| /* |
| * Copyright 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <thread> |
| |
| #include <android-base/stringprintf.h> |
| #include <compositionengine/CompositionEngine.h> |
| #include <compositionengine/CompositionRefreshArgs.h> |
| #include <compositionengine/DisplayColorProfile.h> |
| #include <compositionengine/LayerFE.h> |
| #include <compositionengine/LayerFECompositionState.h> |
| #include <compositionengine/RenderSurface.h> |
| #include <compositionengine/impl/Output.h> |
| #include <compositionengine/impl/OutputCompositionState.h> |
| #include <compositionengine/impl/OutputLayer.h> |
| #include <compositionengine/impl/OutputLayerCompositionState.h> |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wconversion" |
| |
| #include <renderengine/DisplaySettings.h> |
| #include <renderengine/RenderEngine.h> |
| |
| // TODO(b/129481165): remove the #pragma below and fix conversion issues |
| #pragma clang diagnostic pop // ignored "-Wconversion" |
| |
| #include <ui/DebugUtils.h> |
| #include <ui/HdrCapabilities.h> |
| #include <utils/Trace.h> |
| |
| #include "TracedOrdinal.h" |
| |
| namespace android::compositionengine { |
| |
| Output::~Output() = default; |
| |
| namespace impl { |
| |
| namespace { |
| |
| template <typename T> |
| class Reversed { |
| public: |
| explicit Reversed(const T& container) : mContainer(container) {} |
| auto begin() { return mContainer.rbegin(); } |
| auto end() { return mContainer.rend(); } |
| |
| private: |
| const T& mContainer; |
| }; |
| |
| // Helper for enumerating over a container in reverse order |
| template <typename T> |
| Reversed<T> reversed(const T& c) { |
| return Reversed<T>(c); |
| } |
| |
| } // namespace |
| |
| std::shared_ptr<Output> createOutput( |
| const compositionengine::CompositionEngine& compositionEngine) { |
| return createOutputTemplated<Output>(compositionEngine); |
| } |
| |
| Output::~Output() = default; |
| |
| bool Output::isValid() const { |
| return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface && |
| mRenderSurface->isValid(); |
| } |
| |
| std::optional<DisplayId> Output::getDisplayId() const { |
| return {}; |
| } |
| |
| const std::string& Output::getName() const { |
| return mName; |
| } |
| |
| void Output::setName(const std::string& name) { |
| mName = name; |
| } |
| |
| void Output::setCompositionEnabled(bool enabled) { |
| auto& outputState = editState(); |
| if (outputState.isEnabled == enabled) { |
| return; |
| } |
| |
| outputState.isEnabled = enabled; |
| dirtyEntireOutput(); |
| } |
| |
| void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame, |
| const Rect& viewport, const Rect& sourceClip, |
| const Rect& destinationClip, bool needsFiltering) { |
| auto& outputState = editState(); |
| outputState.transform = transform; |
| outputState.orientation = orientation; |
| outputState.sourceClip = sourceClip; |
| outputState.destinationClip = destinationClip; |
| outputState.frame = frame; |
| outputState.viewport = viewport; |
| outputState.needsFiltering = needsFiltering; |
| |
| dirtyEntireOutput(); |
| } |
| |
| // TODO(b/121291683): Rename setSize() once more is moved. |
| void Output::setBounds(const ui::Size& size) { |
| mRenderSurface->setDisplaySize(size); |
| // TODO(b/121291683): Rename outputState.size once more is moved. |
| editState().bounds = Rect(mRenderSurface->getSize()); |
| |
| dirtyEntireOutput(); |
| } |
| |
| void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) { |
| auto& outputState = editState(); |
| outputState.layerStackId = layerStackId; |
| outputState.layerStackInternal = isInternal; |
| |
| dirtyEntireOutput(); |
| } |
| |
| void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) { |
| auto& colorTransformMatrix = editState().colorTransformMatrix; |
| if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) { |
| return; |
| } |
| |
| colorTransformMatrix = *args.colorTransformMatrix; |
| |
| dirtyEntireOutput(); |
| } |
| |
| void Output::setColorProfile(const ColorProfile& colorProfile) { |
| ui::Dataspace targetDataspace = |
| getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace, |
| colorProfile.colorSpaceAgnosticDataspace); |
| |
| auto& outputState = editState(); |
| if (outputState.colorMode == colorProfile.mode && |
| outputState.dataspace == colorProfile.dataspace && |
| outputState.renderIntent == colorProfile.renderIntent && |
| outputState.targetDataspace == targetDataspace) { |
| return; |
| } |
| |
| outputState.colorMode = colorProfile.mode; |
| outputState.dataspace = colorProfile.dataspace; |
| outputState.renderIntent = colorProfile.renderIntent; |
| outputState.targetDataspace = targetDataspace; |
| |
| mRenderSurface->setBufferDataspace(colorProfile.dataspace); |
| |
| ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)", |
| decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode, |
| decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent); |
| |
| dirtyEntireOutput(); |
| } |
| |
| void Output::dump(std::string& out) const { |
| using android::base::StringAppendF; |
| |
| StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str()); |
| |
| out.append("\n "); |
| |
| dumpBase(out); |
| } |
| |
| void Output::dumpBase(std::string& out) const { |
| dumpState(out); |
| |
| if (mDisplayColorProfile) { |
| mDisplayColorProfile->dump(out); |
| } else { |
| out.append(" No display color profile!\n"); |
| } |
| |
| if (mRenderSurface) { |
| mRenderSurface->dump(out); |
| } else { |
| out.append(" No render surface!\n"); |
| } |
| |
| android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount()); |
| for (const auto* outputLayer : getOutputLayersOrderedByZ()) { |
| if (!outputLayer) { |
| continue; |
| } |
| outputLayer->dump(out); |
| } |
| } |
| |
| compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const { |
| return mDisplayColorProfile.get(); |
| } |
| |
| void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) { |
| mDisplayColorProfile = std::move(mode); |
| } |
| |
| const Output::ReleasedLayers& Output::getReleasedLayersForTest() const { |
| return mReleasedLayers; |
| } |
| |
| void Output::setDisplayColorProfileForTest( |
| std::unique_ptr<compositionengine::DisplayColorProfile> mode) { |
| mDisplayColorProfile = std::move(mode); |
| } |
| |
| compositionengine::RenderSurface* Output::getRenderSurface() const { |
| return mRenderSurface.get(); |
| } |
| |
| void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) { |
| mRenderSurface = std::move(surface); |
| editState().bounds = Rect(mRenderSurface->getSize()); |
| |
| dirtyEntireOutput(); |
| } |
| |
| void Output::cacheClientCompositionRequests(uint32_t cacheSize) { |
| if (cacheSize == 0) { |
| mClientCompositionRequestCache.reset(); |
| } else { |
| mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize); |
| } |
| }; |
| |
| void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) { |
| mRenderSurface = std::move(surface); |
| } |
| |
| Region Output::getDirtyRegion(bool repaintEverything) const { |
| const auto& outputState = getState(); |
| Region dirty(outputState.viewport); |
| if (!repaintEverything) { |
| dirty.andSelf(outputState.dirtyRegion); |
| } |
| return dirty; |
| } |
| |
| bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const { |
| // The layerStackId's must match, and also the layer must not be internal |
| // only when not on an internal output. |
| const auto& outputState = getState(); |
| return layerStackId && (*layerStackId == outputState.layerStackId) && |
| (!internalOnly || outputState.layerStackInternal); |
| } |
| |
| bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const { |
| const auto* layerFEState = layerFE->getCompositionState(); |
| return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly); |
| } |
| |
| std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer( |
| const sp<LayerFE>& layerFE) const { |
| return impl::createOutputLayer(*this, layerFE); |
| } |
| |
| compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const { |
| auto index = findCurrentOutputLayerForLayer(layerFE); |
| return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr; |
| } |
| |
| std::optional<size_t> Output::findCurrentOutputLayerForLayer( |
| const sp<compositionengine::LayerFE>& layer) const { |
| for (size_t i = 0; i < getOutputLayerCount(); i++) { |
| auto outputLayer = getOutputLayerOrderedByZByIndex(i); |
| if (outputLayer && &outputLayer->getLayerFE() == layer.get()) { |
| return i; |
| } |
| } |
| return std::nullopt; |
| } |
| |
| void Output::setReleasedLayers(Output::ReleasedLayers&& layers) { |
| mReleasedLayers = std::move(layers); |
| } |
| |
| void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs, |
| LayerFESet& geomSnapshots) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| rebuildLayerStacks(refreshArgs, geomSnapshots); |
| } |
| |
| void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| updateColorProfile(refreshArgs); |
| updateAndWriteCompositionState(refreshArgs); |
| setColorTransform(refreshArgs); |
| beginFrame(); |
| prepareFrame(); |
| devOptRepaintFlash(refreshArgs); |
| finishFrame(refreshArgs); |
| postFramebuffer(); |
| } |
| |
| void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs, |
| LayerFESet& layerFESet) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| auto& outputState = editState(); |
| |
| // Do nothing if this output is not enabled or there is no need to perform this update |
| if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) { |
| return; |
| } |
| |
| // Process the layers to determine visibility and coverage |
| compositionengine::Output::CoverageState coverage{layerFESet}; |
| collectVisibleLayers(refreshArgs, coverage); |
| |
| // Compute the resulting coverage for this output, and store it for later |
| const ui::Transform& tr = outputState.transform; |
| Region undefinedRegion{outputState.bounds}; |
| undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers)); |
| |
| outputState.undefinedRegion = undefinedRegion; |
| outputState.dirtyRegion.orSelf(coverage.dirtyRegion); |
| } |
| |
| void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs, |
| compositionengine::Output::CoverageState& coverage) { |
| // Evaluate the layers from front to back to determine what is visible. This |
| // also incrementally calculates the coverage information for each layer as |
| // well as the entire output. |
| for (auto layer : reversed(refreshArgs.layers)) { |
| // Incrementally process the coverage for each layer |
| ensureOutputLayerIfVisible(layer, coverage); |
| |
| // TODO(b/121291683): Stop early if the output is completely covered and |
| // no more layers could even be visible underneath the ones on top. |
| } |
| |
| setReleasedLayers(refreshArgs); |
| |
| finalizePendingOutputLayers(); |
| |
| // Generate a simple Z-order values to each visible output layer |
| uint32_t zOrder = 0; |
| for (auto* outputLayer : getOutputLayersOrderedByZ()) { |
| outputLayer->editState().z = zOrder++; |
| } |
| } |
| |
| void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE, |
| compositionengine::Output::CoverageState& coverage) { |
| // Ensure we have a snapshot of the basic geometry layer state. Limit the |
| // snapshots to once per frame for each candidate layer, as layers may |
| // appear on multiple outputs. |
| if (!coverage.latchedLayers.count(layerFE)) { |
| coverage.latchedLayers.insert(layerFE); |
| layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry); |
| } |
| |
| // Only consider the layers on the given layer stack |
| if (!belongsInOutput(layerFE)) { |
| return; |
| } |
| |
| // Obtain a read-only pointer to the front-end layer state |
| const auto* layerFEState = layerFE->getCompositionState(); |
| if (CC_UNLIKELY(!layerFEState)) { |
| return; |
| } |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_UNLIKELY(!layerFEState->isVisible)) { |
| return; |
| } |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen and not fully |
| * transparent. This is essentially the layer's footprint minus the opaque |
| * regions above it. Areas covered by a translucent surface are considered |
| * visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all visible regions |
| * above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible non- |
| * transparent regions and can be removed from the layer list. It does not |
| * affect the visibleRegion of this layer or any layers beneath it. The hint |
| * may not be correct if apps don't respect the SurfaceView restrictions |
| * (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| /* |
| * shadowRegion: Region cast by the layer's shadow. |
| */ |
| Region shadowRegion; |
| |
| const ui::Transform& tr = layerFEState->geomLayerTransform; |
| |
| // Get the visible region |
| // TODO(b/121291683): Is it worth creating helper methods on LayerFEState |
| // for computations like this? |
| const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds)); |
| visibleRegion.set(visibleRect); |
| |
| if (layerFEState->shadowRadius > 0.0f) { |
| // if the layer casts a shadow, offset the layers visible region and |
| // calculate the shadow region. |
| const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f); |
| Rect visibleRectWithShadows(visibleRect); |
| visibleRectWithShadows.inset(inset, inset, inset, inset); |
| visibleRegion.set(visibleRectWithShadows); |
| shadowRegion = visibleRegion.subtract(visibleRect); |
| } |
| |
| if (visibleRegion.isEmpty()) { |
| return; |
| } |
| |
| // Remove the transparent area from the visible region |
| if (!layerFEState->isOpaque) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(layerFEState->transparentRegionHint); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } |
| |
| // compute the opaque region |
| const auto layerOrientation = tr.getOrientation(); |
| if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) { |
| // If we one of the simple category of transforms (0/90/180/270 rotation |
| // + any flip), then the opaque region is the layer's footprint. |
| // Otherwise we don't try and compute the opaque region since there may |
| // be errors at the edges, and we treat the entire layer as |
| // translucent. |
| opaqueRegion.set(visibleRect); |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update accumAboveCoveredLayers for next (lower) layer |
| coverage.aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(coverage.aboveOpaqueLayers); |
| |
| if (visibleRegion.isEmpty()) { |
| return; |
| } |
| |
| // Get coverage information for the layer as previously displayed, |
| // also taking over ownership from mOutputLayersorderedByZ. |
| auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE); |
| auto prevOutputLayer = |
| prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr; |
| |
| // Get coverage information for the layer as previously displayed |
| // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h |
| const Region kEmptyRegion; |
| const Region& oldVisibleRegion = |
| prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion; |
| const Region& oldCoveredRegion = |
| prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion; |
| |
| // compute this layer's dirty region |
| Region dirty; |
| if (layerFEState->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(oldVisibleRegion); |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole visible region |
| * but only keep what used to be covered by something -- which mean it |
| * may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got exposed |
| * because of a resize. |
| * |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed); |
| } |
| dirty.subtractSelf(coverage.aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| coverage.dirtyRegion.orSelf(dirty); |
| |
| // Update accumAboveOpaqueLayers for next (lower) layer |
| coverage.aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Compute the visible non-transparent region |
| Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion); |
| |
| // Perform the final check to see if this layer is visible on this output |
| // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below) |
| const auto& outputState = getState(); |
| Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion)); |
| drawRegion.andSelf(outputState.bounds); |
| if (drawRegion.isEmpty()) { |
| return; |
| } |
| |
| Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion); |
| |
| // The layer is visible. Either reuse the existing outputLayer if we have |
| // one, or create a new one if we do not. |
| auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE); |
| |
| // Store the layer coverage information into the layer state as some of it |
| // is useful later. |
| auto& outputLayerState = result->editState(); |
| outputLayerState.visibleRegion = visibleRegion; |
| outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion; |
| outputLayerState.coveredRegion = coveredRegion; |
| outputLayerState.outputSpaceVisibleRegion = |
| outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport)); |
| outputLayerState.shadowRegion = shadowRegion; |
| } |
| |
| void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) { |
| // The base class does nothing with this call. |
| } |
| |
| void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const { |
| for (auto* layer : getOutputLayersOrderedByZ()) { |
| layer->getLayerFE().prepareCompositionState( |
| args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent |
| : LayerFE::StateSubset::Content); |
| } |
| } |
| |
| void Output::updateAndWriteCompositionState( |
| const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| if (!getState().isEnabled) { |
| return; |
| } |
| |
| mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition(); |
| bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr; |
| |
| for (auto* layer : getOutputLayersOrderedByZ()) { |
| layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame, |
| refreshArgs.devOptForceClientComposition || |
| forceClientComposition, |
| refreshArgs.internalDisplayRotationFlags); |
| |
| if (mLayerRequestingBackgroundBlur == layer) { |
| forceClientComposition = false; |
| } |
| |
| // Send the updated state to the HWC, if appropriate. |
| layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame); |
| } |
| } |
| |
| compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const { |
| compositionengine::OutputLayer* layerRequestingBgComposition = nullptr; |
| for (auto* layer : getOutputLayersOrderedByZ()) { |
| if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) { |
| layerRequestingBgComposition = layer; |
| } |
| } |
| return layerRequestingBgComposition; |
| } |
| |
| void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| setColorProfile(pickColorProfile(refreshArgs)); |
| } |
| |
| // Returns a data space that fits all visible layers. The returned data space |
| // can only be one of |
| // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) |
| // - Dataspace::DISPLAY_P3 |
| // - Dataspace::DISPLAY_BT2020 |
| // The returned HDR data space is one of |
| // - Dataspace::UNKNOWN |
| // - Dataspace::BT2020_HLG |
| // - Dataspace::BT2020_PQ |
| ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace, |
| bool* outIsHdrClientComposition) const { |
| ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB; |
| *outHdrDataSpace = ui::Dataspace::UNKNOWN; |
| |
| for (const auto* layer : getOutputLayersOrderedByZ()) { |
| switch (layer->getLayerFE().getCompositionState()->dataspace) { |
| case ui::Dataspace::V0_SCRGB: |
| case ui::Dataspace::V0_SCRGB_LINEAR: |
| case ui::Dataspace::BT2020: |
| case ui::Dataspace::BT2020_ITU: |
| case ui::Dataspace::BT2020_LINEAR: |
| case ui::Dataspace::DISPLAY_BT2020: |
| bestDataSpace = ui::Dataspace::DISPLAY_BT2020; |
| break; |
| case ui::Dataspace::DISPLAY_P3: |
| bestDataSpace = ui::Dataspace::DISPLAY_P3; |
| break; |
| case ui::Dataspace::BT2020_PQ: |
| case ui::Dataspace::BT2020_ITU_PQ: |
| bestDataSpace = ui::Dataspace::DISPLAY_P3; |
| *outHdrDataSpace = ui::Dataspace::BT2020_PQ; |
| *outIsHdrClientComposition = |
| layer->getLayerFE().getCompositionState()->forceClientComposition; |
| break; |
| case ui::Dataspace::BT2020_HLG: |
| case ui::Dataspace::BT2020_ITU_HLG: |
| bestDataSpace = ui::Dataspace::DISPLAY_P3; |
| // When there's mixed PQ content and HLG content, we set the HDR |
| // data space to be BT2020_PQ and convert HLG to PQ. |
| if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) { |
| *outHdrDataSpace = ui::Dataspace::BT2020_HLG; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return bestDataSpace; |
| } |
| |
| compositionengine::Output::ColorProfile Output::pickColorProfile( |
| const compositionengine::CompositionRefreshArgs& refreshArgs) const { |
| if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) { |
| return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, |
| ui::RenderIntent::COLORIMETRIC, |
| refreshArgs.colorSpaceAgnosticDataspace}; |
| } |
| |
| ui::Dataspace hdrDataSpace; |
| bool isHdrClientComposition = false; |
| ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition); |
| |
| switch (refreshArgs.forceOutputColorMode) { |
| case ui::ColorMode::SRGB: |
| bestDataSpace = ui::Dataspace::V0_SRGB; |
| break; |
| case ui::ColorMode::DISPLAY_P3: |
| bestDataSpace = ui::Dataspace::DISPLAY_P3; |
| break; |
| default: |
| break; |
| } |
| |
| // respect hdrDataSpace only when there is no legacy HDR support |
| const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN && |
| !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; |
| if (isHdr) { |
| bestDataSpace = hdrDataSpace; |
| } |
| |
| ui::RenderIntent intent; |
| switch (refreshArgs.outputColorSetting) { |
| case OutputColorSetting::kManaged: |
| case OutputColorSetting::kUnmanaged: |
| intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC |
| : ui::RenderIntent::COLORIMETRIC; |
| break; |
| case OutputColorSetting::kEnhanced: |
| intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE; |
| break; |
| default: // vendor display color setting |
| intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting); |
| break; |
| } |
| |
| ui::ColorMode outMode; |
| ui::Dataspace outDataSpace; |
| ui::RenderIntent outRenderIntent; |
| mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode, |
| &outRenderIntent); |
| |
| return ColorProfile{outMode, outDataSpace, outRenderIntent, |
| refreshArgs.colorSpaceAgnosticDataspace}; |
| } |
| |
| void Output::beginFrame() { |
| auto& outputState = editState(); |
| const bool dirty = !getDirtyRegion(false).isEmpty(); |
| const bool empty = getOutputLayerCount() == 0; |
| const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers; |
| |
| // If nothing has changed (!dirty), don't recompose. |
| // If something changed, but we don't currently have any visible layers, |
| // and didn't when we last did a composition, then skip it this time. |
| // The second rule does two things: |
| // - When all layers are removed from a display, we'll emit one black |
| // frame, then nothing more until we get new layers. |
| // - When a display is created with a private layer stack, we won't |
| // emit any black frames until a layer is added to the layer stack. |
| const bool mustRecompose = dirty && !(empty && wasEmpty); |
| |
| const char flagPrefix[] = {'-', '+'}; |
| static_cast<void>(flagPrefix); |
| ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__, |
| mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty], |
| flagPrefix[empty], flagPrefix[wasEmpty]); |
| |
| mRenderSurface->beginFrame(mustRecompose); |
| |
| if (mustRecompose) { |
| outputState.lastCompositionHadVisibleLayers = !empty; |
| } |
| } |
| |
| void Output::prepareFrame() { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| const auto& outputState = getState(); |
| if (!outputState.isEnabled) { |
| return; |
| } |
| |
| chooseCompositionStrategy(); |
| |
| mRenderSurface->prepareFrame(outputState.usesClientComposition, |
| outputState.usesDeviceComposition); |
| } |
| |
| void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) { |
| return; |
| } |
| |
| if (getState().isEnabled) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything); |
| if (!dirtyRegion.isEmpty()) { |
| base::unique_fd readyFence; |
| // redraw the whole screen |
| static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs)); |
| |
| mRenderSurface->queueBuffer(std::move(readyFence)); |
| } |
| } |
| |
| postFramebuffer(); |
| |
| std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay); |
| |
| prepareFrame(); |
| } |
| |
| void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| if (!getState().isEnabled) { |
| return; |
| } |
| |
| // Repaint the framebuffer (if needed), getting the optional fence for when |
| // the composition completes. |
| auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs); |
| if (!optReadyFence) { |
| return; |
| } |
| |
| // swap buffers (presentation) |
| mRenderSurface->queueBuffer(std::move(*optReadyFence)); |
| } |
| |
| std::optional<base::unique_fd> Output::composeSurfaces( |
| const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| const auto& outputState = getState(); |
| OutputCompositionState& outputCompositionState = editState(); |
| const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition", |
| outputState.usesClientComposition}; |
| |
| auto& renderEngine = getCompositionEngine().getRenderEngine(); |
| const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); |
| |
| // If we the display is secure, protected content support is enabled, and at |
| // least one layer has protected content, we need to use a secure back |
| // buffer. |
| if (outputState.isSecure && supportsProtectedContent) { |
| auto layers = getOutputLayersOrderedByZ(); |
| bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) { |
| return layer->getLayerFE().getCompositionState()->hasProtectedContent; |
| }); |
| if (needsProtected != renderEngine.isProtected()) { |
| renderEngine.useProtectedContext(needsProtected); |
| } |
| if (needsProtected != mRenderSurface->isProtected() && |
| needsProtected == renderEngine.isProtected()) { |
| mRenderSurface->setProtected(needsProtected); |
| } |
| } else if (!outputState.isSecure && renderEngine.isProtected()) { |
| renderEngine.useProtectedContext(false); |
| } |
| |
| base::unique_fd fd; |
| sp<GraphicBuffer> buf; |
| |
| // If we aren't doing client composition on this output, but do have a |
| // flipClientTarget request for this frame on this output, we still need to |
| // dequeue a buffer. |
| if (hasClientComposition || outputState.flipClientTarget) { |
| buf = mRenderSurface->dequeueBuffer(&fd); |
| if (buf == nullptr) { |
| ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " |
| "client composition for this frame", |
| mName.c_str()); |
| return {}; |
| } |
| } |
| |
| base::unique_fd readyFence; |
| if (!hasClientComposition) { |
| setExpensiveRenderingExpected(false); |
| return readyFence; |
| } |
| |
| ALOGV("hasClientComposition"); |
| |
| renderengine::DisplaySettings clientCompositionDisplay; |
| clientCompositionDisplay.physicalDisplay = outputState.destinationClip; |
| clientCompositionDisplay.clip = outputState.sourceClip; |
| clientCompositionDisplay.orientation = outputState.orientation; |
| clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut() |
| ? outputState.dataspace |
| : ui::Dataspace::UNKNOWN; |
| clientCompositionDisplay.maxLuminance = |
| mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); |
| |
| // Compute the global color transform matrix. |
| if (!outputState.usesDeviceComposition && !getSkipColorTransform()) { |
| clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix; |
| } |
| |
| // Note: Updated by generateClientCompositionRequests |
| clientCompositionDisplay.clearRegion = Region::INVALID_REGION; |
| |
| // Generate the client composition requests for the layers on this output. |
| std::vector<LayerFE::LayerSettings> clientCompositionLayers = |
| generateClientCompositionRequests(supportsProtectedContent, |
| clientCompositionDisplay.clearRegion, |
| clientCompositionDisplay.outputDataspace); |
| appendRegionFlashRequests(debugRegion, clientCompositionLayers); |
| |
| // Check if the client composition requests were rendered into the provided graphic buffer. If |
| // so, we can reuse the buffer and avoid client composition. |
| if (mClientCompositionRequestCache) { |
| if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay, |
| clientCompositionLayers)) { |
| outputCompositionState.reusedClientComposition = true; |
| setExpensiveRenderingExpected(false); |
| return readyFence; |
| } |
| mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay, |
| clientCompositionLayers); |
| } |
| |
| // We boost GPU frequency here because there will be color spaces conversion |
| // or complex GPU shaders and it's expensive. We boost the GPU frequency so that |
| // GPU composition can finish in time. We must reset GPU frequency afterwards, |
| // because high frequency consumes extra battery. |
| const bool expensiveBlurs = |
| refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr; |
| const bool expensiveRenderingExpected = |
| clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs; |
| if (expensiveRenderingExpected) { |
| setExpensiveRenderingExpected(true); |
| } |
| |
| std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers; |
| clientCompositionLayerPointers.reserve(clientCompositionLayers.size()); |
| std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(), |
| std::back_inserter(clientCompositionLayerPointers), |
| [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* { |
| return &settings; |
| }); |
| |
| const nsecs_t renderEngineStart = systemTime(); |
| status_t status = |
| renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, |
| buf->getNativeBuffer(), /*useFramebufferCache=*/true, |
| std::move(fd), &readyFence); |
| |
| if (status != NO_ERROR && mClientCompositionRequestCache) { |
| // If rendering was not successful, remove the request from the cache. |
| mClientCompositionRequestCache->remove(buf->getId()); |
| } |
| |
| auto& timeStats = getCompositionEngine().getTimeStats(); |
| if (readyFence.get() < 0) { |
| timeStats.recordRenderEngineDuration(renderEngineStart, systemTime()); |
| } else { |
| timeStats.recordRenderEngineDuration(renderEngineStart, |
| std::make_shared<FenceTime>( |
| new Fence(dup(readyFence.get())))); |
| } |
| |
| return readyFence; |
| } |
| |
| std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests( |
| bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) { |
| std::vector<LayerFE::LayerSettings> clientCompositionLayers; |
| ALOGV("Rendering client layers"); |
| |
| const auto& outputState = getState(); |
| const Region viewportRegion(outputState.viewport); |
| const bool useIdentityTransform = false; |
| bool firstLayer = true; |
| // Used when a layer clears part of the buffer. |
| Region stubRegion; |
| |
| for (auto* layer : getOutputLayersOrderedByZ()) { |
| const auto& layerState = layer->getState(); |
| const auto* layerFEState = layer->getLayerFE().getCompositionState(); |
| auto& layerFE = layer->getLayerFE(); |
| |
| const Region clip(viewportRegion.intersect(layerState.visibleRegion)); |
| ALOGV("Layer: %s", layerFE.getDebugName()); |
| if (clip.isEmpty()) { |
| ALOGV(" Skipping for empty clip"); |
| firstLayer = false; |
| continue; |
| } |
| |
| const bool clientComposition = layer->requiresClientComposition(); |
| |
| // We clear the client target for non-client composed layers if |
| // requested by the HWC. We skip this if the layer is not an opaque |
| // rectangle, as by definition the layer must blend with whatever is |
| // underneath. We also skip the first layer as the buffer target is |
| // guaranteed to start out cleared. |
| const bool clearClientComposition = |
| layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer; |
| |
| ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition); |
| |
| // If the layer casts a shadow but the content casting the shadow is occluded, skip |
| // composing the non-shadow content and only draw the shadows. |
| const bool realContentIsVisible = clientComposition && |
| !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty(); |
| |
| if (clientComposition || clearClientComposition) { |
| compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{ |
| clip, |
| useIdentityTransform, |
| layer->needsFiltering() || outputState.needsFiltering, |
| outputState.isSecure, |
| supportsProtectedContent, |
| clientComposition ? clearRegion : stubRegion, |
| outputState.viewport, |
| outputDataspace, |
| realContentIsVisible, |
| !clientComposition, /* clearContent */ |
| }; |
| std::vector<LayerFE::LayerSettings> results = |
| layerFE.prepareClientCompositionList(targetSettings); |
| if (realContentIsVisible && !results.empty()) { |
| layer->editState().clientCompositionTimestamp = systemTime(); |
| } |
| |
| clientCompositionLayers.insert(clientCompositionLayers.end(), |
| std::make_move_iterator(results.begin()), |
| std::make_move_iterator(results.end())); |
| results.clear(); |
| } |
| |
| firstLayer = false; |
| } |
| |
| return clientCompositionLayers; |
| } |
| |
| void Output::appendRegionFlashRequests( |
| const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) { |
| if (flashRegion.isEmpty()) { |
| return; |
| } |
| |
| LayerFE::LayerSettings layerSettings; |
| layerSettings.source.buffer.buffer = nullptr; |
| layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); |
| layerSettings.alpha = half(1.0); |
| |
| for (const auto& rect : flashRegion) { |
| layerSettings.geometry.boundaries = rect.toFloatRect(); |
| clientCompositionLayers.push_back(layerSettings); |
| } |
| } |
| |
| void Output::setExpensiveRenderingExpected(bool) { |
| // The base class does nothing with this call. |
| } |
| |
| void Output::postFramebuffer() { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| if (!getState().isEnabled) { |
| return; |
| } |
| |
| auto& outputState = editState(); |
| outputState.dirtyRegion.clear(); |
| mRenderSurface->flip(); |
| |
| auto frame = presentAndGetFrameFences(); |
| |
| mRenderSurface->onPresentDisplayCompleted(); |
| |
| for (auto* layer : getOutputLayersOrderedByZ()) { |
| // The layer buffer from the previous frame (if any) is released |
| // by HWC only when the release fence from this frame (if any) is |
| // signaled. Always get the release fence from HWC first. |
| sp<Fence> releaseFence = Fence::NO_FENCE; |
| |
| if (auto hwcLayer = layer->getHwcLayer()) { |
| if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) { |
| releaseFence = f->second; |
| } |
| } |
| |
| // If the layer was client composited in the previous frame, we |
| // need to merge with the previous client target acquire fence. |
| // Since we do not track that, always merge with the current |
| // client target acquire fence when it is available, even though |
| // this is suboptimal. |
| // TODO(b/121291683): Track previous frame client target acquire fence. |
| if (outputState.usesClientComposition) { |
| releaseFence = |
| Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence); |
| } |
| |
| layer->getLayerFE().onLayerDisplayed(releaseFence); |
| } |
| |
| // We've got a list of layers needing fences, that are disjoint with |
| // OutputLayersOrderedByZ. The best we can do is to |
| // supply them with the present fence. |
| for (auto& weakLayer : mReleasedLayers) { |
| if (auto layer = weakLayer.promote(); layer != nullptr) { |
| layer->onLayerDisplayed(frame.presentFence); |
| } |
| } |
| |
| // Clear out the released layers now that we're done with them. |
| mReleasedLayers.clear(); |
| } |
| |
| void Output::dirtyEntireOutput() { |
| auto& outputState = editState(); |
| outputState.dirtyRegion.set(outputState.bounds); |
| } |
| |
| void Output::chooseCompositionStrategy() { |
| // The base output implementation can only do client composition |
| auto& outputState = editState(); |
| outputState.usesClientComposition = true; |
| outputState.usesDeviceComposition = false; |
| outputState.reusedClientComposition = false; |
| } |
| |
| bool Output::getSkipColorTransform() const { |
| return true; |
| } |
| |
| compositionengine::Output::FrameFences Output::presentAndGetFrameFences() { |
| compositionengine::Output::FrameFences result; |
| if (getState().usesClientComposition) { |
| result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence(); |
| } |
| return result; |
| } |
| |
| } // namespace impl |
| } // namespace android::compositionengine |