events) { |
| if (event.type >= EventHubInterface::FIRST_SYNTHETIC_EVENT) { |
| switch (event.type) { |
| case EventHubInterface::DEVICE_ADDED: |
| ALOGI("Device added: %i", event.deviceId); |
| break; |
| case EventHubInterface::DEVICE_REMOVED: |
| ALOGI("Device removed: %i", event.deviceId); |
| break; |
| case EventHubInterface::FINISHED_DEVICE_SCAN: |
| ALOGI("Finished device scan."); |
| break; |
| } |
| } else { |
| ALOGI("Device %" PRId32 " : time = %" PRId64 ", type %i, code %i, value %i", |
| event.deviceId, event.when, event.type, event.code, event.value); |
| } |
| } |
| } |
| |
| // --- EventHubTest --- |
| class EventHubTest : public testing::Test { |
| protected: |
| std::unique_ptr<EventHubInterface> mEventHub; |
| // We are only going to emulate a single input device currently. |
| std::unique_ptr<UinputHomeKey> mKeyboard; |
| int32_t mDeviceId; |
| |
| virtual void SetUp() override { |
| #if !defined(__ANDROID__) |
| GTEST_SKIP() << "It's only possible to interact with uinput on device"; |
| #endif |
| mEventHub = std::make_unique<EventHub>(); |
| consumeInitialDeviceAddedEvents(); |
| mKeyboard = createUinputDevice<UinputHomeKey>(); |
| ASSERT_NO_FATAL_FAILURE(mDeviceId = waitForDeviceCreation()); |
| } |
| virtual void TearDown() override { |
| #if !defined(__ANDROID__) |
| return; |
| #endif |
| mKeyboard.reset(); |
| waitForDeviceClose(mDeviceId); |
| assertNoMoreEvents(); |
| } |
| |
| /** |
| * Return the device id of the created device. |
| */ |
| int32_t waitForDeviceCreation(); |
| void waitForDeviceClose(int32_t deviceId); |
| void consumeInitialDeviceAddedEvents(); |
| void assertNoMoreEvents(); |
| /** |
| * Read events from the EventHub. |
| * |
| * If expectedEvents is set, wait for a significant period of time to try and ensure that |
| * the expected number of events has been read. The number of returned events |
| * may be smaller (if timeout has been reached) or larger than expectedEvents. |
| * |
| * If expectedEvents is not set, return all of the immediately available events. |
| */ |
| std::vector<RawEvent> getEvents(std::optional<size_t> expectedEvents = std::nullopt); |
| }; |
| |
| std::vector<RawEvent> EventHubTest::getEvents(std::optional<size_t> expectedEvents) { |
| std::vector<RawEvent> events; |
| |
| while (true) { |
| std::chrono::milliseconds timeout = 0s; |
| if (expectedEvents) { |
| timeout = 2s; |
| } |
| |
| std::vector<RawEvent> newEvents = mEventHub->getEvents(timeout.count()); |
| if (newEvents.empty()) { |
| break; |
| } |
| events.insert(events.end(), newEvents.begin(), newEvents.end()); |
| if (expectedEvents && events.size() >= *expectedEvents) { |
| break; |
| } |
| } |
| if (DEBUG) { |
| dumpEvents(events); |
| } |
| return events; |
| } |
| |
| /** |
| * Since the test runs on a real platform, there will be existing devices |
| * in addition to the test devices being added. Therefore, when EventHub is first created, |
| * it will return a lot of "device added" type of events. |
| */ |
| void EventHubTest::consumeInitialDeviceAddedEvents() { |
| std::vector<RawEvent> events = getEvents(); |
| std::set<int32_t /*deviceId*/> existingDevices; |
| // All of the events should be DEVICE_ADDED type, except the last one. |
| for (size_t i = 0; i < events.size() - 1; i++) { |
| const RawEvent& event = events[i]; |
| EXPECT_EQ(EventHubInterface::DEVICE_ADDED, event.type); |
| existingDevices.insert(event.deviceId); |
| } |
| // None of the existing system devices should be changing while this test is run. |
| // Check that the returned device ids are unique for all of the existing devices. |
| EXPECT_EQ(existingDevices.size(), events.size() - 1); |
| // The last event should be "finished device scan" |
| EXPECT_EQ(EventHubInterface::FINISHED_DEVICE_SCAN, events[events.size() - 1].type); |
| } |
| |
| int32_t EventHubTest::waitForDeviceCreation() { |
| // Wait a little longer than usual, to ensure input device has time to be created |
| std::vector<RawEvent> events = getEvents(2); |
| if (events.size() != 2) { |
| ADD_FAILURE() << "Instead of 2 events, received " << events.size(); |
| return 0; // this value is unused |
| } |
| const RawEvent& deviceAddedEvent = events[0]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_ADDED), deviceAddedEvent.type); |
| InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceAddedEvent.deviceId); |
| const int32_t deviceId = deviceAddedEvent.deviceId; |
| EXPECT_EQ(identifier.name, mKeyboard->getName()); |
| const RawEvent& finishedDeviceScanEvent = events[1]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN), |
| finishedDeviceScanEvent.type); |
| return deviceId; |
| } |
| |
| void EventHubTest::waitForDeviceClose(int32_t deviceId) { |
| std::vector<RawEvent> events = getEvents(2); |
| ASSERT_EQ(2U, events.size()); |
| const RawEvent& deviceRemovedEvent = events[0]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_REMOVED), deviceRemovedEvent.type); |
| EXPECT_EQ(deviceId, deviceRemovedEvent.deviceId); |
| const RawEvent& finishedDeviceScanEvent = events[1]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN), |
| finishedDeviceScanEvent.type); |
| } |
| |
| void EventHubTest::assertNoMoreEvents() { |
| std::vector<RawEvent> events = getEvents(); |
| ASSERT_TRUE(events.empty()); |
| } |
| |
| /** |
| * Ensure that two identical devices get assigned unique descriptors from EventHub. |
| */ |
| TEST_F(EventHubTest, DevicesWithMatchingUniqueIdsAreUnique) { |
| std::unique_ptr<UinputHomeKey> keyboard2 = createUinputDevice<UinputHomeKey>(); |
| int32_t deviceId2; |
| ASSERT_NO_FATAL_FAILURE(deviceId2 = waitForDeviceCreation()); |
| |
| ASSERT_NE(mEventHub->getDeviceIdentifier(mDeviceId).descriptor, |
| mEventHub->getDeviceIdentifier(deviceId2).descriptor); |
| keyboard2.reset(); |
| waitForDeviceClose(deviceId2); |
| } |
| |
| /** |
| * Ensure that input_events are generated with monotonic clock. |
| * That means input_event should receive a timestamp that is in the future of the time |
| * before the event was sent. |
| * Input system uses CLOCK_MONOTONIC everywhere in the code base. |
| */ |
| TEST_F(EventHubTest, InputEvent_TimestampIsMonotonic) { |
| nsecs_t lastEventTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| ASSERT_NO_FATAL_FAILURE(mKeyboard->pressAndReleaseHomeKey()); |
| |
| std::vector<RawEvent> events = getEvents(4); |
| ASSERT_EQ(4U, events.size()) << "Expected to receive 2 keys and 2 syncs, total of 4 events"; |
| for (const RawEvent& event : events) { |
| // Cannot use strict comparison because the events may happen too quickly |
| ASSERT_LE(lastEventTime, event.when) << "Event must have occurred after the key was sent"; |
| ASSERT_LT(std::chrono::nanoseconds(event.when - lastEventTime), 100ms) |
| << "Event times are too far apart"; |
| lastEventTime = event.when; // Ensure all returned events are monotonic |
| } |
| } |
| |
| // --- BitArrayTest --- |
| class BitArrayTest : public testing::Test { |
| protected: |
| static constexpr size_t SINGLE_ELE_BITS = 32UL; |
| static constexpr size_t MULTI_ELE_BITS = 256UL; |
| |
| virtual void SetUp() override { |
| mBitmaskSingle.loadFromBuffer(mBufferSingle); |
| mBitmaskMulti.loadFromBuffer(mBufferMulti); |
| } |
| |
| android::BitArray<SINGLE_ELE_BITS> mBitmaskSingle; |
| android::BitArray<MULTI_ELE_BITS> mBitmaskMulti; |
| |
| private: |
| const typename android::BitArray<SINGLE_ELE_BITS>::Buffer mBufferSingle = { |
| 0x800F0F0FUL // bit 0 - 31 |
| }; |
| const typename android::BitArray<MULTI_ELE_BITS>::Buffer mBufferMulti = { |
| 0xFFFFFFFFUL, // bit 0 - 31 |
| 0x01000001UL, // bit 32 - 63 |
| 0x00000000UL, // bit 64 - 95 |
| 0x80000000UL, // bit 96 - 127 |
| 0x00000000UL, // bit 128 - 159 |
| 0x00000000UL, // bit 160 - 191 |
| 0x80000008UL, // bit 192 - 223 |
| 0x00000000UL, // bit 224 - 255 |
| }; |
| }; |
| |
| TEST_F(BitArrayTest, SetBit) { |
| ASSERT_TRUE(mBitmaskSingle.test(0)); |
| ASSERT_TRUE(mBitmaskSingle.test(31)); |
| ASSERT_FALSE(mBitmaskSingle.test(7)); |
| |
| ASSERT_TRUE(mBitmaskMulti.test(32)); |
| ASSERT_TRUE(mBitmaskMulti.test(56)); |
| ASSERT_FALSE(mBitmaskMulti.test(192)); |
| ASSERT_TRUE(mBitmaskMulti.test(223)); |
| ASSERT_FALSE(mBitmaskMulti.test(255)); |
| } |
| |
| TEST_F(BitArrayTest, AnyBit) { |
| ASSERT_TRUE(mBitmaskSingle.any(31, 32)); |
| ASSERT_FALSE(mBitmaskSingle.any(12, 16)); |
| |
| ASSERT_TRUE(mBitmaskMulti.any(31, 32)); |
| ASSERT_FALSE(mBitmaskMulti.any(33, 33)); |
| ASSERT_TRUE(mBitmaskMulti.any(32, 55)); |
| ASSERT_TRUE(mBitmaskMulti.any(33, 57)); |
| ASSERT_FALSE(mBitmaskMulti.any(33, 55)); |
| ASSERT_FALSE(mBitmaskMulti.any(130, 190)); |
| |
| ASSERT_FALSE(mBitmaskMulti.any(128, 195)); |
| ASSERT_TRUE(mBitmaskMulti.any(128, 196)); |
| ASSERT_TRUE(mBitmaskMulti.any(128, 224)); |
| ASSERT_FALSE(mBitmaskMulti.any(255, 256)); |
| } |
| |
| TEST_F(BitArrayTest, SetBit_InvalidBitIndex) { |
| ASSERT_FALSE(mBitmaskSingle.test(32)); |
| ASSERT_FALSE(mBitmaskMulti.test(256)); |
| } |
| |
| TEST_F(BitArrayTest, AnyBit_InvalidBitIndex) { |
| ASSERT_FALSE(mBitmaskSingle.any(32, 32)); |
| ASSERT_FALSE(mBitmaskSingle.any(33, 34)); |
| |
| ASSERT_FALSE(mBitmaskMulti.any(256, 256)); |
| ASSERT_FALSE(mBitmaskMulti.any(257, 258)); |
| ASSERT_FALSE(mBitmaskMulti.any(0, 0)); |
| } |