blob: db1d4a3b8e5a5ae8f717e46a4e4a8b057440342b [file] [log] [blame]
/*
** Copyright 2008, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "InstalldNativeService.h"
#define ATRACE_TAG ATRACE_TAG_PACKAGE_MANAGER
#include <errno.h>
#include <inttypes.h>
#include <fstream>
#include <fts.h>
#include <regex>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/file.h>
#include <sys/resource.h>
#include <sys/quota.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <unistd.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/fs.h>
#include <cutils/properties.h>
#include <cutils/sched_policy.h>
#include <log/log.h> // TODO: Move everything to base/logging.
#include <logwrap/logwrap.h>
#include <private/android_filesystem_config.h>
#include <selinux/android.h>
#include <system/thread_defs.h>
#include <utils/Trace.h>
#include "dexopt.h"
#include "globals.h"
#include "installd_deps.h"
#include "otapreopt_utils.h"
#include "utils.h"
#include "CacheTracker.h"
#include "MatchExtensionGen.h"
#ifndef LOG_TAG
#define LOG_TAG "installd"
#endif
using android::base::StringPrintf;
using std::endl;
namespace android {
namespace installd {
static constexpr const char* kCpPath = "/system/bin/cp";
static constexpr const char* kXattrDefault = "user.default";
static constexpr const int MIN_RESTRICTED_HOME_SDK_VERSION = 24; // > M
static constexpr const char* PKG_LIB_POSTFIX = "/lib";
static constexpr const char* CACHE_DIR_POSTFIX = "/cache";
static constexpr const char* CODE_CACHE_DIR_POSTFIX = "/code_cache";
static constexpr const char *kIdMapPath = "/system/bin/idmap";
static constexpr const char* IDMAP_PREFIX = "/data/resource-cache/";
static constexpr const char* IDMAP_SUFFIX = "@idmap";
static constexpr const char* kPropApkVerityMode = "ro.apk_verity.mode";
// NOTE: keep in sync with Installer
static constexpr int FLAG_CLEAR_CACHE_ONLY = 1 << 8;
static constexpr int FLAG_CLEAR_CODE_CACHE_ONLY = 1 << 9;
static constexpr int FLAG_USE_QUOTA = 1 << 12;
static constexpr int FLAG_FREE_CACHE_V2 = 1 << 13;
static constexpr int FLAG_FREE_CACHE_V2_DEFY_QUOTA = 1 << 14;
static constexpr int FLAG_FREE_CACHE_NOOP = 1 << 15;
static constexpr int FLAG_FORCE = 1 << 16;
namespace {
constexpr const char* kDump = "android.permission.DUMP";
static binder::Status ok() {
return binder::Status::ok();
}
static binder::Status exception(uint32_t code, const std::string& msg) {
return binder::Status::fromExceptionCode(code, String8(msg.c_str()));
}
static binder::Status error() {
return binder::Status::fromServiceSpecificError(errno);
}
static binder::Status error(const std::string& msg) {
PLOG(ERROR) << msg;
return binder::Status::fromServiceSpecificError(errno, String8(msg.c_str()));
}
static binder::Status error(uint32_t code, const std::string& msg) {
LOG(ERROR) << msg << " (" << code << ")";
return binder::Status::fromServiceSpecificError(code, String8(msg.c_str()));
}
binder::Status checkPermission(const char* permission) {
pid_t pid;
uid_t uid;
if (checkCallingPermission(String16(permission), reinterpret_cast<int32_t*>(&pid),
reinterpret_cast<int32_t*>(&uid))) {
return ok();
} else {
return exception(binder::Status::EX_SECURITY,
StringPrintf("UID %d / PID %d lacks permission %s", uid, pid, permission));
}
}
binder::Status checkUid(uid_t expectedUid) {
uid_t uid = IPCThreadState::self()->getCallingUid();
if (uid == expectedUid || uid == AID_ROOT) {
return ok();
} else {
return exception(binder::Status::EX_SECURITY,
StringPrintf("UID %d is not expected UID %d", uid, expectedUid));
}
}
binder::Status checkArgumentUuid(const std::unique_ptr<std::string>& uuid) {
if (!uuid || is_valid_filename(*uuid)) {
return ok();
} else {
return exception(binder::Status::EX_ILLEGAL_ARGUMENT,
StringPrintf("UUID %s is malformed", uuid->c_str()));
}
}
binder::Status checkArgumentPackageName(const std::string& packageName) {
if (is_valid_package_name(packageName.c_str())) {
return ok();
} else {
return exception(binder::Status::EX_ILLEGAL_ARGUMENT,
StringPrintf("Package name %s is malformed", packageName.c_str()));
}
}
#define ENFORCE_UID(uid) { \
binder::Status status = checkUid((uid)); \
if (!status.isOk()) { \
return status; \
} \
}
#define CHECK_ARGUMENT_UUID(uuid) { \
binder::Status status = checkArgumentUuid((uuid)); \
if (!status.isOk()) { \
return status; \
} \
}
#define CHECK_ARGUMENT_PACKAGE_NAME(packageName) { \
binder::Status status = \
checkArgumentPackageName((packageName)); \
if (!status.isOk()) { \
return status; \
} \
}
} // namespace
status_t InstalldNativeService::start() {
IPCThreadState::self()->disableBackgroundScheduling(true);
status_t ret = BinderService<InstalldNativeService>::publish();
if (ret != android::OK) {
return ret;
}
sp<ProcessState> ps(ProcessState::self());
ps->startThreadPool();
ps->giveThreadPoolName();
return android::OK;
}
status_t InstalldNativeService::dump(int fd, const Vector<String16> & /* args */) {
auto out = std::fstream(StringPrintf("/proc/self/fd/%d", fd));
const binder::Status dump_permission = checkPermission(kDump);
if (!dump_permission.isOk()) {
out << dump_permission.toString8() << endl;
return PERMISSION_DENIED;
}
std::lock_guard<std::recursive_mutex> lock(mLock);
out << "installd is happy!" << endl;
{
std::lock_guard<std::recursive_mutex> lock(mMountsLock);
out << endl << "Storage mounts:" << endl;
for (const auto& n : mStorageMounts) {
out << " " << n.first << " = " << n.second << endl;
}
out << endl << "Quota reverse mounts:" << endl;
for (const auto& n : mQuotaReverseMounts) {
out << " " << n.first << " = " << n.second << endl;
}
}
{
std::lock_guard<std::recursive_mutex> lock(mQuotasLock);
out << endl << "Per-UID cache quotas:" << endl;
for (const auto& n : mCacheQuotas) {
out << " " << n.first << " = " << n.second << endl;
}
}
out << endl;
out.flush();
return NO_ERROR;
}
/**
* Perform restorecon of the given path, but only perform recursive restorecon
* if the label of that top-level file actually changed. This can save us
* significant time by avoiding no-op traversals of large filesystem trees.
*/
static int restorecon_app_data_lazy(const std::string& path, const std::string& seInfo, uid_t uid,
bool existing) {
int res = 0;
char* before = nullptr;
char* after = nullptr;
// Note that SELINUX_ANDROID_RESTORECON_DATADATA flag is set by
// libselinux. Not needed here.
if (lgetfilecon(path.c_str(), &before) < 0) {
PLOG(ERROR) << "Failed before getfilecon for " << path;
goto fail;
}
if (selinux_android_restorecon_pkgdir(path.c_str(), seInfo.c_str(), uid, 0) < 0) {
PLOG(ERROR) << "Failed top-level restorecon for " << path;
goto fail;
}
if (lgetfilecon(path.c_str(), &after) < 0) {
PLOG(ERROR) << "Failed after getfilecon for " << path;
goto fail;
}
// If the initial top-level restorecon above changed the label, then go
// back and restorecon everything recursively
if (strcmp(before, after)) {
if (existing) {
LOG(DEBUG) << "Detected label change from " << before << " to " << after << " at "
<< path << "; running recursive restorecon";
}
if (selinux_android_restorecon_pkgdir(path.c_str(), seInfo.c_str(), uid,
SELINUX_ANDROID_RESTORECON_RECURSE) < 0) {
PLOG(ERROR) << "Failed recursive restorecon for " << path;
goto fail;
}
}
goto done;
fail:
res = -1;
done:
free(before);
free(after);
return res;
}
static int restorecon_app_data_lazy(const std::string& parent, const char* name,
const std::string& seInfo, uid_t uid, bool existing) {
return restorecon_app_data_lazy(StringPrintf("%s/%s", parent.c_str(), name), seInfo, uid,
existing);
}
static int prepare_app_dir(const std::string& path, mode_t target_mode, uid_t uid) {
if (fs_prepare_dir_strict(path.c_str(), target_mode, uid, uid) != 0) {
PLOG(ERROR) << "Failed to prepare " << path;
return -1;
}
return 0;
}
/**
* Ensure that we have a hard-limit quota to protect against abusive apps;
* they should never use more than 90% of blocks or 50% of inodes.
*/
static int prepare_app_quota(const std::unique_ptr<std::string>& uuid, const std::string& device,
uid_t uid) {
if (device.empty()) return 0;
struct dqblk dq;
if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid,
reinterpret_cast<char*>(&dq)) != 0) {
PLOG(WARNING) << "Failed to find quota for " << uid;
return -1;
}
#if APPLY_HARD_QUOTAS
if ((dq.dqb_bhardlimit == 0) || (dq.dqb_ihardlimit == 0)) {
auto path = create_data_path(uuid ? uuid->c_str() : nullptr);
struct statvfs stat;
if (statvfs(path.c_str(), &stat) != 0) {
PLOG(WARNING) << "Failed to statvfs " << path;
return -1;
}
dq.dqb_valid = QIF_LIMITS;
dq.dqb_bhardlimit =
(((static_cast<uint64_t>(stat.f_blocks) * stat.f_frsize) / 10) * 9) / QIF_DQBLKSIZE;
dq.dqb_ihardlimit = (stat.f_files / 2);
if (quotactl(QCMD(Q_SETQUOTA, USRQUOTA), device.c_str(), uid,
reinterpret_cast<char*>(&dq)) != 0) {
PLOG(WARNING) << "Failed to set hard quota for " << uid;
return -1;
} else {
LOG(DEBUG) << "Applied hard quotas for " << uid;
return 0;
}
} else {
// Hard quota already set; assume it's reasonable
return 0;
}
#else
// Hard quotas disabled
return 0;
#endif
}
static bool prepare_app_profile_dir(const std::string& packageName, int32_t appId, int32_t userId) {
if (!property_get_bool("dalvik.vm.usejitprofiles", false)) {
return true;
}
int32_t uid = multiuser_get_uid(userId, appId);
int shared_app_gid = multiuser_get_shared_gid(userId, appId);
if (shared_app_gid == -1) {
// TODO(calin): this should no longer be possible but do not continue if we don't get
// a valid shared gid.
PLOG(WARNING) << "Invalid shared_app_gid for " << packageName;
return true;
}
const std::string profile_dir =
create_primary_current_profile_package_dir_path(userId, packageName);
// read-write-execute only for the app user.
if (fs_prepare_dir_strict(profile_dir.c_str(), 0700, uid, uid) != 0) {
PLOG(ERROR) << "Failed to prepare " << profile_dir;
return false;
}
const std::string profile_file = create_current_profile_path(userId, packageName,
/*is_secondary_dex*/false);
// read-write only for the app user.
if (fs_prepare_file_strict(profile_file.c_str(), 0600, uid, uid) != 0) {
PLOG(ERROR) << "Failed to prepare " << profile_file;
return false;
}
const std::string ref_profile_path =
create_primary_reference_profile_package_dir_path(packageName);
// Prepare the reference profile directory. Note that we use the non strict version of
// fs_prepare_dir. This will fix the permission and the ownership to the correct values.
// This is particularly important given that in O there were some fixes for how the
// shared_app_gid is computed.
//
// Note that by the time we get here we know that we are using a correct uid (otherwise
// prepare_app_dir and the above fs_prepare_file_strict which check the uid). So we
// are sure that the gid being used belongs to the owning app and not someone else.
//
// dex2oat/profman runs under the shared app gid and it needs to read/write reference profiles.
if (fs_prepare_dir(ref_profile_path.c_str(), 0770, AID_SYSTEM, shared_app_gid) != 0) {
PLOG(ERROR) << "Failed to prepare " << ref_profile_path;
return false;
}
return true;
}
binder::Status InstalldNativeService::createAppData(const std::unique_ptr<std::string>& uuid,
const std::string& packageName, int32_t userId, int32_t flags, int32_t appId,
const std::string& seInfo, int32_t targetSdkVersion, int64_t* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgname = packageName.c_str();
// Assume invalid inode unless filled in below
if (_aidl_return != nullptr) *_aidl_return = -1;
int32_t uid = multiuser_get_uid(userId, appId);
int32_t cacheGid = multiuser_get_cache_gid(userId, appId);
mode_t targetMode = targetSdkVersion >= MIN_RESTRICTED_HOME_SDK_VERSION ? 0700 : 0751;
// If UID doesn't have a specific cache GID, use UID value
if (cacheGid == -1) {
cacheGid = uid;
}
if (flags & FLAG_STORAGE_CE) {
auto path = create_data_user_ce_package_path(uuid_, userId, pkgname);
bool existing = (access(path.c_str(), F_OK) == 0);
if (prepare_app_dir(path, targetMode, uid) ||
prepare_app_cache_dir(path, "cache", 02771, uid, cacheGid) ||
prepare_app_cache_dir(path, "code_cache", 02771, uid, cacheGid)) {
return error("Failed to prepare " + path);
}
// Consider restorecon over contents if label changed
if (restorecon_app_data_lazy(path, seInfo, uid, existing) ||
restorecon_app_data_lazy(path, "cache", seInfo, uid, existing) ||
restorecon_app_data_lazy(path, "code_cache", seInfo, uid, existing)) {
return error("Failed to restorecon " + path);
}
// Remember inode numbers of cache directories so that we can clear
// contents while CE storage is locked
if (write_path_inode(path, "cache", kXattrInodeCache) ||
write_path_inode(path, "code_cache", kXattrInodeCodeCache)) {
return error("Failed to write_path_inode for " + path);
}
// And return the CE inode of the top-level data directory so we can
// clear contents while CE storage is locked
if ((_aidl_return != nullptr)
&& get_path_inode(path, reinterpret_cast<ino_t*>(_aidl_return)) != 0) {
return error("Failed to get_path_inode for " + path);
}
}
if (flags & FLAG_STORAGE_DE) {
auto path = create_data_user_de_package_path(uuid_, userId, pkgname);
bool existing = (access(path.c_str(), F_OK) == 0);
if (prepare_app_dir(path, targetMode, uid) ||
prepare_app_cache_dir(path, "cache", 02771, uid, cacheGid) ||
prepare_app_cache_dir(path, "code_cache", 02771, uid, cacheGid)) {
return error("Failed to prepare " + path);
}
// Consider restorecon over contents if label changed
if (restorecon_app_data_lazy(path, seInfo, uid, existing) ||
restorecon_app_data_lazy(path, "cache", seInfo, uid, existing) ||
restorecon_app_data_lazy(path, "code_cache", seInfo, uid, existing)) {
return error("Failed to restorecon " + path);
}
if (prepare_app_quota(uuid, findQuotaDeviceForUuid(uuid), uid)) {
return error("Failed to set hard quota " + path);
}
if (!prepare_app_profile_dir(packageName, appId, userId)) {
return error("Failed to prepare profiles for " + packageName);
}
}
return ok();
}
binder::Status InstalldNativeService::migrateAppData(const std::unique_ptr<std::string>& uuid,
const std::string& packageName, int32_t userId, int32_t flags) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgname = packageName.c_str();
// This method only exists to upgrade system apps that have requested
// forceDeviceEncrypted, so their default storage always lives in a
// consistent location. This only works on non-FBE devices, since we
// never want to risk exposing data on a device with real CE/DE storage.
auto ce_path = create_data_user_ce_package_path(uuid_, userId, pkgname);
auto de_path = create_data_user_de_package_path(uuid_, userId, pkgname);
// If neither directory is marked as default, assume CE is default
if (getxattr(ce_path.c_str(), kXattrDefault, nullptr, 0) == -1
&& getxattr(de_path.c_str(), kXattrDefault, nullptr, 0) == -1) {
if (setxattr(ce_path.c_str(), kXattrDefault, nullptr, 0, 0) != 0) {
return error("Failed to mark default storage " + ce_path);
}
}
// Migrate default data location if needed
auto target = (flags & FLAG_STORAGE_DE) ? de_path : ce_path;
auto source = (flags & FLAG_STORAGE_DE) ? ce_path : de_path;
if (getxattr(target.c_str(), kXattrDefault, nullptr, 0) == -1) {
LOG(WARNING) << "Requested default storage " << target
<< " is not active; migrating from " << source;
if (delete_dir_contents_and_dir(target) != 0) {
return error("Failed to delete " + target);
}
if (rename(source.c_str(), target.c_str()) != 0) {
return error("Failed to rename " + source + " to " + target);
}
}
return ok();
}
binder::Status InstalldNativeService::clearAppProfiles(const std::string& packageName) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
binder::Status res = ok();
if (!clear_primary_reference_profile(packageName)) {
res = error("Failed to clear reference profile for " + packageName);
}
if (!clear_primary_current_profiles(packageName)) {
res = error("Failed to clear current profiles for " + packageName);
}
return res;
}
binder::Status InstalldNativeService::clearAppData(const std::unique_ptr<std::string>& uuid,
const std::string& packageName, int32_t userId, int32_t flags, int64_t ceDataInode) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgname = packageName.c_str();
binder::Status res = ok();
if (flags & FLAG_STORAGE_CE) {
auto path = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInode);
if (flags & FLAG_CLEAR_CACHE_ONLY) {
path = read_path_inode(path, "cache", kXattrInodeCache);
} else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) {
path = read_path_inode(path, "code_cache", kXattrInodeCodeCache);
}
if (access(path.c_str(), F_OK) == 0) {
if (delete_dir_contents(path) != 0) {
res = error("Failed to delete contents of " + path);
} else if ((flags & (FLAG_CLEAR_CACHE_ONLY | FLAG_CLEAR_CODE_CACHE_ONLY)) == 0) {
remove_path_xattr(path, kXattrInodeCache);
remove_path_xattr(path, kXattrInodeCodeCache);
}
}
}
if (flags & FLAG_STORAGE_DE) {
std::string suffix = "";
bool only_cache = false;
if (flags & FLAG_CLEAR_CACHE_ONLY) {
suffix = CACHE_DIR_POSTFIX;
only_cache = true;
} else if (flags & FLAG_CLEAR_CODE_CACHE_ONLY) {
suffix = CODE_CACHE_DIR_POSTFIX;
only_cache = true;
}
auto path = create_data_user_de_package_path(uuid_, userId, pkgname) + suffix;
if (access(path.c_str(), F_OK) == 0) {
if (delete_dir_contents(path) != 0) {
res = error("Failed to delete contents of " + path);
}
}
if (!only_cache) {
if (!clear_primary_current_profile(packageName, userId)) {
res = error("Failed to clear current profile for " + packageName);
}
}
}
return res;
}
static int destroy_app_reference_profile(const std::string& pkgname) {
return delete_dir_contents_and_dir(
create_primary_reference_profile_package_dir_path(pkgname),
/*ignore_if_missing*/ true);
}
static int destroy_app_current_profiles(const std::string& pkgname, userid_t userid) {
return delete_dir_contents_and_dir(
create_primary_current_profile_package_dir_path(userid, pkgname),
/*ignore_if_missing*/ true);
}
binder::Status InstalldNativeService::destroyAppProfiles(const std::string& packageName) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
binder::Status res = ok();
std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr);
for (auto user : users) {
if (destroy_app_current_profiles(packageName, user) != 0) {
res = error("Failed to destroy current profiles for " + packageName);
}
}
if (destroy_app_reference_profile(packageName) != 0) {
res = error("Failed to destroy reference profile for " + packageName);
}
return res;
}
binder::Status InstalldNativeService::destroyAppData(const std::unique_ptr<std::string>& uuid,
const std::string& packageName, int32_t userId, int32_t flags, int64_t ceDataInode) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgname = packageName.c_str();
binder::Status res = ok();
if (flags & FLAG_STORAGE_CE) {
auto path = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInode);
if (delete_dir_contents_and_dir(path) != 0) {
res = error("Failed to delete " + path);
}
}
if (flags & FLAG_STORAGE_DE) {
auto path = create_data_user_de_package_path(uuid_, userId, pkgname);
if (delete_dir_contents_and_dir(path) != 0) {
res = error("Failed to delete " + path);
}
destroy_app_current_profiles(packageName, userId);
// TODO(calin): If the package is still installed by other users it's probably
// beneficial to keep the reference profile around.
// Verify if it's ok to do that.
destroy_app_reference_profile(packageName);
}
return res;
}
static gid_t get_cache_gid(uid_t uid) {
int32_t gid = multiuser_get_cache_gid(multiuser_get_user_id(uid), multiuser_get_app_id(uid));
return (gid != -1) ? gid : uid;
}
binder::Status InstalldNativeService::fixupAppData(const std::unique_ptr<std::string>& uuid,
int32_t flags) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
for (auto user : get_known_users(uuid_)) {
ATRACE_BEGIN("fixup user");
FTS* fts;
FTSENT* p;
auto ce_path = create_data_user_ce_path(uuid_, user);
auto de_path = create_data_user_de_path(uuid_, user);
char *argv[] = { (char*) ce_path.c_str(), (char*) de_path.c_str(), nullptr };
if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) {
return error("Failed to fts_open");
}
while ((p = fts_read(fts)) != nullptr) {
if (p->fts_info == FTS_D && p->fts_level == 1) {
// Track down inodes of cache directories
uint64_t raw = 0;
ino_t inode_cache = 0;
ino_t inode_code_cache = 0;
if (getxattr(p->fts_path, kXattrInodeCache, &raw, sizeof(raw)) == sizeof(raw)) {
inode_cache = raw;
}
if (getxattr(p->fts_path, kXattrInodeCodeCache, &raw, sizeof(raw)) == sizeof(raw)) {
inode_code_cache = raw;
}
// Figure out expected GID of each child
FTSENT* child = fts_children(fts, 0);
while (child != nullptr) {
if ((child->fts_statp->st_ino == inode_cache)
|| (child->fts_statp->st_ino == inode_code_cache)
|| !strcmp(child->fts_name, "cache")
|| !strcmp(child->fts_name, "code_cache")) {
child->fts_number = get_cache_gid(p->fts_statp->st_uid);
} else {
child->fts_number = p->fts_statp->st_uid;
}
child = child->fts_link;
}
} else if (p->fts_level >= 2) {
if (p->fts_level > 2) {
// Inherit GID from parent once we're deeper into tree
p->fts_number = p->fts_parent->fts_number;
}
uid_t uid = p->fts_parent->fts_statp->st_uid;
gid_t cache_gid = get_cache_gid(uid);
gid_t expected = p->fts_number;
gid_t actual = p->fts_statp->st_gid;
if (actual == expected) {
#if FIXUP_DEBUG
LOG(DEBUG) << "Ignoring " << p->fts_path << " with expected GID " << expected;
#endif
if (!(flags & FLAG_FORCE)) {
fts_set(fts, p, FTS_SKIP);
}
} else if ((actual == uid) || (actual == cache_gid)) {
// Only consider fixing up when current GID belongs to app
if (p->fts_info != FTS_D) {
LOG(INFO) << "Fixing " << p->fts_path << " with unexpected GID " << actual
<< " instead of " << expected;
}
switch (p->fts_info) {
case FTS_DP:
// If we're moving towards cache GID, we need to set S_ISGID
if (expected == cache_gid) {
if (chmod(p->fts_path, 02771) != 0) {
PLOG(WARNING) << "Failed to chmod " << p->fts_path;
}
}
// Intentional fall through to also set GID
case FTS_F:
if (chown(p->fts_path, -1, expected) != 0) {
PLOG(WARNING) << "Failed to chown " << p->fts_path;
}
break;
case FTS_SL:
case FTS_SLNONE:
if (lchown(p->fts_path, -1, expected) != 0) {
PLOG(WARNING) << "Failed to chown " << p->fts_path;
}
break;
}
} else {
// Ignore all other GID transitions, since they're kinda shady
LOG(WARNING) << "Ignoring " << p->fts_path << " with unexpected GID " << actual
<< " instead of " << expected;
if (!(flags & FLAG_FORCE)) {
fts_set(fts, p, FTS_SKIP);
}
}
}
}
fts_close(fts);
ATRACE_END();
}
return ok();
}
binder::Status InstalldNativeService::moveCompleteApp(const std::unique_ptr<std::string>& fromUuid,
const std::unique_ptr<std::string>& toUuid, const std::string& packageName,
const std::string& dataAppName, int32_t appId, const std::string& seInfo,
int32_t targetSdkVersion) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(fromUuid);
CHECK_ARGUMENT_UUID(toUuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* from_uuid = fromUuid ? fromUuid->c_str() : nullptr;
const char* to_uuid = toUuid ? toUuid->c_str() : nullptr;
const char* package_name = packageName.c_str();
const char* data_app_name = dataAppName.c_str();
binder::Status res = ok();
std::vector<userid_t> users = get_known_users(from_uuid);
// Copy app
{
auto from = create_data_app_package_path(from_uuid, data_app_name);
auto to = create_data_app_package_path(to_uuid, data_app_name);
auto to_parent = create_data_app_path(to_uuid);
char *argv[] = {
(char*) kCpPath,
(char*) "-F", /* delete any existing destination file first (--remove-destination) */
(char*) "-p", /* preserve timestamps, ownership, and permissions */
(char*) "-R", /* recurse into subdirectories (DEST must be a directory) */
(char*) "-P", /* Do not follow symlinks [default] */
(char*) "-d", /* don't dereference symlinks */
(char*) from.c_str(),
(char*) to_parent.c_str()
};
LOG(DEBUG) << "Copying " << from << " to " << to;
int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true);
if (rc != 0) {
res = error(rc, "Failed copying " + from + " to " + to);
goto fail;
}
if (selinux_android_restorecon(to.c_str(), SELINUX_ANDROID_RESTORECON_RECURSE) != 0) {
res = error("Failed to restorecon " + to);
goto fail;
}
}
// Copy private data for all known users
for (auto user : users) {
// Data source may not exist for all users; that's okay
auto from_ce = create_data_user_ce_package_path(from_uuid, user, package_name);
if (access(from_ce.c_str(), F_OK) != 0) {
LOG(INFO) << "Missing source " << from_ce;
continue;
}
if (!createAppData(toUuid, packageName, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE, appId,
seInfo, targetSdkVersion, nullptr).isOk()) {
res = error("Failed to create package target");
goto fail;
}
char *argv[] = {
(char*) kCpPath,
(char*) "-F", /* delete any existing destination file first (--remove-destination) */
(char*) "-p", /* preserve timestamps, ownership, and permissions */
(char*) "-R", /* recurse into subdirectories (DEST must be a directory) */
(char*) "-P", /* Do not follow symlinks [default] */
(char*) "-d", /* don't dereference symlinks */
nullptr,
nullptr
};
{
auto from = create_data_user_de_package_path(from_uuid, user, package_name);
auto to = create_data_user_de_path(to_uuid, user);
argv[6] = (char*) from.c_str();
argv[7] = (char*) to.c_str();
LOG(DEBUG) << "Copying " << from << " to " << to;
int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true);
if (rc != 0) {
res = error(rc, "Failed copying " + from + " to " + to);
goto fail;
}
}
{
auto from = create_data_user_ce_package_path(from_uuid, user, package_name);
auto to = create_data_user_ce_path(to_uuid, user);
argv[6] = (char*) from.c_str();
argv[7] = (char*) to.c_str();
LOG(DEBUG) << "Copying " << from << " to " << to;
int rc = android_fork_execvp(ARRAY_SIZE(argv), argv, NULL, false, true);
if (rc != 0) {
res = error(rc, "Failed copying " + from + " to " + to);
goto fail;
}
}
if (!restoreconAppData(toUuid, packageName, user, FLAG_STORAGE_CE | FLAG_STORAGE_DE,
appId, seInfo).isOk()) {
res = error("Failed to restorecon");
goto fail;
}
}
// We let the framework scan the new location and persist that before
// deleting the data in the old location; this ordering ensures that
// we can recover from things like battery pulls.
return ok();
fail:
// Nuke everything we might have already copied
{
auto to = create_data_app_package_path(to_uuid, data_app_name);
if (delete_dir_contents(to.c_str(), 1, NULL) != 0) {
LOG(WARNING) << "Failed to rollback " << to;
}
}
for (auto user : users) {
{
auto to = create_data_user_de_package_path(to_uuid, user, package_name);
if (delete_dir_contents(to.c_str(), 1, NULL) != 0) {
LOG(WARNING) << "Failed to rollback " << to;
}
}
{
auto to = create_data_user_ce_package_path(to_uuid, user, package_name);
if (delete_dir_contents(to.c_str(), 1, NULL) != 0) {
LOG(WARNING) << "Failed to rollback " << to;
}
}
}
return res;
}
binder::Status InstalldNativeService::createUserData(const std::unique_ptr<std::string>& uuid,
int32_t userId, int32_t userSerial ATTRIBUTE_UNUSED, int32_t flags) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
if (flags & FLAG_STORAGE_DE) {
if (uuid_ == nullptr) {
if (ensure_config_user_dirs(userId) != 0) {
return error(StringPrintf("Failed to ensure dirs for %d", userId));
}
}
}
// Data under /data/media doesn't have an app, but we still want
// to limit it to prevent abuse.
if (prepare_app_quota(uuid, findQuotaDeviceForUuid(uuid),
multiuser_get_uid(userId, AID_MEDIA_RW))) {
return error("Failed to set hard quota for media_rw");
}
return ok();
}
binder::Status InstalldNativeService::destroyUserData(const std::unique_ptr<std::string>& uuid,
int32_t userId, int32_t flags) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
binder::Status res = ok();
if (flags & FLAG_STORAGE_DE) {
auto path = create_data_user_de_path(uuid_, userId);
if (delete_dir_contents_and_dir(path, true) != 0) {
res = error("Failed to delete " + path);
}
if (uuid_ == nullptr) {
path = create_data_misc_legacy_path(userId);
if (delete_dir_contents_and_dir(path, true) != 0) {
res = error("Failed to delete " + path);
}
path = create_primary_cur_profile_dir_path(userId);
if (delete_dir_contents_and_dir(path, true) != 0) {
res = error("Failed to delete " + path);
}
}
}
if (flags & FLAG_STORAGE_CE) {
auto path = create_data_user_ce_path(uuid_, userId);
if (delete_dir_contents_and_dir(path, true) != 0) {
res = error("Failed to delete " + path);
}
path = findDataMediaPath(uuid, userId);
if (delete_dir_contents_and_dir(path, true) != 0) {
res = error("Failed to delete " + path);
}
}
return res;
}
binder::Status InstalldNativeService::freeCache(const std::unique_ptr<std::string>& uuid,
int64_t targetFreeBytes, int64_t cacheReservedBytes, int32_t flags) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
auto data_path = create_data_path(uuid_);
auto device = findQuotaDeviceForUuid(uuid);
auto noop = (flags & FLAG_FREE_CACHE_NOOP);
int64_t free = data_disk_free(data_path);
if (free < 0) {
return error("Failed to determine free space for " + data_path);
}
int64_t cleared = 0;
int64_t needed = targetFreeBytes - free;
LOG(DEBUG) << "Device " << data_path << " has " << free << " free; requested "
<< targetFreeBytes << "; needed " << needed;
if (free >= targetFreeBytes) {
return ok();
}
if (flags & FLAG_FREE_CACHE_V2) {
// This new cache strategy fairly removes files from UIDs by deleting
// files from the UIDs which are most over their allocated quota
// 1. Create trackers for every known UID
ATRACE_BEGIN("create");
std::unordered_map<uid_t, std::shared_ptr<CacheTracker>> trackers;
for (auto user : get_known_users(uuid_)) {
FTS *fts;
FTSENT *p;
auto ce_path = create_data_user_ce_path(uuid_, user);
auto de_path = create_data_user_de_path(uuid_, user);
auto media_path = findDataMediaPath(uuid, user) + "/Android/data/";
char *argv[] = { (char*) ce_path.c_str(), (char*) de_path.c_str(),
(char*) media_path.c_str(), nullptr };
if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) {
return error("Failed to fts_open");
}
while ((p = fts_read(fts)) != NULL) {
if (p->fts_info == FTS_D && p->fts_level == 1) {
uid_t uid = p->fts_statp->st_uid;
if (multiuser_get_app_id(uid) == AID_MEDIA_RW) {
uid = (multiuser_get_app_id(p->fts_statp->st_gid) - AID_EXT_GID_START)
+ AID_APP_START;
}
auto search = trackers.find(uid);
if (search != trackers.end()) {
search->second->addDataPath(p->fts_path);
} else {
auto tracker = std::shared_ptr<CacheTracker>(new CacheTracker(
multiuser_get_user_id(uid), multiuser_get_app_id(uid), device));
tracker->addDataPath(p->fts_path);
{
std::lock_guard<std::recursive_mutex> lock(mQuotasLock);
tracker->cacheQuota = mCacheQuotas[uid];
}
if (tracker->cacheQuota == 0) {
#if MEASURE_DEBUG
LOG(WARNING) << "UID " << uid << " has no cache quota; assuming 64MB";
#endif
tracker->cacheQuota = 67108864;
}
trackers[uid] = tracker;
}
fts_set(fts, p, FTS_SKIP);
}
}
fts_close(fts);
}
ATRACE_END();
// 2. Populate tracker stats and insert into priority queue
ATRACE_BEGIN("populate");
int64_t cacheTotal = 0;
auto cmp = [](std::shared_ptr<CacheTracker> left, std::shared_ptr<CacheTracker> right) {
return (left->getCacheRatio() < right->getCacheRatio());
};
std::priority_queue<std::shared_ptr<CacheTracker>,
std::vector<std::shared_ptr<CacheTracker>>, decltype(cmp)> queue(cmp);
for (const auto& it : trackers) {
it.second->loadStats();
queue.push(it.second);
cacheTotal += it.second->cacheUsed;
}
ATRACE_END();
// 3. Bounce across the queue, freeing items from whichever tracker is
// the most over their assigned quota
ATRACE_BEGIN("bounce");
std::shared_ptr<CacheTracker> active;
while (active || !queue.empty()) {
// Only look at apps under quota when explicitly requested
if (active && (active->getCacheRatio() < 10000)
&& !(flags & FLAG_FREE_CACHE_V2_DEFY_QUOTA)) {
LOG(DEBUG) << "Active ratio " << active->getCacheRatio()
<< " isn't over quota, and defy not requested";
break;
}
// Only keep clearing when we haven't pushed into reserved area
if (cacheReservedBytes > 0 && cleared >= (cacheTotal - cacheReservedBytes)) {
LOG(DEBUG) << "Refusing to clear cached data in reserved space";
break;
}
// Find the best tracker to work with; this might involve swapping
// if the active tracker is no longer the most over quota
bool nextBetter = active && !queue.empty()
&& active->getCacheRatio() < queue.top()->getCacheRatio();
if (!active || nextBetter) {
if (active) {
// Current tracker still has items, so we'll consider it
// again later once it bubbles up to surface
queue.push(active);
}
active = queue.top(); queue.pop();
active->ensureItems();
continue;
}
// If no items remain, go find another tracker
if (active->items.empty()) {
active = nullptr;
continue;
} else {
auto item = active->items.back();
active->items.pop_back();
LOG(DEBUG) << "Purging " << item->toString() << " from " << active->toString();
if (!noop) {
item->purge();
}
active->cacheUsed -= item->size;
needed -= item->size;
cleared += item->size;
}
// Verify that we're actually done before bailing, since sneaky
// apps might be using hardlinks
if (needed <= 0) {
free = data_disk_free(data_path);
needed = targetFreeBytes - free;
if (needed <= 0) {
break;
} else {
LOG(WARNING) << "Expected to be done but still need " << needed;
}
}
}
ATRACE_END();
} else {
return error("Legacy cache logic no longer supported");
}
free = data_disk_free(data_path);
if (free >= targetFreeBytes) {
return ok();
} else {
return error(StringPrintf("Failed to free up %" PRId64 " on %s; final free space %" PRId64,
targetFreeBytes, data_path.c_str(), free));
}
}
binder::Status InstalldNativeService::rmdex(const std::string& codePath,
const std::string& instructionSet) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
char dex_path[PKG_PATH_MAX];
const char* path = codePath.c_str();
const char* instruction_set = instructionSet.c_str();
if (validate_apk_path(path) && validate_system_app_path(path)) {
return error("Invalid path " + codePath);
}
if (!create_cache_path(dex_path, path, instruction_set)) {
return error("Failed to create cache path for " + codePath);
}
ALOGV("unlink %s\n", dex_path);
if (unlink(dex_path) < 0) {
// It's ok if we don't have a dalvik cache path. Report error only when the path exists
// but could not be unlinked.
if (errno != ENOENT) {
return error(StringPrintf("Failed to unlink %s", dex_path));
}
}
return ok();
}
struct stats {
int64_t codeSize;
int64_t dataSize;
int64_t cacheSize;
};
#if MEASURE_DEBUG
static std::string toString(std::vector<int64_t> values) {
std::stringstream res;
res << "[";
for (size_t i = 0; i < values.size(); i++) {
res << values[i];
if (i < values.size() - 1) {
res << ",";
}
}
res << "]";
return res.str();
}
#endif
static void collectQuotaStats(const std::string& device, int32_t userId,
int32_t appId, struct stats* stats, struct stats* extStats) {
if (device.empty()) return;
struct dqblk dq;
if (stats != nullptr) {
uid_t uid = multiuser_get_uid(userId, appId);
if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace;
#endif
stats->dataSize += dq.dqb_curspace;
}
int cacheGid = multiuser_get_cache_gid(userId, appId);
if (cacheGid != -1) {
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), cacheGid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << cacheGid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << cacheGid << " " << dq.dqb_curspace;
#endif
stats->cacheSize += dq.dqb_curspace;
}
}
int sharedGid = multiuser_get_shared_gid(0, appId);
if (sharedGid != -1) {
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), sharedGid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << sharedGid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << sharedGid << " " << dq.dqb_curspace;
#endif
stats->codeSize += dq.dqb_curspace;
}
}
}
if (extStats != nullptr) {
int extGid = multiuser_get_ext_gid(userId, appId);
if (extGid != -1) {
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), extGid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << extGid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << extGid << " " << dq.dqb_curspace;
#endif
extStats->dataSize += dq.dqb_curspace;
}
}
int extCacheGid = multiuser_get_ext_cache_gid(userId, appId);
if (extCacheGid != -1) {
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), extCacheGid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << extCacheGid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << extCacheGid << " " << dq.dqb_curspace;
#endif
extStats->dataSize += dq.dqb_curspace;
extStats->cacheSize += dq.dqb_curspace;
}
}
}
}
static void collectManualStats(const std::string& path, struct stats* stats) {
DIR *d;
int dfd;
struct dirent *de;
struct stat s;
d = opendir(path.c_str());
if (d == nullptr) {
if (errno != ENOENT) {
PLOG(WARNING) << "Failed to open " << path;
}
return;
}
dfd = dirfd(d);
while ((de = readdir(d))) {
const char *name = de->d_name;
int64_t size = 0;
if (fstatat(dfd, name, &s, AT_SYMLINK_NOFOLLOW) == 0) {
size = s.st_blocks * 512;
}
if (de->d_type == DT_DIR) {
if (!strcmp(name, ".")) {
// Don't recurse, but still count node size
} else if (!strcmp(name, "..")) {
// Don't recurse or count node size
continue;
} else {
// Measure all children nodes
size = 0;
calculate_tree_size(StringPrintf("%s/%s", path.c_str(), name), &size);
}
if (!strcmp(name, "cache") || !strcmp(name, "code_cache")) {
stats->cacheSize += size;
}
}
// Legacy symlink isn't owned by app
if (de->d_type == DT_LNK && !strcmp(name, "lib")) {
continue;
}
// Everything found inside is considered data
stats->dataSize += size;
}
closedir(d);
}
static void collectManualStatsForUser(const std::string& path, struct stats* stats,
bool exclude_apps = false) {
DIR *d;
int dfd;
struct dirent *de;
struct stat s;
d = opendir(path.c_str());
if (d == nullptr) {
if (errno != ENOENT) {
PLOG(WARNING) << "Failed to open " << path;
}
return;
}
dfd = dirfd(d);
while ((de = readdir(d))) {
if (de->d_type == DT_DIR) {
const char *name = de->d_name;
if (fstatat(dfd, name, &s, AT_SYMLINK_NOFOLLOW) != 0) {
continue;
}
int32_t user_uid = multiuser_get_app_id(s.st_uid);
if (!strcmp(name, ".") || !strcmp(name, "..")) {
continue;
} else if (exclude_apps && (user_uid >= AID_APP_START && user_uid <= AID_APP_END)) {
continue;
} else {
collectManualStats(StringPrintf("%s/%s", path.c_str(), name), stats);
}
}
}
closedir(d);
}
static void collectManualExternalStatsForUser(const std::string& path, struct stats* stats) {
FTS *fts;
FTSENT *p;
char *argv[] = { (char*) path.c_str(), nullptr };
if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) {
PLOG(ERROR) << "Failed to fts_open " << path;
return;
}
while ((p = fts_read(fts)) != NULL) {
p->fts_number = p->fts_parent->fts_number;
switch (p->fts_info) {
case FTS_D:
if (p->fts_level == 4
&& !strcmp(p->fts_name, "cache")
&& !strcmp(p->fts_parent->fts_parent->fts_name, "data")
&& !strcmp(p->fts_parent->fts_parent->fts_parent->fts_name, "Android")) {
p->fts_number = 1;
}
// Fall through to count the directory
case FTS_DEFAULT:
case FTS_F:
case FTS_SL:
case FTS_SLNONE:
int64_t size = (p->fts_statp->st_blocks * 512);
if (p->fts_number == 1) {
stats->cacheSize += size;
}
stats->dataSize += size;
break;
}
}
fts_close(fts);
}
binder::Status InstalldNativeService::getAppSize(const std::unique_ptr<std::string>& uuid,
const std::vector<std::string>& packageNames, int32_t userId, int32_t flags,
int32_t appId, const std::vector<int64_t>& ceDataInodes,
const std::vector<std::string>& codePaths, std::vector<int64_t>* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
for (const auto& packageName : packageNames) {
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
}
// NOTE: Locking is relaxed on this method, since it's limited to
// read-only measurements without mutation.
// When modifying this logic, always verify using tests:
// runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetAppSize
#if MEASURE_DEBUG
LOG(INFO) << "Measuring user " << userId << " app " << appId;
#endif
// Here's a summary of the common storage locations across the platform,
// and how they're each tagged:
//
// /data/app/com.example UID system
// /data/app/com.example/oat UID system
// /data/user/0/com.example UID u0_a10 GID u0_a10
// /data/user/0/com.example/cache UID u0_a10 GID u0_a10_cache
// /data/media/0/foo.txt UID u0_media_rw
// /data/media/0/bar.jpg UID u0_media_rw GID u0_media_image
// /data/media/0/Android/data/com.example UID u0_media_rw GID u0_a10_ext
// /data/media/0/Android/data/com.example/cache UID u0_media_rw GID u0_a10_ext_cache
// /data/media/obb/com.example UID system
struct stats stats;
struct stats extStats;
memset(&stats, 0, sizeof(stats));
memset(&extStats, 0, sizeof(extStats));
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
auto device = findQuotaDeviceForUuid(uuid);
if (device.empty()) {
flags &= ~FLAG_USE_QUOTA;
}
ATRACE_BEGIN("obb");
for (const auto& packageName : packageNames) {
auto obbCodePath = create_data_media_obb_path(uuid_, packageName.c_str());
calculate_tree_size(obbCodePath, &extStats.codeSize);
}
ATRACE_END();
if (flags & FLAG_USE_QUOTA && appId >= AID_APP_START) {
ATRACE_BEGIN("code");
for (const auto& codePath : codePaths) {
calculate_tree_size(codePath, &stats.codeSize, -1,
multiuser_get_shared_gid(0, appId));
}
ATRACE_END();
ATRACE_BEGIN("quota");
collectQuotaStats(device, userId, appId, &stats, &extStats);
ATRACE_END();
} else {
ATRACE_BEGIN("code");
for (const auto& codePath : codePaths) {
calculate_tree_size(codePath, &stats.codeSize);
}
ATRACE_END();
for (size_t i = 0; i < packageNames.size(); i++) {
const char* pkgname = packageNames[i].c_str();
ATRACE_BEGIN("data");
auto cePath = create_data_user_ce_package_path(uuid_, userId, pkgname, ceDataInodes[i]);
collectManualStats(cePath, &stats);
auto dePath = create_data_user_de_package_path(uuid_, userId, pkgname);
collectManualStats(dePath, &stats);
ATRACE_END();
if (!uuid) {
ATRACE_BEGIN("profiles");
calculate_tree_size(
create_primary_current_profile_package_dir_path(userId, pkgname),
&stats.dataSize);
calculate_tree_size(
create_primary_reference_profile_package_dir_path(pkgname),
&stats.codeSize);
ATRACE_END();
}
ATRACE_BEGIN("external");
auto extPath = create_data_media_package_path(uuid_, userId, "data", pkgname);
collectManualStats(extPath, &extStats);
auto mediaPath = create_data_media_package_path(uuid_, userId, "media", pkgname);
calculate_tree_size(mediaPath, &extStats.dataSize);
ATRACE_END();
}
if (!uuid) {
ATRACE_BEGIN("dalvik");
int32_t sharedGid = multiuser_get_shared_gid(0, appId);
if (sharedGid != -1) {
calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize,
sharedGid, -1);
}
ATRACE_END();
}
}
std::vector<int64_t> ret;
ret.push_back(stats.codeSize);
ret.push_back(stats.dataSize);
ret.push_back(stats.cacheSize);
ret.push_back(extStats.codeSize);
ret.push_back(extStats.dataSize);
ret.push_back(extStats.cacheSize);
#if MEASURE_DEBUG
LOG(DEBUG) << "Final result " << toString(ret);
#endif
*_aidl_return = ret;
return ok();
}
binder::Status InstalldNativeService::getUserSize(const std::unique_ptr<std::string>& uuid,
int32_t userId, int32_t flags, const std::vector<int32_t>& appIds,
std::vector<int64_t>* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
// NOTE: Locking is relaxed on this method, since it's limited to
// read-only measurements without mutation.
// When modifying this logic, always verify using tests:
// runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetUserSize
#if MEASURE_DEBUG
LOG(INFO) << "Measuring user " << userId;
#endif
struct stats stats;
struct stats extStats;
memset(&stats, 0, sizeof(stats));
memset(&extStats, 0, sizeof(extStats));
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
auto device = findQuotaDeviceForUuid(uuid);
if (device.empty()) {
flags &= ~FLAG_USE_QUOTA;
}
if (flags & FLAG_USE_QUOTA) {
struct dqblk dq;
ATRACE_BEGIN("obb");
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), AID_MEDIA_OBB,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for GID " << AID_MEDIA_OBB;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << AID_MEDIA_OBB << " " << dq.dqb_curspace;
#endif
extStats.codeSize += dq.dqb_curspace;
}
ATRACE_END();
ATRACE_BEGIN("code");
calculate_tree_size(create_data_app_path(uuid_), &stats.codeSize, -1, -1, true);
ATRACE_END();
ATRACE_BEGIN("data");
auto cePath = create_data_user_ce_path(uuid_, userId);
collectManualStatsForUser(cePath, &stats, true);
auto dePath = create_data_user_de_path(uuid_, userId);
collectManualStatsForUser(dePath, &stats, true);
ATRACE_END();
if (!uuid) {
ATRACE_BEGIN("profile");
auto userProfilePath = create_primary_cur_profile_dir_path(userId);
calculate_tree_size(userProfilePath, &stats.dataSize, -1, -1, true);
auto refProfilePath = create_primary_ref_profile_dir_path();
calculate_tree_size(refProfilePath, &stats.codeSize, -1, -1, true);
ATRACE_END();
}
ATRACE_BEGIN("external");
uid_t uid = multiuser_get_uid(userId, AID_MEDIA_RW);
if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace;
#endif
extStats.dataSize += dq.dqb_curspace;
}
ATRACE_END();
if (!uuid) {
ATRACE_BEGIN("dalvik");
calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize,
-1, -1, true);
calculate_tree_size(create_primary_cur_profile_dir_path(userId), &stats.dataSize,
-1, -1, true);
ATRACE_END();
}
ATRACE_BEGIN("quota");
int64_t dataSize = extStats.dataSize;
for (auto appId : appIds) {
if (appId >= AID_APP_START) {
collectQuotaStats(device, userId, appId, &stats, &extStats);
#if MEASURE_DEBUG
// Sleep to make sure we don't lose logs
usleep(1);
#endif
}
}
extStats.dataSize = dataSize;
ATRACE_END();
} else {
ATRACE_BEGIN("obb");
auto obbPath = create_data_path(uuid_) + "/media/obb";
calculate_tree_size(obbPath, &extStats.codeSize);
ATRACE_END();
ATRACE_BEGIN("code");
calculate_tree_size(create_data_app_path(uuid_), &stats.codeSize);
ATRACE_END();
ATRACE_BEGIN("data");
auto cePath = create_data_user_ce_path(uuid_, userId);
collectManualStatsForUser(cePath, &stats);
auto dePath = create_data_user_de_path(uuid_, userId);
collectManualStatsForUser(dePath, &stats);
ATRACE_END();
if (!uuid) {
ATRACE_BEGIN("profile");
auto userProfilePath = create_primary_cur_profile_dir_path(userId);
calculate_tree_size(userProfilePath, &stats.dataSize);
auto refProfilePath = create_primary_ref_profile_dir_path();
calculate_tree_size(refProfilePath, &stats.codeSize);
ATRACE_END();
}
ATRACE_BEGIN("external");
auto dataMediaPath = create_data_media_path(uuid_, userId);
collectManualExternalStatsForUser(dataMediaPath, &extStats);
#if MEASURE_DEBUG
LOG(DEBUG) << "Measured external data " << extStats.dataSize << " cache "
<< extStats.cacheSize;
#endif
ATRACE_END();
if (!uuid) {
ATRACE_BEGIN("dalvik");
calculate_tree_size(create_data_dalvik_cache_path(), &stats.codeSize);
calculate_tree_size(create_primary_cur_profile_dir_path(userId), &stats.dataSize);
ATRACE_END();
}
}
std::vector<int64_t> ret;
ret.push_back(stats.codeSize);
ret.push_back(stats.dataSize);
ret.push_back(stats.cacheSize);
ret.push_back(extStats.codeSize);
ret.push_back(extStats.dataSize);
ret.push_back(extStats.cacheSize);
#if MEASURE_DEBUG
LOG(DEBUG) << "Final result " << toString(ret);
#endif
*_aidl_return = ret;
return ok();
}
binder::Status InstalldNativeService::getExternalSize(const std::unique_ptr<std::string>& uuid,
int32_t userId, int32_t flags, const std::vector<int32_t>& appIds,
std::vector<int64_t>* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
// NOTE: Locking is relaxed on this method, since it's limited to
// read-only measurements without mutation.
// When modifying this logic, always verify using tests:
// runtest -x frameworks/base/services/tests/servicestests/src/com/android/server/pm/InstallerTest.java -m testGetExternalSize
#if MEASURE_DEBUG
LOG(INFO) << "Measuring external " << userId;
#endif
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
int64_t totalSize = 0;
int64_t audioSize = 0;
int64_t videoSize = 0;
int64_t imageSize = 0;
int64_t appSize = 0;
int64_t obbSize = 0;
auto device = findQuotaDeviceForUuid(uuid);
if (device.empty()) {
flags &= ~FLAG_USE_QUOTA;
}
if (flags & FLAG_USE_QUOTA) {
struct dqblk dq;
ATRACE_BEGIN("quota");
uid_t uid = multiuser_get_uid(userId, AID_MEDIA_RW);
if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), device.c_str(), uid,
reinterpret_cast<char*>(&dq)) != 0) {
if (errno != ESRCH) {
PLOG(ERROR) << "Failed to quotactl " << device << " for UID " << uid;
}
} else {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for UID " << uid << " " << dq.dqb_curspace;
#endif
totalSize = dq.dqb_curspace;
}
gid_t audioGid = multiuser_get_uid(userId, AID_MEDIA_AUDIO);
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), audioGid,
reinterpret_cast<char*>(&dq)) == 0) {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << audioGid << " " << dq.dqb_curspace;
#endif
audioSize = dq.dqb_curspace;
}
gid_t videoGid = multiuser_get_uid(userId, AID_MEDIA_VIDEO);
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), videoGid,
reinterpret_cast<char*>(&dq)) == 0) {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << videoGid << " " << dq.dqb_curspace;
#endif
videoSize = dq.dqb_curspace;
}
gid_t imageGid = multiuser_get_uid(userId, AID_MEDIA_IMAGE);
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), imageGid,
reinterpret_cast<char*>(&dq)) == 0) {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << imageGid << " " << dq.dqb_curspace;
#endif
imageSize = dq.dqb_curspace;
}
if (quotactl(QCMD(Q_GETQUOTA, GRPQUOTA), device.c_str(), AID_MEDIA_OBB,
reinterpret_cast<char*>(&dq)) == 0) {
#if MEASURE_DEBUG
LOG(DEBUG) << "quotactl() for GID " << AID_MEDIA_OBB << " " << dq.dqb_curspace;
#endif
obbSize = dq.dqb_curspace;
}
ATRACE_END();
ATRACE_BEGIN("apps");
struct stats extStats;
memset(&extStats, 0, sizeof(extStats));
for (auto appId : appIds) {
if (appId >= AID_APP_START) {
collectQuotaStats(device, userId, appId, nullptr, &extStats);
}
}
appSize = extStats.dataSize;
ATRACE_END();
} else {
ATRACE_BEGIN("manual");
FTS *fts;
FTSENT *p;
auto path = create_data_media_path(uuid_, userId);
char *argv[] = { (char*) path.c_str(), nullptr };
if (!(fts = fts_open(argv, FTS_PHYSICAL | FTS_NOCHDIR | FTS_XDEV, NULL))) {
return error("Failed to fts_open " + path);
}
while ((p = fts_read(fts)) != NULL) {
char* ext;
int64_t size = (p->fts_statp->st_blocks * 512);
switch (p->fts_info) {
case FTS_F:
// Only categorize files not belonging to apps
if (p->fts_parent->fts_number == 0) {
ext = strrchr(p->fts_name, '.');
if (ext != nullptr) {
switch (MatchExtension(++ext)) {
case AID_MEDIA_AUDIO: audioSize += size; break;
case AID_MEDIA_VIDEO: videoSize += size; break;
case AID_MEDIA_IMAGE: imageSize += size; break;
}
}
}
// Fall through to always count against total
case FTS_D:
// Ignore data belonging to specific apps
p->fts_number = p->fts_parent->fts_number;
if (p->fts_level == 1 && !strcmp(p->fts_name, "Android")) {
p->fts_number = 1;
}
case FTS_DEFAULT:
case FTS_SL:
case FTS_SLNONE:
if (p->fts_parent->fts_number == 1) {
appSize += size;
}
totalSize += size;
break;
}
}
fts_close(fts);
ATRACE_END();
ATRACE_BEGIN("obb");
auto obbPath = create_data_media_obb_path(uuid_, "");
calculate_tree_size(obbPath, &obbSize);
ATRACE_END();
}
std::vector<int64_t> ret;
ret.push_back(totalSize);
ret.push_back(audioSize);
ret.push_back(videoSize);
ret.push_back(imageSize);
ret.push_back(appSize);
ret.push_back(obbSize);
#if MEASURE_DEBUG
LOG(DEBUG) << "Final result " << toString(ret);
#endif
*_aidl_return = ret;
return ok();
}
binder::Status InstalldNativeService::setAppQuota(const std::unique_ptr<std::string>& uuid,
int32_t userId, int32_t appId, int64_t cacheQuota) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
std::lock_guard<std::recursive_mutex> lock(mQuotasLock);
int32_t uid = multiuser_get_uid(userId, appId);
mCacheQuotas[uid] = cacheQuota;
return ok();
}
// Dumps the contents of a profile file, using pkgname's dex files for pretty
// printing the result.
binder::Status InstalldNativeService::dumpProfiles(int32_t uid, const std::string& packageName,
const std::string& codePaths, bool* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* pkgname = packageName.c_str();
const char* code_paths = codePaths.c_str();
*_aidl_return = dump_profiles(uid, pkgname, code_paths);
return ok();
}
// Copy the contents of a system profile over the data profile.
binder::Status InstalldNativeService::copySystemProfile(const std::string& systemProfile,
int32_t packageUid, const std::string& packageName, bool* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
*_aidl_return = copy_system_profile(systemProfile, packageUid, packageName);
return ok();
}
// TODO: Consider returning error codes.
binder::Status InstalldNativeService::mergeProfiles(int32_t uid, const std::string& packageName,
bool* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
*_aidl_return = analyze_primary_profiles(uid, packageName);
return ok();
}
binder::Status InstalldNativeService::createProfileSnapshot(int32_t appId,
const std::string& packageName, const std::string& codePath, bool* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
*_aidl_return = create_profile_snapshot(appId, packageName, codePath);
return ok();
}
binder::Status InstalldNativeService::destroyProfileSnapshot(const std::string& packageName,
const std::string& codePath) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
std::string snapshot = create_snapshot_profile_path(packageName, codePath);
if ((unlink(snapshot.c_str()) != 0) && (errno != ENOENT)) {
return error("Failed to destroy profile snapshot for " + packageName + ":" + codePath);
}
return ok();
}
binder::Status InstalldNativeService::dexopt(const std::string& apkPath, int32_t uid,
const std::unique_ptr<std::string>& packageName, const std::string& instructionSet,
int32_t dexoptNeeded, const std::unique_ptr<std::string>& outputPath, int32_t dexFlags,
const std::string& compilerFilter, const std::unique_ptr<std::string>& uuid,
const std::unique_ptr<std::string>& classLoaderContext,
const std::unique_ptr<std::string>& seInfo, bool downgrade) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
if (packageName && *packageName != "*") {
CHECK_ARGUMENT_PACKAGE_NAME(*packageName);
}
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* apk_path = apkPath.c_str();
const char* pkgname = packageName ? packageName->c_str() : "*";
const char* instruction_set = instructionSet.c_str();
const char* oat_dir = outputPath ? outputPath->c_str() : nullptr;
const char* compiler_filter = compilerFilter.c_str();
const char* volume_uuid = uuid ? uuid->c_str() : nullptr;
const char* class_loader_context = classLoaderContext ? classLoaderContext->c_str() : nullptr;
const char* se_info = seInfo ? seInfo->c_str() : nullptr;
int res = android::installd::dexopt(apk_path, uid, pkgname, instruction_set, dexoptNeeded,
oat_dir, dexFlags, compiler_filter, volume_uuid, class_loader_context, se_info,
downgrade);
return res ? error(res, "Failed to dexopt") : ok();
}
binder::Status InstalldNativeService::markBootComplete(const std::string& instructionSet) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* instruction_set = instructionSet.c_str();
char boot_marker_path[PKG_PATH_MAX];
sprintf(boot_marker_path,
"%s/%s/%s/.booting",
android_data_dir.c_str(),
DALVIK_CACHE,
instruction_set);
ALOGV("mark_boot_complete : %s", boot_marker_path);
if (unlink(boot_marker_path) != 0) {
return error(StringPrintf("Failed to unlink %s", boot_marker_path));
}
return ok();
}
void mkinnerdirs(char* path, int basepos, mode_t mode, int uid, int gid,
struct stat* statbuf)
{
while (path[basepos] != 0) {
if (path[basepos] == '/') {
path[basepos] = 0;
if (lstat(path, statbuf) < 0) {
ALOGV("Making directory: %s\n", path);
if (mkdir(path, mode) == 0) {
chown(path, uid, gid);
} else {
ALOGW("Unable to make directory %s: %s\n", path, strerror(errno));
}
}
path[basepos] = '/';
basepos++;
}
basepos++;
}
}
binder::Status InstalldNativeService::linkNativeLibraryDirectory(
const std::unique_ptr<std::string>& uuid, const std::string& packageName,
const std::string& nativeLibPath32, int32_t userId) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgname = packageName.c_str();
const char* asecLibDir = nativeLibPath32.c_str();
struct stat s, libStat;
binder::Status res = ok();
auto _pkgdir = create_data_user_ce_package_path(uuid_, userId, pkgname);
auto _libsymlink = _pkgdir + PKG_LIB_POSTFIX;
const char* pkgdir = _pkgdir.c_str();
const char* libsymlink = _libsymlink.c_str();
if (stat(pkgdir, &s) < 0) {
return error("Failed to stat " + _pkgdir);
}
if (chown(pkgdir, AID_INSTALL, AID_INSTALL) < 0) {
return error("Failed to chown " + _pkgdir);
}
if (chmod(pkgdir, 0700) < 0) {
res = error("Failed to chmod " + _pkgdir);
goto out;
}
if (lstat(libsymlink, &libStat) < 0) {
if (errno != ENOENT) {
res = error("Failed to stat " + _libsymlink);
goto out;
}
} else {
if (S_ISDIR(libStat.st_mode)) {
if (delete_dir_contents(libsymlink, 1, NULL) < 0) {
res = error("Failed to delete " + _libsymlink);
goto out;
}
} else if (S_ISLNK(libStat.st_mode)) {
if (unlink(libsymlink) < 0) {
res = error("Failed to unlink " + _libsymlink);
goto out;
}
}
}
if (symlink(asecLibDir, libsymlink) < 0) {
res = error("Failed to symlink " + _libsymlink + " to " + nativeLibPath32);
goto out;
}
out:
if (chmod(pkgdir, s.st_mode) < 0) {
auto msg = "Failed to cleanup chmod " + _pkgdir;
if (res.isOk()) {
res = error(msg);
} else {
PLOG(ERROR) << msg;
}
}
if (chown(pkgdir, s.st_uid, s.st_gid) < 0) {
auto msg = "Failed to cleanup chown " + _pkgdir;
if (res.isOk()) {
res = error(msg);
} else {
PLOG(ERROR) << msg;
}
}
return res;
}
static void run_idmap(const char *target_apk, const char *overlay_apk, int idmap_fd)
{
execl(kIdMapPath, kIdMapPath, "--fd", target_apk, overlay_apk,
StringPrintf("%d", idmap_fd).c_str(), (char*)NULL);
PLOG(ERROR) << "execl (" << kIdMapPath << ") failed";
}
static void run_verify_idmap(const char *target_apk, const char *overlay_apk, int idmap_fd)
{
execl(kIdMapPath, kIdMapPath, "--verify", target_apk, overlay_apk,
StringPrintf("%d", idmap_fd).c_str(), (char*)NULL);
PLOG(ERROR) << "execl (" << kIdMapPath << ") failed";
}
static bool delete_stale_idmap(const char* target_apk, const char* overlay_apk,
const char* idmap_path, int32_t uid) {
int idmap_fd = open(idmap_path, O_RDWR);
if (idmap_fd < 0) {
PLOG(ERROR) << "idmap open failed: " << idmap_path;
unlink(idmap_path);
return true;
}
pid_t pid;
pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
if (setgid(uid) != 0) {
LOG(ERROR) << "setgid(" << uid << ") failed during idmap";
exit(1);
}
if (setuid(uid) != 0) {
LOG(ERROR) << "setuid(" << uid << ") failed during idmap";
exit(1);
}
if (flock(idmap_fd, LOCK_EX | LOCK_NB) != 0) {
PLOG(ERROR) << "flock(" << idmap_path << ") failed during idmap";
exit(1);
}
run_verify_idmap(target_apk, overlay_apk, idmap_fd);
exit(1); /* only if exec call to deleting stale idmap failed */
} else {
int status = wait_child(pid);
close(idmap_fd);
if (status != 0) {
// Failed on verifying if idmap is made from target_apk and overlay_apk.
LOG(DEBUG) << "delete stale idmap: " << idmap_path;
unlink(idmap_path);
return true;
}
}
return false;
}
// Transform string /a/b/c.apk to (prefix)/a@b@c.apk@(suffix)
// eg /a/b/c.apk to /data/resource-cache/a@b@c.apk@idmap
static int flatten_path(const char *prefix, const char *suffix,
const char *overlay_path, char *idmap_path, size_t N)
{
if (overlay_path == NULL || idmap_path == NULL) {
return -1;
}
const size_t len_overlay_path = strlen(overlay_path);
// will access overlay_path + 1 further below; requires absolute path
if (len_overlay_path < 2 || *overlay_path != '/') {
return -1;
}
const size_t len_idmap_root = strlen(prefix);
const size_t len_suffix = strlen(suffix);
if (SIZE_MAX - len_idmap_root < len_overlay_path ||
SIZE_MAX - (len_idmap_root + len_overlay_path) < len_suffix) {
// additions below would cause overflow
return -1;
}
if (N < len_idmap_root + len_overlay_path + len_suffix) {
return -1;
}
memset(idmap_path, 0, N);
snprintf(idmap_path, N, "%s%s%s", prefix, overlay_path + 1, suffix);
char *ch = idmap_path + len_idmap_root;
while (*ch != '\0') {
if (*ch == '/') {
*ch = '@';
}
++ch;
}
return 0;
}
binder::Status InstalldNativeService::idmap(const std::string& targetApkPath,
const std::string& overlayApkPath, int32_t uid) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* target_apk = targetApkPath.c_str();
const char* overlay_apk = overlayApkPath.c_str();
ALOGV("idmap target_apk=%s overlay_apk=%s uid=%d\n", target_apk, overlay_apk, uid);
int idmap_fd = -1;
char idmap_path[PATH_MAX];
struct stat idmap_stat;
bool outdated = false;
if (flatten_path(IDMAP_PREFIX, IDMAP_SUFFIX, overlay_apk,
idmap_path, sizeof(idmap_path)) == -1) {
ALOGE("idmap cannot generate idmap path for overlay %s\n", overlay_apk);
goto fail;
}
if (stat(idmap_path, &idmap_stat) < 0) {
outdated = true;
} else {
outdated = delete_stale_idmap(target_apk, overlay_apk, idmap_path, uid);
}
if (outdated) {
idmap_fd = open(idmap_path, O_RDWR | O_CREAT | O_EXCL, 0644);
} else {
idmap_fd = open(idmap_path, O_RDWR);
}
if (idmap_fd < 0) {
ALOGE("idmap cannot open '%s' for output: %s\n", idmap_path, strerror(errno));
goto fail;
}
if (fchown(idmap_fd, AID_SYSTEM, uid) < 0) {
ALOGE("idmap cannot chown '%s'\n", idmap_path);
goto fail;
}
if (fchmod(idmap_fd, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0) {
ALOGE("idmap cannot chmod '%s'\n", idmap_path);
goto fail;
}
if (!outdated) {
close(idmap_fd);
return ok();
}
pid_t pid;
pid = fork();
if (pid == 0) {
/* child -- drop privileges before continuing */
if (setgid(uid) != 0) {
ALOGE("setgid(%d) failed during idmap\n", uid);
exit(1);
}
if (setuid(uid) != 0) {
ALOGE("setuid(%d) failed during idmap\n", uid);
exit(1);
}
if (flock(idmap_fd, LOCK_EX | LOCK_NB) != 0) {
ALOGE("flock(%s) failed during idmap: %s\n", idmap_path, strerror(errno));
exit(1);
}
run_idmap(target_apk, overlay_apk, idmap_fd);
exit(1); /* only if exec call to idmap failed */
} else {
int status = wait_child(pid);
if (status != 0) {
ALOGE("idmap failed, status=0x%04x\n", status);
goto fail;
}
}
close(idmap_fd);
return ok();
fail:
if (idmap_fd >= 0) {
close(idmap_fd);
unlink(idmap_path);
}
return error();
}
binder::Status InstalldNativeService::removeIdmap(const std::string& overlayApkPath) {
const char* overlay_apk = overlayApkPath.c_str();
char idmap_path[PATH_MAX];
if (flatten_path(IDMAP_PREFIX, IDMAP_SUFFIX, overlay_apk,
idmap_path, sizeof(idmap_path)) == -1) {
ALOGE("idmap cannot generate idmap path for overlay %s\n", overlay_apk);
return error();
}
if (unlink(idmap_path) < 0) {
ALOGE("couldn't unlink idmap file %s\n", idmap_path);
return error();
}
return ok();
}
binder::Status InstalldNativeService::restoreconAppData(const std::unique_ptr<std::string>& uuid,
const std::string& packageName, int32_t userId, int32_t flags, int32_t appId,
const std::string& seInfo) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(uuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
binder::Status res = ok();
// SELINUX_ANDROID_RESTORECON_DATADATA flag is set by libselinux. Not needed here.
unsigned int seflags = SELINUX_ANDROID_RESTORECON_RECURSE;
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
const char* pkgName = packageName.c_str();
const char* seinfo = seInfo.c_str();
uid_t uid = multiuser_get_uid(userId, appId);
if (flags & FLAG_STORAGE_CE) {
auto path = create_data_user_ce_package_path(uuid_, userId, pkgName);
if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) {
res = error("restorecon failed for " + path);
}
}
if (flags & FLAG_STORAGE_DE) {
auto path = create_data_user_de_package_path(uuid_, userId, pkgName);
if (selinux_android_restorecon_pkgdir(path.c_str(), seinfo, uid, seflags) < 0) {
res = error("restorecon failed for " + path);
}
}
return res;
}
binder::Status InstalldNativeService::createOatDir(const std::string& oatDir,
const std::string& instructionSet) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* oat_dir = oatDir.c_str();
const char* instruction_set = instructionSet.c_str();
char oat_instr_dir[PKG_PATH_MAX];
if (validate_apk_path(oat_dir)) {
return error("Invalid path " + oatDir);
}
if (fs_prepare_dir(oat_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) {
return error("Failed to prepare " + oatDir);
}
if (selinux_android_restorecon(oat_dir, 0)) {
return error("Failed to restorecon " + oatDir);
}
snprintf(oat_instr_dir, PKG_PATH_MAX, "%s/%s", oat_dir, instruction_set);
if (fs_prepare_dir(oat_instr_dir, S_IRWXU | S_IRWXG | S_IXOTH, AID_SYSTEM, AID_INSTALL)) {
return error(StringPrintf("Failed to prepare %s", oat_instr_dir));
}
return ok();
}
binder::Status InstalldNativeService::rmPackageDir(const std::string& packageDir) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
if (validate_apk_path(packageDir.c_str())) {
return error("Invalid path " + packageDir);
}
if (delete_dir_contents_and_dir(packageDir) != 0) {
return error("Failed to delete " + packageDir);
}
return ok();
}
binder::Status InstalldNativeService::linkFile(const std::string& relativePath,
const std::string& fromBase, const std::string& toBase) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* relative_path = relativePath.c_str();
const char* from_base = fromBase.c_str();
const char* to_base = toBase.c_str();
char from_path[PKG_PATH_MAX];
char to_path[PKG_PATH_MAX];
snprintf(from_path, PKG_PATH_MAX, "%s/%s", from_base, relative_path);
snprintf(to_path, PKG_PATH_MAX, "%s/%s", to_base, relative_path);
if (validate_apk_path_subdirs(from_path)) {
return error(StringPrintf("Invalid from path %s", from_path));
}
if (validate_apk_path_subdirs(to_path)) {
return error(StringPrintf("Invalid to path %s", to_path));
}
if (link(from_path, to_path) < 0) {
return error(StringPrintf("Failed to link from %s to %s", from_path, to_path));
}
return ok();
}
binder::Status InstalldNativeService::moveAb(const std::string& apkPath,
const std::string& instructionSet, const std::string& outputPath) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* apk_path = apkPath.c_str();
const char* instruction_set = instructionSet.c_str();
const char* oat_dir = outputPath.c_str();
bool success = move_ab(apk_path, instruction_set, oat_dir);
return success ? ok() : error();
}
binder::Status InstalldNativeService::deleteOdex(const std::string& apkPath,
const std::string& instructionSet, const std::unique_ptr<std::string>& outputPath) {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mLock);
const char* apk_path = apkPath.c_str();
const char* instruction_set = instructionSet.c_str();
const char* oat_dir = outputPath ? outputPath->c_str() : nullptr;
bool res = delete_odex(apk_path, instruction_set, oat_dir);
return res ? ok() : error();
}
binder::Status InstalldNativeService::installApkVerity(const std::string& /*filePath*/,
const ::android::base::unique_fd& /*verityInput*/) {
ENFORCE_UID(AID_SYSTEM);
if (!android::base::GetBoolProperty(kPropApkVerityMode, false)) {
return ok();
}
// TODO: Append verity to filePath then issue ioctl to enable
// it and hide the tree. See b/30972906.
return error("not implemented yet");
}
binder::Status InstalldNativeService::reconcileSecondaryDexFile(
const std::string& dexPath, const std::string& packageName, int32_t uid,
const std::vector<std::string>& isas, const std::unique_ptr<std::string>& volumeUuid,
int32_t storage_flag, bool* _aidl_return) {
ENFORCE_UID(AID_SYSTEM);
CHECK_ARGUMENT_UUID(volumeUuid);
CHECK_ARGUMENT_PACKAGE_NAME(packageName);
std::lock_guard<std::recursive_mutex> lock(mLock);
bool result = android::installd::reconcile_secondary_dex_file(
dexPath, packageName, uid, isas, volumeUuid, storage_flag, _aidl_return);
return result ? ok() : error();
}
binder::Status InstalldNativeService::invalidateMounts() {
ENFORCE_UID(AID_SYSTEM);
std::lock_guard<std::recursive_mutex> lock(mMountsLock);
mStorageMounts.clear();
mQuotaReverseMounts.clear();
std::ifstream in("/proc/mounts");
if (!in.is_open()) {
return error("Failed to read mounts");
}
std::string source;
std::string target;
std::string ignored;
while (!in.eof()) {
std::getline(in, source, ' ');
std::getline(in, target, ' ');
std::getline(in, ignored);
#if !BYPASS_SDCARDFS
if (target.compare(0, 21, "/mnt/runtime/default/") == 0) {
LOG(DEBUG) << "Found storage mount " << source << " at " << target;
mStorageMounts[source] = target;
}
#endif
#if !BYPASS_QUOTA
if (source.compare(0, 11, "/dev/block/") == 0) {
struct dqblk dq;
if (quotactl(QCMD(Q_GETQUOTA, USRQUOTA), source.c_str(), 0,
reinterpret_cast<char*>(&dq)) == 0) {
LOG(DEBUG) << "Found quota mount " << source << " at " << target;
mQuotaReverseMounts[target] = source;
// ext4 only enables DQUOT_USAGE_ENABLED by default, so we
// need to kick it again to enable DQUOT_LIMITS_ENABLED.
if (quotactl(QCMD(Q_QUOTAON, USRQUOTA), source.c_str(), QFMT_VFS_V1, nullptr) != 0
&& errno != EBUSY) {
PLOG(ERROR) << "Failed to enable USRQUOTA on " << source;
}
if (quotactl(QCMD(Q_QUOTAON, GRPQUOTA), source.c_str(), QFMT_VFS_V1, nullptr) != 0
&& errno != EBUSY) {
PLOG(ERROR) << "Failed to enable GRPQUOTA on " << source;
}
}
}
#endif
}
return ok();
}
std::string InstalldNativeService::findDataMediaPath(
const std::unique_ptr<std::string>& uuid, userid_t userid) {
std::lock_guard<std::recursive_mutex> lock(mMountsLock);
const char* uuid_ = uuid ? uuid->c_str() : nullptr;
auto path = StringPrintf("%s/media", create_data_path(uuid_).c_str());
auto resolved = mStorageMounts[path];
if (resolved.empty()) {
LOG(WARNING) << "Failed to find storage mount for " << path;
resolved = path;
}
return StringPrintf("%s/%u", resolved.c_str(), userid);
}
std::string InstalldNativeService::findQuotaDeviceForUuid(
const std::unique_ptr<std::string>& uuid) {
std::lock_guard<std::recursive_mutex> lock(mMountsLock);
auto path = create_data_path(uuid ? uuid->c_str() : nullptr);
return mQuotaReverseMounts[path];
}
binder::Status InstalldNativeService::isQuotaSupported(
const std::unique_ptr<std::string>& volumeUuid, bool* _aidl_return) {
*_aidl_return = !findQuotaDeviceForUuid(volumeUuid).empty();
return ok();
}
} // namespace installd
} // namespace android