blob: d071710542309cbd1773a351ce12ec1e5ce9d102 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <compositionengine/LayerFE.h>
#include <gui/BufferQueue.h>
#include <gui/ISurfaceComposerClient.h>
#include <gui/LayerState.h>
#include <input/InputWindow.h>
#include <layerproto/LayerProtoHeader.h>
#include <math/vec4.h>
#include <renderengine/Mesh.h>
#include <renderengine/Texture.h>
#include <sys/types.h>
#include <ui/FloatRect.h>
#include <ui/FrameStats.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <ui/Region.h>
#include <ui/Transform.h>
#include <utils/RefBase.h>
#include <utils/Timers.h>
#include <chrono>
#include <cstdint>
#include <list>
#include <optional>
#include <vector>
#include "Client.h"
#include "ClientCache.h"
#include "DisplayHardware/ComposerHal.h"
#include "DisplayHardware/HWComposer.h"
#include "FrameTracker.h"
#include "LayerVector.h"
#include "MonitoredProducer.h"
#include "RenderArea.h"
#include "SurfaceFlinger.h"
#include "TransactionCompletedThread.h"
using namespace android::surfaceflinger;
namespace android {
// ---------------------------------------------------------------------------
class Client;
class Colorizer;
class DisplayDevice;
class GraphicBuffer;
class SurfaceFlinger;
class LayerDebugInfo;
namespace compositionengine {
class OutputLayer;
struct LayerFECompositionState;
}
namespace impl {
class SurfaceInterceptor;
}
// ---------------------------------------------------------------------------
struct LayerCreationArgs {
LayerCreationArgs(SurfaceFlinger*, sp<Client>, std::string name, uint32_t w, uint32_t h,
uint32_t flags, LayerMetadata);
SurfaceFlinger* flinger;
const sp<Client> client;
std::string name;
uint32_t w;
uint32_t h;
uint32_t flags;
LayerMetadata metadata;
pid_t callingPid;
uid_t callingUid;
uint32_t textureName;
};
class Layer : public virtual RefBase, compositionengine::LayerFE {
static std::atomic<int32_t> sSequence;
// The following constants represent priority of the window. SF uses this information when
// deciding which window has a priority when deciding about the refresh rate of the screen.
// Priority 0 is considered the highest priority. -1 means that the priority is unset.
static constexpr int32_t PRIORITY_UNSET = -1;
// Windows that are in focus and voted for the preferred mode ID
static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0;
// // Windows that are in focus, but have not requested a specific mode ID.
static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1;
// Windows that are not in focus, but voted for a specific mode ID.
static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2;
public:
mutable bool contentDirty{false};
Region surfaceDamageRegion;
// Layer serial number. This gives layers an explicit ordering, so we
// have a stable sort order when their layer stack and Z-order are
// the same.
int32_t sequence{sSequence++};
enum { // flags for doTransaction()
eDontUpdateGeometryState = 0x00000001,
eVisibleRegion = 0x00000002,
eInputInfoChanged = 0x00000004
};
struct Geometry {
uint32_t w;
uint32_t h;
ui::Transform transform;
inline bool operator==(const Geometry& rhs) const {
return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
(transform.ty() == rhs.transform.ty());
}
inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
};
struct RoundedCornerState {
RoundedCornerState() = default;
RoundedCornerState(FloatRect cropRect, float radius)
: cropRect(cropRect), radius(radius) {}
// Rounded rectangle in local layer coordinate space.
FloatRect cropRect = FloatRect();
// Radius of the rounded rectangle.
float radius = 0.0f;
};
// FrameRateCompatibility specifies how we should interpret the frame rate associated with
// the layer.
enum class FrameRateCompatibility {
Default, // Layer didn't specify any specific handling strategy
ExactOrMultiple, // Layer needs the exact frame rate (or a multiple of it) to present the
// content properly. Any other value will result in a pull down.
NoVote, // Layer doesn't have any requirements for the refresh rate and
// should not be considered when the display refresh rate is determined.
};
// Encapsulates the frame rate and compatibility of the layer. This information will be used
// when the display refresh rate is determined.
struct FrameRate {
float rate;
FrameRateCompatibility type;
FrameRate() : rate(0), type(FrameRateCompatibility::Default) {}
FrameRate(float rate, FrameRateCompatibility type) : rate(rate), type(type) {}
bool operator==(const FrameRate& other) const {
return rate == other.rate && type == other.type;
}
bool operator!=(const FrameRate& other) const { return !(*this == other); }
// Convert an ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_* value to a
// Layer::FrameRateCompatibility. Logs fatal if the compatibility value is invalid.
static FrameRateCompatibility convertCompatibility(int8_t compatibility);
};
struct State {
Geometry active_legacy;
Geometry requested_legacy;
int32_t z;
// The identifier of the layer stack this layer belongs to. A layer can
// only be associated to a single layer stack. A layer stack is a
// z-ordered group of layers which can be associated to one or more
// displays. Using the same layer stack on different displays is a way
// to achieve mirroring.
uint32_t layerStack;
uint8_t flags;
uint8_t reserved[2];
int32_t sequence; // changes when visible regions can change
bool modified;
// Crop is expressed in layer space coordinate.
Rect crop_legacy;
Rect requestedCrop_legacy;
// If set, defers this state update until the identified Layer
// receives a frame with the given frameNumber
wp<Layer> barrierLayer_legacy;
uint64_t frameNumber_legacy;
// the transparentRegion hint is a bit special, it's latched only
// when we receive a buffer -- this is because it's "content"
// dependent.
Region activeTransparentRegion_legacy;
Region requestedTransparentRegion_legacy;
LayerMetadata metadata;
// If non-null, a Surface this Surface's Z-order is interpreted relative to.
wp<Layer> zOrderRelativeOf;
bool isRelativeOf{false};
// A list of surfaces whose Z-order is interpreted relative to ours.
SortedVector<wp<Layer>> zOrderRelatives;
half4 color;
float cornerRadius;
int backgroundBlurRadius;
bool inputInfoChanged;
InputWindowInfo inputInfo;
wp<Layer> touchableRegionCrop;
// dataspace is only used by BufferStateLayer and EffectLayer
ui::Dataspace dataspace;
// The fields below this point are only used by BufferStateLayer
uint64_t frameNumber;
Geometry active;
uint32_t transform;
bool transformToDisplayInverse;
Rect crop;
Region transparentRegionHint;
sp<GraphicBuffer> buffer;
client_cache_t clientCacheId;
sp<Fence> acquireFence;
HdrMetadata hdrMetadata;
Region surfaceDamageRegion;
int32_t api;
sp<NativeHandle> sidebandStream;
mat4 colorTransform;
bool hasColorTransform;
// pointer to background color layer that, if set, appears below the buffer state layer
// and the buffer state layer's children. Z order will be set to
// INT_MIN
sp<Layer> bgColorLayer;
// The deque of callback handles for this frame. The back of the deque contains the most
// recent callback handle.
std::deque<sp<CallbackHandle>> callbackHandles;
bool colorSpaceAgnostic;
nsecs_t desiredPresentTime = -1;
// Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will
// be rendered around the layer.
float shadowRadius;
// Priority of the layer assigned by Window Manager.
int32_t frameRateSelectionPriority;
FrameRate frameRate;
// Indicates whether parents / children of this layer had set FrameRate
bool treeHasFrameRateVote;
// Set by window manager indicating the layer and all its children are
// in a different orientation than the display. The hint suggests that
// the graphic producers should receive a transform hint as if the
// display was in this orientation. When the display changes to match
// the layer orientation, the graphic producer may not need to allocate
// a buffer of a different size. ui::Transform::ROT_INVALID means the
// a fixed transform hint is not set.
ui::Transform::RotationFlags fixedTransformHint;
};
explicit Layer(const LayerCreationArgs& args);
virtual ~Layer();
void onFirstRef() override;
int getWindowType() const { return mWindowType; }
void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; }
// ------------------------------------------------------------------------
// Geometry setting functions.
//
// The following group of functions are used to specify the layers
// bounds, and the mapping of the texture on to those bounds. According
// to various settings changes to them may apply immediately, or be delayed until
// a pending resize is completed by the producer submitting a buffer. For example
// if we were to change the buffer size, and update the matrix ahead of the
// new buffer arriving, then we would be stretching the buffer to a different
// aspect before and after the buffer arriving, which probably isn't what we wanted.
//
// The first set of geometry functions are controlled by the scaling mode, described
// in window.h. The scaling mode may be set by the client, as it submits buffers.
// This value may be overriden through SurfaceControl, with setOverrideScalingMode.
//
// Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
// matrix updates will not be applied while a resize is pending
// and the size and transform will remain in their previous state
// until a new buffer is submitted. If the scaling mode is another value
// then the old-buffer will immediately be scaled to the pending size
// and the new matrix will be immediately applied following this scaling
// transformation.
// Set the default buffer size for the assosciated Producer, in pixels. This is
// also the rendered size of the layer prior to any transformations. Parent
// or local matrix transformations will not affect the size of the buffer,
// but may affect it's on-screen size or clipping.
virtual bool setSize(uint32_t w, uint32_t h);
// Set a 2x2 transformation matrix on the layer. This transform
// will be applied after parent transforms, but before any final
// producer specified transform.
virtual bool setMatrix(const layer_state_t::matrix22_t& matrix,
bool allowNonRectPreservingTransforms);
// This second set of geometry attributes are controlled by
// setGeometryAppliesWithResize, and their default mode is to be
// immediate. If setGeometryAppliesWithResize is specified
// while a resize is pending, then update of these attributes will
// be delayed until the resize completes.
// setPosition operates in parent buffer space (pre parent-transform) or display
// space for top-level layers.
virtual bool setPosition(float x, float y);
// Buffer space
virtual bool setCrop_legacy(const Rect& crop);
// TODO(b/38182121): Could we eliminate the various latching modes by
// using the layer hierarchy?
// -----------------------------------------------------------------------
virtual bool setLayer(int32_t z);
virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
virtual bool setAlpha(float alpha);
virtual bool setColor(const half3& /*color*/) { return false; };
// Set rounded corner radius for this layer and its children.
//
// We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
// The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
// from which we inferred the rounded corner radius.
virtual bool setCornerRadius(float cornerRadius);
// When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which
// is specified in pixels.
virtual bool setBackgroundBlurRadius(int backgroundBlurRadius);
virtual bool setTransparentRegionHint(const Region& transparent);
virtual bool setFlags(uint8_t flags, uint8_t mask);
virtual bool setLayerStack(uint32_t layerStack);
virtual uint32_t getLayerStack() const;
virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle,
uint64_t frameNumber);
virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber);
virtual bool setOverrideScalingMode(int32_t overrideScalingMode);
virtual bool setMetadata(const LayerMetadata& data);
bool reparentChildren(const sp<IBinder>& newParentHandle);
void reparentChildren(const sp<Layer>& newParent);
virtual void setChildrenDrawingParent(const sp<Layer>& layer);
virtual bool reparent(const sp<IBinder>& newParentHandle);
virtual bool detachChildren();
bool attachChildren();
bool isLayerDetached() const { return mLayerDetached; }
virtual bool setColorTransform(const mat4& matrix);
virtual mat4 getColorTransform() const;
virtual bool hasColorTransform() const;
virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
// Used only to set BufferStateLayer state
virtual bool setTransform(uint32_t /*transform*/) { return false; };
virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; };
virtual bool setCrop(const Rect& /*crop*/) { return false; };
virtual bool setFrame(const Rect& /*frame*/) { return false; };
virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, const sp<Fence>& /*acquireFence*/,
nsecs_t /*postTime*/, nsecs_t /*desiredPresentTime*/,
const client_cache_t& /*clientCacheId*/) {
return false;
};
virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; };
virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; };
virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; };
virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; };
virtual bool setApi(int32_t /*api*/) { return false; };
virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; };
virtual bool setTransactionCompletedListeners(
const std::vector<sp<CallbackHandle>>& /*handles*/) {
return false;
};
virtual void forceSendCallbacks() {}
virtual bool addFrameEvent(const sp<Fence>& /*acquireFence*/, nsecs_t /*postedTime*/,
nsecs_t /*requestedPresentTime*/) {
return false;
}
virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace);
virtual bool setColorSpaceAgnostic(const bool agnostic);
bool setShadowRadius(float shadowRadius);
virtual bool setFrameRateSelectionPriority(int32_t priority);
virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint);
// If the variable is not set on the layer, it traverses up the tree to inherit the frame
// rate priority from its parent.
virtual int32_t getFrameRateSelectionPriority() const;
static bool isLayerFocusedBasedOnPriority(int32_t priority);
virtual ui::Dataspace getDataSpace() const { return ui::Dataspace::UNKNOWN; }
// Before color management is introduced, contents on Android have to be
// desaturated in order to match what they appears like visually.
// With color management, these contents will appear desaturated, thus
// needed to be saturated so that they match what they are designed for
// visually.
bool isLegacyDataSpace() const;
virtual sp<compositionengine::LayerFE> getCompositionEngineLayerFE() const;
virtual compositionengine::LayerFECompositionState* editCompositionState();
// If we have received a new buffer this frame, we will pass its surface
// damage down to hardware composer. Otherwise, we must send a region with
// one empty rect.
virtual void useSurfaceDamage() {}
virtual void useEmptyDamage() {}
uint32_t getTransactionFlags() const { return mTransactionFlags; }
uint32_t getTransactionFlags(uint32_t flags);
uint32_t setTransactionFlags(uint32_t flags);
// Deprecated, please use compositionengine::Output::belongsInOutput()
// instead.
// TODO(lpique): Move the remaining callers (screencap) to the new function.
bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
}
FloatRect getBounds(const Region& activeTransparentRegion) const;
FloatRect getBounds() const;
// Compute bounds for the layer and cache the results.
void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius);
// Returns the buffer scale transform if a scaling mode is set.
ui::Transform getBufferScaleTransform() const;
// Get effective layer transform, taking into account all its parent transform with any
// scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE.
ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const;
// Returns the bounds of the layer without any buffer scaling.
FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const;
int32_t getSequence() const { return sequence; }
// For tracing.
// TODO: Replace with raw buffer id from buffer metadata when that becomes available.
// GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces
// creates its tracks by buffer id and has no way of associating a buffer back to the process
// that created it, the current implementation is only sufficient for cases where a buffer is
// only used within a single layer.
uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; }
// -----------------------------------------------------------------------
// Virtuals
// Provide unique string for each class type in the Layer hierarchy
virtual const char* getType() const = 0;
/*
* isOpaque - true if this surface is opaque
*
* This takes into account the buffer format (i.e. whether or not the
* pixel format includes an alpha channel) and the "opaque" flag set
* on the layer. It does not examine the current plane alpha value.
*/
virtual bool isOpaque(const Layer::State&) const { return false; }
/*
* isSecure - true if this surface is secure, that is if it prevents
* screenshots or VNC servers.
*/
bool isSecure() const;
/*
* isVisible - true if this layer is visible, false otherwise
*/
virtual bool isVisible() const = 0;
/*
* isHiddenByPolicy - true if this layer has been forced invisible.
* just because this is false, doesn't mean isVisible() is true.
* For example if this layer has no active buffer, it may not be hidden by
* policy, but it still can not be visible.
*/
bool isHiddenByPolicy() const;
/*
* Returns whether this layer can receive input.
*/
virtual bool canReceiveInput() const;
/*
* isProtected - true if the layer may contain protected content in the
* GRALLOC_USAGE_PROTECTED sense.
*/
virtual bool isProtected() const { return false; }
/*
* isFixedSize - true if content has a fixed size
*/
virtual bool isFixedSize() const { return true; }
/*
* usesSourceCrop - true if content should use a source crop
*/
virtual bool usesSourceCrop() const { return false; }
// Most layers aren't created from the main thread, and therefore need to
// grab the SF state lock to access HWC, but ContainerLayer does, so we need
// to avoid grabbing the lock again to avoid deadlock
virtual bool isCreatedFromMainThread() const { return false; }
bool isRemovedFromCurrentState() const;
LayerProto* writeToProto(LayersProto& layersProto, uint32_t traceFlags,
const DisplayDevice*) const;
// Write states that are modified by the main thread. This includes drawing
// state as well as buffer data. This should be called in the main or tracing
// thread.
void writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags,
const DisplayDevice*) const;
// Write drawing or current state. If writing current state, the caller should hold the
// external mStateLock. If writing drawing state, this function should be called on the
// main or tracing thread.
void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const;
virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; }
virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; }
virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; }
virtual ui::Transform getActiveTransform(const Layer::State& s) const {
return s.active_legacy.transform;
}
virtual Region getActiveTransparentRegion(const Layer::State& s) const {
return s.activeTransparentRegion_legacy;
}
virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; }
virtual bool needsFiltering(const DisplayDevice*) const { return false; }
// True if this layer requires filtering
// This method is distinct from needsFiltering() in how the filter
// requirement is computed. needsFiltering() compares displayFrame and crop,
// where as this method transforms the displayFrame to layer-stack space
// first. This method should be used if there is no physical display to
// project onto when taking screenshots, as the filtering requirements are
// different.
// If the parent transform needs to be undone when capturing the layer, then
// the inverse parent transform is also required.
virtual bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const {
return false;
}
// This layer is not a clone, but it's the parent to the cloned hierarchy. The
// variable mClonedChild represents the top layer that will be cloned so this
// layer will be the parent of mClonedChild.
// The layers in the cloned hierarchy will match the lifetime of the real layers. That is
// if the real layer is destroyed, then the clone layer will also be destroyed.
sp<Layer> mClonedChild;
virtual sp<Layer> createClone() = 0;
void updateMirrorInfo();
virtual void updateCloneBufferInfo(){};
protected:
sp<compositionengine::LayerFE> asLayerFE() const;
sp<Layer> getClonedFrom() { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; }
bool isClone() { return mClonedFrom != nullptr; }
bool isClonedFromAlive() { return getClonedFrom() != nullptr; }
virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom);
void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void updateClonedChildren(const sp<Layer>& mirrorRoot,
std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
void addChildToDrawing(const sp<Layer>& layer);
void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap);
virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings&);
virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareShadowClientComposition(
const LayerFE::LayerSettings& layerSettings, const Rect& displayViewport,
ui::Dataspace outputDataspace);
// Modifies the passed in layer settings to clear the contents. If the blackout flag is set,
// the settings clears the content with a solid black fill.
void prepareClearClientComposition(LayerFE::LayerSettings& layerSettings, bool blackout) const;
public:
/*
* compositionengine::LayerFE overrides
*/
const compositionengine::LayerFECompositionState* getCompositionState() const override;
bool onPreComposition(nsecs_t) override;
void prepareCompositionState(compositionengine::LayerFE::StateSubset subset) override;
std::vector<compositionengine::LayerFE::LayerSettings> prepareClientCompositionList(
compositionengine::LayerFE::ClientCompositionTargetSettings&) override;
void onLayerDisplayed(const sp<Fence>& releaseFence) override;
const char* getDebugName() const override;
protected:
void prepareBasicGeometryCompositionState();
void prepareGeometryCompositionState();
virtual void preparePerFrameCompositionState();
void prepareCursorCompositionState();
public:
virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
virtual bool isHdrY410() const { return false; }
virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; }
/*
* called after composition.
* returns true if the layer latched a new buffer this frame.
*/
virtual bool onPostComposition(const DisplayDevice*,
const std::shared_ptr<FenceTime>& /*glDoneFence*/,
const std::shared_ptr<FenceTime>& /*presentFence*/,
const CompositorTiming&) {
return false;
}
// If a buffer was replaced this frame, release the former buffer
virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
virtual void finalizeFrameEventHistory(const std::shared_ptr<FenceTime>& /*glDoneFence*/,
const CompositorTiming& /*compositorTiming*/) {}
/*
* doTransaction - process the transaction. This is a good place to figure
* out which attributes of the surface have changed.
*/
uint32_t doTransaction(uint32_t transactionFlags);
/*
* latchBuffer - called each time the screen is redrawn and returns whether
* the visible regions need to be recomputed (this is a fairly heavy
* operation, so this should be set only if needed). Typically this is used
* to figure out if the content or size of a surface has changed.
*/
virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/,
nsecs_t /*expectedPresentTime*/) {
return false;
}
virtual bool isBufferLatched() const { return false; }
virtual void latchAndReleaseBuffer() {}
/*
* Remove relative z for the layer if its relative parent is not part of the
* provided layer tree.
*/
void removeRelativeZ(const std::vector<Layer*>& layersInTree);
/*
* Remove from current state and mark for removal.
*/
void removeFromCurrentState();
/*
* called with the state lock from a binder thread when the layer is
* removed from the current list to the pending removal list
*/
void onRemovedFromCurrentState();
/*
* Called when the layer is added back to the current state list.
*/
void addToCurrentState();
/*
* Sets display transform hint on BufferLayerConsumer.
*/
void updateTransformHint(ui::Transform::RotationFlags);
/*
* returns the rectangle that crops the content of the layer and scales it
* to the layer's size.
*/
virtual Rect getBufferCrop() const { return Rect(); }
/*
* Returns the transform applied to the buffer.
*/
virtual uint32_t getBufferTransform() const { return 0; }
virtual sp<GraphicBuffer> getBuffer() const { return nullptr; }
virtual ui::Transform::RotationFlags getTransformHint() const { return ui::Transform::ROT_0; }
/*
* Returns if a frame is ready
*/
virtual bool hasReadyFrame() const { return false; }
virtual int32_t getQueuedFrameCount() const { return 0; }
// -----------------------------------------------------------------------
inline const State& getDrawingState() const { return mDrawingState; }
inline const State& getCurrentState() const { return mCurrentState; }
inline State& getCurrentState() { return mCurrentState; }
LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const;
static void miniDumpHeader(std::string& result);
void miniDump(std::string& result, const DisplayDevice&) const;
void dumpFrameStats(std::string& result) const;
void dumpFrameEvents(std::string& result);
void dumpCallingUidPid(std::string& result) const;
void clearFrameStats();
void logFrameStats();
void getFrameStats(FrameStats* outStats) const;
virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
return {};
}
void onDisconnect();
void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
FrameEventHistoryDelta* outDelta);
virtual bool getTransformToDisplayInverse() const { return false; }
ui::Transform getTransform() const;
// Returns the Alpha of the Surface, accounting for the Alpha
// of parent Surfaces in the hierarchy (alpha's will be multiplied
// down the hierarchy).
half getAlpha() const;
half4 getColor() const;
int32_t getBackgroundBlurRadius() const;
bool drawShadows() const { return mEffectiveShadowRadius > 0.f; };
// Returns the transform hint set by Window Manager on the layer or one of its parents.
// This traverses the current state because the data is needed when creating
// the layer(off drawing thread) and the hint should be available before the producer
// is ready to acquire a buffer.
ui::Transform::RotationFlags getFixedTransformHint() const;
// Returns how rounded corners should be drawn for this layer.
// This will traverse the hierarchy until it reaches its root, finding topmost rounded
// corner definition and converting it into current layer's coordinates.
// As of now, only 1 corner radius per display list is supported. Subsequent ones will be
// ignored.
virtual RoundedCornerState getRoundedCornerState() const;
renderengine::ShadowSettings getShadowSettings(const Rect& viewport) const;
/**
* Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder
* which will not emit children who have relativeZOrder to another layer, this method
* just directly emits all children. It also emits them in no particular order.
* So this method is not suitable for graphical operations, as it doesn't represent
* the scene state, but it's also more efficient than traverseInZOrder and so useful for
* book-keeping.
*/
void traverse(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
void traverseInReverseZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
/**
* Traverse only children in z order, ignoring relative layers that are not children of the
* parent.
*/
void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
size_t getChildrenCount() const;
// ONLY CALL THIS FROM THE LAYER DTOR!
// See b/141111965. We need to add current children to offscreen layers in
// the layer dtor so as not to dangle layers. Since the layer has not
// committed its transaction when the layer is destroyed, we must add
// current children. This is safe in the dtor as we will no longer update
// the current state, but should not be called anywhere else!
LayerVector& getCurrentChildren() { return mCurrentChildren; }
void addChild(const sp<Layer>& layer);
// Returns index if removed, or negative value otherwise
// for symmetry with Vector::remove
ssize_t removeChild(const sp<Layer>& layer);
sp<Layer> getParent() const { return mCurrentParent.promote(); }
bool hasParent() const { return getParent() != nullptr; }
Rect getScreenBounds(bool reduceTransparentRegion = true) const;
bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
bool setChildRelativeLayer(const sp<Layer>& childLayer,
const sp<IBinder>& relativeToHandle, int32_t relativeZ);
// Copy the current list of children to the drawing state. Called by
// SurfaceFlinger to complete a transaction.
void commitChildList();
int32_t getZ(LayerVector::StateSet stateSet) const;
virtual void pushPendingState();
/**
* Returns active buffer size in the correct orientation. Buffer size is determined by undoing
* any buffer transformations. If the layer has no buffer then return INVALID_RECT.
*/
virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; }
/**
* Returns the source bounds. If the bounds are not defined, it is inferred from the
* buffer size. Failing that, the bounds are determined from the passed in parent bounds.
* For the root layer, this is the display viewport size.
*/
virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const {
return parentBounds;
}
/**
* Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
* INVALID_RECT if the layer has no buffer and no crop.
* A layer with an invalid buffer size and no crop is considered to be boundless. The layer
* bounds are constrained by its parent bounds.
*/
Rect getCroppedBufferSize(const Layer::State& s) const;
bool setFrameRate(FrameRate frameRate);
virtual FrameRate getFrameRateForLayerTree() const;
static std::string frameRateCompatibilityString(FrameRateCompatibility compatibility);
protected:
// constant
sp<SurfaceFlinger> mFlinger;
/*
* Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
* is called.
*/
class LayerCleaner {
sp<SurfaceFlinger> mFlinger;
sp<Layer> mLayer;
protected:
~LayerCleaner() {
// destroy client resources
mFlinger->onHandleDestroyed(mLayer);
}
public:
LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
: mFlinger(flinger), mLayer(layer) {}
};
friend class impl::SurfaceInterceptor;
// For unit tests
friend class TestableSurfaceFlinger;
friend class RefreshRateSelectionTest;
friend class SetFrameRateTest;
virtual void commitTransaction(const State& stateToCommit);
uint32_t getEffectiveUsage(uint32_t usage) const;
/**
* Setup rounded corners coordinates of this layer, taking into account the layer bounds and
* crop coordinates, transforming them into layer space.
*/
void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
void setParent(const sp<Layer>& layer);
LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
void addZOrderRelative(const wp<Layer>& relative);
void removeZOrderRelative(const wp<Layer>& relative);
class SyncPoint {
public:
explicit SyncPoint(uint64_t frameNumber,
wp<Layer> requestedSyncLayer,
wp<Layer> barrierLayer_legacy)
: mFrameNumber(frameNumber),
mFrameIsAvailable(false),
mTransactionIsApplied(false),
mRequestedSyncLayer(requestedSyncLayer),
mBarrierLayer_legacy(barrierLayer_legacy) {}
uint64_t getFrameNumber() const { return mFrameNumber; }
bool frameIsAvailable() const { return mFrameIsAvailable; }
void setFrameAvailable() { mFrameIsAvailable = true; }
bool transactionIsApplied() const { return mTransactionIsApplied; }
void setTransactionApplied() { mTransactionIsApplied = true; }
sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); }
sp<Layer> getBarrierLayer() const { return mBarrierLayer_legacy.promote(); }
bool isTimeout() const {
using namespace std::chrono_literals;
static constexpr std::chrono::nanoseconds TIMEOUT_THRESHOLD = 1s;
return std::chrono::steady_clock::now() - mCreateTimeStamp > TIMEOUT_THRESHOLD;
}
void checkTimeoutAndLog() {
using namespace std::chrono_literals;
static constexpr std::chrono::nanoseconds LOG_PERIOD = 1s;
if (!frameIsAvailable() && isTimeout()) {
const auto now = std::chrono::steady_clock::now();
if (now - mLastLogTime > LOG_PERIOD) {
mLastLogTime = now;
sp<Layer> requestedSyncLayer = getRequestedSyncLayer();
sp<Layer> barrierLayer = getBarrierLayer();
ALOGW("[%s] sync point %" PRIu64 " wait timeout %lld for %s",
requestedSyncLayer ? requestedSyncLayer->getDebugName() : "Removed",
mFrameNumber, (now - mCreateTimeStamp).count(),
barrierLayer ? barrierLayer->getDebugName() : "Removed");
}
}
}
private:
const uint64_t mFrameNumber;
std::atomic<bool> mFrameIsAvailable;
std::atomic<bool> mTransactionIsApplied;
wp<Layer> mRequestedSyncLayer;
wp<Layer> mBarrierLayer_legacy;
const std::chrono::time_point<std::chrono::steady_clock> mCreateTimeStamp =
std::chrono::steady_clock::now();
std::chrono::time_point<std::chrono::steady_clock> mLastLogTime;
};
// SyncPoints which will be signaled when the correct frame is at the head
// of the queue and dropped after the frame has been latched. Protected by
// mLocalSyncPointMutex.
Mutex mLocalSyncPointMutex;
std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
// SyncPoints which will be signaled and then dropped when the transaction
// is applied
std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
// Returns false if the relevant frame has already been latched
bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
void popPendingState(State* stateToCommit);
virtual bool applyPendingStates(State* stateToCommit);
virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit);
// Returns mCurrentScaling mode (originating from the
// Client) or mOverrideScalingMode mode (originating from
// the Surface Controller) if set.
virtual uint32_t getEffectiveScalingMode() const { return 0; }
public:
/*
* The layer handle is just a BBinder object passed to the client
* (remote process) -- we don't keep any reference on our side such that
* the dtor is called when the remote side let go of its reference.
*
* LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
* this layer when the handle is destroyed.
*/
class Handle : public BBinder, public LayerCleaner {
public:
Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
: LayerCleaner(flinger, layer), owner(layer) {}
wp<Layer> owner;
};
// Creates a new handle each time, so we only expect
// this to be called once.
sp<IBinder> getHandle();
const std::string& getName() const { return mName; }
virtual void notifyAvailableFrames(nsecs_t /*expectedPresentTime*/) {}
virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
bool getPremultipledAlpha() const;
bool mPendingHWCDestroy{false};
void setInputInfo(const InputWindowInfo& info);
InputWindowInfo fillInputInfo();
/**
* Returns whether this layer has an explicitly set input-info.
*/
bool hasInputInfo() const;
/**
* Return whether this layer needs an input info. For most layer types
* this is only true if they explicitly set an input-info but BufferLayer
* overrides this so we can generate input-info for Buffered layers that don't
* have them (for input occlusion detection checks).
*/
virtual bool needsInputInfo() const { return hasInputInfo(); }
protected:
compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const;
bool usingRelativeZ(LayerVector::StateSet stateSet) const;
bool mPremultipliedAlpha{true};
const std::string mName;
const std::string mTransactionName{"TX - " + mName};
bool mPrimaryDisplayOnly = false;
// These are only accessed by the main thread or the tracing thread.
State mDrawingState;
// Store a copy of the pending state so that the drawing thread can access the
// states without a lock.
std::deque<State> mPendingStatesSnapshot;
// these are protected by an external lock (mStateLock)
State mCurrentState;
std::atomic<uint32_t> mTransactionFlags{0};
std::deque<State> mPendingStates;
// Timestamp history for UIAutomation. Thread safe.
FrameTracker mFrameTracker;
// Timestamp history for the consumer to query.
// Accessed by both consumer and producer on main and binder threads.
Mutex mFrameEventHistoryMutex;
ConsumerFrameEventHistory mFrameEventHistory;
FenceTimeline mAcquireTimeline;
FenceTimeline mReleaseTimeline;
// main thread
sp<NativeHandle> mSidebandStream;
// False if the buffer and its contents have been previously used for GPU
// composition, true otherwise.
bool mIsActiveBufferUpdatedForGpu = true;
// We encode unset as -1.
int32_t mOverrideScalingMode{-1};
std::atomic<uint64_t> mCurrentFrameNumber{0};
// Whether filtering is needed b/c of the drawingstate
bool mNeedsFiltering{false};
std::atomic<bool> mRemovedFromCurrentState{false};
// page-flip thread (currently main thread)
bool mProtectedByApp{false}; // application requires protected path to external sink
// protected by mLock
mutable Mutex mLock;
const wp<Client> mClientRef;
// This layer can be a cursor on some displays.
bool mPotentialCursor{false};
// Child list about to be committed/used for editing.
LayerVector mCurrentChildren{LayerVector::StateSet::Current};
// Child list used for rendering.
LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};
wp<Layer> mCurrentParent;
wp<Layer> mDrawingParent;
// Can only be accessed with the SF state lock held.
bool mLayerDetached{false};
// Can only be accessed with the SF state lock held.
bool mChildrenChanged{false};
// Window types from WindowManager.LayoutParams
const int mWindowType;
private:
virtual void setTransformHint(ui::Transform::RotationFlags) {}
Hwc2::IComposerClient::Composition getCompositionType(const DisplayDevice&) const;
Region getVisibleRegion(const DisplayDevice*) const;
/**
* Returns an unsorted vector of all layers that are part of this tree.
* That includes the current layer and all its descendants.
*/
std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
/**
* Traverses layers that are part of this tree in the correct z order.
* layersInTree must be sorted before calling this method.
*/
void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
LayerVector::StateSet stateSet,
const LayerVector::Visitor& visitor);
LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
const std::vector<Layer*>& layersInTree);
void updateTreeHasFrameRateVote();
// Cached properties computed from drawing state
// Effective transform taking into account parent transforms and any parent scaling.
ui::Transform mEffectiveTransform;
// Bounds of the layer before any transformation is applied and before it has been cropped
// by its parents.
FloatRect mSourceBounds;
// Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
// its parent bounds.
FloatRect mBounds;
// Layer bounds in screen space.
FloatRect mScreenBounds;
void setZOrderRelativeOf(const wp<Layer>& relativeOf);
bool mGetHandleCalled = false;
void removeRemoteSyncPoints();
// Tracks the process and user id of the caller when creating this layer
// to help debugging.
pid_t mCallingPid;
uid_t mCallingUid;
// The current layer is a clone of mClonedFrom. This means that this layer will update it's
// properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers,
// this layer will update it's buffer. When mClonedFrom updates it's drawing state, children,
// and relatives, this layer will update as well.
wp<Layer> mClonedFrom;
// The inherited shadow radius after taking into account the layer hierarchy. This is the
// final shadow radius for this layer. If a shadow is specified for a layer, then effective
// shadow radius is the set shadow radius, otherwise its the parent's shadow radius.
float mEffectiveShadowRadius = 0.f;
// Returns true if the layer can draw shadows on its border.
virtual bool canDrawShadows() const { return true; }
// Find the root of the cloned hierarchy, this means the first non cloned parent.
// This will return null if first non cloned parent is not found.
sp<Layer> getClonedRoot();
// Finds the top most layer in the hierarchy. This will find the root Layer where the parent is
// null.
sp<Layer> getRootLayer();
};
} // namespace android