blob: b492cb384b7b5fadf46f7a9b48ff8171f4b6c56d [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SF_RENDER_ENGINE_PROGRAMCACHE_H
#define SF_RENDER_ENGINE_PROGRAMCACHE_H
#include <memory>
#include <unordered_map>
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <renderengine/private/Description.h>
#include <utils/Singleton.h>
#include <utils/TypeHelpers.h>
namespace android {
class String8;
namespace renderengine {
struct Description;
namespace gl {
class Formatter;
class Program;
/*
* This class generates GLSL programs suitable to handle a given
* Description. It's responsible for figuring out what to
* generate from a Description.
* It also maintains a cache of these Programs.
*/
class ProgramCache : public Singleton<ProgramCache> {
public:
/*
* Key is used to retrieve a Program in the cache.
* A Key is generated from a Description.
*/
class Key {
friend class ProgramCache;
typedef uint32_t key_t;
key_t mKey;
public:
enum {
BLEND_SHIFT = 0,
BLEND_MASK = 1 << BLEND_SHIFT,
BLEND_PREMULT = 1 << BLEND_SHIFT,
BLEND_NORMAL = 0 << BLEND_SHIFT,
OPACITY_SHIFT = 1,
OPACITY_MASK = 1 << OPACITY_SHIFT,
OPACITY_OPAQUE = 1 << OPACITY_SHIFT,
OPACITY_TRANSLUCENT = 0 << OPACITY_SHIFT,
ALPHA_SHIFT = 2,
ALPHA_MASK = 1 << ALPHA_SHIFT,
ALPHA_LT_ONE = 1 << ALPHA_SHIFT,
ALPHA_EQ_ONE = 0 << ALPHA_SHIFT,
TEXTURE_SHIFT = 3,
TEXTURE_MASK = 3 << TEXTURE_SHIFT,
TEXTURE_OFF = 0 << TEXTURE_SHIFT,
TEXTURE_EXT = 1 << TEXTURE_SHIFT,
TEXTURE_2D = 2 << TEXTURE_SHIFT,
ROUNDED_CORNERS_SHIFT = 5,
ROUNDED_CORNERS_MASK = 1 << ROUNDED_CORNERS_SHIFT,
ROUNDED_CORNERS_OFF = 0 << ROUNDED_CORNERS_SHIFT,
ROUNDED_CORNERS_ON = 1 << ROUNDED_CORNERS_SHIFT,
INPUT_TRANSFORM_MATRIX_SHIFT = 6,
INPUT_TRANSFORM_MATRIX_MASK = 1 << INPUT_TRANSFORM_MATRIX_SHIFT,
INPUT_TRANSFORM_MATRIX_OFF = 0 << INPUT_TRANSFORM_MATRIX_SHIFT,
INPUT_TRANSFORM_MATRIX_ON = 1 << INPUT_TRANSFORM_MATRIX_SHIFT,
OUTPUT_TRANSFORM_MATRIX_SHIFT = 7,
OUTPUT_TRANSFORM_MATRIX_MASK = 1 << OUTPUT_TRANSFORM_MATRIX_SHIFT,
OUTPUT_TRANSFORM_MATRIX_OFF = 0 << OUTPUT_TRANSFORM_MATRIX_SHIFT,
OUTPUT_TRANSFORM_MATRIX_ON = 1 << OUTPUT_TRANSFORM_MATRIX_SHIFT,
INPUT_TF_SHIFT = 8,
INPUT_TF_MASK = 3 << INPUT_TF_SHIFT,
INPUT_TF_LINEAR = 0 << INPUT_TF_SHIFT,
INPUT_TF_SRGB = 1 << INPUT_TF_SHIFT,
INPUT_TF_ST2084 = 2 << INPUT_TF_SHIFT,
INPUT_TF_HLG = 3 << INPUT_TF_SHIFT,
OUTPUT_TF_SHIFT = 10,
OUTPUT_TF_MASK = 3 << OUTPUT_TF_SHIFT,
OUTPUT_TF_LINEAR = 0 << OUTPUT_TF_SHIFT,
OUTPUT_TF_SRGB = 1 << OUTPUT_TF_SHIFT,
OUTPUT_TF_ST2084 = 2 << OUTPUT_TF_SHIFT,
OUTPUT_TF_HLG = 3 << OUTPUT_TF_SHIFT,
Y410_BT2020_SHIFT = 12,
Y410_BT2020_MASK = 1 << Y410_BT2020_SHIFT,
Y410_BT2020_OFF = 0 << Y410_BT2020_SHIFT,
Y410_BT2020_ON = 1 << Y410_BT2020_SHIFT,
SHADOW_SHIFT = 13,
SHADOW_MASK = 1 << SHADOW_SHIFT,
SHADOW_OFF = 0 << SHADOW_SHIFT,
SHADOW_ON = 1 << SHADOW_SHIFT,
DISPLAY_COLOR_TRANSFORM_MATRIX_SHIFT = 14,
DISPLAY_COLOR_TRANSFORM_MATRIX_MASK = 1 << DISPLAY_COLOR_TRANSFORM_MATRIX_SHIFT,
DISPLAY_COLOR_TRANSFORM_MATRIX_OFF = 0 << DISPLAY_COLOR_TRANSFORM_MATRIX_SHIFT,
DISPLAY_COLOR_TRANSFORM_MATRIX_ON = 1 << DISPLAY_COLOR_TRANSFORM_MATRIX_SHIFT,
};
inline Key() : mKey(0) {}
inline Key(const Key& rhs) : mKey(rhs.mKey) {}
inline Key& set(key_t mask, key_t value) {
mKey = (mKey & ~mask) | value;
return *this;
}
inline bool isTexturing() const { return (mKey & TEXTURE_MASK) != TEXTURE_OFF; }
inline bool hasTextureCoords() const { return isTexturing() && !drawShadows(); }
inline int getTextureTarget() const { return (mKey & TEXTURE_MASK); }
inline bool isPremultiplied() const { return (mKey & BLEND_MASK) == BLEND_PREMULT; }
inline bool isOpaque() const { return (mKey & OPACITY_MASK) == OPACITY_OPAQUE; }
inline bool hasAlpha() const { return (mKey & ALPHA_MASK) == ALPHA_LT_ONE; }
inline bool hasRoundedCorners() const {
return (mKey & ROUNDED_CORNERS_MASK) == ROUNDED_CORNERS_ON;
}
inline bool drawShadows() const { return (mKey & SHADOW_MASK) == SHADOW_ON; }
inline bool hasInputTransformMatrix() const {
return (mKey & INPUT_TRANSFORM_MATRIX_MASK) == INPUT_TRANSFORM_MATRIX_ON;
}
inline bool hasOutputTransformMatrix() const {
return (mKey & OUTPUT_TRANSFORM_MATRIX_MASK) == OUTPUT_TRANSFORM_MATRIX_ON;
}
inline bool hasDisplayColorMatrix() const {
return (mKey & DISPLAY_COLOR_TRANSFORM_MATRIX_MASK) == DISPLAY_COLOR_TRANSFORM_MATRIX_ON;
}
inline bool hasTransformMatrix() const {
return hasInputTransformMatrix() || hasOutputTransformMatrix();
}
inline int getInputTF() const { return (mKey & INPUT_TF_MASK); }
inline int getOutputTF() const { return (mKey & OUTPUT_TF_MASK); }
// When HDR and non-HDR contents are mixed, or different types of HDR contents are
// mixed, we will do a tone mapping process to tone map the input content to output
// content. Currently, the following conversions handled, they are:
// * SDR -> HLG
// * SDR -> PQ
// * HLG -> PQ
inline bool needsToneMapping() const {
int inputTF = getInputTF();
int outputTF = getOutputTF();
// Return false when converting from SDR to SDR.
if (inputTF == Key::INPUT_TF_SRGB && outputTF == Key::OUTPUT_TF_LINEAR) {
return false;
}
if (inputTF == Key::INPUT_TF_LINEAR && outputTF == Key::OUTPUT_TF_SRGB) {
return false;
}
inputTF >>= Key::INPUT_TF_SHIFT;
outputTF >>= Key::OUTPUT_TF_SHIFT;
return inputTF != outputTF;
}
inline bool isY410BT2020() const { return (mKey & Y410_BT2020_MASK) == Y410_BT2020_ON; }
// for use by std::unordered_map
bool operator==(const Key& other) const { return mKey == other.mKey; }
struct Hash {
size_t operator()(const Key& key) const { return static_cast<size_t>(key.mKey); }
};
};
ProgramCache() = default;
~ProgramCache() = default;
// Generate shaders to populate the cache
void primeCache(const EGLContext context, bool useColorManagement, bool toneMapperShaderOnly);
size_t getSize(const EGLContext context) { return mCaches[context].size(); }
// useProgram lookup a suitable program in the cache or generates one
// if none can be found.
void useProgram(const EGLContext context, const Description& description);
private:
// compute a cache Key from a Description
static Key computeKey(const Description& description);
// Generate EOTF based from Key.
static void generateEOTF(Formatter& fs, const Key& needs);
// Generate necessary tone mapping methods for OOTF.
static void generateToneMappingProcess(Formatter& fs, const Key& needs);
// Generate OOTF based from Key.
static void generateOOTF(Formatter& fs, const Key& needs);
// Generate OETF based from Key.
static void generateOETF(Formatter& fs, const Key& needs);
// generates a program from the Key
static std::unique_ptr<Program> generateProgram(const Key& needs);
// generates the vertex shader from the Key
static String8 generateVertexShader(const Key& needs);
// generates the fragment shader from the Key
static String8 generateFragmentShader(const Key& needs);
// Key/Value map used for caching Programs. Currently the cache
// is never shrunk (and the GL program objects are never deleted).
std::unordered_map<EGLContext, std::unordered_map<Key, std::unique_ptr<Program>, Key::Hash>>
mCaches;
};
} // namespace gl
} // namespace renderengine
ANDROID_BASIC_TYPES_TRAITS(renderengine::gl::ProgramCache::Key)
} // namespace android
#endif /* SF_RENDER_ENGINE_PROGRAMCACHE_H */