blob: e09d97a13bad5d3c8f3be3a456616d6ce561b464 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "LatencyAggregator"
#include "LatencyAggregator.h"
#include <inttypes.h>
#include <android-base/stringprintf.h>
#include <input/Input.h>
#include <log/log.h>
#include <server_configurable_flags/get_flags.h>
using android::base::StringPrintf;
using dist_proc::aggregation::KllQuantile;
using std::chrono_literals::operator""ms;
// Convert the provided nanoseconds into hundreds of microseconds.
// Use hundreds of microseconds (as opposed to microseconds) to preserve space.
static inline int64_t ns2hus(nsecs_t nanos) {
return ns2us(nanos) / 100;
}
// The maximum number of events that we will store in the statistics. Any events that we will
// receive after we have reached this number will be ignored. We could also implement this by
// checking the actual size of the current data and making sure that we do not go over. However,
// the serialization process of sketches is too heavy (1 ms for all 14 sketches), and would be too
// much to do (even if infrequently).
// The value here has been determined empirically.
static constexpr size_t MAX_EVENTS_FOR_STATISTICS = 20000;
// Category (=namespace) name for the input settings that are applied at boot time
static const char* INPUT_NATIVE_BOOT = "input_native_boot";
// Feature flag name for the threshold of end-to-end touch latency that would trigger
// SlowEventReported atom to be pushed
static const char* SLOW_EVENT_MIN_REPORTING_LATENCY_MILLIS =
"slow_event_min_reporting_latency_millis";
// Feature flag name for the minimum delay before reporting a slow event after having just reported
// a slow event. This helps limit the amount of data sent to the server
static const char* SLOW_EVENT_MIN_REPORTING_INTERVAL_MILLIS =
"slow_event_min_reporting_interval_millis";
// If an event has end-to-end latency > 200 ms, it will get reported as a slow event.
std::chrono::milliseconds DEFAULT_SLOW_EVENT_MIN_REPORTING_LATENCY = 200ms;
// If we receive two slow events less than 1 min apart, we will only report 1 of them.
std::chrono::milliseconds DEFAULT_SLOW_EVENT_MIN_REPORTING_INTERVAL = 60000ms;
static std::chrono::milliseconds getSlowEventMinReportingLatency() {
std::string millis = server_configurable_flags::
GetServerConfigurableFlag(INPUT_NATIVE_BOOT, SLOW_EVENT_MIN_REPORTING_LATENCY_MILLIS,
std::to_string(
DEFAULT_SLOW_EVENT_MIN_REPORTING_LATENCY.count()));
return std::chrono::milliseconds(std::stoi(millis));
}
static std::chrono::milliseconds getSlowEventMinReportingInterval() {
std::string millis = server_configurable_flags::
GetServerConfigurableFlag(INPUT_NATIVE_BOOT, SLOW_EVENT_MIN_REPORTING_INTERVAL_MILLIS,
std::to_string(
DEFAULT_SLOW_EVENT_MIN_REPORTING_INTERVAL.count()));
return std::chrono::milliseconds(std::stoi(millis));
}
namespace android::inputdispatcher {
/**
* Same as android::util::BytesField, but doesn't store raw pointers, and therefore deletes its
* resources automatically.
*/
class SafeBytesField {
public:
explicit SafeBytesField(dist_proc::aggregation::KllQuantile& quantile) {
const zetasketch::android::AggregatorStateProto aggProto = quantile.SerializeToProto();
mBuffer.resize(aggProto.ByteSizeLong());
aggProto.SerializeToArray(mBuffer.data(), mBuffer.size());
}
android::util::BytesField getBytesField() {
return android::util::BytesField(mBuffer.data(), mBuffer.size());
}
private:
std::vector<char> mBuffer;
};
LatencyAggregator::LatencyAggregator() {
AStatsManager_setPullAtomCallback(android::util::INPUT_EVENT_LATENCY_SKETCH, nullptr,
LatencyAggregator::pullAtomCallback, this);
dist_proc::aggregation::KllQuantileOptions options;
options.set_inv_eps(100); // Request precision of 1.0%, instead of default 0.1%
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
mDownSketches[i] = KllQuantile::Create(options);
mMoveSketches[i] = KllQuantile::Create(options);
}
}
LatencyAggregator::~LatencyAggregator() {
AStatsManager_clearPullAtomCallback(android::util::INPUT_EVENT_LATENCY_SKETCH);
}
AStatsManager_PullAtomCallbackReturn LatencyAggregator::pullAtomCallback(int32_t atomTag,
AStatsEventList* data,
void* cookie) {
LatencyAggregator* pAggregator = reinterpret_cast<LatencyAggregator*>(cookie);
if (pAggregator == nullptr) {
LOG_ALWAYS_FATAL("pAggregator is null!");
}
return pAggregator->pullData(data);
}
void LatencyAggregator::processTimeline(const InputEventTimeline& timeline) {
processStatistics(timeline);
processSlowEvent(timeline);
}
void LatencyAggregator::processStatistics(const InputEventTimeline& timeline) {
std::scoped_lock lock(mLock);
// Before we do any processing, check that we have not yet exceeded MAX_SIZE
if (mNumSketchEventsProcessed >= MAX_EVENTS_FOR_STATISTICS) {
return;
}
mNumSketchEventsProcessed++;
std::array<std::unique_ptr<KllQuantile>, SketchIndex::SIZE>& sketches =
timeline.isDown ? mDownSketches : mMoveSketches;
// Process common ones first
const nsecs_t eventToRead = timeline.readTime - timeline.eventTime;
sketches[SketchIndex::EVENT_TO_READ]->Add(ns2hus(eventToRead));
// Now process per-connection ones
for (const auto& [connectionToken, connectionTimeline] : timeline.connectionTimelines) {
if (!connectionTimeline.isComplete()) {
continue;
}
const nsecs_t readToDeliver = connectionTimeline.deliveryTime - timeline.readTime;
const nsecs_t deliverToConsume =
connectionTimeline.consumeTime - connectionTimeline.deliveryTime;
const nsecs_t consumeToFinish =
connectionTimeline.finishTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompletedTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME];
const nsecs_t presentTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME];
const nsecs_t consumeToGpuComplete = gpuCompletedTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompleteToPresent = presentTime - gpuCompletedTime;
const nsecs_t endToEnd = presentTime - timeline.eventTime;
sketches[SketchIndex::READ_TO_DELIVER]->Add(ns2hus(readToDeliver));
sketches[SketchIndex::DELIVER_TO_CONSUME]->Add(ns2hus(deliverToConsume));
sketches[SketchIndex::CONSUME_TO_FINISH]->Add(ns2hus(consumeToFinish));
sketches[SketchIndex::CONSUME_TO_GPU_COMPLETE]->Add(ns2hus(consumeToGpuComplete));
sketches[SketchIndex::GPU_COMPLETE_TO_PRESENT]->Add(ns2hus(gpuCompleteToPresent));
sketches[SketchIndex::END_TO_END]->Add(ns2hus(endToEnd));
}
}
AStatsManager_PullAtomCallbackReturn LatencyAggregator::pullData(AStatsEventList* data) {
std::scoped_lock lock(mLock);
std::array<std::unique_ptr<SafeBytesField>, SketchIndex::SIZE> serializedDownData;
std::array<std::unique_ptr<SafeBytesField>, SketchIndex::SIZE> serializedMoveData;
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
serializedDownData[i] = std::make_unique<SafeBytesField>(*mDownSketches[i]);
serializedMoveData[i] = std::make_unique<SafeBytesField>(*mMoveSketches[i]);
}
android::util::
addAStatsEvent(data, android::util::INPUT_EVENT_LATENCY_SKETCH,
// DOWN sketches
serializedDownData[SketchIndex::EVENT_TO_READ]->getBytesField(),
serializedDownData[SketchIndex::READ_TO_DELIVER]->getBytesField(),
serializedDownData[SketchIndex::DELIVER_TO_CONSUME]->getBytesField(),
serializedDownData[SketchIndex::CONSUME_TO_FINISH]->getBytesField(),
serializedDownData[SketchIndex::CONSUME_TO_GPU_COMPLETE]
->getBytesField(),
serializedDownData[SketchIndex::GPU_COMPLETE_TO_PRESENT]
->getBytesField(),
serializedDownData[SketchIndex::END_TO_END]->getBytesField(),
// MOVE sketches
serializedMoveData[SketchIndex::EVENT_TO_READ]->getBytesField(),
serializedMoveData[SketchIndex::READ_TO_DELIVER]->getBytesField(),
serializedMoveData[SketchIndex::DELIVER_TO_CONSUME]->getBytesField(),
serializedMoveData[SketchIndex::CONSUME_TO_FINISH]->getBytesField(),
serializedMoveData[SketchIndex::CONSUME_TO_GPU_COMPLETE]
->getBytesField(),
serializedMoveData[SketchIndex::GPU_COMPLETE_TO_PRESENT]
->getBytesField(),
serializedMoveData[SketchIndex::END_TO_END]->getBytesField());
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
mDownSketches[i]->Reset();
mMoveSketches[i]->Reset();
}
// Start new aggregations
mNumSketchEventsProcessed = 0;
return AStatsManager_PULL_SUCCESS;
}
void LatencyAggregator::processSlowEvent(const InputEventTimeline& timeline) {
static const std::chrono::duration sSlowEventThreshold = getSlowEventMinReportingLatency();
static const std::chrono::duration sSlowEventReportingInterval =
getSlowEventMinReportingInterval();
for (const auto& [token, connectionTimeline] : timeline.connectionTimelines) {
if (!connectionTimeline.isComplete()) {
continue;
}
mNumEventsSinceLastSlowEventReport++;
const nsecs_t presentTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME];
const std::chrono::nanoseconds endToEndLatency =
std::chrono::nanoseconds(presentTime - timeline.eventTime);
if (endToEndLatency < sSlowEventThreshold) {
continue;
}
// This is a slow event. Before we report it, check if we are reporting too often
const std::chrono::duration elapsedSinceLastReport =
std::chrono::nanoseconds(timeline.eventTime - mLastSlowEventTime);
if (elapsedSinceLastReport < sSlowEventReportingInterval) {
mNumSkippedSlowEvents++;
continue;
}
const nsecs_t eventToRead = timeline.readTime - timeline.eventTime;
const nsecs_t readToDeliver = connectionTimeline.deliveryTime - timeline.readTime;
const nsecs_t deliverToConsume =
connectionTimeline.consumeTime - connectionTimeline.deliveryTime;
const nsecs_t consumeToFinish =
connectionTimeline.finishTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompletedTime =
connectionTimeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME];
const nsecs_t consumeToGpuComplete = gpuCompletedTime - connectionTimeline.consumeTime;
const nsecs_t gpuCompleteToPresent = presentTime - gpuCompletedTime;
android::util::stats_write(android::util::SLOW_INPUT_EVENT_REPORTED, timeline.isDown,
static_cast<int32_t>(ns2us(eventToRead)),
static_cast<int32_t>(ns2us(readToDeliver)),
static_cast<int32_t>(ns2us(deliverToConsume)),
static_cast<int32_t>(ns2us(consumeToFinish)),
static_cast<int32_t>(ns2us(consumeToGpuComplete)),
static_cast<int32_t>(ns2us(gpuCompleteToPresent)),
static_cast<int32_t>(ns2us(endToEndLatency.count())),
static_cast<int32_t>(mNumEventsSinceLastSlowEventReport),
static_cast<int32_t>(mNumSkippedSlowEvents));
mNumEventsSinceLastSlowEventReport = 0;
mNumSkippedSlowEvents = 0;
mLastSlowEventTime = timeline.readTime;
}
}
std::string LatencyAggregator::dump(const char* prefix) const {
std::scoped_lock lock(mLock);
std::string sketchDump = StringPrintf("%s Sketches:\n", prefix);
for (size_t i = 0; i < SketchIndex::SIZE; i++) {
const int64_t numDown = mDownSketches[i]->num_values();
SafeBytesField downBytesField(*mDownSketches[i]);
const float downBytesKb = downBytesField.getBytesField().arg_length * 1E-3;
const int64_t numMove = mMoveSketches[i]->num_values();
SafeBytesField moveBytesField(*mMoveSketches[i]);
const float moveBytesKb = moveBytesField.getBytesField().arg_length * 1E-3;
sketchDump +=
StringPrintf("%s mDownSketches[%zu]->num_values = %" PRId64 " size = %.1fKB"
" mMoveSketches[%zu]->num_values = %" PRId64 " size = %.1fKB\n",
prefix, i, numDown, downBytesKb, i, numMove, moveBytesKb);
}
return StringPrintf("%sLatencyAggregator:\n", prefix) + sketchDump +
StringPrintf("%s mNumSketchEventsProcessed=%zu\n", prefix, mNumSketchEventsProcessed) +
StringPrintf("%s mLastSlowEventTime=%" PRId64 "\n", prefix, mLastSlowEventTime) +
StringPrintf("%s mNumEventsSinceLastSlowEventReport = %zu\n", prefix,
mNumEventsSinceLastSlowEventReport) +
StringPrintf("%s mNumSkippedSlowEvents = %zu\n", prefix, mNumSkippedSlowEvents);
}
} // namespace android::inputdispatcher