blob: d3247e1488bcca14459214a61033acb09eeb06ae [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include <android-base/stringprintf.h>
#include <compositionengine/CompositionEngine.h>
#include <compositionengine/CompositionRefreshArgs.h>
#include <compositionengine/DisplayColorProfile.h>
#include <compositionengine/LayerFE.h>
#include <compositionengine/LayerFECompositionState.h>
#include <compositionengine/RenderSurface.h>
#include <compositionengine/impl/Output.h>
#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayer.h>
#include <compositionengine/impl/OutputLayerCompositionState.h>
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#include <renderengine/DisplaySettings.h>
#include <renderengine/RenderEngine.h>
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wconversion"
#include <ui/DebugUtils.h>
#include <ui/HdrCapabilities.h>
#include <utils/Trace.h>
#include "TracedOrdinal.h"
namespace android::compositionengine {
Output::~Output() = default;
namespace impl {
namespace {
template <typename T>
class Reversed {
public:
explicit Reversed(const T& container) : mContainer(container) {}
auto begin() { return mContainer.rbegin(); }
auto end() { return mContainer.rend(); }
private:
const T& mContainer;
};
// Helper for enumerating over a container in reverse order
template <typename T>
Reversed<T> reversed(const T& c) {
return Reversed<T>(c);
}
} // namespace
std::shared_ptr<Output> createOutput(
const compositionengine::CompositionEngine& compositionEngine) {
return createOutputTemplated<Output>(compositionEngine);
}
Output::~Output() = default;
bool Output::isValid() const {
return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
mRenderSurface->isValid();
}
std::optional<DisplayId> Output::getDisplayId() const {
return {};
}
const std::string& Output::getName() const {
return mName;
}
void Output::setName(const std::string& name) {
mName = name;
}
void Output::setCompositionEnabled(bool enabled) {
auto& outputState = editState();
if (outputState.isEnabled == enabled) {
return;
}
outputState.isEnabled = enabled;
dirtyEntireOutput();
}
void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame,
const Rect& viewport, const Rect& sourceClip,
const Rect& destinationClip, bool needsFiltering) {
auto& outputState = editState();
outputState.transform = transform;
outputState.orientation = orientation;
outputState.sourceClip = sourceClip;
outputState.destinationClip = destinationClip;
outputState.frame = frame;
outputState.viewport = viewport;
outputState.needsFiltering = needsFiltering;
dirtyEntireOutput();
}
// TODO(b/121291683): Rename setSize() once more is moved.
void Output::setBounds(const ui::Size& size) {
mRenderSurface->setDisplaySize(size);
// TODO(b/121291683): Rename outputState.size once more is moved.
editState().bounds = Rect(mRenderSurface->getSize());
dirtyEntireOutput();
}
void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
auto& outputState = editState();
outputState.layerStackId = layerStackId;
outputState.layerStackInternal = isInternal;
dirtyEntireOutput();
}
void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
auto& colorTransformMatrix = editState().colorTransformMatrix;
if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
return;
}
colorTransformMatrix = *args.colorTransformMatrix;
dirtyEntireOutput();
}
void Output::setColorProfile(const ColorProfile& colorProfile) {
ui::Dataspace targetDataspace =
getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
colorProfile.colorSpaceAgnosticDataspace);
auto& outputState = editState();
if (outputState.colorMode == colorProfile.mode &&
outputState.dataspace == colorProfile.dataspace &&
outputState.renderIntent == colorProfile.renderIntent &&
outputState.targetDataspace == targetDataspace) {
return;
}
outputState.colorMode = colorProfile.mode;
outputState.dataspace = colorProfile.dataspace;
outputState.renderIntent = colorProfile.renderIntent;
outputState.targetDataspace = targetDataspace;
mRenderSurface->setBufferDataspace(colorProfile.dataspace);
ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
dirtyEntireOutput();
}
void Output::dump(std::string& out) const {
using android::base::StringAppendF;
StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str());
out.append("\n ");
dumpBase(out);
}
void Output::dumpBase(std::string& out) const {
dumpState(out);
if (mDisplayColorProfile) {
mDisplayColorProfile->dump(out);
} else {
out.append(" No display color profile!\n");
}
if (mRenderSurface) {
mRenderSurface->dump(out);
} else {
out.append(" No render surface!\n");
}
android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
if (!outputLayer) {
continue;
}
outputLayer->dump(out);
}
}
compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
return mDisplayColorProfile.get();
}
void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
mDisplayColorProfile = std::move(mode);
}
const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
return mReleasedLayers;
}
void Output::setDisplayColorProfileForTest(
std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
mDisplayColorProfile = std::move(mode);
}
compositionengine::RenderSurface* Output::getRenderSurface() const {
return mRenderSurface.get();
}
void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
mRenderSurface = std::move(surface);
editState().bounds = Rect(mRenderSurface->getSize());
dirtyEntireOutput();
}
void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
if (cacheSize == 0) {
mClientCompositionRequestCache.reset();
} else {
mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
}
};
void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
mRenderSurface = std::move(surface);
}
Region Output::getDirtyRegion(bool repaintEverything) const {
const auto& outputState = getState();
Region dirty(outputState.viewport);
if (!repaintEverything) {
dirty.andSelf(outputState.dirtyRegion);
}
return dirty;
}
bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
// The layerStackId's must match, and also the layer must not be internal
// only when not on an internal output.
const auto& outputState = getState();
return layerStackId && (*layerStackId == outputState.layerStackId) &&
(!internalOnly || outputState.layerStackInternal);
}
bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
const auto* layerFEState = layerFE->getCompositionState();
return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
}
std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
const sp<LayerFE>& layerFE) const {
return impl::createOutputLayer(*this, layerFE);
}
compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
auto index = findCurrentOutputLayerForLayer(layerFE);
return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
}
std::optional<size_t> Output::findCurrentOutputLayerForLayer(
const sp<compositionengine::LayerFE>& layer) const {
for (size_t i = 0; i < getOutputLayerCount(); i++) {
auto outputLayer = getOutputLayerOrderedByZByIndex(i);
if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
return i;
}
}
return std::nullopt;
}
void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
mReleasedLayers = std::move(layers);
}
void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
LayerFESet& geomSnapshots) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
rebuildLayerStacks(refreshArgs, geomSnapshots);
}
void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
updateColorProfile(refreshArgs);
updateAndWriteCompositionState(refreshArgs);
setColorTransform(refreshArgs);
beginFrame();
prepareFrame();
devOptRepaintFlash(refreshArgs);
finishFrame(refreshArgs);
postFramebuffer();
}
void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
LayerFESet& layerFESet) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
auto& outputState = editState();
// Do nothing if this output is not enabled or there is no need to perform this update
if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
return;
}
// Process the layers to determine visibility and coverage
compositionengine::Output::CoverageState coverage{layerFESet};
collectVisibleLayers(refreshArgs, coverage);
// Compute the resulting coverage for this output, and store it for later
const ui::Transform& tr = outputState.transform;
Region undefinedRegion{outputState.bounds};
undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
outputState.undefinedRegion = undefinedRegion;
outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
}
void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
compositionengine::Output::CoverageState& coverage) {
// Evaluate the layers from front to back to determine what is visible. This
// also incrementally calculates the coverage information for each layer as
// well as the entire output.
for (auto layer : reversed(refreshArgs.layers)) {
// Incrementally process the coverage for each layer
ensureOutputLayerIfVisible(layer, coverage);
// TODO(b/121291683): Stop early if the output is completely covered and
// no more layers could even be visible underneath the ones on top.
}
setReleasedLayers(refreshArgs);
finalizePendingOutputLayers();
// Generate a simple Z-order values to each visible output layer
uint32_t zOrder = 0;
for (auto* outputLayer : getOutputLayersOrderedByZ()) {
outputLayer->editState().z = zOrder++;
}
}
void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
compositionengine::Output::CoverageState& coverage) {
// Ensure we have a snapshot of the basic geometry layer state. Limit the
// snapshots to once per frame for each candidate layer, as layers may
// appear on multiple outputs.
if (!coverage.latchedLayers.count(layerFE)) {
coverage.latchedLayers.insert(layerFE);
layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
}
// Only consider the layers on the given layer stack
if (!belongsInOutput(layerFE)) {
return;
}
// Obtain a read-only pointer to the front-end layer state
const auto* layerFEState = layerFE->getCompositionState();
if (CC_UNLIKELY(!layerFEState)) {
return;
}
// handle hidden surfaces by setting the visible region to empty
if (CC_UNLIKELY(!layerFEState->isVisible)) {
return;
}
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen and not fully
* transparent. This is essentially the layer's footprint minus the opaque
* regions above it. Areas covered by a translucent surface are considered
* visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all visible regions
* above it (which includes the translucent areas).
*/
Region coveredRegion;
/*
* transparentRegion: area of a surface that is hinted to be completely
* transparent. This is only used to tell when the layer has no visible non-
* transparent regions and can be removed from the layer list. It does not
* affect the visibleRegion of this layer or any layers beneath it. The hint
* may not be correct if apps don't respect the SurfaceView restrictions
* (which, sadly, some don't).
*/
Region transparentRegion;
/*
* shadowRegion: Region cast by the layer's shadow.
*/
Region shadowRegion;
const ui::Transform& tr = layerFEState->geomLayerTransform;
// Get the visible region
// TODO(b/121291683): Is it worth creating helper methods on LayerFEState
// for computations like this?
const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
visibleRegion.set(visibleRect);
if (layerFEState->shadowRadius > 0.0f) {
// if the layer casts a shadow, offset the layers visible region and
// calculate the shadow region.
const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
Rect visibleRectWithShadows(visibleRect);
visibleRectWithShadows.inset(inset, inset, inset, inset);
visibleRegion.set(visibleRectWithShadows);
shadowRegion = visibleRegion.subtract(visibleRect);
}
if (visibleRegion.isEmpty()) {
return;
}
// Remove the transparent area from the visible region
if (!layerFEState->isOpaque) {
if (tr.preserveRects()) {
// transform the transparent region
transparentRegion = tr.transform(layerFEState->transparentRegionHint);
} else {
// transformation too complex, can't do the
// transparent region optimization.
transparentRegion.clear();
}
}
// compute the opaque region
const auto layerOrientation = tr.getOrientation();
if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
// If we one of the simple category of transforms (0/90/180/270 rotation
// + any flip), then the opaque region is the layer's footprint.
// Otherwise we don't try and compute the opaque region since there may
// be errors at the edges, and we treat the entire layer as
// translucent.
opaqueRegion.set(visibleRect);
}
// Clip the covered region to the visible region
coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
// Update accumAboveCoveredLayers for next (lower) layer
coverage.aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
if (visibleRegion.isEmpty()) {
return;
}
// Get coverage information for the layer as previously displayed,
// also taking over ownership from mOutputLayersorderedByZ.
auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
auto prevOutputLayer =
prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
// Get coverage information for the layer as previously displayed
// TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
const Region kEmptyRegion;
const Region& oldVisibleRegion =
prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
const Region& oldCoveredRegion =
prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
// compute this layer's dirty region
Region dirty;
if (layerFEState->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(oldVisibleRegion);
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole visible region
* but only keep what used to be covered by something -- which mean it
* may have been exposed.
*
* (2) handles areas that were not covered by anything but got exposed
* because of a resize.
*
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
}
dirty.subtractSelf(coverage.aboveOpaqueLayers);
// accumulate to the screen dirty region
coverage.dirtyRegion.orSelf(dirty);
// Update accumAboveOpaqueLayers for next (lower) layer
coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
// Compute the visible non-transparent region
Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
// Perform the final check to see if this layer is visible on this output
// TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
const auto& outputState = getState();
Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
drawRegion.andSelf(outputState.bounds);
if (drawRegion.isEmpty()) {
return;
}
Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
// The layer is visible. Either reuse the existing outputLayer if we have
// one, or create a new one if we do not.
auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
// Store the layer coverage information into the layer state as some of it
// is useful later.
auto& outputLayerState = result->editState();
outputLayerState.visibleRegion = visibleRegion;
outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
outputLayerState.coveredRegion = coveredRegion;
outputLayerState.outputSpaceVisibleRegion =
outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport));
outputLayerState.shadowRegion = shadowRegion;
}
void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
// The base class does nothing with this call.
}
void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
for (auto* layer : getOutputLayersOrderedByZ()) {
layer->getLayerFE().prepareCompositionState(
args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
: LayerFE::StateSubset::Content);
}
}
void Output::updateAndWriteCompositionState(
const compositionengine::CompositionRefreshArgs& refreshArgs) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
if (!getState().isEnabled) {
return;
}
mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
for (auto* layer : getOutputLayersOrderedByZ()) {
layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
refreshArgs.devOptForceClientComposition ||
forceClientComposition,
refreshArgs.internalDisplayRotationFlags);
if (mLayerRequestingBackgroundBlur == layer) {
forceClientComposition = false;
}
// Send the updated state to the HWC, if appropriate.
layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame);
}
}
compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
for (auto* layer : getOutputLayersOrderedByZ()) {
if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) {
layerRequestingBgComposition = layer;
}
}
return layerRequestingBgComposition;
}
void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
setColorProfile(pickColorProfile(refreshArgs));
}
// Returns a data space that fits all visible layers. The returned data space
// can only be one of
// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
// - Dataspace::DISPLAY_P3
// - Dataspace::DISPLAY_BT2020
// The returned HDR data space is one of
// - Dataspace::UNKNOWN
// - Dataspace::BT2020_HLG
// - Dataspace::BT2020_PQ
ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
bool* outIsHdrClientComposition) const {
ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
*outHdrDataSpace = ui::Dataspace::UNKNOWN;
for (const auto* layer : getOutputLayersOrderedByZ()) {
switch (layer->getLayerFE().getCompositionState()->dataspace) {
case ui::Dataspace::V0_SCRGB:
case ui::Dataspace::V0_SCRGB_LINEAR:
case ui::Dataspace::BT2020:
case ui::Dataspace::BT2020_ITU:
case ui::Dataspace::BT2020_LINEAR:
case ui::Dataspace::DISPLAY_BT2020:
bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
break;
case ui::Dataspace::DISPLAY_P3:
bestDataSpace = ui::Dataspace::DISPLAY_P3;
break;
case ui::Dataspace::BT2020_PQ:
case ui::Dataspace::BT2020_ITU_PQ:
bestDataSpace = ui::Dataspace::DISPLAY_P3;
*outHdrDataSpace = ui::Dataspace::BT2020_PQ;
*outIsHdrClientComposition =
layer->getLayerFE().getCompositionState()->forceClientComposition;
break;
case ui::Dataspace::BT2020_HLG:
case ui::Dataspace::BT2020_ITU_HLG:
bestDataSpace = ui::Dataspace::DISPLAY_P3;
// When there's mixed PQ content and HLG content, we set the HDR
// data space to be BT2020_PQ and convert HLG to PQ.
if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
*outHdrDataSpace = ui::Dataspace::BT2020_HLG;
}
break;
default:
break;
}
}
return bestDataSpace;
}
compositionengine::Output::ColorProfile Output::pickColorProfile(
const compositionengine::CompositionRefreshArgs& refreshArgs) const {
if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
ui::RenderIntent::COLORIMETRIC,
refreshArgs.colorSpaceAgnosticDataspace};
}
ui::Dataspace hdrDataSpace;
bool isHdrClientComposition = false;
ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
switch (refreshArgs.forceOutputColorMode) {
case ui::ColorMode::SRGB:
bestDataSpace = ui::Dataspace::V0_SRGB;
break;
case ui::ColorMode::DISPLAY_P3:
bestDataSpace = ui::Dataspace::DISPLAY_P3;
break;
default:
break;
}
// respect hdrDataSpace only when there is no legacy HDR support
const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
!mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
if (isHdr) {
bestDataSpace = hdrDataSpace;
}
ui::RenderIntent intent;
switch (refreshArgs.outputColorSetting) {
case OutputColorSetting::kManaged:
case OutputColorSetting::kUnmanaged:
intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
: ui::RenderIntent::COLORIMETRIC;
break;
case OutputColorSetting::kEnhanced:
intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
break;
default: // vendor display color setting
intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
break;
}
ui::ColorMode outMode;
ui::Dataspace outDataSpace;
ui::RenderIntent outRenderIntent;
mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
&outRenderIntent);
return ColorProfile{outMode, outDataSpace, outRenderIntent,
refreshArgs.colorSpaceAgnosticDataspace};
}
void Output::beginFrame() {
auto& outputState = editState();
const bool dirty = !getDirtyRegion(false).isEmpty();
const bool empty = getOutputLayerCount() == 0;
const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
// If nothing has changed (!dirty), don't recompose.
// If something changed, but we don't currently have any visible layers,
// and didn't when we last did a composition, then skip it this time.
// The second rule does two things:
// - When all layers are removed from a display, we'll emit one black
// frame, then nothing more until we get new layers.
// - When a display is created with a private layer stack, we won't
// emit any black frames until a layer is added to the layer stack.
const bool mustRecompose = dirty && !(empty && wasEmpty);
const char flagPrefix[] = {'-', '+'};
static_cast<void>(flagPrefix);
ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
flagPrefix[empty], flagPrefix[wasEmpty]);
mRenderSurface->beginFrame(mustRecompose);
if (mustRecompose) {
outputState.lastCompositionHadVisibleLayers = !empty;
}
}
void Output::prepareFrame() {
ATRACE_CALL();
ALOGV(__FUNCTION__);
const auto& outputState = getState();
if (!outputState.isEnabled) {
return;
}
chooseCompositionStrategy();
mRenderSurface->prepareFrame(outputState.usesClientComposition,
outputState.usesDeviceComposition);
}
void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
return;
}
if (getState().isEnabled) {
// transform the dirty region into this screen's coordinate space
const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
if (!dirtyRegion.isEmpty()) {
base::unique_fd readyFence;
// redraw the whole screen
static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
mRenderSurface->queueBuffer(std::move(readyFence));
}
}
postFramebuffer();
std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
prepareFrame();
}
void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
if (!getState().isEnabled) {
return;
}
// Repaint the framebuffer (if needed), getting the optional fence for when
// the composition completes.
auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
if (!optReadyFence) {
return;
}
// swap buffers (presentation)
mRenderSurface->queueBuffer(std::move(*optReadyFence));
}
std::optional<base::unique_fd> Output::composeSurfaces(
const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
ATRACE_CALL();
ALOGV(__FUNCTION__);
const auto& outputState = getState();
OutputCompositionState& outputCompositionState = editState();
const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
outputState.usesClientComposition};
auto& renderEngine = getCompositionEngine().getRenderEngine();
const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
// If we the display is secure, protected content support is enabled, and at
// least one layer has protected content, we need to use a secure back
// buffer.
if (outputState.isSecure && supportsProtectedContent) {
auto layers = getOutputLayersOrderedByZ();
bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
return layer->getLayerFE().getCompositionState()->hasProtectedContent;
});
if (needsProtected != renderEngine.isProtected()) {
renderEngine.useProtectedContext(needsProtected);
}
if (needsProtected != mRenderSurface->isProtected() &&
needsProtected == renderEngine.isProtected()) {
mRenderSurface->setProtected(needsProtected);
}
} else if (!outputState.isSecure && renderEngine.isProtected()) {
renderEngine.useProtectedContext(false);
}
base::unique_fd fd;
sp<GraphicBuffer> buf;
// If we aren't doing client composition on this output, but do have a
// flipClientTarget request for this frame on this output, we still need to
// dequeue a buffer.
if (hasClientComposition || outputState.flipClientTarget) {
buf = mRenderSurface->dequeueBuffer(&fd);
if (buf == nullptr) {
ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
"client composition for this frame",
mName.c_str());
return {};
}
}
base::unique_fd readyFence;
if (!hasClientComposition) {
setExpensiveRenderingExpected(false);
return readyFence;
}
ALOGV("hasClientComposition");
renderengine::DisplaySettings clientCompositionDisplay;
clientCompositionDisplay.physicalDisplay = outputState.destinationClip;
clientCompositionDisplay.clip = outputState.sourceClip;
clientCompositionDisplay.orientation = outputState.orientation;
clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
? outputState.dataspace
: ui::Dataspace::UNKNOWN;
clientCompositionDisplay.maxLuminance =
mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
// Compute the global color transform matrix.
if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
}
// Note: Updated by generateClientCompositionRequests
clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
// Generate the client composition requests for the layers on this output.
std::vector<LayerFE::LayerSettings> clientCompositionLayers =
generateClientCompositionRequests(supportsProtectedContent,
clientCompositionDisplay.clearRegion,
clientCompositionDisplay.outputDataspace);
appendRegionFlashRequests(debugRegion, clientCompositionLayers);
// Check if the client composition requests were rendered into the provided graphic buffer. If
// so, we can reuse the buffer and avoid client composition.
if (mClientCompositionRequestCache) {
if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay,
clientCompositionLayers)) {
outputCompositionState.reusedClientComposition = true;
setExpensiveRenderingExpected(false);
return readyFence;
}
mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay,
clientCompositionLayers);
}
// We boost GPU frequency here because there will be color spaces conversion
// or complex GPU shaders and it's expensive. We boost the GPU frequency so that
// GPU composition can finish in time. We must reset GPU frequency afterwards,
// because high frequency consumes extra battery.
const bool expensiveBlurs =
refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
const bool expensiveRenderingExpected =
clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
if (expensiveRenderingExpected) {
setExpensiveRenderingExpected(true);
}
std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
std::back_inserter(clientCompositionLayerPointers),
[](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
return &settings;
});
const nsecs_t renderEngineStart = systemTime();
status_t status =
renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers,
buf->getNativeBuffer(), /*useFramebufferCache=*/true,
std::move(fd), &readyFence);
if (status != NO_ERROR && mClientCompositionRequestCache) {
// If rendering was not successful, remove the request from the cache.
mClientCompositionRequestCache->remove(buf->getId());
}
auto& timeStats = getCompositionEngine().getTimeStats();
if (readyFence.get() < 0) {
timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
} else {
timeStats.recordRenderEngineDuration(renderEngineStart,
std::make_shared<FenceTime>(
new Fence(dup(readyFence.get()))));
}
return readyFence;
}
std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
std::vector<LayerFE::LayerSettings> clientCompositionLayers;
ALOGV("Rendering client layers");
const auto& outputState = getState();
const Region viewportRegion(outputState.viewport);
const bool useIdentityTransform = false;
bool firstLayer = true;
// Used when a layer clears part of the buffer.
Region stubRegion;
for (auto* layer : getOutputLayersOrderedByZ()) {
const auto& layerState = layer->getState();
const auto* layerFEState = layer->getLayerFE().getCompositionState();
auto& layerFE = layer->getLayerFE();
const Region clip(viewportRegion.intersect(layerState.visibleRegion));
ALOGV("Layer: %s", layerFE.getDebugName());
if (clip.isEmpty()) {
ALOGV(" Skipping for empty clip");
firstLayer = false;
continue;
}
const bool clientComposition = layer->requiresClientComposition();
// We clear the client target for non-client composed layers if
// requested by the HWC. We skip this if the layer is not an opaque
// rectangle, as by definition the layer must blend with whatever is
// underneath. We also skip the first layer as the buffer target is
// guaranteed to start out cleared.
const bool clearClientComposition =
layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
// If the layer casts a shadow but the content casting the shadow is occluded, skip
// composing the non-shadow content and only draw the shadows.
const bool realContentIsVisible = clientComposition &&
!layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
if (clientComposition || clearClientComposition) {
compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
clip,
useIdentityTransform,
layer->needsFiltering() || outputState.needsFiltering,
outputState.isSecure,
supportsProtectedContent,
clientComposition ? clearRegion : stubRegion,
outputState.viewport,
outputDataspace,
realContentIsVisible,
!clientComposition, /* clearContent */
};
std::vector<LayerFE::LayerSettings> results =
layerFE.prepareClientCompositionList(targetSettings);
if (realContentIsVisible && !results.empty()) {
layer->editState().clientCompositionTimestamp = systemTime();
}
clientCompositionLayers.insert(clientCompositionLayers.end(),
std::make_move_iterator(results.begin()),
std::make_move_iterator(results.end()));
results.clear();
}
firstLayer = false;
}
return clientCompositionLayers;
}
void Output::appendRegionFlashRequests(
const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
if (flashRegion.isEmpty()) {
return;
}
LayerFE::LayerSettings layerSettings;
layerSettings.source.buffer.buffer = nullptr;
layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
layerSettings.alpha = half(1.0);
for (const auto& rect : flashRegion) {
layerSettings.geometry.boundaries = rect.toFloatRect();
clientCompositionLayers.push_back(layerSettings);
}
}
void Output::setExpensiveRenderingExpected(bool) {
// The base class does nothing with this call.
}
void Output::postFramebuffer() {
ATRACE_CALL();
ALOGV(__FUNCTION__);
if (!getState().isEnabled) {
return;
}
auto& outputState = editState();
outputState.dirtyRegion.clear();
mRenderSurface->flip();
auto frame = presentAndGetFrameFences();
mRenderSurface->onPresentDisplayCompleted();
for (auto* layer : getOutputLayersOrderedByZ()) {
// The layer buffer from the previous frame (if any) is released
// by HWC only when the release fence from this frame (if any) is
// signaled. Always get the release fence from HWC first.
sp<Fence> releaseFence = Fence::NO_FENCE;
if (auto hwcLayer = layer->getHwcLayer()) {
if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
releaseFence = f->second;
}
}
// If the layer was client composited in the previous frame, we
// need to merge with the previous client target acquire fence.
// Since we do not track that, always merge with the current
// client target acquire fence when it is available, even though
// this is suboptimal.
// TODO(b/121291683): Track previous frame client target acquire fence.
if (outputState.usesClientComposition) {
releaseFence =
Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
}
layer->getLayerFE().onLayerDisplayed(releaseFence);
}
// We've got a list of layers needing fences, that are disjoint with
// OutputLayersOrderedByZ. The best we can do is to
// supply them with the present fence.
for (auto& weakLayer : mReleasedLayers) {
if (auto layer = weakLayer.promote(); layer != nullptr) {
layer->onLayerDisplayed(frame.presentFence);
}
}
// Clear out the released layers now that we're done with them.
mReleasedLayers.clear();
}
void Output::dirtyEntireOutput() {
auto& outputState = editState();
outputState.dirtyRegion.set(outputState.bounds);
}
void Output::chooseCompositionStrategy() {
// The base output implementation can only do client composition
auto& outputState = editState();
outputState.usesClientComposition = true;
outputState.usesDeviceComposition = false;
outputState.reusedClientComposition = false;
}
bool Output::getSkipColorTransform() const {
return true;
}
compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
compositionengine::Output::FrameFences result;
if (getState().usesClientComposition) {
result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
}
return result;
}
} // namespace impl
} // namespace android::compositionengine