blob: 708a5b87beee5d3b5fa9a5a481e6191372b0a0fc [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#include "VSyncPredictor.h"
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Trace.h>
#include <algorithm>
#include <chrono>
#include <sstream>
namespace android::scheduler {
using base::StringAppendF;
static auto constexpr kMaxPercent = 100u;
VSyncPredictor::~VSyncPredictor() = default;
VSyncPredictor::VSyncPredictor(nsecs_t idealPeriod, size_t historySize,
size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent)
: mTraceOn(property_get_bool("debug.sf.vsp_trace", true)),
kHistorySize(historySize),
kMinimumSamplesForPrediction(minimumSamplesForPrediction),
kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
mIdealPeriod(idealPeriod) {
resetModel();
}
inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_INT64(name, value);
}
}
inline size_t VSyncPredictor::next(int i) const {
return (i + 1) % mTimestamps.size();
}
bool VSyncPredictor::validate(nsecs_t timestamp) const {
if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
return true;
}
auto const aValidTimestamp = mTimestamps[mLastTimestampIndex];
auto const percent = (timestamp - aValidTimestamp) % mIdealPeriod * kMaxPercent / mIdealPeriod;
return percent < kOutlierTolerancePercent || percent > (kMaxPercent - kOutlierTolerancePercent);
}
nsecs_t VSyncPredictor::currentPeriod() const {
std::lock_guard<std::mutex> lk(mMutex);
return std::get<0>(mRateMap.find(mIdealPeriod)->second);
}
bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
std::lock_guard<std::mutex> lk(mMutex);
if (!validate(timestamp)) {
// VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
// don't insert this ts into mTimestamps ringbuffer. If we are still
// in the learning phase we should just clear all timestamps and start
// over.
if (mTimestamps.size() < kMinimumSamplesForPrediction) {
clearTimestamps();
} else if (!mTimestamps.empty()) {
mKnownTimestamp =
std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
} else {
mKnownTimestamp = timestamp;
}
return false;
}
if (mTimestamps.size() != kHistorySize) {
mTimestamps.push_back(timestamp);
mLastTimestampIndex = next(mLastTimestampIndex);
} else {
mLastTimestampIndex = next(mLastTimestampIndex);
mTimestamps[mLastTimestampIndex] = timestamp;
}
if (mTimestamps.size() < kMinimumSamplesForPrediction) {
mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
return true;
}
// This is a 'simple linear regression' calculation of Y over X, with Y being the
// vsync timestamps, and X being the ordinal of vsync count.
// The calculated slope is the vsync period.
// Formula for reference:
// Sigma_i: means sum over all timestamps.
// mean(variable): statistical mean of variable.
// X: snapped ordinal of the timestamp
// Y: vsync timestamp
//
// Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
// slope = -------------------------------------------
// Sigma_i ( X_i - mean(X) ) ^ 2
//
// intercept = mean(Y) - slope * mean(X)
//
std::vector<nsecs_t> vsyncTS(mTimestamps.size());
std::vector<nsecs_t> ordinals(mTimestamps.size());
// normalizing to the oldest timestamp cuts down on error in calculating the intercept.
auto const oldest_ts = *std::min_element(mTimestamps.begin(), mTimestamps.end());
auto it = mRateMap.find(mIdealPeriod);
auto const currentPeriod = std::get<0>(it->second);
// TODO (b/144707443): its important that there's some precision in the mean of the ordinals
// for the intercept calculation, so scale the ordinals by 1000 to continue
// fixed point calculation. Explore expanding
// scheduler::utils::calculate_mean to have a fixed point fractional part.
static constexpr int64_t kScalingFactor = 1000;
for (auto i = 0u; i < mTimestamps.size(); i++) {
traceInt64If("VSP-ts", mTimestamps[i]);
vsyncTS[i] = mTimestamps[i] - oldest_ts;
ordinals[i] = ((vsyncTS[i] + (currentPeriod / 2)) / currentPeriod) * kScalingFactor;
}
auto meanTS = scheduler::calculate_mean(vsyncTS);
auto meanOrdinal = scheduler::calculate_mean(ordinals);
for (auto i = 0; i < vsyncTS.size(); i++) {
vsyncTS[i] -= meanTS;
ordinals[i] -= meanOrdinal;
}
auto top = 0ll;
auto bottom = 0ll;
for (auto i = 0; i < vsyncTS.size(); i++) {
top += vsyncTS[i] * ordinals[i];
bottom += ordinals[i] * ordinals[i];
}
if (CC_UNLIKELY(bottom == 0)) {
it->second = {mIdealPeriod, 0};
clearTimestamps();
return false;
}
nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
auto const percent = std::abs(anticipatedPeriod - mIdealPeriod) * kMaxPercent / mIdealPeriod;
if (percent >= kOutlierTolerancePercent) {
it->second = {mIdealPeriod, 0};
clearTimestamps();
return false;
}
traceInt64If("VSP-period", anticipatedPeriod);
traceInt64If("VSP-intercept", intercept);
it->second = {anticipatedPeriod, intercept};
ALOGV("model update ts: %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, timestamp,
anticipatedPeriod, intercept);
return true;
}
nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint) const {
std::lock_guard<std::mutex> lk(mMutex);
auto const [slope, intercept] = getVSyncPredictionModel(lk);
if (mTimestamps.empty()) {
traceInt64If("VSP-mode", 1);
auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
auto const numPeriodsOut = ((timePoint - knownTimestamp) / mIdealPeriod) + 1;
return knownTimestamp + numPeriodsOut * mIdealPeriod;
}
auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
// See b/145667109, the ordinal calculation must take into account the intercept.
auto const zeroPoint = oldest + intercept;
auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
auto const prediction = (ordinalRequest * slope) + intercept + oldest;
traceInt64If("VSP-mode", 0);
traceInt64If("VSP-timePoint", timePoint);
traceInt64If("VSP-prediction", prediction);
auto const printer = [&, slope = slope, intercept = intercept] {
std::stringstream str;
str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
<< prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
<< "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
return str.str();
};
ALOGV("%s", printer().c_str());
LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
printer().c_str());
return prediction;
}
std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel() const {
std::lock_guard<std::mutex> lk(mMutex);
return VSyncPredictor::getVSyncPredictionModel(lk);
}
std::tuple<nsecs_t, nsecs_t> VSyncPredictor::getVSyncPredictionModel(
std::lock_guard<std::mutex> const&) const {
return mRateMap.find(mIdealPeriod)->second;
}
void VSyncPredictor::setPeriod(nsecs_t period) {
ATRACE_CALL();
std::lock_guard<std::mutex> lk(mMutex);
static constexpr size_t kSizeLimit = 30;
if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
mRateMap.erase(mRateMap.begin());
}
mIdealPeriod = period;
if (mRateMap.find(period) == mRateMap.end()) {
mRateMap[mIdealPeriod] = {period, 0};
}
clearTimestamps();
}
void VSyncPredictor::clearTimestamps() {
if (!mTimestamps.empty()) {
auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
if (mKnownTimestamp) {
mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
} else {
mKnownTimestamp = maxRb;
}
mTimestamps.clear();
mLastTimestampIndex = 0;
}
}
bool VSyncPredictor::needsMoreSamples() const {
std::lock_guard<std::mutex> lk(mMutex);
return mTimestamps.size() < kMinimumSamplesForPrediction;
}
void VSyncPredictor::resetModel() {
std::lock_guard<std::mutex> lk(mMutex);
mRateMap[mIdealPeriod] = {mIdealPeriod, 0};
clearTimestamps();
}
void VSyncPredictor::dump(std::string& result) const {
std::lock_guard<std::mutex> lk(mMutex);
StringAppendF(&result, "\tmIdealPeriod=%.2f\n", mIdealPeriod / 1e6f);
StringAppendF(&result, "\tRefresh Rate Map:\n");
for (const auto& [idealPeriod, periodInterceptTuple] : mRateMap) {
StringAppendF(&result,
"\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
idealPeriod / 1e6f, std::get<0>(periodInterceptTuple) / 1e6f,
std::get<1>(periodInterceptTuple));
}
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"